JP2019509868A - 生理学的脈管内の流体流を制限するデバイス及びシステム - Google Patents

生理学的脈管内の流体流を制限するデバイス及びシステム Download PDF

Info

Publication number
JP2019509868A
JP2019509868A JP2018566636A JP2018566636A JP2019509868A JP 2019509868 A JP2019509868 A JP 2019509868A JP 2018566636 A JP2018566636 A JP 2018566636A JP 2018566636 A JP2018566636 A JP 2018566636A JP 2019509868 A JP2019509868 A JP 2019509868A
Authority
JP
Japan
Prior art keywords
nanobot
target area
coordinates
signal
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018566636A
Other languages
English (en)
Inventor
レイノルズ ロブ
レイノルズ ロブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elbe Valley Medical Ltd
Original Assignee
Elbe Valley Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1604074.3A external-priority patent/GB201604074D0/en
Application filed by Elbe Valley Medical Ltd filed Critical Elbe Valley Medical Ltd
Publication of JP2019509868A publication Critical patent/JP2019509868A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/12031Type of occlusion complete occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/12036Type of occlusion partial occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Robotics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Surgical Instruments (AREA)
  • Flow Control (AREA)

Abstract

人間又は動物の生理学的脈管内の流体流を制限するデバイス及びシステムを提供し、このデバイスは、生理学的脈管内の流体流によって受動的に推進可能となる第1モード及び少なくとも部分的に生理学的脈管を閉塞する第2モードをとるよう構成可能であり、デバイスは、第1モードにおける第1断面サイズと、及び第2モードにおける第1断面サイズよりも大きい第2断面サイズとを有する。システムは、複数個の上述したデバイスと、デバイスに給電する電源と、及びデバイスを制御する1つ又はそれ以上のプロセッサを有するコントローラと、を備える。
【選択図】図3

Description

本発明は、人間及び動物の生理学的脈管内の流体流を制限するデバイス及びシステムに関する。
とくに、現行の方法を用いての腫瘍及びがんを処置する上で最重要な課題は3つある。化学療法は、小さい腫瘍に対してはうまく機能するものの、腫瘍が所定サイズに達すると、処置が腫瘍増大を遅くするよりも早く増大する傾向にある。放射線治療は、副作用が少ないにも拘らず同様の欠点があると言ってよい。外科手術は、望ましくない組織の部位に起因して実行不能なことがよくある。現行の技術は、急速に増大する腫瘍又は全く望ましくない人間組織の処置に適合せず、また現段階で進行したステージのがんを有する患者に対する現行の方策は、疾患の進行を遅くし、かつ患者のクオリティ・オブ・ライフを長くするように試みる上述の方法を用いるだけである。しかし、患者は、大きな苦しみを負い、また多大な不快感にさいなまれることがよくある。
人間及び動物における腫瘍、病変、及び他の望ましくない組織の、上述した方法を用いる処置は、標的とされる組織(腫瘍、病変、又は他の望ましくない組織)を健常組織から完全に分離する処置は不可能であるゆえに副作用を生ずる。
化学療法の場合、がんの拡大を阻止し、また進行する腫瘍を撲滅するため薬剤がんの多大な投与量で患者に投与される。しかし、全身が薬剤の活性化学物質に曝されるとき、副作用はほとんど不可避である。
放射線治療の場合、患者は、自身の腫瘍をMRIスキャナの使用で画像化し、また通常は、合焦させた放射線を腫瘍に照射することによって処置を施し、放射線は線形加速器によって発生させ、腫瘍が位置する身体のポイントに合焦されるビームを生ずる。できるだけ広い角度範囲にわたる腫瘍にビームを到達させるとき、正常組織への線量はできるだけ低く抑えられる。放射線治療は、火傷のような副作用がある。
化学療法及び放射線治療の双方とも小さ目の腫瘍に対して有効である。腫瘍が臨界的な塊に達すると、塊は化学療法又は放射線治療のいずれかが破壊できるよりも速い速度で増大することができる。この事態を生ずるとき、これらの処置はがんの進行速度を遅くすることにしか使用されない。
外科手術も腫瘍サイズを減縮させるのに使用される。しかし、外科手術は、侵襲性があり、腫瘍の部位によって実行不能なことがよくある。望ましくない組織の除去が好ましい疾病を処置する上での最優先課題は、現行技術の能力で望ましい組織と望ましくない組織との間で区別を付けることである。
現行技術は、急速に増大する腫瘍又は全く望ましくない人間組織、また例えば、例えば、現段階で進行したステージのがん及び他のそのような疾病を有する患者に対する処置には適合しない。現行処置は、薬剤の使用に強く頼っており、その場合、実行可能な外科手術は望ましくない組織を破壊することである。これら方法は、望ましくない副作用のような幾つかの欠点があり、また多くの場合、これら疾患を有する患者は大きな苦しみを味わう。
腫瘍を画像化するのに使用される方法の1つは、市販されている磁気共鳴映像法(MRI)装置であり、この装置は、医学の分野で人間の骨及び組織の異常を診断するのに広く使用されており、またこの技術は主に診断ツールとして使用されている。MRI映像法を以下に詳述する。
人体は、1.1mmの平均長さを有する約100億もの毛細血管がある。毛細血管は、微小循環を補償する人体血管(及びリンパ管)における最小のものである。それらの内膜は単に1つの細胞層厚さである。これら微小血管は、計測すると直径が約5〜10マイクロメートル(μm)であり、細動脈及び細静脈を相互接続するものであり、また図1に示すように、血管とこれら血管を取り巻く組織との間で水、酸素、二酸化炭素、並びに多くの他の栄養素及び老廃物の交換を可能にするのに役立つ。
血液は、心臓から、分岐して細動脈へと狭くなり、また次に栄養素及び老廃物を交換する毛細血管へとさらに分岐する動脈を経由して流れる。毛細血管は、細静脈となるよう互いに接続して広くなり、この細静脈は静脈となるよう広がって合流し、この静脈は、この後血液を大静脈経由で心臓へ戻す。
毛細血管は、それ自体では機能しないが、その代わり図1に示すように毛細血管床において、複雑に交錯する毛細血管のネットワークが臓器及び組織を提供する。細胞又はその環境の代謝が活性化すればするほど、毛細血管はより多く栄養素を供給し、また老廃物を搬出することを必要とする。毛細血管床は、2タイプの血管、すなわち、動脈から分岐して、細胞と血液との間の交換を行う真性毛細血管と、及び毛細血管床の両側の端部で細動脈及び細静脈を直接接続する短い血管であり、腸間膜循環でのみ見られるメタ細動脈とを有することができる。
がん及び他の腫瘍は、脈管形成と称されるプロセスを用いて新生血管の成長を促すホルモンを創生する。新生組織が必要な栄養素及び酸素を取得するとともに細胞老廃物を廃棄することができるのはこのプロセスによってである。組織の毛管系の機能は、組織の生命維持能力の中核をなす。
ナノロボットは、周囲の健常な組織に影響を与えることなく、がん腫瘍部位に直接薬剤を送達するよう設計されていることによって、がんのような疾患の処置に対する潜在的解決法として歓迎されてきた。従来のナノロボット設計には多数の問題があり、これら問題が疾患治療におけるナノロボットの有用性を制限していた。
従来設計は標的組織を検出する内蔵センサを組み込んでおり、このことが設計に対するコスト及び複雑さを付加する。標的組織を検出するセンサ及び処理能力は、処置を開始する前に処置の有効性精度を確保するのを困難にする。さらに、ナノボットが正しい位置にナノボット投与量を送達したと保証することは困難であり、これには、処置をどのように行ったかを発見するデバイスからの複雑なフィードバック系を必要とする。この結果、ナノボットのリアルタイム制御を達成するのは困難なものであり得る。
ナノロボットは、ナノロボットが標的組織に到達できるよう、身体を動き回ることを可能にする通常バクテリアの鞭毛を模している推進機構からなる。現在のところ、ナノロボットに給電するには超音波エネルギー転移、マイクロ波、又は磁場を含む幾つかの方式がある。
目下のところ医療の診断分野において、以下の概要的な3つの方法、すなわち、
・磁気共鳴映像法(MRI)
・コンピュータ断層撮影法(CTスキャン)
・超音波診断
を用いて、3次元画像化を達成することができる。
磁気共鳴映像法(MRI)は優れた診断ツールであることが分かっている。それは、強力な磁場、電波、及び場勾配を利用して身体の画像を形成する。しかし、この技術における幾つかの欠点としては、(1) 高設備資本コスト、(2) 高運転コスト、(3) 生データから画像を取得するのに長いデータ処理時間がかかる点、(4) 20分もかかるスキャン中に患者がじっとしていなければならない点、及び(5) 患者からのリアルタイムデータが得られず、したがって、心臓の弁の開閉のような速く動くデータを取得できない点がある。
コンピュータ断層撮影法(CT)は他の高品質診断ツールであるが、上述の欠点のすべてに加えて、以下のような幾つかの欠点、すなわち、(1) 電離放射線を使用し、したがって、患者はすべてのスキャンに被曝する回数が増える点、(2) 高コントラスト画像化にはより高い照射線量を必要とする点、を共有する。診断目的のために、医師は、最良品質画像を取得するようできるだけ高い線量にしたいと望むであろう。しかし、患者を保護するよう低い線量を使用する決断をし、また後で画像品質が悪いことに気付く場合、医師は患者に他のスキャンを受けさせ、また最初に高品質画像を選択する場合よりも高い総線量に曝さねばならない。
超音波診断法は、長年診断に使用されてきており、また診断データを取得するリスクの低い方法であるとして十分確立されている。超音波画像化(イメージング)の他の利点は、リアルタイムで生成することができ、また心臓弁診断のような動的組織を診断するのに使用することができる。しかし、超音波画像化は以下の点、すなわち、(1) 被検者身体内部からの望ましくない反射、(2) 意図した部位に合焦させるのが困難な点、(3) 低解像度、及び(4) 上述したようにキャビテーションを引き起こすおそれがある超音波造影剤を患者に注入せずには柔らかい組織に対して使用するのに適さない点、というような欠点なしでは済まなかった。
上述したように、従来の結像系は情報を処理する上で限界がある。例としては、顕微鏡レンズがある。顕微鏡対物レンズの開口数は、対物距離に光を集め、また微細細部を解像する能力の尺度である。図1は、従来の結像系における開口数の限界を示す図である。図1において、例えば、開口数は次式のように、すなわち、
N.A.=nXsinθ
として計算することができ、
ここで、nは媒質の屈折率であり、θは画像化装置に入射又は出射できる波の円錐角の最大半角である。
従来の結像系において、照射波(CTの場合光波、超音波の場合超音波)を使用して標的を照射する。これら波は標的に対して回折をし、このことは、入来する波が標的に衝突し、また回折次数を生ずることを意味する。これら次数を結像系が結集して標的の画像を形成する。ゼロ次回折は、極めて大きなエネルギーを含むが、標的に関する情報は含まない。より高い回折次数は、より少ないエネルギーを含むが、標的に関する情報を多く含む。高次の回折次数はゼロ次から所定角度をなして伝播し、このことは、回折次数が高ければ高いほど、より大きな角度をなして伝播し、またより高い結像系解像度を達成できることを意味する。さらに、注目すべきは、角度成分に起因するより高い次数は、受波機構に生ずるより長い経路を有する点である。多くの超音波装置は、有用情報とノイズとの間を差別化するいわゆる「飛行時間」と称されるこの特性を使用する。
従来の超音波診断装置において、超音波が発生され、オペレータが望み通りに移動する携帯変換器が受波する。このことは、取得される画像解像度の限界を示し、これはすなわち、より高次の回折次数を検出する能力が変換器の物理的サイズによって制限されるからである。この結果、携帯超音波診断装置は、低い次数を検出するはめとなり、またゼロ次反射の望ましくない作用を受けることになる。
上述の観点から、他の方法に共通して関連する副作用なしに人間及び動物における望ましくない組織を迅速かつ正確に破壊する手段に対する必要性がある。
本発明によれば、特許請求の範囲の請求項1に詳細を記載したデバイスを提供する。さらに、特許請求の範囲の請求項22によるシステムを提供する。有利な特徴は、特許請求の範囲の従属項で要求する。
本発明は、人間又は動物の生理学的脈管内の流体流を正確に制限するデバイス及びシステムを提供する。このデバイスは以下にナノロボット又はナノボットと称する。ナノボットは、人間又は動物の循環系を通過するのに十分小さい機械的又は電気機械的ロボットからなるものとすることができる。本発明のナノボットは、不作動状態で約2.8μm〜約5.2μmの範囲内の断面サイズを有することができる。
ナノボットは、標準半導体又はMEMS(Micro-Electro-Mechanical System)技術を用いて作製することができる。ナノボットは、一次確認サブシステムからの位置信号をRFエンコーダ/干渉計システムを介して受け取る無線アンテナを備えることができる。このようにして、ナノボットはX、Y及びZの軸線における固定開始ポイントからの相対変位を検出することができる。
MRI装置のような画像化装置は、(a) 望ましくない組織の存在及び場所を検証及び(b) 磁場を介するナノボットのための電源をなすよう、本発明と併用する別個の装置として使用することができる。
ナノボットの目的は、損傷した又は望ましくない組織を破壊するため、標的領域における毛細管ネットワークの通常動作を中断することである。
磁束発生機構は、ナノボットの電源をなすために使用することができる。
ナノボットは、外部ビーム放射デバイスと並列的に動作するよう構成することができ、電離性電磁放射線の外部で発生したビームを使用して標的領域を照射する。従来の放射線治療に対するこの方法の利点は、通常適用される放射線量のうち僅かな分量しか必要としない点であり、これはすなわち、放射線は標的領域内のナノボットを作動させるためにのみ使用され、腫瘍を直接的に処置するのではないからである。このことは、ナノボットの複雑さを軽減する。
本発明は、さらに、人間又は動物の生理学的脈管内の流体流を制限するシステムを提供し、このシステムは、
複数個のナノボットと、
前記ナノボットに給電する電源と、及び
前記ナノボットを制御する1つ又はそれ以上のプロセッサを有するコントローラと、
を備える。
前記電源は、前記ナノボットであるデバイスに給電するよう電気絶縁した複数個の電磁石を有する磁束発生機構を有することができ、前記複数個のデバイスは、前記電気絶縁した電磁石から発生した複数のオーバーラップする磁場を介して給電される。
本発明システムは、さらに、標的領域を照射する電離性電磁放射のビームを発生する外部ビーム放射デバイスを備えることができる。
本発明は、さらに、照射源として外部で発生した超音波信号を使用する超音波画像化システム(結像系)を提供する。例えば、本発明の文脈において、上述のナノボットを使用して超音波信号を発生することができる。
超音波画像化システムは、布地又は他の材料の表面にわたり埋設したセンサのネットワークを用いて、超音波信号及び回折次数を光学的画像に変換するよう構成される。これは超音波検出マトリクスと称することができる。この超音波検出マトリクスは、被検者又は患者の身体周りを包み込んで、センサが被検者又は患者の外表面に接触するよう構成することができる。
超音波画像化システムは超音波信号を測定するよう構成され、主感知軸線に平行に伝播する波を検出することができ、このことは半角θが効果的には、計算される結像系の開口数を単位元とする(空気に対しては1.00のn)90゜の角度であることを意味する。
本発明を以下に添付図面につき説明する。
従来の結像系における開口数の限界を示す説明図である。 本発明の実施形態によるナノボットが毛細血管を通過するときの状況を示す説明図である。 本発明の実施形態によるナノボットが不作動状態、放出状態、及び拡大状態にある種々の説明図である。 本発明の実施形態による、患者周りの方位にそれぞれ配置した電気的絶縁電磁石から発生する複数のオーバーラップする磁場を示す。 本発明の実施形態による、磁束発生機構の中心軸線に対して合目的的に誤整列させている電磁石を示す。 本発明の実施形態による、人間又は動物の生理学的脈管内の流体流を制限するシステムを示すブロック図である。 本発明の実施形態による、人間又は動物の生理学的脈管内の流体流を制限するシステムであって、磁束発生機構及び外部ビーム放射デバイスを有するシステムを示す概略図である。 本発明の実施形態による、図7のシステムの種々の形態を示す説明図である。 本発明の実施形態による、一次確認サブシステム(PVS:Primary Validation Sub-system)のレイアウトを、被検者支持体上に配置したX、Y及びZの軸線における無線周波数(RF)トランスミッタとともに示す説明図である。 本発明の実施形態による、一次確認サブシステム(PVS)の毛細管ネットワークを設置するときのイニシャライザを示す説明図である。 本発明の実施形態による、光源とともにイニシャライザを示す内部ビュー、及び初期設定中に毛細管ネットワークを移動するナノボットの拡大ビューを示す。 本発明の実施形態による、f1及びf2のRF信号間の関係性を示すグラフであって、波面ピークの位置の差をナノボットが使用して、イニシャライザからの変位を決定する。 PVSが使用するf1、f2、f3及びf4の信号の例を示すグラフである。 本発明の実施形態による、ナノボットの動作を制御する方法を示すフローチャートである。 本発明の実施形態による超音波結像系を示す説明図である。 本発明の実施形態による、単一の超音波検出モジュール(UDM)の平面図及び斜視図を示す。 本発明の実施形態による、単一の超音波検出アセンブリ(UDA)の立面図である。 本発明の実施形態による、単一の超音波検出アセンブリ(UDA)とともに関連の剛性カラムアセンブリを示す平面図である。 図17の超音波検出アセンブリ(UDA)に入射する超音波を示す説明図である。 図17の超音波検出アセンブリ(UDA)に入射する超音波を示す説明図である。 本発明の実施形態による、埋設UDMマトリクスを有する布地であって、人間骨盤周りに患者身体とUDMマトリクスとの間に、超音波の減衰を防止する超音波ゲルとともに該布地を巻き付けた状態を示す図である。 本発明実施形態による処理ステップを実施するよう機能する種々のハードウェア及びソフトウェアのコンポーネントを備えるコンピュータ・デバイスの例示的な構成を示すブロック図である。
本発明は、人間又は動物の生理学的脈管内の流体流を制限するデバイスを提供する。人間又は動物の生理学的脈管内の流体流を制限するデバイスは、生理学的脈管内の流体流によって受動的に推進可能となる第1モード及び少なくとも部分的に生理学的脈管を閉塞する第2モードをとるよう構成可能であるものとして設けられる。本発明デバイスは、第1モードにおける第1断面サイズと、及び第2モードにおける第1断面サイズよりも大きい第2断面サイズとを有する。血管のような生理学的脈管内をうまく移動できるよう、以下にナノボットと称する複数のナノサイズのデバイスを被検者に注入することができる。人間に対しては、ナノボットは、第1モード、すなわち不作動状態で約2.8μm〜約5.2μmの範囲内における第1断面サイズを有するよう構成することができる。ナノボットを有機溶媒に溶け込ませて溶液にし、この溶液を水ベースの溶媒に分散させてから被検者に投与する。ナノボットを被検者に注入するとともに、被検者をMRI装置のような画像化装置に配置する。ナノボットは、肺系統及び身体の自然的作用によって搬送され、身体のすべての毛細管に到達することができる。ナノボットは、不作動状態である間には肺系統全体に自由に移動することができる。しかし、作動状態になった後には、ナノボットは、その断面積を増大し、これによりナノボットが移動している血管内における流体流を阻止するよう構成されている。ナノボットは、不作動状態にあるときは、約2.8μm〜約5.2μmの範囲内における断面サイズを有するよう構成することができる。本発明の文脈において、ナノボットの断面サイズは、ナノボットの断面直径又は断面幅を意味する。約2.8μm〜約5.2μmの範囲内における第1断面サイズでは、ナノボットは人間の血管内を自由に移動することができる。ナノボットは、拡大したとき約7.7μm〜約14.3μmの第2断面サイズをとるよう構成することができる。約7.7μm〜約14.3μmの第2断面サイズにおいては、ナノボットは、人間の血管を少なくとも部分的に閉塞することができる。しかし、他の動物では毛細管サイズは変化するものであり、異なる動物を治療するには異なるサイズのナノボットが必要となり得ることは理解されるであろう。不作動状態におけるデバイスの最大断面サイズは、被検体である人間又は動物における脈管の約40%であるよう構成することができる。
作動状態になった後には、ナノボットは、標的領域における血流を妨害するよう拡大する構成とすることができる。この点に関して、ナノボットは、3つの動作モードを有することができる。第1モードは、ナノボットが血管内を自由に移動するサイズにある動力を受けず不作動状態にあるモードである。第2モードは、動力を受けて不作動状態にあるモードである。第3モードは、動力を受けて作動状態にあるモードであり、ナノボットの断面積が増大して標的領域の血流を妨害するモードである。動作の第1モード及び第2モードにおいて、ナノボットは、上述の第1断面サイズ、すなわち、不作動サイズとなるよう構成することができる。動作の第3モードにおいては、ナノボットは、上述の第2断面サイズ、すなわち、作動サイズとなるよう構成することができる。動作のそれらのモードを以下に説明する。
本発明のナノボットは、人間又は動物における血管のような生理学的脈管内を何とか通り抜けるに十分な小さいナノサイズのデバイスである。血管としては、血液を心臓から搬送する動脈、血液と組織との間で水及び化学物質を交換できる毛細血管、並びに血液を毛細血管から心臓に戻す搬送を行う静脈がある。図2は、本発明によるナノボット100が毛細血管105を移動するときの状況を示す。この図は、本発明の実施形態による種々のモードにあるナノボット100を様々に示す図面である。図3につき説明すると、ナノボット100は、主本体120と、作動状態にあるときこの主本体120から伸展してナノボット100の断面積を増大させるよう構成されている1つ又はそれ以上の伸展素子122とを備える。1つ又はそれ以上の伸展素子122は、主本体120内に収納されるよう構成されている。1つ又はそれ以上の伸展素子122は、主本体120の外表面から突出するよう構成されている。1つ又はそれ以上の伸展素子122は、平面シート状構造を有することができる。1つ又はそれ以上の伸展素子122のそれぞれは、血管壁に対するダメージを防止する丸みのある又は方形の末端部を有することができる。1つ又はそれ以上の伸展素子122は、主本体120の1つ又はそれ以上の側面から突出することができる。図3において、主本体120は平面状表面を有する平行6面体形状を有するが、これは単に一実施形態であり、本発明はこれに限定するものではない。1つ又はそれ以上の伸展素子122が伸展していないとき、1つ又はそれ以上の伸展素子122は、主本体120内に収納し得る。1つ又はそれ以上の伸展素子122が主本体120から伸展していないとき、ナノボット100は不作動状態にあることは理解されるであろう。この形態、すなわち不作動状態において、このナノボット100は血管内を自由に通過できる。しかし、1つ又はそれ以上の伸展素子122が作動状態にされた後、1つ又はそれ以上の伸展素子122は主本体120から突出して血管の内面に接触する。1つ又はそれ以上の伸展素子122が主本体120から伸展するとき、ナノボット100は拡大状態をとる。この形態、すなわち拡大モードにおいて、ナノボット100の断面サイズは、ナノボット100がもはや血管を自由に通過できないようになる。ナノボット100は、不作動状態で約2.8μm〜約5.2μmの範囲内における第1断面サイズを有することができる。ナノボット100は、拡大モードで約7.7μm〜約14.3μmの第2断面サイズを有することができる。したがって、1つ又はそれ以上の伸展素子122が作動状態にされた後、ナノボット100は少なくとも部分的に血管を塞ぎ、また血管内の血液又は他の流体の流れを遮ることは理解されるであろう。ナノボット100は、少なくとも部分的に血管を塞ぐ、又は血管を全体的に塞ぐよう構成することができる。ナノボット100は、患者の血流内で搬送するよう構成されているため自己推進手段を持たない。したがって、ナノボット100は、血管内を流体流によって受動的に推進されるものと考えることができる。このようなナノボット100を数100万個又は数10億個も患者に投与されて、血液循環系によって患者の身体を巡ることができる。1つ又はそれ以上の伸展素子122は、尺取虫モータのようなマイクロモータによって駆動するよう構成することができる。尺取虫モータは、圧電駆動尺取虫モータとすることができる。マイクロモータは主本体120内に収容することができる。
本発明の実施形態によれば、主本体120は、ナノボット100を作動状態にすることが可能なトランジスタ又はダイオードのような放射線感受性デバイスを備えることができる。放射線感受性デバイスはフォトダイオードとすることができる。放射線感受性デバイスは、蛍光体又は任意な他のこのような発光物質でコーティングすることができる。代案として、放射線感受性デバイスは多種あるRADFETのうちMOSFET、又は実際には未コーティングのダイオードとすることができる。
図3につき説明すると、主本体120は、ナノボット100に給電するのに必要な電力を発生するコイル126を収容することもできる。電力は磁束発生機構から供給することができる。本発明によるナノボットは、コイル126を介して磁束発生機構から電力を受け取るまでは不活性の不作動状態に留まる。磁束発生機構の実施形態を以下に説明し、また図4及び5で示す。
磁束発生機構のエネルギー出力は、磁気的に発生したすべての磁場がオーバーラップする空間のみがナノボット100をパワーオンするのに十分となるような出力とすることができる。
第1動作モードにおいて、ナノボット100は給電されるだけで不作動状態である。作動させるためには、ナノボット100の放射線感受性デバイスが電離性電磁放射線の存在を検出しなければならない。本発明のナノボット100は、外部ビーム放射デバイスと並列的に動作するよう構成することができ、電離性電磁放射線の外部で発生したビームを使用して標的領域を照射する。電離性電磁放射線が存在するとき、放射線感受性デバイスは状態を変化する。放射線感受性デバイスが状態を変化するとき、1つ又はそれ以上の伸展素子122が作動するよう構成することができる。或る実施形態においては、ナノボット100の1つ又はそれ以上の電力トランジスタを使用して1つ又はそれ以上の伸展素子122を作動させる。例えば、ナノボット100は、MOSFET又は他の同様なX線感受性のトランジスタを備えることができる。
ナノボットが給電されても放射線が存在しないとき、ナノボット100は、1つ又はそれ以上の伸展素子122を後退させるよう構成することができる。これにより、血流が標的領域を逆流することができ、また治療後にデバイスを再生利用のために回収が可能になる。
図3につき説明すると、ナノボット100は、データを収集しかつ処理する内蔵プロセッサ130を備えることができる。内蔵プロセッサ130は、1つ又はそれ以上の伸展素子122を作動させるよう構成することができる。内蔵プロセッサ130は、減縮した処理要件に起因してアナログデータ処理ユニットとすることができる。
上述したように、ナノボット100は、磁束発生機構を介して電力を受け取ることができる。磁束発生機構は、複数のオーバーラップする磁場を発生する複数の電気絶縁電磁石を備えることができる。図4は、本発明の実施形態による、患者周りに指向性を持たせて配置した電気絶縁電磁石138から発生した複数のオーバーラップする磁場を示す。電磁石138は、図4に示すように患者周りに指向性を持たせて配置するが、磁束発生機構の中心軸線が標的領域近傍に位置する。電磁石138は、互いに電気絶縁して、電磁石が同一電源を共有する場合に起こり得るクロストーク及び干渉を防止するよう構成することができる。
この方法を利用することによって、最大磁束140はすべての磁場がオーバーラップする空間でのみ生起し、また磁束強度はこの空間外部で急激に低下することを期待することができる。このようにして、最大磁束エリアは、画定されたエリア(すなわち、すべての磁場がオーバーラップするエリア)内のナノボット100に給電する強度で存在することができる。図5に示す実施例においては、4個の電気絶縁電磁石138を使用し、また4つの磁場がオーバーラップする最大磁束140を生起する。
図5は、より小さい腫瘍を標的とするために、最大磁束の空間が調整可能であり、かつ縮小することができることを示す。合目的的に電磁石138を磁束発生機構の中心軸線に対して誤整列させることによって、最大磁束140のエリアを所望どおりの小さいサイズに縮小することができ、これにより磁場の容積を標的領域の体積に密に合致させるセットアップを実施可能とする。
図4及び5の双方は、電磁石138の2次元(2D)配列を示す。しかし、これは単に説明上のもので分かり易さを目的とする。他の実施形態において、磁束発生機構は3次元(3D)構成に配列した電磁石を有することができ、また最大磁束空間を3次元で調整可能とすることができる。
3D構成は、患者の安全性を極めて劇的に向上させるとともに、より正確に標的とする潜在能力を生むこともできる。現行では、外部ビーム放射デバイスはミリメートル範囲における標的精度を有する。しかし、本明細書で概要を示すような磁束発生機構と組み合わせることによって、その精度を狭めることができる。整列ミス又は取り扱いミスを生ずる場合、極めて低い強度の外部放射ビーム及び磁場が同一場所に必要となる事実に起因して悪性組織が破壊されないことがあり得る。患者に害が及ぶ唯一の状況は、外部ビーム放射デバイス及び磁束発生器の双方が間違った場所を同時に合目的的に標的とした場合である。
本発明は、さらに、人間又は動物の生理学的脈管における流体流を制限するシステムを提供するもので、このシステムは、
上述した複数個のナノボット100と、
ナノボット100に給電する電源と、及び
ナノボット100を制御する1つ又はそれ以上のプロセッサを有するコントローラと
を備える。
図6は、本発明の実施形態による、人間又は動物の生理学的脈管内の流体流を制限するシステム400を示すブロック図である。図6につき説明すると、システム400は、上述した複数個のナノボット100と、ナノボット100に給電する電源と、及びナノボット100を制御する1つ又はそれ以上のプロセッサ425を有するコントローラ420と、を備える。ナノボット100は被検者430に注入されるよう構成されている。
電源410は、複数個の電気絶縁電磁石を有するナノボット100に給電する磁束発生機構を備えることができ、ナノボット100は、電気絶縁電磁石から発生する互いにオーバーラップする複数の磁場を介して給電される。
図7は、本発明の実施形態による、人間又は動物の生理学的脈管における流体流を制限するシステム500を示し、磁束発生機構510及び外部ビーム放射デバイス520を備える。図7につき説明すると、磁束発生機構510は、C字状アセンブリ515の互いに対向するよう配置した2つの電磁石アセンブリ510A及び510Bを有する。この実施形態の変更例においては、単一の電磁石アセンブリをカウンタ錘によって対向配置することができる。外部ビーム放射デバイス520は、X線管525からなる放射源を有する。磁束発生機構510は、さらに、磁束発生機構510を操作するオペレータコンソール518を有することができる。
電磁石アセンブリ510A及び510Bは、磁場合焦デバイスについて記載している特許文献の米国特許第5929732号明細書に記載のように構成することができる。この特許文献に記載の機構を使用して、一次磁石からの磁場を小さいエリアに圧縮し、これにより電磁石からビーム状に延在する高密度磁場を生成する。
X線管525は、出現するX線ビームを確実にコリメートするコリメータを装着し、また発生した磁場にオーバーラップすることができる。X線ビーム及び合焦させた磁場がオーバーラップするポイントにおいて、ナノボットを作動させるための条件が存在する。
処置中に磁束発生機構510は、図7に示すようにオペレータコンソール518により移動するよう構成することができ、これにより、X線ビーム及び磁場の意図した焦点を腫瘍又は標的領域内に位置させることができる。ナノボットを患者に注入した後、ナノボットは身体を巡り、またX線ビーム及び磁場の焦点内で作動状態となる。所定時間後、磁束発生機構510はオペレータの指示に従って駆動することができ、これにより焦点は腫瘍又は標的領域の内部を巡るよう駆動される。処置が完了したとき、X線源を停止することができる。X線源なしにこの処置を繰り返し、残りの作動させられたすべてのナノボットを確実に不作動状態にリセットできる。図8は、本発明の実施形態による種々の形態にあるシステム500を示す。
本発明によるシステムは、一次確認サブシステム(PVS:Primary Validation Sub-system)を備えることができる。PVSは、以下の2つの機能、すなわち、1)ナノボットが被検者内部でのナノボット位置測定できる方法を提供するという機能と、並びに2) 被検者内にナノボットを注入する前にナノボットがナノボット位置を測定、較正、及び検出できる能力を提供するという機能と、を有している。図9につき説明すると、PVSは、X、Y、及びZの軸線を有する患者又は被検者支持体118を備えることができる。複数個の無線周波数(RF)トランスミッタをX、Y、及びZの各軸線上に設けることができる。例えば、被検者支持体118は、6個のRFトランスミッタ、すなわち、2個のXトランスミッタ102、104と、2個のYトランスミッタ106、108と、及び2個のZトランスミッタ110、112と、を備えることができる。各RFトランスミッタは、f1、f2、f3、及びf4と称される4つの波長で送信するよう構成することができる。各軸線はf1、f2、f3、及びf4に対してそれぞれ固有波長を割り当てておき、ナノボットが各軸線に関する他の軸線からは独立した位置情報を受け取ることができるようにする。f1、f2、f3、及びf4の波長は、各信号の基本波長間における十分な差が存在するよう選択することができ、屈折誤差の測定及び補正を可能にする。4つの波長は、選択されたRFスペクトルにわたってできるだけ離れるものから選択することができる。図12に示すf1及びf2の波面間の差を使用して、ナノボット100の初期設定座標に対するナノボット100の変位を決定することができる。ナノボット100の初期設定座標は、被検者支持体118におけるX、Y、及びZの軸線上に位置付けることができる。理想的なシステムにおいて、f1及びf2を使用することは、初期設定座標に対する変位を正確に測定するのに十分である。しかし、ナノボット100は人間又は動物に使用する場合があるため、骨、筋肉及び他の身体組織を通過するRF信号に起因して屈折誤差を生ずることが予想できる。この誤差を補償するため、2つの追加的波長、すなわちf3、及びf4を追加することができる。屈折は異なる波長に対して異なる様態で影響する(すなわち、誤差は各波長で異なる)ため、図13で示すように、無誤差系における予想値と比較して、f2とf3との間、及びf2とf4との間で測定される差が屈折誤差に関与し得る。このことは、ナノボット100の内蔵プロセッサ130で測定及び補償することができる。各軸線に対して2つのトランスミッタを設け、またナノボット100の内蔵プロセッサ130は、各トランスミッタから受信した信号を三角測量し、かつイニシャライザ116からの真のオフセットを計算することによって、その自身の軸線における正確な位置を取得することができる。
PVSは、さらに、システムが正確に較正され、ナノボット100を被検者に投与される前に精度が維持されるかを検証するよう構成することもできる。この目的のため、ナノボット100を拡大し、また不作動状態から拡大状態への転換中にカメラによって見取り、拡大を意図した位置で生ずるのを確実にする。この理由のため、また図9及び10につき説明すると、毛細管ネットワーク114を被検者支持体118の幅及び長さにわたって延在するよう構成することができる。毛細管ネットワーク114は、ガラス製の毛細管からなるものとすることができる。イニシャライザ116は、被検者支持体118の一方の端部に配置することができる。図11は、本発明の実施形態による、光源とともにイニシャライザ116を示す内部ビュー、及び初期設定中に毛細管114を移動するナノボット100の拡大ビューを示す。図10につき説明すると、毛細管ネットワーク114は、ネットワーク114にわたる種々のポイントでカメラ制御ユニット(CCU)136に接続するよう取り付けた光ファイバ134を有することができ、これによってナノボットを見取ることができるとともに、被検者に注入する前に検査することができる。この目的は、CCU136を用いてナノボットが毛細管ネットワーク内の指定ポイントで拡大できるかを検証することである。このことは、ナノボットの適正かつ正確な動作を確実にし、また不正確さを検出する場合の較正方法を提供する。図9に戻って説明すると、図9は、生理食塩水のような溶液にナノボットを混ぜ合わせ、ナノボットの患者への注入140を可能にし、かつ毛細管ネットワーク114でのナノボット移動を支援するための容器139も示す。
本発明のシステムは、さらに二次確認サブシステム(SVS:Secondary Validation Sub-system)を備えることもできる。このSVSは、破壊すべき組織の位置が初期被検者スキャンデータから導き出した意図した位置であると検証する上での正当性確認をすることができるよう構成される。この目的のため、上述したように、また図3につき説明すると、各ナノボット100はトランスミッタ128を備えることができる。トランスミッタ128は、ナノボット100の主本体120における外表面に設けることができる。トランスミッタ128は、超音波トランスミッタ128を有することができる。トランスミッタ128は、ナノボット100が標的領域の座標内に進入するとき超音波信号を送信するよう構成することができる。標的領域の座標は、すべての軸線の初期設定座標からのオフセットとして定義することができる。ナノボット100が患者の循環系に行きわたる時間経過後、コントローラによって範囲内にあるナノボット100のすべてに標的情報を送信することができる。ナノボット100自体によって測定したナノボット位置が、受信した標的領域のX、Y及びZ座標の範囲内にある場合、ナノボット100はトランスミッタ128からの信号発生を開始することができる。この形態において、ナノボット100は発信モードで動作していることが理解されるであろう。この発信モードにおいて、1つ又はそれ以上の伸展素子122は伸展されておらず、むしろ超音波信号を発生するよう振動している。したがって、発信モードにおいては、ナノボット100は第1断面サイズをとるよう構成される。信号は、適切に構成されたレシーバによって受信され、また分析されるよう構成することができる。SVSはこのように使用され、意図していないエリアではなく、意図した標的が処置されることを確実にする。
ナノボット100は、さらに、1つ又はそれ以上の伸展素子122から超音波信号を発生することもできる。1つ又はそれ以上の伸展素子122は、超音波出力を増大するため、ルテニウムのような高密度物質からなるものとすることができる。主本体120は、1つ又はそれ以上の伸展素子122よりも軽量となるよう構成することができる。主本体120はケイ素からなるものとすることができる。ナノボット100が信号を発生するよう1つ又はそれ以上の伸展素子122を伸展及び後退させるのを開始する場合、1つ又はそれ以上の伸展素子122よりも軽量となるよう構成された主本体120は移動する。超音波信号を発生するため、1つ又はそれ以上の伸展素子122は、極めて短い距離にわたり数キロヘルツで伸展及び後退することができる。1つ又はそれ以上の伸展素子122は主本体120よりも重たいため、主本体120は移動しようとし、したがって、ナノボット100の外面全体を使用して信号を発生することができる。このようにして、ナノボット100の側面全体は、スピーカーとして機能するよう構成される(ニュートンの第3法則)。
SVSの他の使用方法は、血流速度を測定する目的で血管の内側から送信される信号を使用し、また血管自体の内側から血管の画像化を可能にすることである。上述したように、ナノボットによって送信される信号は超音波信号を有することができる。通常、超音波レシーバは、超音波信号を送信することと、及び次に反射した信号を受信しかつ解読することの双方を行う。外部トランスミッタからの信号の代わりに、被検者内部からの超音波信号を送信することによって、標的領域内部からの超音波イメージング(画像化)を可能にし、これにより患者スキャン中の望ましくない超音波反射量を減らすことができる。超音波放射はPVS座標を介して知得され、また飛行時間が知得されるため、標的領域からセンサまで移動するのに信号がどのくらい長くかかるかを正確に予測することができる。反射は直接信号よいも長い経路を有するため、反射は、容易に識別することができ、また離間場所での画像化にとって無視するか又は使用するかのいずれかにすることができる。この点に関して、信号が近傍の臓器から跳ね返る場合、反射信号はセンサに届くのにより長い時間がかかる。しかし、この反射信号は画像化するのに使用することもできる。例えば、超音波源が大きな腫瘍内にある場合、反射データは、腫瘍の外表面形状についての情報をより詳細に提供することができる。
図14は、本発明の実施形態による、ナノボット動作を制御する方法を示すフローチャートである。方法のステップは、図6に示すコントローラ420によって実施することができる。図14につき説明すると、この方法は、ナノボットを初期化するステップ810を備える。上述したように、また図9〜11で示したように、ナノボット100はイニシャライザ116において初期化される。一実施形態において、ナノボット100は、光源117から高強度の光を出射する光トランスミッタの前方を通過することができる。ナノボット100は、光源117によって照射される光を検出する内蔵光センサ124を有する。イニシャライザ116の近傍を通過することによって、ナノボット100は、光源117を通過するときに先ず増加した電圧を検出し、次いでイニシャライザ116から退去するときに電圧低下を検出することができる。本発明方法は、X、Y及びZの軸線方向のRF信号を取得し、ナノボットの座標をゼロに設定するステップ820を備える。次に、すべての軸線方向に対するRF周波数から周縁カウントを実施して、初期座標からのナノボットの相対位置を決定する(ステップ830)。この後、標的領域の座標をナノボットに送信することができる。次に、標的領域の座標をナノボットが受信したか否かを決定する(ステップ840)ことができる。標的領域の座標をナノボットが受信した場合、ナノボットは、ナノボットの現在座標が標的領域の座標内であるか否かを決定する(ステップ850)ことができる。ステップ850における標的領域はユーザーが定義することができる。ナノボットの現在座標が標的領域の座標内にある場合、内蔵トランスミッタは信号を送信する(ステップ860)よう構成することができる。この構成において、ナノボット100は発信モードで動作していると理解されるであろう。この発信モードにおいては、ナノボットの1つ又はそれ以上の伸展素子122は伸展していないものとすることができる。この後、標的領域から信号を受信したか否かを決定する(ステップ870)ことができる。標的領域から信号を受信した場合、作動信号を標的領域におけるナノボットに送信する(ステップ880)ことができる。標的領域以外のエリアから信号を受信したと決定する場合、標的領域の座標にオフセット量を加算する(ステップ875)ことができる。新たな標的領域は、標的領域の座標にオフセットを適用することによって規定することができる。このことが起こる1つの理由は、肺腫瘍を標的とするとき肺腫瘍は呼吸とともに常に移動するからであり、このことは、消化器系の腫瘍でも言える。作動化信号を関連のナノボットが受信した後、当該ナノボットは作動して上述の拡大モードになる(ステップ890)。人間又は動物の組織内での展開状況において、ナノボットの標的領域における拡大モードへの作動は、血管内における流体流を遮断する(900)ものであり、近傍組織を死に至らしめる(ステップ910)。不作動化信号を関連のナノボットに送信し(ステップ920)、ナノボットの伸展素子を後退させる。最終的に、処置が完了したか否かを決定する(ステップ940)ことができる。
上述した二次確認サブシステム(SVS)の代替案として、本発明の実施形態による超音波画像化システムを採用することができる。上述のナノボットは、超音波画像化源とすることができる。上述したように、ナノボットは、超音波信号を発信する超音波トランスミッタを備えることができる。超音波信号を被検者内のナノボットから送信することは、標的領域内からの超音波画像化を可能にする。超音波画像化システムは、ナノボットの外部較正の必要性を排除し、これによりカメラ、毛細管ネットワーク、及び被検者支持体に張り巡らす光ファイバの必要性をなくすことができる。超音波画像化システムは、さらに、処置前に画像化するためのCTスキャン内MRIの必要性を排除し、これによりシステムは予防医学に使用することができる。超音波画像化システムは、ナノボット及びPVSの双方を機能させることを必要とする。超音波画像化システムは、以下のように患者検査に使用することができる。患者は超音波画像化システムに移動し、横たわり、ナノボットを注入される。システムは、生命の維持に必要不可欠な重要臓器の血管造影(潜在的動脈閉塞のチェックのための)を含むフルチェックを実施するよう構成することができる。超音波画像化システムは、他の診断システムよりも高品質画像をリアルタイムで取得するよう構成する。小さいがん腫瘍は、通常検出するのが極めて困難である。本発明の実施形態による超音波画像化システムにおいては、がんが周囲の組織よりも多くの血管を有しているという事実に起因して、がん腫瘍がスキャンで鮮やかに写る。これらの腫瘍が検出される場合には、診断時に腫瘍を破壊することができ、これによりがんを即座に根絶することができる。
この実施形態は、布地又は他の材料の表面にわたり埋設したセンサのネットワークを用いて、超音波信号及び回折次数を光学的画像に変換するシステムを備える。これは超音波検出マトリクスと称することができる。この超音波検出マトリクスは、図15及び20に示すように被検者又は患者の身体周りを包み込んで、センサが被検者又は患者の外表面に接触するよう構成することができる。このようにして、屈折又は反射した波をいかなる軸線(矢状面、横断面又は前頭面)に対しても360゜にも達する任意な角度で検出することができる。このことを理由として、布地内部(又は患者内部)の空間で発生したいかなる超音波をも検出することができる。より具体的には、本明細書の文脈において、被検者又は患者内部のナノボットが発生した超音波信号を検出することができる。実際、すべての回折次数はこのようにして取得することができ、また超音波検出マトリクスは、超音波の入射角とともに、測定した信号の時間領域追跡を検出するよう構成することができ、どの次数、検出角度並びに強度を検出したかを確立するよう構成することができる。このようにして、望ましくは高次情報を処理する間にゼロ次及び低次の効果を抑制し、この結果、優れたリアルタイム画像化性能を得ることができる。
従来型の結像系は、平面上に画像を形成するため、ゼロ次波を高次波と組み合わせる必要がある。このコンセプトは、光の起こり得る入射角又は出射角に物理的限界があるため、結像系の結像能力に限界がある。本発明システムは、次数をコヒーレント結像に改変しようとしない。その代わりに、本発明システムは、回折次数の入射角並びにその強度を検出することができる。1つ又はそれ以上のプロセッサを有するコントローラは超音波検出マトリクスからのデータを処理して画像を電子的に構築することができる。この方法の利点は、増幅できる高次の強度に対してゼロ次並びに低次の効果を電子的に減少させることができる点である。入射する回折次数は再結合せず、結像系の焦点深度は開口数(NA)とは独立しており、実際NAは実質的に単位元(unity)より大きく、十分な処理能力を意味していることから、人体全体を画像化し、また焦点と同時に極めて高い解像度を保持することができる。
照射源として外部で発生した超音波信号を用いての超音波画像化システムを提供する。例えば、また本明細書の文脈において、上述したように、極めて正確に血液により運ぶナノボットを使用して超音波信号を発生することができる。人体におけるすべての組織は血液供給を必要とするため、この方法は、ナノボットのための正確な案内系統と組み合わせるとき、超音波源の場所に関して大きな融通性を提供する。
正確に結像するため、結像系は画像を形成するための1つの変数として「飛行時間(time-of-flight)」法を用いる。飛行時間のコンセプトは、超音波信号が送信場所から送信される時点と、レシーバが受信される時点との時間差に基づくため、超音波画像化に極めて頻繁に使用される。この時間の測定から超音波が移動する総距離を測定することができ、またそこから超音波が反射又は屈折した場所を計算することができる。本発明の実施形態による超音波画像化方法は、入射する波の角度並びにその強度を測定する能力をもたらす。図15はどのようにこのことを達成するかを示す。
より具体的には、図16は、本発明の実施形態による、単一の超音波検出モジュール(UDM)160の平面図及び斜視図を示す。図16につき説明すると、単一のUDM160は、超音波信号を電気信号に変換するよう構成された圧電素子のアセンブリを備える。この単一のUDM160は、剛性カラム180に備え付けた複数個の圧電センサ1601を備える。剛性カラム180は、剛性でありかつ低質量であるよう(共振を回避するため)構成することができる。剛性カラム180は、カーボンファイバ又はカーボンナノチューブのような材料を有することができる。剛性カラム180は、セラミック材料を有することができる。剛性カラム180は、最も効率的な形状であるため円筒形とすることができる。他形状を使用できるが、補正係数を信号に適用する必要がある。
圧電センサ1601及び剛性カラム180はともに単一の超音波検出モジュール(UDM)を構成する。図17及び18につき説明すると、多数のUDMsを患者周りに巻き付けることができる布地又は材料の表面をカバーするよう備え付けることができる。このようにして、剛性アセンブリが、異なる高さの個別カラムを有する圧電アセンブリの頂部に形成され、また一緒に超音波検出アセンブリ(UDA)と称されるユニットとして組み立てられることができる。超音波検出アセンブリ(UDA)は複数個のUDMsを備え、各UDMの剛性カラムはUDAにわたり他のUDMsとは高さが異なる。このようにして、単一のUDAは、色を検出することは除いてカメラピクセルと同様なものとして見なすことができ、UDAは、入射回折次数の角度並びに強度を検出することができ、また異なる次数の強度を識別することができる。UDMsそれぞれは、異なる高さの剛性カラムを有し、これによりUDAの中心近傍におけるカラムは、高角度の回折次数に対して高い感受性を有する(低パワーであるが、ソースに関するより詳細な情報を含むため)。この構成に起因して、ゼロ次(大きなエネルギーを有するが、情報を含まない)を電子的に除去し、また高次を増幅することができる(これとは対極的であるカメラレンズのような通常の結像系とは異なる)。
図17につき説明すると、UDM160は、キャパシタンスゲージのような1つ又はそれ以上の変位センサ182を有して、各UDM相互間の相対オフセットを測定することができる。各UDMに変位センサを配置する必要はなく、簡単のため各UDAに配置することができる。
回折次数の区別は以下のようにして達成することができる。図17は、単一超音波検出アセンブリ(UDA)の立面図を示す。図18は、本発明の実施形態による、単一のUDA160とともに関連の剛性アセンブリを示す平面図である。図17において、個別のカラム180がアセンブリの中心に向かって高さが上昇することに留意されたい。図19aにつき説明すると、波が圧電センサの上面に直交する方向から接近する場合、電圧が圧電センサ1601に発生し、また接近する波が直交している場合、圧電センサ1601によって発生する電圧は圧電センサ1601全体にわたり等しくなる。しかし、図19bにつき説明すると、波が剛性カラム180に対して角度をなして接近する場合、圧電センサ1601によって発生する電圧は圧電センサ1601全体にわたり等しいものではなくなり、これはすなわち、下方の圧電センサ1601に伝わるのは剛性カラムに対する側方への力が存在するからである。圧電センサ1601全体にわたり発生する電圧差は、到達波の角度成分に対応する。異なる圧電センサ1601によって測定される歪みの差は、入来する波の方向に比例する。上述の飛行時間方法と結び付けたこの方法を用いて、入来する波のエネルギー及び方向は、画像場所とともに容易に計算することができる。
剛性カラム180の高さは、角度成分検出に対する超音波検出モジュール(UDM)の感度を決定する。このことから、多数のUDMsを異なる高さの剛性カラムと組み合わせて、より高次の回折次数に対する検出能力を向上することができる。単一UDMにおける圧電センサアセンブリからの電圧を、より高い剛性カラムを有する近傍の圧電センサアセンブリからの電圧から差し引くことによって、同一角度で検出器に達する場合でも、より低い回折次数からのエネルギーを計算することができる。
図15から分かるように、この構成によれば、布地に埋設したセンサ表面に平行に移動する波を検出することができる。高解像度画像化を得るために、所望であるときより低い次数を電子的に減衰し、またより高い次数を増幅し、リアルタイムで最適な画像品質を達成することができる。
意図した標的領域からの所望画像データを取得することができ、望ましくない反射は、容易に識別することができ(到来角度及び信号強度を測定するとともに、飛行時間データを用いて)、また所要に応じて除去する又は所要に応じて再使用することができ、これはすなわち、何が望ましくない反射波であるかを判別し、また適用可能であれば二次超音波照射源として使用できるからである。従来ノイズであると従来考えられてきたものを再使用することによって、(波の履歴全体を、波の強度とともに飛行時間データ及び波の強度とともに到来角度から取得できるため)本発明システムは、超音波イメージングの分野で従来は利用できなかった診断選択肢を提供することができる。
本発明システムは伝統的な意味での実像面を持たないため(回折次数は画像検出メカニズムによって再構築されるのではなく、コンピュータによってデジタル的に構築されるため)、焦点深度はもはや考慮対象ではなくなり、これはすなわち、回折次数は画像検出メカニズムによって測定され、また次にコンピュータによって数学的に構築され、かつモデル化されるからである。
UDAsは基板材料に付着させることができる。基板材料は、綿若しくはゴムのような可撓性の薄膜又はUDAsが互いに相対移動できる他の材料からなるものとすることができる。図20は、本発明の実施形態による、埋設UDMマトリクス220を有する布地であって、人間骨盤周りに患者身体とUDMマトリクスとの間に、超音波の減衰を防止する超音波ゲル200とともに該布地を巻き付けた状態を示す図である。基板材料は可撓性であるため、センサ(容量センサ又は他のこのようなセンサ)は各UDA間の相対オフセット量を測定することができる。この目的は、患者の体の輪郭における変動によって生ずる検出面の偏差を測定することである。このデータは、飛行時間を有用なものにするために放射体(エミッタ)からの検出器距離を知らなければならないので、受信した超音波信号を補間する上で必要である。
基板材料は、患者の体の輪郭に最良適合する異なる形状を有することができる。幾つかのケースにおいて、このことに関して患者の外側体形を検出機構にできるだけ接触させるカスタムスーツ(例えば、ダイビングスーツ又はスキューバスーツ)を用いることがあり得る。スーツの内側にUDMsを内張りすることができ、またスーツは「ベース」形状を形成する。患者がスーツを着用するとき、スーツは患者周りを形作り、またデフォルト形状と患者形状との差をUDMsの変位センサの使用により測定することができる。手順の開始時に、変位センサ182は、既知の基準からリセットされるよう構成することができる。扁平な検出器の場合、検出器は扁平に巻かれ、センサは既知の(扁平)基準に初期化することができる。全身検出器の場合、スーツは、先ずリセット用にマネキン又は他のこのような既知基準に着付けられる。このようにして、患者と基準との間における体形輪郭のいかなる差をも測定され、また補正される。
本発明による超音波画像化システムは、超音波を用いてリアルタイムで高画質画像を取得するのに採用し得る。信号源は正確に知得することができるため、従来型超音波診断では通常ノイズと見なされるすべての反射を付加的な照射源(ソース)として使用することができる(これはすなわち、ソースの飛行時間及び場所が常に既知であるからである)。物理的結像系の代わりに仮想環境における回折次数を再結合することによってデジタル的に画像を構築することができることから、焦点深度は考慮対象ではない。
図21は、本発明実施形態によるコンピュータ・デバイス1000の構成を示すブロック図である。コンピュータ・デバイス1000は、本発明の実施形態による一次確認、二次確認、及び超音波画像化のような処理ステップを実施するよう機能する種々のハードウェア及びソフトウェアのコンポーネントを備える。図21につき説明すると、コンピュータ・デバイス1000は、ユーザー・インタフェース1100、メモリ1150と通信するコントローラ1120、及び通信インタフェース1130を有する。コントローラ1120は、ナノボットを制御する上述のコントローラを有することができる。コントローラ1120は、複数個のナノボットの被検者内における座標を受け取る;標的領域の座標をナノボット座標と比較する;どのナノボットが標的領域に位置しているかを決定する;及び標的領域に位置するナノボットを作動させるように構成することができる。コントローラ1120は、さらに、超音波検出マトリクスで受信した信号データを受け取り、被検者の画像を生成するよう構成することもでき、該信号データは、ナノボットが発生する超音波信号に対応する回折次数を含む。コントローラ1120は、メモリ1150にローディング又は保存することができるソフトウェア命令を実行するよう機能する。コントローラ1120は、多数のプロセッサ、マルチプロセッサコア、又は幾つかの他タイプのプロセッサを、特別な実装形式に基づいて備えることができる。メモリ1150は、コントローラ1120がアクセス可能であり、これによりコントローラ1120はメモリ1150の保存された命令を受け取って実行することができる。メモリ1150は、例えば、ランダム・アクセス・メモリ(RAM)、又は任意な他の適切な揮発性若しくは不揮発性のコンピュータ可読記憶媒体とすることができる。さらに、メモリ1150は、固定又は取外し可能とすることができ、またハードドライブのような1つ又はそれ以上のコンポーネント若しくはデバイスを含むことができる。フラッシュメモリ、書換え可能光ディスク、書換え可能磁気テープ、又はそれらの幾つかの組合せを含むことができる。
1つ又はそれ以上のソフトウェアモジュール1160は、メモリ1150内でコード化することができる。ソフトウェアモジュール1160は、コントローラ1120が実行するよう構成されたコンピュータプログラムコード又は命令セットを有する1つ若しくはそれ以上のソフトウェアプログラム又はアプリケーションを有することができる。本発明に記載のシステム及び方法による態様の動作を実施するための、このようなコンピュータプログラムコード又は命令は、1つ又はそれ以上のプログラミング言語の任意な組合せにより書き込むことができる。
ソフトウェアモジュール1160は、コントローラ1120が実行するよう構成されたプログラムを含むことができる。ソフトウェアモジュール1160の実行中に、コントローラ1120は、上述したように、本発明の実施形態によるナノボット制御に関連する種々の動作を実施するようコンピュータ・デバイス1000を環境設定する。
本発明システム及び方法の動作に関連する他の情報及び/又はデータ、例えば、データベース1170はメモリ1150に保存することができる。データベース1170は、上述のシステムの様々な動作にわたり利用される種々のデータ項目及び要素を格納及び/又は維持することができる。データベース1170に保存した情報としては、限定しないが、患者情報及びMRIデータが有り得る。当然のことながら、データベース1170はコンピュータ・デバイス1000内に局所的に構成されているものとして描かれているが、若干の実装において、データベース1170及び/又はそこに保存されている様々なデータ要素は遠隔の場所に配置することができる。このようなデータ要素は遠隔のデバイス又はサーバー(図示せず)に配置することができ、また当業者には既知のようにネットワークを介してコンピュータ・デバイス1000に接続し、プロセッサにローディングして実行できるようにし得る。
さらに、ソフトウェアモジュール1160及び1つ又はそれ以上のコンピュータ可読記憶デバイス(メモリ1150のような)のプログラムコードは、当業者には既知であるように、コンピュータプログラム製品を形成する。
通信インタフェース1140は、さらに、コントローラ1120に対して動作可能に接続され、またコンピュータ・デバイス1000と外部のデバイス、マシン及び/又は素子との間での通信を可能にする任意なインタフェースとすることができる。通信インタフェース1140は、データを送信及び/又は受信するよう構成される。例えば、通信インタフェース1140としては、限定しないが、Bluetooth(登録商標)、又はセルラー送受信機、衛星通信トランスミッタ/レシーバ、光学的ポート及び/又はコンピュータ・デバイス1000とナノボットとの間における無線通信する任意な他のこのようなインタフェースがあり得る。
ユーザー・インタフェース1100は、さらに、コントローラ1120に動作可能に接続することができる。ユーザー・インタフェース1100は、スイッチ、ボタン、キー及びタッチスクリーンのような1つ又はそれ以上の入力デバイスを有することができる。
ユーザー・インタフェース1100は、患者に関する若干の情報、及び上述の作動化/不作動化信号の入力を可能にする。
ディスプレイもプロセッサ120に動作可能に接続することができる。ディスプレイとしては、ユーザーに様々な選択肢、パラメータ、及び結果を見せることができるスクリーン、又は任意な他のこのような提示デバイスがあり得る。ディスプレイは、LEDディスプレイのようなデジタルディスプレイとすることができる。ユーザー・インタフェース1100及びディスプレイは、タッチスクリーンディスプレイとして一体化することができる。
コンピュータ・デバイス1000並びに上述の要素及びコンポーネントの動作は、当業者であれば、本発明による人間又は動物の血管内流体流を制限するデバイス及びシステムを参照することによって理解できるであろう。
本明細書で使用される用語「備える/備えている(comprises/comprising)」は、説明した特徴、実体、ステップ又は成分の存在を特定するが、1つ又はそれ以上の他の特徴、実体、ステップ、成分又はそれらのグループの存在若しくは付加を排除するものではない。

Claims (47)

  1. 人間又は動物の生理学的脈管内の流体流を制限するデバイスであって、前記デバイスは、生理学的脈管内の流体流によって受動的に推進可能となる第1モード及び少なくとも部分的に生理学的脈管を閉塞する第2モードをとるよう構成可能であり、前記デバイスは、前記第1モードにおける第1断面サイズと、及び前記第2モードにおける前記第1断面サイズよりも大きい第2断面サイズとを有するものである、デバイス。
  2. 請求項1記載のデバイスにおいて、前記第1断面サイズは約2.8μm〜約5.2μmの範囲内である、デバイス。
  3. 請求項1又は2記載のデバイスにおいて、前記第2断面サイズは約7.77μm〜約14.3μmの範囲内である、デバイス。
  4. 請求項1〜3のうちいずれか一項記載のデバイスにおいて、
    主本体と、及び
    作動状態にあるとき前記主本体から伸展して前記デバイスの断面サイズを増大させる1つ又はそれ以上の伸展素子と
    を備える、デバイス。
  5. 請求項4記載のデバイスにおいて、前記主本体は平行6面体の形状を有し、前記1つ又はそれ以上の伸展素子は、前記主本体の少なくとも1つの側面から伸展するよう構成されている、デバイス。
  6. 請求項4又は5記載のデバイスにおいて、
    前記1つ又はそれ以上の伸展素子を駆動するマイクロモータ、
    前記デバイスを初期化する光センサ、
    データを収集しかつ処理する内蔵プロセッサ、
    のうち少なくとも1つを備えている、デバイス。
  7. 請求項6記載のデバイスにおいて、前記内蔵プロセッサは、前記デバイスの座標を決定するよう構成されている、デバイス。
  8. 請求項7記載のデバイスにおいて、前記内蔵プロセッサは、前記デバイスの初期設定座標からの直線変位を検出するよう構成されている、デバイス。
  9. 請求項8記載のデバイスにおいて、前記内蔵プロセッサは、前記初期設定座標からのX、Y及びZの軸線方向における直線変位を計算するよう構成されており、前記計算は、各軸線に対する異なる無線周波数で受け取られる複数のRF信号を三角測量し、また前記初期設定座標からのオフセット量を測定することによって行う、デバイス。
  10. 請求項8記載のデバイスにおいて、前記内蔵プロセッサは、前記デバイスの現在座標が標的領域の座標内にある場合を決定するよう構成されている、デバイス。
  11. 請求項1〜10のうちいずれか一項記載のデバイスにおいて、さらに、前記デバイスの場合を検証するトランスミッタを備える、デバイス。
  12. 請求項11記載のデバイスにおいて、前記トランスミッタは超音波トランスミッタを有する、デバイス。
  13. 請求項11又は12記載のデバイスにおいて、前記トランスミッタは、前記デバイスの現在座標が標的領域の座標内にあることを決定する場合に、送信を開始するよう構成されている、デバイス。
  14. 請求項13記載のデバイスにおいて、前記デバイスが標的領域内にあることを確証する場合に、内蔵プロセッサは、前記1つ又はそれ以上の伸展素子を伸展させる信号を送信するよう構成されている、デバイス。
  15. 請求項1〜14のうちいずれか一項記載のデバイスにおいて、磁場から前記デバイスに給電するに必要な電力を発生するためのコイルを備える、デバイス。
  16. 請求項1〜15のうちいずれか一項記載のデバイスにおいて、電磁放射を電離することによって前記デバイスを作動させることができる放射線感受性デバイスを備える、デバイス。
  17. 請求項16記載のデバイスにおいて、前記放射線感受性デバイスは、ダイオード又はフォトダイオードを有する、デバイス。
  18. 請求項16又は17記載のデバイスにおいて、前記放射線感受性デバイスは、トランジスタ又はMOSFETを有する、デバイス。
  19. 請求項16〜18のうちいずれか一項記載のデバイスにおいて、前記放射線感受性デバイスは、発光物質でコーティングする、デバイス。
  20. 請求項19記載のデバイスにおいて、前記発光物質は蛍光体を含む、デバイス。
  21. 請求項1〜20のうちいずれか一項記載のデバイスにおいて、生理学的脈管を完全に閉塞させるよう構成されている、デバイス。
  22. 人間又は動物の生理学的脈管内の流体流を制限するシステムであって、
    請求項1〜21のうちいずれか一項記載の複数個のデバイスと、
    前記デバイスに給電する電源と、
    前記デバイスを制御する1つ又はそれ以上のプロセッサを有するコントローラと、
    を備える、システム。
  23. 請求項22記載のシステムにおいて、前記電源は、ナノボットであるデバイスに給電するよう電気絶縁した複数個の電磁石を有する磁束発生機構を有し、前記複数個のデバイスは、前記電気絶縁した電磁石から発生した複数のオーバーラップする磁場を介して給電される、システム。
  24. 請求項22又は23記載のシステムにおいて、標的領域内の組織を照射する電離性電磁放射のビームを発生する外部ビーム放射デバイスを備える、システム。
  25. 請求項22〜24のうちいずれか一項記載のシステムにおいて、前記コントローラは、
    被検者内における前記複数個のデバイスの座標を受け取る、
    標的領域の座標を前記デバイスの座標と比較する、
    どのデバイスが前記標的領域内に位置するかを決定する、及び
    前記標的領域に位置するデバイスを作動させる
    よう構成されている、システム。
  26. 請求項25記載のシステムにおいて、
    被検者支持体のX、Y及びZの各軸線それぞれにおける複数の無線周波数(RF)トランスミッタ、
    を備え、各RFトランスミッタは、各軸線が対応するRF周波数を有するよう、異なる無線周波数で異なる波長の複数のRF信号を送信するよう構成されており、各軸線がそれぞれに対応するRF周波数を有するようにする、システム。
  27. 請求項25又は26記載のシステムにおいて、前記デバイスを初期化するイニシャライザを備える、システム。
  28. 請求項27記載のシステムにおいて、前記イニシャライザは、前記デバイスが前記イニシャライザを通過するとき、前記デバイスを照射する光源を有する、システム。
  29. 請求項22〜28のうちいずれか一項記載のシステムにおいて、前記コントローラは、信号を標的領域から受け取った場合を決定するよう構成されている、システム。
  30. 請求項29記載のシステムにおいて、信号を前記標的領域から受け取ったことを決定する場合、前記コントローラは、前記標的領域内の前記デバイスに作動化信号を送信して前記標的領域内の前記デバイスを作動させるよう構成されている、システム。
  31. 請求項30記載のシステムにおいて、前記信号を前記標的領域以外のエリアから受け取ったことを決定する場合、前記コントローラは、前記標的領域の座標にオフセット量を加算するよう構成されている、システム。
  32. 請求項22〜31のうちいずれか一項記載のシステムにおいて、カメラ制御ユニットに付着させた光ファイバを有する毛細管ネットワークを備えて、前記デバイスを被検者に注入する前に前記デバイスが作動状態になることを検視できるようにする、システム。
  33. 請求項22〜32のうちいずれか一項記載のシステムにおいて、被検者内から発生した超音波信号を検出するための超音波検出マトリクスを備える、システム。
  34. 請求項33記載のシステムにおいて、前記超音波検出マトリクスは、被検者の周りに巻き付けるよう構成されている、システム。
  35. 請求項33又は34記載のシステムにおいて、前記コントローラは、前記超音波検出マトリクスで受け取られる信号データを受信して前記被検者の画像を生成するよう構成されており、前記信号データは、ナノボットであるデバイスが発生する超音波信号に対応する回折次数を含むものである、システム。
  36. 請求項33〜35のうちいずれか一項記載のシステムにおいて、前記超音波検出マトリクスは、
    可撓性の基板材料と、及び
    前記基板材料に付着した複数個の超音波検出アセンブリと
    を有する、システム。
  37. 請求項36記載のシステムにおいて、前記基板材料は可撓性の薄膜を有する、システム。
  38. 請求項36又は37記載のシステムにおいて、前記基板材料は綿又はゴム製とする、システム。
  39. 請求項36〜38のうちいずれか一項記載のシステムにおいて、前記超音波検出アセンブリは、ナノボットである前記デバイスが発生する超音波信号を検出する複数個の超音波検出モジュールを有し、各超音波検出モジュールは複数個の圧電センサ上に配置した剛性カラムを有する、システム。
  40. 請求項39記載のシステムにおいて、前記剛性カラムは、セラミック材料、カーボンファイバ又はカーボンナノチューブからなるものである、システム。
  41. 請求項39又は40記載のシステムにおいて、前記剛性カラムは円筒形の形状である、システム。
  42. 請求項39〜41のうちいずれか一項記載のシステムにおいて、各超音波検出アセンブリは、アレイに配列した複数個の超音波検出モジュールを有し、各超音波検出モジュールの剛性カラムは、他の超音波検出モジュールとは高さが異なる、システム。
  43. 請求項42記載のシステムにおいて、前記超音波検出アセンブリの剛性カラムは、超音波検出アセンブリの中心に向かって高さが増加する、システム。
  44. 請求項39〜43のうちいずれか一項記載のシステムにおいて、前記超音波検出アセンブリは、各超音波検出モジュールに到達する信号の信号データを検出し、これにより、信号が発生する起源である場所を計算するよう構成されている、システム。
  45. 請求項44記載のシステムにおいて、前記信号データは、各信号の角度成分、信号強度、及び飛行時間を有する、システム。
  46. 請求項45記載のシステムにおいて、前記角度成分は、前記複数個の圧電センサにわたり発生した電圧差に従って測定される、システム。
  47. 請求項46記載のシステムにおいて、前記電圧差を使用して、入来する信号のアプローチ角度を計算し、回折次数の大きさを確立する、システム。
JP2018566636A 2016-03-09 2017-02-08 生理学的脈管内の流体流を制限するデバイス及びシステム Pending JP2019509868A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1604074.3 2016-03-09
GBGB1604074.3A GB201604074D0 (en) 2016-03-09 2016-03-09 Nanobot for restricting fluid flow and method and system for controlling nanobot
IES20160261 2016-11-22
IES2016/0261 2016-11-22
PCT/EP2017/052760 WO2017153114A1 (en) 2016-03-09 2017-02-08 Device and system for restricting fluid flow in physiological vessels

Publications (1)

Publication Number Publication Date
JP2019509868A true JP2019509868A (ja) 2019-04-11

Family

ID=59789020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018566636A Pending JP2019509868A (ja) 2016-03-09 2017-02-08 生理学的脈管内の流体流を制限するデバイス及びシステム

Country Status (14)

Country Link
US (1) US11026692B2 (ja)
EP (1) EP3426167A1 (ja)
JP (1) JP2019509868A (ja)
KR (1) KR20180124913A (ja)
CN (1) CN109699172A (ja)
AU (1) AU2017230242A1 (ja)
CA (1) CA3015855A1 (ja)
IL (1) IL261572A (ja)
MX (1) MX2018010870A (ja)
PH (1) PH12018501885A1 (ja)
RU (1) RU2018131933A (ja)
SG (1) SG11201807701XA (ja)
WO (1) WO2017153114A1 (ja)
ZA (1) ZA201805916B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11803355B2 (en) * 2019-01-29 2023-10-31 American Express Travel Related Services Company, Inc. Bot factory environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471779A (en) * 1976-08-25 1984-09-18 Becton, Dickinson And Company Miniature balloon catheter
US20070156211A1 (en) * 2004-04-19 2007-07-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Lumen-traveling device
WO2009145405A1 (en) * 2008-05-26 2009-12-03 Industry Foundation Of Chonnam National University Microrobot for intravascular therapy and microrobot system using it

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1169969A1 (en) * 2000-07-05 2002-01-09 Medtronic Ave, Inc. Pedicle occlusion device
US7037319B2 (en) * 2002-10-15 2006-05-02 Scimed Life Systems, Inc. Nanotube paper-based medical device
WO2006017470A2 (en) * 2004-08-02 2006-02-16 Merkechten En Patenten Nederland B.V. (M.P.N.) Device and method for treating a vessel
TW200610555A (en) 2004-09-24 2006-04-01 Light Sciences Corp Extended treatment of tumors through vessel occlusion with light activated drugs
WO2010009146A1 (en) * 2008-07-15 2010-01-21 University Of Kansas Nanoclusters for delivery of poorly water soluble drug nanoparticles
US20080270097A1 (en) 2006-11-13 2008-10-30 Solomon Research Llc System and methods for immunocomputing applied to collectives of nanorobots
CN104260726B (zh) * 2007-04-13 2018-08-10 泰克尼恩研究和发展基金有限公司 振动机器人蠕动器
US20100069889A1 (en) * 2008-08-08 2010-03-18 Neal Solomon Intelligent medical device system for integrated diagnostics and therapeutics
DE102010009017A1 (de) 2009-08-31 2011-03-10 Siemens Aktiengesellschaft Verfahren zur Bildung eines endovaskulären Behandlungshilfsmittels mit Hilfe von selbstorganisierenden, aus Catomen (Cat) bestehenden Nanoroboter und dazu gehöriges System
US20130211249A1 (en) * 2010-07-22 2013-08-15 The Johns Hopkins University Drug eluting hydrogels for catheter delivery
KR101247165B1 (ko) 2011-04-05 2013-03-25 전남대학교산학협력단 뇌·척수 질환 치료용 마이크로로봇 시스템
WO2014074625A1 (en) * 2012-02-21 2014-05-15 Allurion Technologies, Inc. Anatomically adapted ingestible delivery systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471779A (en) * 1976-08-25 1984-09-18 Becton, Dickinson And Company Miniature balloon catheter
US20070156211A1 (en) * 2004-04-19 2007-07-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Lumen-traveling device
WO2009145405A1 (en) * 2008-05-26 2009-12-03 Industry Foundation Of Chonnam National University Microrobot for intravascular therapy and microrobot system using it

Also Published As

Publication number Publication date
RU2018131933A3 (ja) 2020-05-27
ZA201805916B (en) 2021-03-31
SG11201807701XA (en) 2018-10-30
RU2018131933A (ru) 2020-03-06
WO2017153114A1 (en) 2017-09-14
MX2018010870A (es) 2019-05-20
PH12018501885A1 (en) 2019-05-20
AU2017230242A1 (en) 2018-09-13
CN109699172A (zh) 2019-04-30
CA3015855A1 (en) 2017-09-14
EP3426167A1 (en) 2019-01-16
US11026692B2 (en) 2021-06-08
KR20180124913A (ko) 2018-11-21
US20190021740A1 (en) 2019-01-24
IL261572A (en) 2018-10-31

Similar Documents

Publication Publication Date Title
US20240252846A1 (en) Ultrasound autofocusing using reflections
EP3723854B1 (en) Ultrasound focusing in dynamically changing media
CN111093520B (zh) 局部空化信号测量
JP4820820B2 (ja) 集束超音波システム
CN109689160B (zh) 具有来自微泡的减小的干扰的治疗性超声波
TWI414330B (zh) A guided positioning module and a treatment system having the positioning module
CN109200484B (zh) 用于增强目标组织的放射治疗的系统
JP6754023B1 (ja) 較正ウェル付きロボット術中放射線療法用x線照射システム
JP2019510599A (ja) 診断的経頭蓋手順および治療的経頭蓋手順のための患者個体別ヘッドセット
US20230000469A1 (en) Systems and methods for providing tissue information in an anatomic target region using acoustic reflectors
US20100317960A1 (en) Thermotherapy device and method to implement thermotherapy
CN113710163A (zh) 用于调节超声手术中的微泡的系统和方法
Auboiroux et al. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy
CN107106871A (zh) 用于投射聚焦超声的手持设备以及相关方法
US20140213904A1 (en) Intra-fraction motion management system
WO2022106891A1 (en) Multiparametric optimization for ultrasound procedures
JP2019509868A (ja) 生理学的脈管内の流体流を制限するデバイス及びシステム
EP3796844B1 (en) Triggering of x-ray-images based on surface measurements
KR20110098153A (ko) 초음파를 이용한 항암치료 방법 및 항암치료 장치
TWI488613B (zh) A system and method for guiding a focused ultrasound release energy by a surgical navigation system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210921