WO2009145405A1 - Microrobot pour thérapie intravasculaire et système microrobotisé l'utilisant - Google Patents

Microrobot pour thérapie intravasculaire et système microrobotisé l'utilisant Download PDF

Info

Publication number
WO2009145405A1
WO2009145405A1 PCT/KR2008/007531 KR2008007531W WO2009145405A1 WO 2009145405 A1 WO2009145405 A1 WO 2009145405A1 KR 2008007531 W KR2008007531 W KR 2008007531W WO 2009145405 A1 WO2009145405 A1 WO 2009145405A1
Authority
WO
WIPO (PCT)
Prior art keywords
microrobot
robot body
unit
treatment
blood vessel
Prior art date
Application number
PCT/KR2008/007531
Other languages
English (en)
Inventor
Jongoh Park
Sukho Park
Original Assignee
Industry Foundation Of Chonnam National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Foundation Of Chonnam National University filed Critical Industry Foundation Of Chonnam National University
Publication of WO2009145405A1 publication Critical patent/WO2009145405A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00411Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like actuated by application of energy from an energy source outside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/303Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies

Definitions

  • the present invention relates, in general, to a microrobot for intravascular therapy and a microrobot system using the microrobot, and, more particularly, to a microrobot and microrobot system, which insert a microrobot equipped with a treatment unit for intravascular therapy into a blood vessel and externally control the microrobot in a wireless manner, thus treating an intravascular disease.
  • Background Art
  • a catheter-based intravascular disease treatment method is a method of treating intravascular diseases in such a way that, when a blood vessel is clogged by a thrombus or an atheroma, a catheter is inserted through the aorta femoralis and eliminates the thrombus or atheroma present in the blood vessel through suction or excision, and a balloon or stent capable of expanding the blood vessel is used if necessary.
  • Such a catheter-based intravascular disease treatment method has been used as a simpler and easier treatment method than vascular bypass graft which is configured to cut the breast open and attach an alternative blood vessel around a clogged blood vessel, and thus divert the flow of blood.
  • DES Drug Eluting Stent
  • an object of the present invention is to provide a microrobot for intravascular therapy and a microrobot system using the microrobot, which can solve the problems of a conventional catheter-based intravascular disease treatment method by replacing the catheter-based intravascular disease treatment method, and can reduce the exposure of patients or doctors to radiation at the time of treating intravascular diseases.
  • a microrobot comprising a robot body for moving within a blood vessel of a treatment target body, a location information provision unit provided in a certain portion of the robot body and configured to provide location information of the robot body, a driving unit provided in a certain portion of the robot body and configured to drive the robot body, a treatment unit provided in a certain portion of the robot body and configured to treat an intravascular disease, and a robot control unit for controlling the location information provision unit, the driving unit, and the treatment unit.
  • the microrobot further comprises a data transmission/ reception unit provided in a certain portion of the robot body and connected to the robot control unit, the data transmission/reception unit receiving a control signal from outside of the robot body or transmitting the location information to the outside of the robot body.
  • the microrobot further comprises a wireless power reception unit provided in a certain portion of the robot body and configured to receive power from the outside in a wireless manner.
  • the driving unit comprises a magnetic body provided with an electromagnetic force from the outside and configured to move the robot body using the electromagnetic force.
  • the driving unit comprises a self -driver for generating a self-driving force using power received by the wireless power reception unit.
  • the treatment unit comprises a micro drill provided on a head portion of the robot body and configured to physically treat an intravascular disease.
  • the treatment unit comprises a drug tank provided in the robot body and configured to store drugs for treatment of the intravascular disease, and a drug injection device configured to inject the drugs for treatment of the intravascular disease, stored in the drug tank, to the outside of the robot body.
  • the treatment unit comprises a particle collector provided at a certain external portion of the robot body and configured to collect treatment particles generated at a time of treating the intravascular disease.
  • the treatment unit comprises a centering unit provided in a certain internal portion of the robot body, and configured to fix the robot body within the blood vessel by extending to the blood vessel and coming into frictional contact with an inner wall of the blood vessel when the micro drill or the drug injection device is operated.
  • a microrobot control system comprising a microrobot for treating an intravascular disease while moving within a blood vessel of a treatment target body, a driving device for transferring a driving force to the microrobot from outside of the treatment target body, and a system control device for receiving location information of the microrobot and controlling the driving device, or transmitting a control signal to the microrobot, wherein the microrobot is implemented as the same robot as the above microrobot according to the above embodiment of the present invention.
  • the driving device comprises an external driving unit for generating a driving force by way of ultrasound waves, microwaves or electromagnetic fields.
  • the driving device comprises a location detection unit for detecting a location of the microrobot, the location detection unit detecting the location of the microrobot using an ultrasonic signal or X-ray angiography.
  • the system control device comprises a location control unit for receiving the location information of the microrobot from the location detection unit, processing the location information, and controlling the external driving unit, thus enabling the microrobot to be driven.
  • the present invention is advantageous in that it can provide a microrobot for intravascular therapy and a microrobot system using the microrobot, which can solve the problem of an injury to a blood vessel attributable to a guide wire because a catheter is not inserted at the time of performing intravascular therapy.
  • the present invention is advantageous in that it can provide a microrobot for intravascular therapy and a microrobot system using the microrobot, which can easily treat even blood vessels such as the coronary arteries, having a large number of branching blood vessels, because a microrobot controlled in a wireless manner is used.
  • the present invention is advantageous in that it can provide a microrobot for intravascular therapy and a microrobot system using the microrobot, which can improve an operation success rate because a focus region can be directly physically or chemically treated even in the case of CTO of blood vessels.
  • the present invention is advantageous in that it can provide a microrobot for intravascular therapy and a microrobot system using the microrobot, which can greatly reduce the radiation exposure of doctors because the location of the microrobot can be automatically determined using ultrasound or X-ray angiography in remote site from a doctor.
  • FIG. 1 is a diagram showing the construction of a microrobot according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the driving unit of a microrobot according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the treatment unit of a microrobot according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the centering unit and the particle collector of a microrobot according to an embodiment of the present invention
  • FIG. 5 is a diagram showing intravascular therapy performed by a microrobot according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing a microrobot system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing the construction of a microrobot according to an embodiment of the present invention
  • Fig. 2 is a diagram showing the driving unit of the microrobot according to an embodiment of the present invention
  • Fig. 3 is a diagram showing the treatment unit of the microrobot according to an embodiment of the present invention.
  • a microrobot 100 includes a robot body 110, a location information provision unit 120, a driving unit 130, a treatment unit 140, a robot control unit 150, a data transmission/ reception unit 160, and a wireless power reception unit 170.
  • the robot body 110 is a part for defining the outside of the microrobot 100 and is manufactured to have such a size that the microrobot 100 is movable within a blood vessel 10.
  • the robot body 110 is manufactured to have a diameter of 2 mm or less so that the robot body 110 can be easily moved within the blood vessel.
  • the head portion 110a of the robot body 110 is manufactured in a streamline shape so as to minimize friction with hematoceles.
  • a particle collector 143 for collecting treatment particles 20 generated at the time of treating a blood vessel is provided.
  • the particle collector 143 will be described in detail with reference to Figs. 4 and 5.
  • the location information provision unit 120 is provided in a certain internal portion of the robot body 110, and is configured to provide the location information of the robot body 110 within the blood vessel to the outside of the blood vessel.
  • the location information provision unit 120 is implemented as an Intravascular Ultrasound (IVUS) sensor for generating ultrasound, and is configured to provide the location of the microrobot 100 to the outside of the microrobot by comparing an ultrasound image, which is generated by inserting the microrobot 100 into the blood vessel, with a blood vessel image which is obtained through existing preoperative imaging (for example, Computerized Tomography [CT] or Magnetic Resonance Imaging [MRI]).
  • IVUS Intravascular Ultrasound
  • the driving unit 130 is provided in a certain portion of the robot body 110, and is configured to move the robot body 110 within the blood vessel 10.
  • the driving unit 130 includes a magnetic body 131 provided with an electromagnetic force from the outside and configured to move the robot body 110 using the electromagnetic force.
  • the microrobot 100 is moved in such a way that the magnetic body 131 is provided with the electromagnetic force by means of varying electromagnetic fields that are applied from the outside.
  • the microrobot 100 may also be provided with a driving force by way of ultrasound waves or microwaves, in addition to electromagnetic fields.
  • the driving unit 130 further includes a self-driver 132, capable of generating a driving force by itself inside the microrobot, rather than being provided with the driving force from the outside.
  • the self-driver 132 may be one of various well-known actuator means capable of obtaining a driving force while coming into frictional contact with a liquid such as hematoceles or a solid such as the inner wall of the blood vessel 10.
  • the self-driver 132 generates a self-driving force using internal power, the internal power being supplied by the wireless power reception unit 170 which will be described later.
  • the treatment unit 140 is a part provided in a certain portion of the robot body 110 and configured to treat an intravascular disease.
  • the treatment unit 140 includes a micro drill 141 for physically treating an intravascular disease, a drug tank 142a and a drug injection device 142b for chemically treating an intravascular disease, a centering unit 144 for fixing the robot body 110 in the blood vessel at the time of performing intravascular treatment, and the particle collector 143 for collecting treatment particles generated at the time of performing the treatment.
  • the micro drill 141 is provided as a physical therapy method on the head portion 110a of the robot body 110, but a scalpel, a clamp, scissors, etc. may be further provided in addition to the micro drill 141, and thus an intravascular disease can be physically treated.
  • drugs stored in the drug tank 142a may be drugs which include, for example, a drug delivery vector, a ligand formed on the external portion of the drug delivery vector, and a biodegradable detergent, and which target CTO or thrombi.
  • the robot control unit 150 is provided in a certain internal portion of the robot body
  • the 110 is connected to the location information provision unit 120, the driving unit 130 and the treatment unit 140, and is configured to receive a control signal from the outside and control the location information provision unit 120, the driving unit 130 and the treatment unit 140.
  • the robot control unit 150 may transmit signals, generated by the location information provision unit 120, the driving unit 130 and the treatment unit 140, to the outside of the robot body using the data transmission/reception unit, which will be described later.
  • the data transmission/reception unit 160 is provided in a certain internal portion of the robot body 110, is connected to the robot control unit 150, and is configured to transmit signals to the outside or receive control signals transmitted from the outside.
  • signals transmitted from the data transmission/reception unit 160 to the outside may be those indicating the location information of the microrobot 100.
  • the wireless power reception unit 170 is provided in a certain internal portion of the robot body 110 and receives power from the outside in a wireless manner.
  • the wireless power reception unit 170 includes a wireless power reception antenna (not shown) for receiving sound waves or microwaves and a rectification circuit (not shown) for converting the sound waves or microwaves into power.
  • the wireless power reception unit 170 may receive various types of well- known signals that can be received in a wireless manner and can be converted into power, in addition to the sound waves or microwaves.
  • Mode for the Invention
  • FIG. 4 is a diagram showing the centering unit and particle collector of the microrobot according to an embodiment of the present invention
  • Fig. 5 is a diagram showing intravascular therapy performed by the microrobot according to an embodiment of the present invention.
  • the robot body 110 when the microrobot 100 according to an embodiment of the present invention initiates intravascular treatment using the micro drill 141 or the drug injection device 142b in the blood vessel 10, the robot body 110 must be fixed at a predetermined location inside the blood vessel 10. A component used at this time is the centering unit 144.
  • the centering unit 144 is provided in a certain internal portion of the robot body 110, and is configured to fix the robot body 110 within the blood vessel 10 by extending from the inside of the robot body 110 to the inner wall of the blood vessel 10 and coming into frictional contact with the inner wall when the micro drill 141 or the drug injection device 142b is operated.
  • the centering unit 144 is provided in the robot body 110 to facilitate the movement of the robot body 110 when the robot body 110 is moving in the blood vessel 10, and is externally extended to fix the robot body 110 in the blood vessel and facilitate treatment when performing the treatment.
  • the particle collector 143 for collecting treatment particles 20 generated at the time of performing the treatment is provided on the head portion 110a of the robot body 110.
  • the particle collector 143 is directed to the inner wall of the blood vessel 10 while forming a predetermined angle with respect to the movement direction of the robot body 110, thus enabling the treatment particles 20 to sufficiently come into frictional contact with the particle collector 143.
  • the particle collector 143 collects the treatment particles 20 thanks to a frictional force.
  • the particle collector 143 may enable the treatment particles 20 to be adhered thereto by an electrostatic effect, or may apply a ligand, targeting calcified 10b treatment particles 20, to the external portion of the particle collector 143 and allow the treatment particles 20 to be connected to the ligand.
  • FIG. 6 is a diagram showing a microrobot system according to an embodiment of the present invention.
  • a microrobot system includes a microrobot 100, a driving device 200 and a system control device 300.
  • microrobot of the microrobot system is identical to the microrobot 100 of Figs. 1 to 5, and thus a detailed description thereof is omitted, and the same reference numerals as those of the microrobot 100 are used.
  • the driving device 200 transfers a driving force from the outside of a treatment target body 30 to the microrobot 100 inserted into the treatment target body 30.
  • the driving device 200 includes an external driving unit 210 for generating the driving force to be transferred to the microrobot 100.
  • the driving force generated by the external driving unit 210 includes ultrasound waves, microwaves or electromagnetic fields.
  • the external driving unit 210 is implemented as an electromagnet, is moving outside the treatment target body 30 in the direction of pitch, yaw or roll, and is configured to move the microrobot 100 by applying an electromagnetic force to the magnetic body 131 provided in the driving unit 130 of the microrobot 100.
  • the external driving unit 210 may apply an electromagnetic force to the microrobot 100 using a conventional Magnetic Resonance Imaging (MRI) device.
  • MRI Magnetic Resonance Imaging
  • the external driving unit 210 may be configured such that a plurality of electromagnets is fixedly provided at regular locations around the treatment target body 30 and electric currents applied to the respective electromagnets are adjusted, so that the forms of electromagnetic fields applied to the treatment target body 30 are changed, and thus the microrobot 100 may be driven.
  • the driving device 200 further includes a location detection unit 220 for detecting the location of the microrobot 100 moving in the treatment target body 30.
  • the location detection unit 220 detects the location of the microrobot 100 by receiving the ultrasound signal generated by the location information provision unit 120 of the microrobot 100, or by capturing an X-ray image of the treatment target body 30.
  • the location detection unit 220 may detect the location of the microrobot 100 using X-ray angiography.
  • the system control device 300 receives the location information of the microrobot
  • the system control device 300 includes a location control unit 310 for processing the ultrasound location information transmitted from the location detection unit 210 or processing the X-ray image transmitted from the location detection unit 210.
  • the location control unit 310 includes the function of processing the X-ray image and detecting the location of the microrobot 100.
  • the system control device 300 displays the location of the microrobot 100 detected by the location control unit 310 on a display panel 330, and an operator controls the driving device 200 by manipulating the manipulation panel 320 of the system control device 300, and thus the microrobot 100 moves to the location of a lesion.
  • the system control device 300 may acquire and store the location of the lesion of the treatment target body 30 in advance through X-ray imaging or MRI, receive the current location of the microrobot 100 in real time, and thus allow the microrobot 100 to automatically move to the location of the lesion.
  • system control device 300 may directly transmit a control signal required for the operation of the treatment unit 140 or the driving unit 130 to the microrobot 100, thus allowing the microrobot 100 to manually move.
  • the present invention relates to a microrobot and microrobot system, which can treat an intravascular disease by inserting a microrobot equipped with a treatment unit for intravascular therapy into a blood vessel and externally controlling the microrobot in a wireless manner, and which can be widely used in the medical field, especially in the field of intravascular therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)
  • Manipulator (AREA)

Abstract

La présente invention concerne, de façon générale, un microrobot pour thérapie intravasculaire et un système microrobotisé l'utilisant et, de façon plus précise, un microrobot et un système microrobotisé pouvant introduire dans un vaisseau sanguin un microrobot équipé d'une unité de traitement pour thérapie intravasculaire et de commander depuis l'extérieur et sans fil le microrobot, en vue du traitement d'une affection intravasculaire. Un système de commande du microrobot selon un mode de réalisation de la présente invention comprend un microrobot 100 permettant de traiter une affection intravasculaire tout en progressant le long d'un vaisseau sanguin d'un organisme constituant la cible du traitement, un dispositif d'entraînement 200 permettant de transférer une force motrice en direction du microrobot depuis l'extérieur de l'organisme constituant la cible du traitement et un dispositif de commande du système 300 capable de recevoir des informations relatives à la localisation du microrobot et à commander le dispositif d'entraînement ou, encore, à transmettre un signal de commande au microrobot.
PCT/KR2008/007531 2008-05-26 2008-12-18 Microrobot pour thérapie intravasculaire et système microrobotisé l'utilisant WO2009145405A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080048572A KR101083345B1 (ko) 2008-05-26 2008-05-26 혈관치료용 마이크로 로봇 및 마이크로 로봇 시스템
KR10-2008-0048572 2008-05-26

Publications (1)

Publication Number Publication Date
WO2009145405A1 true WO2009145405A1 (fr) 2009-12-03

Family

ID=41377258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/007531 WO2009145405A1 (fr) 2008-05-26 2008-12-18 Microrobot pour thérapie intravasculaire et système microrobotisé l'utilisant

Country Status (2)

Country Link
KR (1) KR101083345B1 (fr)
WO (1) WO2009145405A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961261A (zh) * 2010-09-30 2011-02-02 广州大学 一种射流驱动的血管机器人
WO2013032113A1 (fr) * 2011-08-31 2013-03-07 Industry Foundation Of Chonnam National University Système de microrobot pour thérapie intravasculaire et procédé pour le commander
CN106456197A (zh) * 2014-05-07 2017-02-22 汉阳大学校产学协力团 医疗用微型机器人及具备其的微型机器人系统
US9968411B2 (en) 2015-02-16 2018-05-15 Daegu Gyeongbuk Institute Of Science And Technology Micro-robot coupled to catheter
WO2019005293A1 (fr) 2017-06-26 2019-01-03 Bionaut Labs Ltd. Méthodes et systèmes pour contrôler des particules et des dispositifs implantables
CN109223099A (zh) * 2018-08-28 2019-01-18 上海大学 一种基于巨电流变液的多模态血管机器人
JP2019509868A (ja) * 2016-03-09 2019-04-11 エルベ バレー メディカル リミテッドElbe Valley Medical Ltd. 生理学的脈管内の流体流を制限するデバイス及びシステム
CN110292346A (zh) * 2018-03-22 2019-10-01 尼尔·萨丹 利用腔内电磁工作胶囊的导管插入系统和方法
EP3618815A4 (fr) * 2017-05-04 2021-03-17 Bionaut Labs Ltd. Propulsion et commande d'un microdispositif
WO2021053305A1 (fr) * 2019-09-20 2021-03-25 Robeaute Dispositif de propulsion et de pilotage d'une microstructure
EP3666211A4 (fr) * 2017-08-11 2021-04-28 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Système robotique magnétique
CN113081286A (zh) * 2021-05-11 2021-07-09 哈尔滨工业大学 一种微纳机器人介入式治疗系统
CN113133786A (zh) * 2021-03-23 2021-07-20 谈斯聪 一种血管内纳米机器人装置、最优化控制系统、方法
CN113208691A (zh) * 2021-02-21 2021-08-06 蒋立虹 一种用于大鼠动脉粥样斑块的清道夫机器人
KR102330856B1 (ko) * 2021-08-05 2021-11-23 공주대학교 산학협력단 다중 모듈형 헬리컬 마그네틱 로봇
CN115715845A (zh) * 2022-02-25 2023-02-28 中国科学院深圳先进技术研究院 血管介入机器人系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132817A1 (fr) * 2010-04-20 2011-10-27 서울대학교 산학협력단 Robot se déplaçant dans un tuyau pour éliminer des impuretés
KR101303190B1 (ko) * 2011-11-08 2013-09-09 전남대학교산학협력단 자성체를 포함하는 박테리아-기반 마이크로로봇
KR101441739B1 (ko) * 2012-05-08 2014-09-19 명지대학교 산학협력단 체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법
KR101382856B1 (ko) * 2012-05-15 2014-04-08 명지대학교 산학협력단 혈전 파괴를 위한 마이크로 로봇 시스템 및 이를 이용한 혈전 파괴 방법
KR101458938B1 (ko) * 2014-05-16 2014-11-10 한양대학교 산학협력단 자기장 구동형 마이크로 로봇 및 그 시스템
KR101524552B1 (ko) * 2015-01-05 2015-05-29 한양대학교 산학협력단 외부 자기장을 이용한 의료용 소형 로봇 및 이를 포함하는 의료용 소형 로봇 시스템
KR101845941B1 (ko) * 2015-02-16 2018-04-05 재단법인대구경북과학기술원 볼 소켓 조인트 기반의 카테터 일체형 마이크로 로봇
US10959751B2 (en) * 2018-11-07 2021-03-30 Warren Z McCarthy Piezoelectric thrombus removal
KR102224825B1 (ko) * 2019-02-19 2021-03-09 전남대학교산학협력단 단일방향 초음파 트랜스듀서를 이용한 마이크로로봇 구동장치 및 이를 이용한 시스템
KR102195283B1 (ko) 2019-04-18 2020-12-28 공주대학교 산학협력단 나선형 마그네틱 로봇
KR102567763B1 (ko) 2021-08-05 2023-08-16 공주대학교 산학협력단 자기장 구동형 무선 그리퍼 로봇
CN115624393B (zh) * 2022-12-21 2023-03-17 北京唯迈医疗设备有限公司 一种介入手术机器人系统、提供操纵提示的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240312B1 (en) * 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US20050192478A1 (en) * 2004-02-27 2005-09-01 Williams James P. System and method for endoscopic optical constrast imaging using an endo-robot
WO2007011654A1 (fr) * 2005-07-14 2007-01-25 Enhanced Medical System Llc Robot pour interventions peu invasives
JP2008100075A (ja) * 2006-10-20 2008-05-01 Given Imaging Ltd 生体内デバイスのトラッキングカーブをモデル化するためのシステムおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240312B1 (en) * 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US20050192478A1 (en) * 2004-02-27 2005-09-01 Williams James P. System and method for endoscopic optical constrast imaging using an endo-robot
WO2007011654A1 (fr) * 2005-07-14 2007-01-25 Enhanced Medical System Llc Robot pour interventions peu invasives
JP2008100075A (ja) * 2006-10-20 2008-05-01 Given Imaging Ltd 生体内デバイスのトラッキングカーブをモデル化するためのシステムおよび方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961261A (zh) * 2010-09-30 2011-02-02 广州大学 一种射流驱动的血管机器人
WO2013032113A1 (fr) * 2011-08-31 2013-03-07 Industry Foundation Of Chonnam National University Système de microrobot pour thérapie intravasculaire et procédé pour le commander
KR101272156B1 (ko) 2011-08-31 2013-06-05 전남대학교산학협력단 혈관치료용 마이크로로봇시스템 및 그 제어방법
US9136051B2 (en) 2011-08-31 2015-09-15 Industry Foundation Of Chonnam National University Microrobot system for intravascular therapy and method of controlling the same
EP3141199A4 (fr) * 2014-05-07 2017-12-13 Industry - University Cooperation Foundation Hanyang University Micro-robot médical et système de micro-robot le comportant
US20170071622A1 (en) * 2014-05-07 2017-03-16 Industry-University Cooperation Foundation Hanyang University Medical micro robot and micro robot system having the same
EP3494907A3 (fr) * 2014-05-07 2019-08-28 Industry - University Cooperation Foundation Hanyang University Micro-robot médical et système de micro-robot le comportant
US10117991B2 (en) * 2014-05-07 2018-11-06 Industry-University Cooperation Foundation Hanyang University Medical micro robot and micro robot system having the same
CN106456197A (zh) * 2014-05-07 2017-02-22 汉阳大学校产学协力团 医疗用微型机器人及具备其的微型机器人系统
CN106456197B (zh) * 2014-05-07 2019-03-19 汉阳大学校产学协力团 医疗用微型机器人及具备其的微型机器人系统
CN109938806A (zh) * 2014-05-07 2019-06-28 汉阳大学校产学协力团 医疗用微型机器人及具备其的微型机器人系统
US9968411B2 (en) 2015-02-16 2018-05-15 Daegu Gyeongbuk Institute Of Science And Technology Micro-robot coupled to catheter
JP2019509868A (ja) * 2016-03-09 2019-04-11 エルベ バレー メディカル リミテッドElbe Valley Medical Ltd. 生理学的脈管内の流体流を制限するデバイス及びシステム
EP3618815A4 (fr) * 2017-05-04 2021-03-17 Bionaut Labs Ltd. Propulsion et commande d'un microdispositif
JP7240334B2 (ja) 2017-06-26 2023-03-15 バイオナット ラブス リミテッド 粒子と移植可能デバイスを制御する方法およびシステム
JP2020525106A (ja) * 2017-06-26 2020-08-27 バイオナット ラブス リミテッド 粒子と移植可能デバイスを制御する方法およびシステム
WO2019005293A1 (fr) 2017-06-26 2019-01-03 Bionaut Labs Ltd. Méthodes et systèmes pour contrôler des particules et des dispositifs implantables
EP3644969A4 (fr) * 2017-06-26 2021-03-17 Bionaut Labs Ltd. Méthodes et systèmes pour contrôler des particules et des dispositifs implantables
EP3666211A4 (fr) * 2017-08-11 2021-04-28 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Système robotique magnétique
US11648068B2 (en) 2017-08-11 2023-05-16 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Magnetic robot system
EP3552533A3 (fr) * 2018-03-22 2020-07-29 Nir Sadan Système et procédé de cathétérisation à l'aide d'une capsule de travail électromagnétique intraluminale
US11583355B2 (en) 2018-03-22 2023-02-21 Nivat Medical Device Ltd. System and method for catheterization using an intraluminal electromagnetic working capsule
CN110292346A (zh) * 2018-03-22 2019-10-01 尼尔·萨丹 利用腔内电磁工作胶囊的导管插入系统和方法
CN109223099A (zh) * 2018-08-28 2019-01-18 上海大学 一种基于巨电流变液的多模态血管机器人
WO2021053305A1 (fr) * 2019-09-20 2021-03-25 Robeaute Dispositif de propulsion et de pilotage d'une microstructure
CN114727849A (zh) * 2019-09-20 2022-07-08 罗宝蒂公司 用于推进和操纵微结构的设备
CN113208691A (zh) * 2021-02-21 2021-08-06 蒋立虹 一种用于大鼠动脉粥样斑块的清道夫机器人
CN113133786A (zh) * 2021-03-23 2021-07-20 谈斯聪 一种血管内纳米机器人装置、最优化控制系统、方法
WO2022199198A1 (fr) * 2021-03-23 2022-09-29 谈斯聪 Appareil de nano-robot intravasculaire, système de commande optimisé et procédé
CN113081286A (zh) * 2021-05-11 2021-07-09 哈尔滨工业大学 一种微纳机器人介入式治疗系统
KR102330856B1 (ko) * 2021-08-05 2021-11-23 공주대학교 산학협력단 다중 모듈형 헬리컬 마그네틱 로봇
CN115715845A (zh) * 2022-02-25 2023-02-28 中国科学院深圳先进技术研究院 血管介入机器人系统

Also Published As

Publication number Publication date
KR20090122648A (ko) 2009-12-01
KR101083345B1 (ko) 2011-11-15

Similar Documents

Publication Publication Date Title
WO2009145405A1 (fr) Microrobot pour thérapie intravasculaire et système microrobotisé l'utilisant
JP4166277B2 (ja) 体内プローブを用いた医療方法および装置
JP5460610B2 (ja) 磁場制御および誘導のための磁気先端部を有する灌流アブレーションカテーテル
US7785261B2 (en) Catheter device with a position sensor system for treating a vessel blockage using image monitoring
JP5285270B2 (ja) 自動ガイドワイヤ操作システム
US8167810B2 (en) Catheter device for treating a blockage of a vessel
US7686767B2 (en) Catheter with variable magnetic field generator for catheter guidance in a subject
US20070250041A1 (en) Extendable Interventional Medical Devices
US20070135886A1 (en) Catheter device
JP2007083057A (ja) カテーテル装置、治療装置およびアテレクトミーを実施する際の検査画像の作成方法
Nguyen et al. Guide-wired helical microrobot for percutaneous revascularization in chronic total occlusion in-vivo validation
WO2011059829A1 (fr) Dispositifs, systèmes et méthodes pour une visualisation améliorée de l'anatomie d'un patient
JP5063864B2 (ja) 血管内超音波法による監視の下に完全血管閉塞を除去するため装置
CN112752551A (zh) 医疗器械和用于在身体内执行手术操作的方法
JP7025434B2 (ja) 大面積超音波トランスデューサー組立体
JP4315770B2 (ja) 体腔内治療診断システム
KR102239108B1 (ko) 마이크로 로봇의 구동 전자기장 매핑 기반 혈관조영 방법 및 이를 이용한 장치
EP2321010B1 (fr) Aide robotique à la localisation pour l'administration d'ultrasons focalisés de haute intensité
JP7352561B2 (ja) 腔内感知装置に対する電磁制御並びに関連する装置、システム及び方法
US20090270714A1 (en) Device to Treat Chronic Total Occlusions Using Energy Imparted By External Imaging
WO2024036258A2 (fr) Navigation de dérivation fémoro-poplitée percutanée
WO2021199935A1 (fr) Système de soins médicaux
US20230404784A1 (en) Stent delivery system, control apparatus, and method
CN116672571A (zh) 一种医用导管
JP2024051662A (ja) 医療デバイスの挿入支援装置及び挿入支援システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874498

Country of ref document: EP

Kind code of ref document: A1