WO2009145303A1 - チロシナーゼのmRNAを検出するためのプライマー - Google Patents

チロシナーゼのmRNAを検出するためのプライマー Download PDF

Info

Publication number
WO2009145303A1
WO2009145303A1 PCT/JP2009/059876 JP2009059876W WO2009145303A1 WO 2009145303 A1 WO2009145303 A1 WO 2009145303A1 JP 2009059876 W JP2009059876 W JP 2009059876W WO 2009145303 A1 WO2009145303 A1 WO 2009145303A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
region
primer
sequence
regions
Prior art date
Application number
PCT/JP2009/059876
Other languages
English (en)
French (fr)
Inventor
佳代 檜山
一樹 中林
泰裕 大友
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to CN2009801196416A priority Critical patent/CN102046789A/zh
Priority to EP09754811A priority patent/EP2298885A4/en
Priority to JP2010514555A priority patent/JPWO2009145303A1/ja
Priority to US12/994,710 priority patent/US20110076689A1/en
Publication of WO2009145303A1 publication Critical patent/WO2009145303A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/119Strand displacement amplification [SDA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification

Definitions

  • the present invention relates to a primer used for detecting mRNA of tyrosinase (hereinafter referred to as “TYR”). More specifically, the present invention relates to a primer suitable for detection of TYR mRNA in a sample, a primer set, and a method for detecting TYR mRNA.
  • TYR tyrosinase
  • TYR is a kind of enzyme that is expressed in animal and plant cells and catalyzes a reaction of oxidizing tyrosine to synthesize melanin. Recent studies have shown that TYR is useful as a molecular marker for detecting lymph node metastasis of melanoma. For example, in Non-Patent Document 1, it is possible to determine the presence or absence of lymph node metastasis of melanoma by preparing a measurement sample from lymph nodes collected from a living body and detecting TYR mRNA in the measurement sample by RT-PCR. It is disclosed.
  • Non-Patent Document 1 uses RT-PCR that can detect a target nucleic acid with high sensitivity during detection, for example, micrometastasis of cancer cells to lymph nodes However, it took a very long time (about 2 to 4 hours) to detect.
  • the present invention provides a TYR mRNA detection primer, a TYR mRNA detection primer set, a TYR mRNA detection reagent kit, and a TYR mRNA detection method that can detect TYR mRNA in a shorter time than conventional techniques. With the goal.
  • a primer for detecting tyrosinase mRNA for detecting tyrosinase mRNA in a sample Comprising a first sequence at the 5 ′ end and a second sequence at the 3 ′ end,
  • the first sequence is (A1) having a length of 10 to 30 nucleotides, (B1) a polynucleotide sequence capable of hybridizing to the complementary strand of the first region, which is a partial region of SEQ ID NO: 1,
  • the second sequence is (C1) having a length of 10 to 30 nucleotides, (D1) a sequence of a polynucleotide capable of hybridizing to a second region located 3 ′ end side of the first region in SEQ ID NO: 1,
  • the second region is (I) nucleotides 901 and 902 of SEQ ID NO: 1; or (ii) nucleotides 1118 and 1119 of SEQ ID NO: 1;
  • the primer set according to [2], dNTPs, Reagent for detecting tyrosinase mRNA comprising an enzyme having an action of synthesizing DNA using RNA as a template and an action of synthesizing DNA using DNA as a template while performing strand displacement, or RNA-dependent DNA polymerase and DNA-dependent DNA polymerase kit, [4] A step of reacting the sample, the primer set according to [2] above, and an RNA-dependent DNA polymerase to synthesize cDNA from tyrosinase mRNA in the sample, Reacting the primer set, a DNA-dependent DNA polymerase, and the cDNA synthesized in the step to amplify the cDNA, and detecting the cDNA amplified in the step; A method for detecting tyrosinase mRNA, comprising a step of detecting tyrosinase mRNA, and a template of DNA while performing DNA substitution and strand displacement using [5]
  • TYR mRNA detection primer, TYR mRNA detection primer set, TYR mRNA detection reagent kit and TYR mRNA detection method of the present invention can detect TYR mRNA in a short time.
  • detecting not only determines whether the target substance TYR mRNA is present in the sample, but also quantifies TYR mRNA in the sample. Including.
  • “primer” refers to identification of nucleic acid to be amplified in nucleic acid amplification techniques such as LAMP (Loop-mediated Isothermal Amplification) method (see US Pat. No. 6,410,278 and US Pat. No. 6,974,670).
  • a polynucleotide having a function (hereinafter referred to as “primer function”) that can hybridize to the region and can serve as a starting point for an amplification reaction by a polymerase. Since the nucleic acid to be detected is mRNA, it can be detected by a nucleic acid amplification reaction (eg, RT-LAMP method) including a reverse transcription reaction.
  • Hybridization means that a part or all of a sequence of one polynucleotide is hydrogenated to a part or all of another polynucleotide based on the complementarity of the bases of the polynucleotide under stringent conditions. Refers to binding through a bond.
  • the “stringent condition” is a condition generally used by those skilled in the art when performing polynucleotide hybridization, and is a condition under which the primer of this embodiment can hybridize to TYR mRNA or its cDNA. If there is no particular limitation. It is known that the stringency during hybridization is a function of temperature, salt concentration, primer chain length, primer GC content, and concentration of chaotropic agent in the hybridization buffer. As stringent conditions, for example, conditions described in Sambrook, J. et al., 1998, Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New York, etc. can be used. .
  • “50% formamide, 5 ⁇ SSC (150 mM NaCl, 15 mM sodium citrate), 50 mM sodium phosphate, pH 7.6, 5 ⁇ Denhart's solution, 10% dextran sulfate, and 20 ⁇ g / ml nucleic acid were added.
  • the hybridization temperature is 42 ° C. in the solution containing, ”but is not limited thereto.
  • the nucleotide sequence of TYR mRNA is a sequence corresponding to the sequence shown in SEQ ID NO: 1.
  • thymine does not exist in mRNA and uracil is included instead, uracil is described as thymine (t) for convenience in SEQ ID NO: 1. This sequence is registered in the GenBank database as Accession No. NM_000372.
  • the primer according to one embodiment (Embodiment 1) of the present invention is a primer for detecting TYR mRNA for detecting tyrosinase mRNA in a sample, A first sequence on the 5 ′ end side and a second sequence on the 3 ′ end side,
  • the first sequence is (A1) having a length of 10 to 30 nucleotides, (B1) a polynucleotide sequence capable of hybridizing to the complementary strand of the first region, which is a partial region of SEQ ID NO: 1,
  • the second sequence is (C1) having a length of 10 to 30 nucleotides, (D1) a sequence of a polynucleotide capable of hybridizing to a second region located 3 ′ end side of the first region in SEQ ID NO: 1,
  • the second region is (I) nucleotides 901 and 902 of SEQ ID NO: 1; or (ii) nucleotides 1118 and 1119 of SEQ ID NO: 1; It is the area
  • the primer of Embodiment 1 is particularly a primer that is suitably used for detection of TYR mRNA using the RT-LAMP method. According to the primer of Embodiment 1, since the first sequence is included on the 5 ′ end side and the second sequence is included on the 3 ′ end side, TYR mRNA can be detected efficiently and with good reproducibility. .
  • cDNA is synthesized from TYR mRNA by reverse transcription reaction (RT reaction), and then the synthesized cDNA is amplified by LAMP reaction.
  • RT reaction reverse transcription reaction
  • LAMP reaction LAMP reaction
  • a primer of Embodiment 1 for example, as schematically shown in FIG. 1, a partial region of TYR mRNA (“R1c” in FIG. 1).
  • R1c a partial region of TYR mRNA
  • a primer comprising a polynucleotide having a second sequence on the 3 ′ end side, which is a polynucleotide sequence capable of hybridizing to a region located in the region (“R2c” in FIG. 1).
  • the first sequence and the second sequence are each preferably preferably 10 nucleotides or more in length.
  • the length is preferably 30 nucleotides or less from the viewpoint of ensuring a hybridization temperature that is easy to operate.
  • the first sequence and the second sequence may be directly linked or may be linked via an intervening sequence.
  • the intervening sequence is preferably a sequence having low relevance to TYR mRNA or TYR cDNA. For example, 5′-tttt-3 ′ and the like can be mentioned.
  • the length of the intervening sequence is preferably 1 to 50 nucleotides, and more preferably 1 to 40 nucleotides.
  • the primer of Embodiment 1 can function as a reverse inner primer (hereinafter referred to as “RIP”) among the primers used in the RT-LAMP method.
  • RIP reverse inner primer
  • the primer (RIP) of Embodiment 1 the forward inner primer (hereinafter referred to as “FIP”), and the F3 primer can be used.
  • the present invention also includes a primer set for detecting TYR mRNA containing these primers.
  • the primer set for detecting TYR mRNA is a primer set for detecting TYR mRNA for detecting tyrosinase mRNA in a sample, Including a first primer, a second primer, and a third primer;
  • the first primer is the primer of Embodiment 1.
  • the second primer includes a third sequence on the 5 ′ end side and a fourth sequence on the 3 ′ end side,
  • the third sequence is (A2) having a length of 10 to 30 nucleotides, (B2) a polynucleotide sequence capable of hybridizing to a third region located 5 ′ end of the first region of SEQ ID NO: 1,
  • the fourth sequence is (C2) having a length of 10 to 30 nucleotides, (D2) a polynucleotide sequence capable of hybridizing to the complementary strand of the fourth region located 5 ′ end of the third region of SEQ ID NO: 1,
  • the third primer is a primer comprising a polynucleotide sequence capable of hybridizing to the complementary strand of the fifth region located 5 ′ end of the fourth region of SEQ ID NO: 1.
  • the primer set of the present embodiment since the first primer, the second primer, and the third primer are included, it is possible to detect TYR mRNA quickly, with high reproducibility.
  • the primer set of the present embodiment may further include a fourth primer that can hybridize to the sixth region located 3 ′ end side of the second region of SEQ ID NO: 1.
  • the primer set of this embodiment may further include a fifth primer that hybridizes to the seventh region located between the third region and the fourth region of SEQ ID NO: 1.
  • the primer set of the present embodiment may further include a sixth primer that hybridizes to the complementary region of the eighth region located between the first region and the second region of SEQ ID NO: 1.
  • FIG. 1 is a schematic diagram showing a primer and a region where the primer hybridizes.
  • each region of F1, F2, L, F1, R1c, R2c and R3c is a region on TYR mRNA
  • each region of F3c, F2c, F1c, R1, M, R2 and R3 is This is a region on TYR cDNA which is a complementary strand of TYR mRNA.
  • F1 and F1c, F2 and F2c, F3 and F3c, R1 and R1c, R2 and R2c, and R3 and R3c are complementary to each other. These regions are selected in consideration of the detection efficiency, reproducibility, etc. of TYR mRNA.
  • RIP is the first primer
  • FIP is the second primer
  • F3 primer is the third primer
  • R3 primer is the fourth primer
  • loop primer F is the fifth primer
  • loop primer R is the sixth primer. It corresponds to each primer.
  • FIP (second primer) has a third sequence, which is a polynucleotide sequence hybridizable to region F1 (complementary region of F1c) of TYR cDNA, which is a complementary strand of TYR mRNA, on the 5 ′ end side. It is a polynucleotide having a fourth sequence on the 3 ′ end side, which is a polynucleotide sequence capable of hybridizing to the region F2c of cDNA.
  • the third sequence and the fourth sequence may be directly linked or may be linked via the intervening sequence.
  • the lengths of the third and fourth sequences are the same as the lengths of the first and second sequences.
  • the F3 primer (third primer) consists of a polynucleotide capable of hybridizing to the region F3c located downstream (3 ′ end side) from F2c of TYR cDNA.
  • the primer set of the present invention may contain an R3 primer in addition to the FIP, RIP and F3 primers.
  • This R3 primer consists of a polynucleotide capable of hybridizing to the region R3c located downstream (3 ′ end side) of R2c of TYR mRNA.
  • the primer set of the present invention may contain a loop primer.
  • Loop primer F is a polynucleotide that can hybridize to region L located between F2 and F1 in TYR mRNA, and can hybridize to region M located between R1 and R2 in TYR cDNA And loop primer R, which is a simple polynucleotide.
  • the primer set of the present invention may contain one or both of these loop primers F and R.
  • the primer set of the present invention includes one or both of the loop primers F and R, according to such a primer set, it is possible to more rapidly amplify cDNA by the LAMP reaction.
  • the chain lengths of the F3 primer, R3 primer, loop primer F and R are not particularly limited as long as they are long enough to express the primer function. Since the chain length of a primer recognized by a known polymerase that catalyzes a nucleic acid synthesis reaction is 5 nucleotides or more, the chain length of each primer is preferably 5 to 100 nucleotides. In consideration of the specificity between the nucleotide sequence of the primer and the region where the primer hybridizes, the chain length of each primer is preferably 10 nucleotides or more, and preferably 30 nucleotides in consideration of the hybridization temperature of the primer. It is as follows. The chain length of FIP and RIP is preferably 20 to 200 nucleotides, more preferably 20 to 60 nucleotides.
  • the primer set of the present invention it is preferable that at least one of the above-mentioned primers hybridizes to a region containing an exon junction of TYR mRNA.
  • the TYR gene consists of 9 exons, and an intron is interposed between exons.
  • introns are removed by splicing, and exons are directly connected to each other. The joint where the exons and exons are connected is called an exon junction.
  • exon 1 and exon 2 are separated by an intron, but the intron is removed in mRNA synthesis, so in mRNA, the 3 ′ end of exon 1 and the 5 ′ end of exon 2 are adjacent. . Since SEQ ID NO: 1 consists of 5 exons, SEQ ID NO: 1 has the following 4 exon junctions (exon junctions 1 to 4).
  • Exon junction 1 of exons 1 and 2 1 901 and 902 binding part of SEQ ID NO: 1
  • Exon junction 2 of exon 2 and 3 1118 and 1119 binding part of SEQ ID NO 1 exons 3 and 4
  • Exon junction 3 with: 1266th and 1267th binding part of SEQ ID NO: 1
  • a primer capable of hybridizing to a region containing an exon junction hybridizes to mRNA of the TYR gene, but has a very low possibility of hybridizing to genomic DNA of the TYR gene. According to such a primer, it is possible to prevent nucleic acid from being non-specifically amplified during mRNA detection by RT-LAMP reaction.
  • the first hybrid to the TYR mRNA in the sample consists of the second sequence of RIP. It is considered to be a polynucleotide moiety. Therefore, in the primer set of the present invention, it is more preferable that the polynucleotide portion consisting of the second sequence of RIP hybridizes to a region containing exon junctions among the above-mentioned primers. That is, it is more preferable that the region R2c includes an exon junction. Thereby, it can avoid amplifying a nucleic acid non-specifically at the initial stage of reaction.
  • the primer set of the present invention is preferably an exon of the above exon junctions.
  • a primer that hybridizes to a region containing junction 1 or 2, more preferably a primer that hybridizes to a region containing exon junction 2 is included.
  • the primer of this embodiment and the specific region of TYR mRNA to which this primer hybridizes do not need to be completely complementary to each other, as long as both have complementarity to the extent that they can hybridize to each other. Good (this is also described in US Pat. No. 4,800,159). That is, in the case of a polynucleotide having a primer function, this primer has one or more mutations such as substitution, deletion, insertion, addition and the like in a sequence having complete complementarity with the specific region, It may be a polynucleotide having several.
  • the polynucleotide having this mutation preferably has a homology of 80% or more with respect to a polynucleotide having no mutation, more preferably 90% or more of homology, More preferably, it has a homology of 95% or more.
  • the primer In the RT-LAMP reaction, the primer is hybridized to TYR mRNA, which is the target nucleic acid, and then nucleic acid synthesis is performed starting from the 3 'end of the primer by the action of the polymerase. For this reason, it is considered that the higher the complementarity between the 3 'end portion of the primer and the TYR mRNA, the easier the nucleic acid synthesis reaction proceeds.
  • the primer of the present invention is preferably a polynucleotide in which 3 nucleotides at the 3 ′ end are completely complementary to the hybridizing region of the primer, and more preferably 5 nucleotides at the 3 ′ end are completely complementary. Polynucleotide.
  • the second sequence contains a sequence consisting of 3 consecutive nucleotides completely complementary to the sequence of the second region at the 3 ′ end.
  • it contains a sequence consisting of 5 consecutive nucleotides that are completely complementary to the sequence of the second region.
  • Each region of F3, F2, F1, R1c, R2c, R3c, L and M is set in the sequence of TYR mRNA shown in SEQ ID NO: 1. Specific examples of these areas are given below.
  • the primer can be designed based on each of the above regions. Specific examples of each primer are given below. The description in parentheses after the sequence indicates which region in the sequence of TYR mRNA (SEQ ID NO: 1) is the same sequence or complementary.
  • Sequence number 2 5'-AATGGAACGCCCGAGGGA-3 '(the same arrangement
  • Sequence number 3 5'-GACCTTTACGGCGTAATCCT-3 '(the same arrangement
  • Sequence number 4 5'-TATGCAATGGAACGCCCG-3 '(the same arrangement
  • Sequence number 5 5'-CAGCCATCAGTCTTTATGCAATG-3 '(the same arrangement
  • Sequence number 6 5'-TCTGCCTTGGCATAGACTCT-3 '(the same arrangement
  • Sequence number 7 5'-CAAACTCAGGCAAAATTCTACATCTTACGGCGTAATCCTGGAAACC-3 ' (Sequence where the complementary sequence of the 1031-1054th region and the same sequence as the 971-992th region are linked)
  • Sequence number 8 5'-CAAACTCAGGCAAAATTCTACATCGGAAACCATGACAAATCCAGAAC-3 ' (Sequence where the complementary sequence of the 1031-1054th region is linked to the same sequence as the 986-1008th region)
  • Sequence number 9 5'-TACATCAGCTGAAGAGGGGAGCAGGGACCTTTACGGC-3 ' (Sequence where the complementary sequence of the 1015-1036th region and the same sequence as the 963-977th region are linked)
  • Sequence number 14 5'-CCAATATGAATCTGGTTCCATGGAGTGGACTAGCAAATCCTTCC-3 ' (Sequence where the same sequence as the 1057-1080 region and the complementary sequence of the 1114-1133 region are linked)
  • SEQ ID NO: 15 5'-TTTGCCTGAGTTTGACCCAATAGGACTAGCAAATCCTTCC-3 ' (Sequence obtained by linking the same sequence as the 1041-1062th region and the complementary sequence of the 1114-1131th region)
  • Sequence number 16 5'-GCCTGAGTTTGACCCAATATGGTGGACTAGCAAATCCTTCC-3 ' (Sequence where the same sequence as the 1044-1064th region and the complementary sequence of the 1114-1133th region are linked)
  • Sequence number 17 5'-CAGCTGATGTAGAATTTTGCCTGAGTGGACTAGCAAATCCTTCC-3 ' (Sequence obtained by linking the same sequence as the 1026-1049th region and the complementary sequence of the 1114-1133
  • Sequence number 56 5'-AAAGCTGCCAATTTCAGCTTTAG-3 '(the same arrangement
  • Sequence number 57 5'-AGCTGCCAATTTCAGCTTTAGA-3 '(the same arrangement
  • Sequence number 58 5'-GCTGCCAATTTCAGCTTTAGAAA-3 '(the same arrangement
  • a primer consisting of the nucleotide sequence shown in SEQ ID NO: 19 can hybridize to a region containing exon junction 1.
  • the primers of SEQ ID NOs: 14 to 18 can hybridize to a region containing exon junction 2.
  • the above primers can be used as a primer set including four kinds of primers by appropriately combining F3 primer, FIP, RIP and R3 primer according to the amplification region. Further, the loop primers F and R can be combined to be used as a primer set including six kinds of primers. Specific examples of such primer sets are shown in Table 1 below.
  • reverse transcriptase and strand displacement type DNA polymerase can be used. Also, instead of these two kinds of enzymes (reverse transcriptase and strand displacement type DNA polymerase), it has an action of synthesizing DNA using RNA as a template and an action of synthesizing DNA using DNA as a template while performing strand displacement.
  • One kind of enzyme may be used.
  • a buffer that gives conditions suitable for the enzyme reaction.
  • Each of the above substances can be stored in separate containers, but the reverse transcriptase and the strand displacement type DNA polymerase may be stored in the same container.
  • these reagents may be provided as a reagent kit including a part or all of the above-described reagents.
  • the method for detecting TYR mRNA of the present invention comprises: Use of the above-described primer set and RNA-dependent DNA polymerase and DNA-dependent DNA polymerase (the following “detection method of Embodiment 1”), or the above-described primer set and the action of synthesizing DNA using RNA as a template, Use of an enzyme having an action of synthesizing DNA using DNA as a template while performing strand displacement (the following “detection method of embodiment 2”) Can be implemented by
  • the detection method of the first embodiment is as follows.
  • (I-1) a step of reacting a sample, the above primer set, and an RNA-dependent DNA polymerase to synthesize cDNA from tyrosinase mRNA in the sample
  • (II-1) a step of amplifying cDNA by reacting the primer set, a DNA-dependent DNA polymerase, and the cDNA synthesized in the step (I-1);
  • the detection method of the second embodiment is as follows. (I-2) reacting the sample with the above-described primer set and an enzyme having an action of synthesizing DNA using RNA as a template and an action of synthesizing DNA using DNA as a template while performing strand displacement, Synthesizing cDNA using the tyrosinase mRNA in the sample as a template, further synthesizing and amplifying the cDNA using the cDNA as a template, and (II-2) detecting the cDNA amplified in the step, A method comprising a step of detecting tyrosinase mRNA in a sample.
  • Embodiments 1 and 2 are preferably performed using the RT-LAMP method from the viewpoint of detecting TYR mRNA with high efficiency, accuracy, and in a short time.
  • the primer set described above, an RNA-dependent DNA polymerase (hereinafter referred to as “reverse transcriptase”), and a DNA-dependent DNA polymerase having strand displacement activity (Hereinafter referred to as “strand displacement DNA polymerase”), dNTPs (including dATP, dGTP, dTTP, and dCTP) and a sample are mixed and reacted to detect TYR mRNA in the sample. . Therefore, in this case, the steps (I-1) and (II-1) are performed in one step.
  • the primer set described above, the action of synthesizing DNA using RNA as a template, and the action of synthesizing DNA using DNA as a template while performing strand displacement can be detected by mixing and reacting the enzyme provided with dNTPs and the sample.
  • a buffer that gives conditions suitable for the enzyme reaction in each step Is also preferably used.
  • samples used for TYR mRNA detection include tissues (lymph nodes, lymph fluid, blood, etc.) and stool collected from a living body.
  • the detection of TYR mRNA is performed by an amplification step [the above steps (I-1) and (II-1)] and a detection step [the above step (III-1). ] Is performed.
  • a sample containing TYR mRNA collected from a living body is mixed with the above-described primer set, reverse transcriptase, dNTPs, and strand displacement DNA polymerase. Then, the obtained mixture is heated to a certain temperature (for example, 65 ° C.) to perform RT reaction and LAMP reaction, and TYR cDNA is synthesized using TYR mRNA as a template, and the TYR cDNA is used using TYR cDNA as a template. Is further synthesized and amplified [the above steps (I-1) and (II-1)].
  • the mechanism of RT reaction and LAMP reaction is as follows. First, the second sequence of RIP hybridizes to the region R2c of TYR mRNA in the reaction solution. Subsequently, TYR cDNA is synthesized from the 3 ′ end of RIP using TYR mRNA as a template by reverse transcriptase. Thereby, a double-stranded nucleic acid composed of TYR cDNA (RIP extended chain) extended from RIP and TYR mRNA is synthesized.
  • TYR cDNA RIP extended chain
  • the R3 primer hybridizes to the region R3c of TYR mRNA.
  • TYR cDNA is synthesized by the strand displacement DNA polymerase using TYR mRNA as a template, while the RIP extension strand already bound to TYR mRNA is peeled off (replaced) from the 3 ′ end of the R3 primer.
  • the RIP extension chain Since the RIP extension chain is in a single-stranded state and has a sequence complementary to TYR mRNA, the RIP extension chain includes a region F2c complementary to the region F2 of TYR mRNA.
  • the fourth sequence of FIP hybridizes to the region F2c of this RIP extended chain.
  • DNA synthesis is performed from the 3 'end of FIP using a RIP extended strand as a template by a strand displacement DNA polymerase. Since the DNA synthesized here has a third sequence (the sequence of a polynucleotide that hybridizes to region F1) at the 5 ′ end, the polynucleotide comprising the third sequence hybridizes to region F1 on this DNA. Soybeans form a stem loop structure. In addition, since this DNA has a complementary sequence of the first sequence (sequence that hybridizes to region R1c) at the 3 ′ end, the complementary sequence of the first sequence hybridizes to region R1c on this DNA. A stem loop structure is formed. Therefore, this DNA has a dumbbell structure in which a stem loop structure is formed at both the 5 'end and the 3' end.
  • dumbbell DNA The DNA having the dumbbell structure (dumbbell DNA) is extended from the 3 ′ end by a strand-displacing DNA polymerase while the stem loop structure on the 5 ′ end side is released using another part in the dumbbell DNA as a template, and the extended strand is can get. Since this extended strand has sequences complementary to each other at the 5 'end, the 3' end and the center thereof, three stem loop structures are formed in the extended strand. Further, the extended strand is extended from the 3 'end by a strand displacement type DNA polymerase while releasing the stem loop structure using the other part in the extended strand as a template.
  • this amplification product is converted into a fluorescent intercalator, for example,
  • the amplification product can be detected by fluorescent staining with ethidium bromide, SYBR (registered trademark) GREEN I, Pico Green (registered trademark), etc., and generating fluorescence by irradiating ultraviolet rays.
  • the fluorescent staining may be performed by adding a fluorescent dye to the reaction solution after the amplification reaction [after the above step (II-1)].
  • the fluorescent dye is added to the reaction solution in advance, and the nucleic acid is added in the presence of the fluorescent dye. You may carry out by implementing amplification.
  • the detection step [the step (III-1)] it can be determined whether or not TYR mRNA is present in the sample depending on whether or not fluorescence is detected.
  • the amplification product can be quantified by measuring the fluorescence intensity of the reaction solution after the amplification reaction [after step (II-1)], and the TYR mRNA contained in the sample is quantified based on the quantification result. It is also possible to do.
  • the amount of TYR mRNA in the sample is measured by measuring the increase in fluorescence intensity of the reaction solution in real time and measuring the time to reach a certain fluorescence intensity. (Real-time RT-PCR method, real-time RT-LAMP method, etc.).
  • magnesium pyrophosphate insoluble in water is generated as a by-product.
  • the magnesium pyrophosphate increases as nucleic acid amplification proceeds, and the reaction solution becomes cloudy with this increase. Therefore, i) confirming the turbidity of the reaction solution visually, ii) measuring the turbidity by measuring the absorbance and scattered light intensity of the reaction solution, or iii) filtering the reaction solution with a colored filter, By confirming the residue above, the target nucleic acid can be detected (see WO 01/83817).
  • DNA amplification and turbidity in a closed system are monitored by monitoring turbidity changes in real time, as in the case of using the fluorescent dye.
  • the increase can be tracked. Therefore, in the detection step [the step (III-1)], it can be determined whether or not TYR mRNA is present in the sample based on whether or not the reaction solution becomes clouded. Further, the amplification product can be quantified by measuring the turbidity of the amplification product, and TYR mRNA contained in the sample can be quantified based on the quantification result.
  • amplification rise time When measuring the increase in turbidity in real time, it is possible to measure the time to reach a certain turbidity (hereinafter referred to as amplification rise time) and convert this time into the amount of TYR mRNA in the sample. It is.
  • the step (I-2) is an amplification step corresponding to the amplification step [the steps (I-1) and (II-1)] in the detection method of the first embodiment. is there.
  • DNA is synthesized using RNA as a template instead of the two kinds of enzymes (reverse transcriptase and strand displacement DNA polymerase) in the steps (I-1) and (II-1). It can be carried out in the same manner as steps (I-1) and (II-1) except that one kind of enzyme having the action and the action of synthesizing DNA using DNA as a template while performing strand displacement is used. it can.
  • the step (II-2) can be performed in the same manner as the detection step [the step (III-1)] in the detection method of the first embodiment.
  • the reagent used in the step (I-1), step (II-1) and step (I-2) can be provided as a reagent kit for mRNA detection.
  • a reagent kit for mRNA detection is an enzyme or RNA dependent having the above primer set, dNTPs, an action of synthesizing DNA using RNA as a template, and an action of synthesizing DNA using DNA as a template while performing strand displacement. And a DNA-dependent DNA polymerase.
  • Each reagent described above may be stored in a separate container. Further, the reverse transcriptase and the strand displacement type DNA polymerase may be accommodated in the same container. In addition, at least two types of reagents among dNTPs, buffers, and various primers may be accommodated in the same container.
  • Example 1 Whether or not TYR mRNA could be detected using the primer sets 1 to 45 shown in Table 1 was verified as follows.
  • each reagent was mixed so that it might become the following composition, and the buffer solution for RT-LAMP reaction was prepared.
  • each reagent was mixed so that it might become the following composition, and the enzyme liquid (3.04 microliters) was prepared.
  • RT-LAMP reaction buffer 14.0 ⁇ L Enzyme solution 3.0 ⁇ L Primer mix 5.0 ⁇ L 10 mM Tris HCl (pH 8.0) 1.0 ⁇ L RNA sample 2.0 ⁇ L
  • NC reaction solutions As a negative control (NC) corresponding to each of 45 types of reaction solutions, NC reaction solutions (45 types) to which 2.0 ⁇ L of ultrapure water was added instead of a 2.0 ⁇ L RNA sample were also prepared.

Abstract

 本発明は、TYR mRNAを検出する手段及び方法を提供する。TYR mRNA検出用プライマーとして、5'末端側に第一配列、3'末端側に第二配列を含み、第一配列は、10~30ヌクレオチドの長さを有し、配列番号1の一部の領域である第一領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、第二配列は、10~30ヌクレオチドの長さを有し、配列番号1において第一領域よりも3'末端側に位置する第二領域にハイブリダイズ可能なポリヌクレオチドの配列であるプライマーを用いる。

Description

チロシナーゼのmRNAを検出するためのプライマー
 本発明は、チロシナーゼ(以下、「TYR」という)のmRNAを検出するために用いられるプライマーに関する。さらに詳しくは、試料中のTYR mRNAの検出に好適なプライマー、プライマーセット及びTYR mRNAの検出方法に関する。
 TYRは、動物や植物の細胞で発現し、チロシンを酸化してメラニンを合成する反応を触媒する酵素の一種である。近年の研究により、TYRは、メラノーマのリンパ節転移を検出するための分子マーカーとして有用であることが分かってきた。例えば、非特許文献1には、生体から採取したリンパ節から測定試料を調製し、測定試料中のTYRのmRNAをRT-PCRによって検出することによって、メラノーマのリンパ節転移の有無を判定できることが開示されている。
エブラハムセン(Abrahamsen)ら、「センチネル節におけるメラノーマmRNAマーカーの定量:シングルステップリアルタイム逆転写ポリメラーゼ連鎖反応アッセイの前臨床評価(Quantification of Melanoma mRNA Markers in Sentinel Nodes:Pre-Clinical Evaluation of a Single-Step Real-Time ReverseTranscriptase-Polymerase Chain Reaction Assay)」、2004年8月、第6巻、第3号、p.253-259
 上述の通り、TYRのmRNAは、メラノーマ等のがんの検出のための分子マーカーとして有用である。しかしながら、非特許文献1に記載の技術は、検出の際に、高感度に標的核酸を検出することができるRT-PCRが用いられているため、例えば、がん細胞のリンパ節への微小転移をも検出できるが、検出までに非常に時間(2~4時間程度)がかかっていた。
 本発明は、従来の技術よりも短時間でTYR mRNAを検出することができる、TYR mRNA検出用プライマー、TYR mRNA検出用プライマーセット、TYR mRNA検出用試薬キット及びTYR mRNAの検出方法を提供することを目的とする。
 すなわち、本発明は、
〔1〕 試料中のチロシナーゼのmRNAを検出するためのチロシナーゼmRNA検出用プライマーであって、
 5’末端側に第一配列、3’末端側に第二配列を含んでなり、
 前記第一配列が、
(a1) 10~30ヌクレオチドの長さを有し、
(b1) 配列番号1の一部の領域である第一領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第二配列が、
(c1) 10~30ヌクレオチドの長さを有し、
(d1) 配列番号1において第一領域よりも3’末端側に位置する第二領域にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第二領域が、
(i) 配列番号1の901及び902番目のヌクレオチド;又は
(ii) 配列番号1の1118及び1119番目のヌクレオチド;
を含む領域であるチロシナーゼmRNA検出用プライマー、
〔2〕 試料中のチロシナーゼのmRNAを検出するためのチロシナーゼmRNA検出用プライマーセットであって、
 第一プライマー、第二プライマー、及び第三プライマーを含み、
 前記第一プライマーが、請求項1記載のプライマーであり、
 前記第二プライマーが、5’末端側に第三配列、3’末端側に第四配列を含み、
 前記第三配列が、
(a2) 10~30ヌクレオチドの長さを有し、
(b2) 前記配列番号1の第一領域よりも5’末端側に位置する第三領域にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第四配列が、
(c2) 10~30ヌクレオチドの長さを有し、
(d2) 前記配列番号1の第三領域よりも5’末端側に位置する第四領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第三プライマーが、前記配列番号1の第四領域よりも5’末端側に位置する第五領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列からなるプライマーであるチロシナーゼmRNA検出用プライマーセット、
〔3〕 前記〔2〕記載のプライマーセットと、
 dNTPsと、
 RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素、またはRNA依存性DNAポリメラーゼおよびDNA依存性DNAポリメラーゼと
を含むチロシナーゼmRNA検出用試薬キット、
〔4〕 試料と、前記〔2〕記載のプライマーセットと、RNA依存性DNAポリメラーゼとを反応させて、前記試料中のチロシナーゼmRNAからcDNAを合成する工程、
 前記プライマーセットと、DNA依存性DNAポリメラーゼと、前記工程で合成されたcDNAとを反応させて、前記cDNAを増幅する工程、及び
 前記工程で増幅されたcDNAを検出することにより、前記試料中のチロシナーゼmRNAを検出する工程
を含む、チロシナーゼmRNAの検出方法、並びに
〔5〕 試料と、前記〔2〕記載のプライマーセットと、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素とを反応させて、前記試料中のチロシナーゼmRNAを鋳型としてcDNAを合成するとともに、このcDNAを鋳型として当該cDNAをさらに合成して増幅する工程、及び
 前記工程で増幅されたcDNAを検出することにより、前記試料中のチロシナーゼmRNAを検出する工程
を含む、チロシナーゼmRNAの検出方法
に関する。
 本発明のTYR mRNA検出用プライマー、TYR mRNA検出用プライマーセット、TYR mRNA検出用試薬キット及びTYR mRNAの検出方法によれば、短時間でTYR mRNAを検出することができる。
プライマーと、プライマーがハイブリダイズする領域とを示した模式図である。
〔プライマー及びプライマーセット〕
 まず、TYR mRNAを検出するためのTYR mRNA検出用プライマーを説明する。
 なお、本明細書において、「検出する」とは、標的とする物質であるTYR mRNAが試料中に存在するか否かを判定することだけでなく、試料中のTYR mRNAを定量することをも含む。
 本明細書において、「プライマー」とは、LAMP(Loop-mediated Isothermal Amplification)法(米国特許第6410278号公報及び米国特許第6974670号公報参照)等の核酸増幅技術において、増幅対象となる核酸の特定の領域にハイブリダイズし、ポリメラーゼによる増幅反応の起点となることのできる機能(以下、「プライマー機能」という)を有するポリヌクレオチドをいう。検出対象となる核酸はmRNAであるため、逆転写反応を含む核酸増幅反応(例えば、RT-LAMP法等)により検出することができる。
 「ハイブリダイズ」とは、ストリンジェントな条件下で、ポリヌクレオチドの塩基同士の相補性に基づいて、あるポリヌクレオチドの一部又は全部の配列が別のポリヌクレオチドの一部又は全部の配列に水素結合を介して結合することをいう。
 「ストリンジェントな条件」とは、ポリヌクレオチドのハイブリダイゼーションを行なう際に当業者が一般的に用いる条件であって、本実施形態のプライマーがTYR mRNA又はそのcDNAにハイブリダイズすることができる条件であれば特に限定されない。ハイブリダイゼーション時のストリンジェンシーは、温度、塩濃度、プライマーの鎖長、プライマーのGC含量及びハイブリダイゼーション緩衝液中のカオトロピック剤の濃度の関数であることが知られている。ストリンジェントな条件としては、例えば、Sambrook, J. et al., 1998, Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New Yorkに記載された条件等を用いることができる。より具体的には、「50%ホルムアミド、5×SSC(150mM NaCl,15mM クエン酸ナトリウム)、50mM リン酸ナトリウム、pH7.6、5×デンハーツ溶液、10%デキストラン硫酸、及び20μg/mlの核酸を含む溶液中、ハイブリダイゼーション温度42℃」を例示することができるが、これに限定されない。
 TYR mRNAのヌクレオチド配列は、配列番号1に示される配列に対応する配列である。なお、mRNAにはチミンは存在せず、代わりにウラシルが含まれるが、配列番号1では便宜上ウラシルをチミン(t)として表記してある。この配列は、GenBankデータベースにAccession No. NM_000372として登録されている。
 本発明の一実施形態(実施形態1)に係るプライマーは、試料中のチロシナーゼのmRNAを検出するためのTYR mRNA検出用プライマーであって、
 5’末端側に第一配列、3’末端側に第二配列を含み、
 前記第一配列が、
(a1) 10~30ヌクレオチドの長さを有し、
(b1) 配列番号1の一部の領域である第一領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第二配列が、
(c1) 10~30ヌクレオチドの長さを有し、
(d1) 配列番号1において第一領域よりも3’末端側に位置する第二領域にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第二領域が、
(i) 配列番号1の901及び902番目のヌクレオチド;又は
(ii) 配列番号1の1118及び1119番目のヌクレオチド;
を含む領域であることを特徴としている。
 本実施形態1のプライマーは、特に、RT-LAMP法を用いたTYR mRNAの検出に好適に用いられるプライマーである。本実施形態1のプライマーによれば、5’末端側に前記第一配列、3’末端側に前記第二配列を含んでいるため、TYR mRNAを効率よく、かつ再現性よく検出することができる。
 前記RT-LAMP法においては、まずは逆転写反応(RT反応)によってTYR mRNAからcDNAが合成され、続いて合成されたcDNAがLAMP反応により増幅される。
 かかるRT-LAMP法を用いたTYR mRNAの検出では、本実施形態1のプライマーとして、例えば、図1に模式的に示されるように、TYR mRNAの一部の領域(図1中、「R1c」)の相補領域(図1中、「R1」)にハイブリダイズ可能なポリヌクレオチドの配列である第一配列を5’末端側に有し、TYR mRNAにおいて前記領域R1cよりも下流(3’末端側)に位置する領域(図1中、「R2c」)にハイブリダイズ可能なポリヌクレオチドの配列である第二配列を3’末端側に有するポリヌクレオチドからなるプライマーを用いることができる。
 前記第一配列及び第二配列は、本実施形態1のプライマーと当該プライマーがハイブリダイズする領域との間のハイブリダイゼーションの特異性の観点から、それぞれ独立して、好ましくは10ヌクレオチド以上の長さであり、TYR mRNAの検出に際して、操作が容易なハイブリダーゼーション温度を確保する観点から、好ましくは30ヌクレオチド以下の長さである。
 本実施形態1のプライマーにおいては、第一配列と第二配列とは直接連結されていてもよく、介在配列を介して連結されていてもよい。介在配列としては、TYR mRNAやTYR cDNAとは関連性の低い配列であることが好ましい。例えば、5'-tttt-3'等が挙げられる。介在配列の長さは、1~50ヌクレオチドであることが好ましく、1~40ヌクレオチドであることがより好ましい。
 本実施形態1のプライマーは、前記RT-LAMP法で用いられるプライマーのうち、リバースインナープライマー(以下、「RIP」という)として機能することができる。
 RT-LAMP法を用いてTYR mRNAを検出するためには、前記実施形態1のプライマー(RIP)と、フォワードインナープライマー(以下、「FIP」という)と、F3プライマーとを用いることができる。本発明には、これらのプライマーを含むTYR mRNA検出用プライマーセットも包含される。
 本発明の一実施形態に係るTYR mRNA検出用プライマーセットは、試料中のチロシナーゼのmRNAを検出するためのTYR mRNA検出用プライマーセットであって、
 第一プライマー、第二プライマー、及び第三プライマーを含み、
 前記第一プライマーが、前記実施形態1のプライマーであり、
 前記第二プライマーが、5’末端側に第三配列、3’末端側に第四配列を含み、
 前記第三配列が、
(a2) 10~30ヌクレオチドの長さを有し、
(b2) 前記配列番号1の第一領域よりも5’末端側に位置する第三領域にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第四配列が、
(c2) 10~30ヌクレオチドの長さを有し、
(d2) 前記配列番号1の第三領域よりも5’末端側に位置する第四領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、
 前記第三プライマーが、前記配列番号1の第四領域よりも5’末端側に位置する第五領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列からなるプライマーであることを特徴としている。
 本実施形態のプライマーセットによれば、前記第一プライマー、第二プライマー、及び第三プライマーを含むため、TYR mRNAを高い効率で、迅速に、かつ再現性よく検出することが可能になる。
 本実施形態のプライマーセットは、前記配列番号1の第二領域よりも3’末端側に位置する第六領域にハイブリダイズ可能である第四プライマーをさらに含んでいてもよい。また、本実施形態のプライマーセットは、前記配列番号1の前記第三領域と前記第四領域との間に位置する第七領域にハイブリダイズする第五プライマーをさらに含んでいてもよい。さらに、本実施形態のプライマーセットは、前記配列番号1の前記第一領域と第二領域との間に位置する第八領域の相補領域にハイブリダイズする第六プライマーをさらに含んでいてもよい。
 以下、図1に基づいて、前記プライマーおよびプライマーセットをさらに説明する。
 図1は、プライマーと、プライマーがハイブリダイズする領域とを示した模式図である。なお、図1中、F1、F2、L、F1、R1c、R2c及びR3cの各領域は、TYR mRNA上の領域であり、F3c、F2c、F1c、R1、M、R2及びR3の各領域は、TYR mRNAの相補鎖であるTYR cDNA上の領域である。また、F1とF1c、F2とF2c、F3とF3c、R1とR1c、R2とR2c、及びR3とR3cは、それぞれ相補的である。これらの領域は、TYR mRNAの検出効率、再現性等を考慮して選択される。
 図1において、RIPは前記第一プライマー、FIPは前記第二プライマー、F3プライマーは前記第三プライマー、R3プライマーは前記第四プライマー、ループプライマーFは前記第五プライマー、ループプライマーRは前記第六プライマーにそれぞれ対応している。
 FIP(第二プライマー)は、TYR mRNAの相補鎖であるTYR cDNAの領域F1(F1cの相補領域)にハイブリダイズ可能なポリヌクレオチドの配列である第三配列を5’末端側に有し、TYR cDNAの領域F2cにハイブリダイズ可能なポリヌクレオチドの配列である第四配列を3’末端側に有するポリヌクレオチドである。第三配列と第四配列とは、直接連結されていてもよく、前記介在配列を介して連結されていてもよい。また、FIPにおいて、第三配列及び第四配列の長さは、前記第一配列及び第二配列の長さと同様である。
 F3プライマー(第三プライマー)は、TYR cDNAのF2cよりも下流(3’末端側)に位置する領域F3cにハイブリダイズ可能なポリヌクレオチドからなる。
 さらに、本発明のプライマーセットは、FIP、RIP及びF3プライマーに加えて、R3プライマーを含んでいてもよい。このR3プライマーは、TYR mRNAのR2cよりも下流(3’末端側)に位置する領域R3cにハイブリダイズ可能なポリヌクレオチドからなる。
 さらに、本発明のプライマーセットは、ループプライマーを含んでいてもよい。ループプライマーとしては、TYR mRNAにおいてF2とF1との間に位置する領域Lにハイブリダイズ可能なポリヌクレオチドであるループプライマーF、TYR cDNAにおいてR1とR2との間に位置する領域Mにハイブリダイズ可能なポリヌクレオチドであるループプライマーR等が挙げられる。本発明のプライマーセットは、これらのループプライマーF及びRの一方又は両方を含んでいてもよい。
本発明のプライマーセットがループプライマーF及びRの片方又は両方を含むものである場合、かかるプライマーセットによれば、LAMP反応によるcDNAの増幅をより迅速に行なうことが可能となる。
 F3プライマー、R3プライマー、ループプライマーF及びRの鎖長は、プライマー機能を発現するに十分な長さであれば特に限定されない。核酸合成反応を触媒する公知のポリメラーゼが認識するプライマーの鎖長は、5ヌクレオチド以上であることから、前記各プライマーの鎖長は、それぞれ、好ましくは5~100ヌクレオチドである。また、プライマーのヌクレオチド配列とプライマーがハイブリダイズする領域との間の特異性を考慮すると、前記各プライマーの鎖長は、好ましくは10ヌクレオチド以上、プライマーのハイブリダイゼーション温度を考慮すると、好ましくは30ヌクレオチド以下である。また、FIP及びRIPの鎖長は、20~200ヌクレオチドが好ましく、20~60ヌクレオチドがより好ましい。
 本発明のプライマーセットでは、上述のプライマーのうち、少なくとも一つがTYR mRNAのエキソンジャンクションを含む領域にハイブリダイズすることが好ましい。TYR遺伝子は、9個のエキソンからなり、エキソンとエキソンとの間にはイントロンが介在している。細胞内でTYR遺伝子からmRNAが合成される際はスプライシングによってイントロンが除去され、エキソン同士が直接連結される。このエキソンとエキソンとが連結されたつなぎ目の部分をエキソンジャンクションという。例えば、ゲノムではエキソン1とエキソン2とはイントロンによって隔離されているが、mRNA合成において前記イントロンは除去されるためmRNAではエキソン1の3’末端とエキソン2の5’末端とは隣接している。配列番号1は5個のエキソンからなるため、配列番号1には、以下の4個のエキソンジャンクション(エキソンジャンクション1~4)がある。
 エキソン1と2とのエキソンジャンクション1:配列番号1の901番目と902番目との結合部分
 エキソン2と3とのエキソンジャンクション2:配列番号1の1118番目と1119番目との結合部分
 エキソン3と4とのエキソンジャンクション3:配列番号1の1266番目と1267番目との結合部分
 エキソン4と5とのエキソンジャンクション4:配列番号1の1448番目と1449番目との結合部分
 エキソンジャンクションを含む領域にハイブリダイズ可能なプライマーは、TYR遺伝子のmRNAにはハイブリダイズするが、TYR遺伝子のゲノムDNAにはハイブリダイズする可能性は極めて低い。このようなプライマーによれば、RT-LAMP反応によるmRNA検出の際に非特異的に核酸を増幅してしまうことを防止することが可能となる。
 また、RT-LAMP反応の反応機序(米国特許第6410278号公報及び米国特許第6974670号公報参照)によると、試料中のTYR mRNAに最初にハイブリダイズするのは、RIPの第二配列からなるポリヌクレオチド部分であると考えられる。したがって、本発明のプライマーセットでは、上述のプライマーのうち、RIPの第二配列からなるポリヌクレオチド部分がエキソンジャンクションを含む領域にハイブリダイズすることがより好ましい。すなわち、前記領域R2cがエキソンジャンクションを含むことがより好ましい。これにより、反応の初期の段階で非特異的に核酸を増幅してしまうことを避けることができる。
 TYR mRNAと、試料中の他の遺伝子に由来するmRNAとの間の相同性や、検出速度、検出の再現性等の観点から、本発明のプライマーセットは、好ましくは上記のエキソンジャンクションのうちエキソンジャンクション1又は2を含む領域にハイブリダイズするプライマー、より好ましくはエキソンジャンクション2を含む領域にハイブリダイズするプライマーを含む。
 本実施形態のプライマーと、このプライマーがハイブリダイズするTYR mRNAの特定の領域とは、互いに完全に相補的である必要はなく、両者は、互いにハイブリダイズできる程度の相補性を有していればよい(このことは、米国特許第4800159号公報にも記載されている)。すなわち、プライマー機能を有するポリヌクレオチドであれば、このプライマーは、上記特定の領域と完全な相補性を有する配列に置換、欠失、挿入、付加等のような変異を1又は複数個、すなわち、数個有するポリヌクレオチドであってもよい。この変異を有するポリヌクレオチドは、変異を有していないポリヌクレオチドに対して80%以上の相同性を有していることが好ましく、90%以上の相同性を有していることがより好ましく、95%以上の相同性を有していることがさらに好ましい。
 RT-LAMP反応では、プライマーが目的の核酸であるTYR mRNAにハイブリダイズした後、ポリメラーゼの作用によってプライマーの3’末端を起点として核酸合成が行なわれる。このため、プライマーの3’末端部分とTYR mRNAとの間の相補性が高いほど、核酸合成反応が進行しやすくなることが考えられる。したがって、本発明のプライマーは、好ましくは3’末端の3ヌクレオチドが、当該プライマーのハイブリダイズする領域と完全に相補的なポリヌクレオチドであり、より好ましくは3’末端の5ヌクレオチドが完全に相補的なポリヌクレオチドである。
 なかでも、TYR mRNAの検出に際して、特異性を向上させる観点から、前記第二配列が、3’末端に、前記第二領域の配列に完全に相補的な連続した3ヌクレオチドからなる配列を含んでいることが好ましく、前記第二領域の配列に完全に相補的な連続した5ヌクレオチドからなる配列を含んでいることがより好ましい。
 F3、F2、F1、R1c、R2c、R3c、L及びMの各領域は、配列番号1に示されるTYR mRNAの配列中に設定される。以下に、これらの領域の具体例を挙げる。
(F1)
 795~817番目の領域
 1005~1024番目の領域
 1015~1036番目の領域
 1016~1040番目の領域
 1031~1054番目の領域
(F2)
 731~751番目の領域
 963~977番目の領域
 964~986番目の領域
 971~992番目の領域
 972~992番目の領域
 986~1008番目の領域
(F3)
 703~722番目の領域
 931~953番目の領域
 945~962番目の領域
 950~962番目の領域
 966~985番目の領域
(R1c)
 825~848番目の領域
 1026~1049番目の領域
 1041~1062番目の領域
 1044~1064番目の領域
 1044~1068番目の領域
 1057~1080番目の領域
(R2c)
 886~908番目の領域
 1110~1133番目の領域
 1114~1131番目の領域
 1114~1133番目の領域
(R3c)
 917~936番目の領域
 1135~1153番目の領域
 1138~1155番目の領域
 1138~1156番目の領域
 1141~1160番目の領域
 1142~1161番目の領域
(L)
 752~776番目の領域
 981~1004番目の領域
 982~1004番目の領域
 982~1006番目の領域
 986~1010番目の領域
 987~1011番目の領域
 988~1011番目の領域
 988~1012番目の領域
 989~1011番目の領域
 989~1012番目の領域
 989~1013番目の領域
 990~1012番目の領域
 990~1013番目の領域
 990~1014番目の領域
 992~1015番目の領域
 993~1016番目の領域
 994~1016番目の領域
 995~1016番目の領域
 995~1018番目の領域
 996~1018番目の領域
 1000~1019番目の領域
 1001~1020番目の領域
 1003~1022番目の領域
 1004~1022番目の領域
 1005~1024番目の領域
 1006~1024番目の領域
 1008~1027番目の領域
 1009~1027番目の領域
 1009~1028番目の領域
 1010~1029番目の領域
(M)
 860~884番目の領域
 1063~1087番目の領域
 1065~1089番目の領域
 1066~1090番目の領域
 1067~1089番目の領域
 1067~1090番目の領域
 1068~1091番目の領域
 1068~1092番目の領域
 1069~1091番目の領域
 1069~1092番目の領域
 1069~1093番目の領域
 1070~1093番目の領域
 1070~1094番目の領域
 1073~1097番目の領域
 1074~1098番目の領域
 1075~1099番目の領域
 1082~1104番目の領域
 1083~1105番目の領域
 1084~1105番目の領域
 1085~1107番目の領域
 本発明においては、前記プライマーは、上記の各領域に基づき設計することができる。以下に、各プライマーの具体例を挙げる。なお、配列の後の括弧内の記載は、各プライマーがTYR mRNAの配列(配列番号1)のどの領域と同じ配列であるか、又は相補的であるかを示したものである。
(F3プライマー)
 配列番号2:5'-AATGGAACGCCCGAGGGA-3'(950-967番目の領域と同じ配列)
 配列番号3:5'-GACCTTTACGGCGTAATCCT-3'(966-985番目の領域と同じ配列)
 配列番号4:5'-TATGCAATGGAACGCCCG-3'(945-962番目の領域と同じ配列)
 配列番号5:5'-CAGCCATCAGTCTTTATGCAATG-3'(931-953番目の領域と同じ配列)
 配列番号6:5'-TCTGCCTTGGCATAGACTCT-3'(703-722番目の領域と同じ配列)
(FIP)
 配列番号7:5'-CAAACTCAGGCAAAATTCTACATCTTACGGCGTAATCCTGGAAACC-3'
 (1031-1054番目の領域の相補配列と971-992番目の領域と同じ配列とを連結した配列)
 配列番号8:5'-CAAACTCAGGCAAAATTCTACATCGGAAACCATGACAAATCCAGAAC-3'
 (1031-1054番目の領域の相補配列と986-1008番目の領域と同じ配列とを連結した配列)
 配列番号9:5'-TACATCAGCTGAAGAGGGGAGCAGGGACCTTTACGGC-3'
 (1015-1036番目の領域の相補配列と963-977番目の領域と同じ配列とを連結した配列)
 配列番号10:5'-CAAACTCAGGCAAAATTCTACATCTACGGCGTAATCCTGGAAACC-3'
 (1031-1054番目の領域の相補配列と972-992番目の領域と同じ配列とを連結した配列)
 配列番号11:5'-AGAGGGGAGCCTTGGGGTTCAGGGACCTTTACGGC-3'
 (1005-1024番目の領域の相補配列と963-977番目の領域と同じ配列とを連結した配列)
 配列番号12:5'-ATTCTACATCAGCTGAAGAGGGGAGGGGACCTTTACGGCGTAATCCTG-3'
 (1016-1040番目の領域の相補配列と964-986番目の領域と同じ配列とを連結した配列)
 配列番号13:5'-GTCACACTTTTCTGCATCCCGCCCGGTGGGAACAAGAAATCCAG-3'
 (795-817番目の領域の相補配列と731-751番目の領域と同じ配列とを連結した配列)
(RIP)
 配列番号14:5'-CCAATATGAATCTGGTTCCATGGAGTGGACTAGCAAATCCTTCC-3'
 (1057-1080番目の領域と同じ配列と、1114-1133番目の領域の相補配列とを連結した配列)
 配列番号15:5'-TTTGCCTGAGTTTGACCCAATAGGACTAGCAAATCCTTCC-3'
 (1041-1062番目の領域と同じ配列と、1114-1131番目の領域の相補配列とを連結した配列)
 配列番号16:5'-GCCTGAGTTTGACCCAATATGGTGGACTAGCAAATCCTTCC-3'
 (1044-1064番目の領域と同じ配列と、1114-1133番目の領域の相補配列とを連結した配列)
 配列番号17:5'-CAGCTGATGTAGAATTTTGCCTGAGTGGACTAGCAAATCCTTCC-3'
 (1026-1049番目の領域と同じ配列と、1114-1133番目の領域の相補配列とを連結した配列)
 配列番号18:5'-GCCTGAGTTTGACCCAATATGAATCGTGGACTAGCAAATCCTTCCAGTG-3'
 (1044-1068番目の領域と同じ配列と、1110-1133番目の領域の相補配列とを連結した配列)
 配列番号19:5'-CAGATGAGTACATGGGAGGTCAGCAGACAATCTGCCAAGAGGAGAAG-3'
 (825-848番目の領域と同じ配列と、886-908番目の領域の相補配列とを連結した配列)
(R3プライマー)
 配列番号20:5'-GAGGCATCCGCTATCCCA-3' (1138-1155番目の領域の相補配列)
 配列番号21:5'-TTTGAGAGGCATCCGCTATC-3' (1141-1160番目の領域の相補配列)
 配列番号22:5'-GGCATCCGCTATCCCAGTA-3' (1135-1153番目の領域の相補配列)
 配列番号23:5'-AGAGGCATCCGCTATCCCA-3' (1138-1156番目の領域の相補配列)
 配列番号24:5'-CTTTGAGAGGCATCCGCTAT-3' (1142-1161番目の領域の相補配列)
 配列番号25:5'-TGGCTGTTGTACTCCTCCAA-3' (917-936番目の領域の相補配列)
(ループプライマーF)
 配列番号26:5'-GCCTTGGGGTTCTGGATTTGTCA-3'(994-1016番目の領域の相補配列)
 配列番号27:5'-CTGAAGAGGGGAGCCTTGGG-3'(1009-1028番目の領域の相補配列)
 配列番号28:5'-GCCTTGGGGTTCTGGATTTGTCAT-3'(993-1016番目の領域の相補配列)
 配列番号29:5'-TGAAGAGGGGAGCCTTGGG-3'(1009-1027番目の領域の相補配列)
 配列番号30:5'-GGAGCCTTGGGGTTCTGGAT-3'(1000-1019番目の領域の相補配列)
 配列番号31:5'-GCCTTGGGGTTCTGGATTTGTC-3'(995-1016番目の領域の相補配列)
 配列番号32:5'-GGGTTCTGGATTTGTCATGGTTTCC-3'(986-1010番目の領域の相補配列)
 配列番号33:5'-GGGAGCCTTGGGGTTCTGGA-3'(1001-1020番目の領域の相補配列)
 配列番号34:5'-GAGCCTTGGGGTTCTGGATTTGT-3'(996-1018番目の領域の相補配列)
 配列番号35:5'-GCTGAAGAGGGGAGCCTTGG-3'(1010-1029番目の領域の相補配列)
 配列番号36:5'-TCTGGATTTGTCATGGTTTCCAGGA-3'(982-1006番目の領域の相補配列)
 配列番号37:5'-GAGCCTTGGGGTTCTGGATTTGTC-3'(995-1018番目の領域の相補配列)
 配列番号38:5'-TGGGGTTCTGGATTTGTCATGGTT-3'(989-1012番目の領域の相補配列)
 配列番号39:5'-GGGGTTCTGGATTTGTCATGGTTTC-3'(987-1011番目の領域の相補配列)
 配列番号40:5'-TGAAGAGGGGAGCCTTGGGG-3'(1008-1027番目の領域の相補配列)
 配列番号41:5'-CTTGGGGTTCTGGATTTGTCATGGT-3'(990-1014番目の領域の相補配列)
 配列番号42:5'-TGGGGTTCTGGATTTGTCATGGT-3'(990-1012番目の領域の相補配列)
 配列番号43:5'-AGGGGAGCCTTGGGGTTCT-3'(1004-1022番目の領域の相補配列)
 配列番号44:5'-AGAGGGGAGCCTTGGGGTTC-3'(1005-1024番目の領域の相補配列)
 配列番号45:5'-TTGGGGTTCTGGATTTGTCATGGT-3'(990-1013番目の領域の相補配列)
 配列番号46:5'-AGAGGGGAGCCTTGGGGTT-3'(1006-1024番目の領域の相補配列)
 配列番号47:5'-TGGATTTGTCATGGTTTCCAGGAT-3'(981-1004番目の領域の相補配列)
 配列番号48:5'-TGGGGTTCTGGATTTGTCATGGTTT-3'(988-1012番目の領域の相補配列)
 配列番号49:5'-GGGGTTCTGGATTTGTCATGGTT-3'(989-1011番目の領域の相補配列)
 配列番号50:5'-CCTTGGGGTTCTGGATTTGTCATG-3'(992-1015番目の領域の相補配列)
 配列番号51:5'-TGGATTTGTCATGGTTTCCAGGA-3'(982-1004番目の領域の相補配列)
 配列番号52:5'-GGGGTTCTGGATTTGTCATGGTTT-3'(988-1011番目の領域の相補配列)
 配列番号53:5'-TTGGGGTTCTGGATTTGTCATGGTT-3'(989-1013番目の領域の相補配列)
 配列番号54:5'-AGGGGAGCCTTGGGGTTCTG-3'(1003-1022番目の領域の相補配列)
 配列番号55:5'-TGAAGTTTTCATCTCCTGTCAGCTT-3'(752-776番目の領域の相補配列)
(ループプライマーR)
 配列番号56:5'-AAAGCTGCCAATTTCAGCTTTAG-3'(1082-1104番目の領域と同じ配列)
 配列番号57:5'-AGCTGCCAATTTCAGCTTTAGA-3'(1084-1105番目の領域と同じ配列)
 配列番号58:5'-GCTGCCAATTTCAGCTTTAGAAA-3'(1085-1107番目の領域と同じ配列)
 配列番号59:5'-AAGCTGCCAATTTCAGCTTTAGA-3'(1083-1105番目の領域と同じ配列)
 配列番号60:5'-ATCTGGTTCCATGGATAAAGCTGCC-3'(1066-1090番目の領域と同じ配列)
 配列番号61:5'-AATCTGGTTCCATGGATAAAGCTGC-3'(1065-1089番目の領域と同じ配列)
 配列番号62:5'-CTGGTTCCATGGATAAAGCTGCCAA-3'(1068-1092番目の領域と同じ配列)
 配列番号63:5'-TGGTTCCATGGATAAAGCTGCCAA-3'(1069-1092番目の領域と同じ配列)
 配列番号64:5'-GGTTCCATGGATAAAGCTGCCAAT-3'(1070-1093番目の領域と同じ配列)
 配列番号65:5'-TCCATGGATAAAGCTGCCAATTTCA-3'(1073-1097番目の領域と同じ配列)
 配列番号66:5'-CTGGTTCCATGGATAAAGCTGCCA-3'(1068-1091番目の領域と同じ配列)
 配列番号67:5'-TCTGGTTCCATGGATAAAGCTGCC-3'(1067-1090番目の領域と同じ配列)
 配列番号68:5'-TGAATCTGGTTCCATGGATAAAGCT-3'(1063-1087番目の領域と同じ配列)
 配列番号69:5'-TGGTTCCATGGATAAAGCTGCCA-3'(1069-1091番目の領域と同じ配列)
 配列番号70:5'-CATGGATAAAGCTGCCAATTTCAGC-3'(1075-1099番目の領域と同じ配列)
 配列番号71:5'-GGTTCCATGGATAAAGCTGCCAATT-3'(1070-1094番目の領域と同じ配列)
 配列番号72:5'-CCATGGATAAAGCTGCCAATTTCAG -3'(1074-1098番目の領域と同じ配列)
 配列番号73:5'-TCTGGTTCCATGGATAAAGCTGC-3'(1067-1089番目の領域と同じ配列)
 配列番号74:5'-TGGTTCCATGGATAAAGCTGCCAAT-3'(1069-1093番目の領域と同じ配列)
 配列番号75:5'-CCTAACTTACTCAGCCCAGCATCAT-3'(860-884番目の領域と同じ配列)
 上記のプライマーのうち、配列番号19に示されるヌクレオチド配列からなるプライマーは、エキソンジャンクション1を含む領域にハイブリダイズ可能である。
 配列番号14~18のプライマーは、エキソンジャンクション2を含む領域にハイブリダイズ可能である。
 上記のプライマーは、増幅領域に応じてF3プライマー、FIP、RIP及びR3プライマーを適宜組み合わせて4種類のプライマーを含むプライマーセットとして用いることができる。また、さらにループプライマーF及びRを組み合わせて6種類のプライマーを含むプライマーセットとして用いることができる。このようなプライマーセットの具体例を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 逆転写酵素及び鎖置換型DNAポリメラーゼは、公知のものを用いることができる。また、これら二種類の酵素(逆転写酵素及び鎖置換型DNAポリメラーゼ)の代わりに、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた一種類の酵素を用いてもよい。
 さらに、酵素反応に好適な条件を与える緩衝剤をも用いることが好ましい。
 上述の物質はそれぞれ別々の容器に収容することができるが、逆転写酵素及び鎖置換型DNAポリメラーゼを同一の容器に収容してもよい。また、dNTPs、緩衝剤、及び各種プライマーのうち少なくとも二種類の物質を同一の容器に収容してもよい。これらの試薬をユーザに提供する際は、上記の試薬の一部又は全部を含む試薬キットとして提供してもよい。
〔TYR mRNAの検出方法及びTYR mRNA検出用試薬キット〕
 つぎに、TYR mRNAの検出方法を説明する。本発明のTYR mRNAの検出方法は、
  上述のプライマーセットと、RNA依存性DNAポリメラーゼ及びDNA依存性DNAポリメラーゼとを用いること(下記「実施形態1の検出方法」)、または
  上述のプライマーセットと、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素とを用いること(下記「実施形態2の検出方法」)
により実施することができる
 前記実施形態1の検出方法は、
(I-1) 試料と、上述のプライマーセットと、RNA依存性DNAポリメラーゼとを反応させて、前記試料中のチロシナーゼmRNAからcDNAを合成する工程、
(II-1) 前記プライマーセットと、DNA依存性DNAポリメラーゼと、前記工程(I-1)で合成されたcDNAとを反応させてcDNAを増幅する工程、
(III-1) 前記工程(II-1)で増幅されたcDNAを検出することにより、前記試料中のチロシナーゼmRNAを検出する工程、
を含む方法である。
 また、前記実施形態2の検出方法は、
(I-2) 試料と、上述のプライマーセットと、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素とを反応させて、前記試料中のチロシナーゼmRNAを鋳型としてcDNAを合成するとともに、このcDNAを鋳型として当該cDNAをさらに合成して増幅する工程、及び
(II-2) 前記工程で増幅されたcDNAを検出することにより、前記試料中のチロシナーゼmRNAを検出する工程
を含む方法である。
 実施形態1及び2の検出方法は、高い効率で、正確にかつ短時間でTYR mRNAを検出する観点から、RT-LAMP法を用いて行なうことが好ましい。
 前記実施形態1の検出方法において、RT-LAMP法を用いる場合、上述のプライマーセットと、RNA依存性DNAポリメラーゼ(以下、「逆転写酵素」という)と、鎖置換活性を有するDNA依存性DNAポリメラーゼ(以下、「鎖置換型DNAポリメラーゼ」という)と、dNTPs(dATP、dGTP、dTTP及びdCTPを含む)と、試料とを混合して、反応させることにより試料中のTYR mRNAを検出することができる。したがって、この場合、前記工程(I-1)及び(II-1)は、1ステップで行なわれる。
 一方、前記実施形態2の検出方法において、RT-LAMP法を用いる場合、上述のプライマーセットと、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素と、dNTPsと、試料とを混合して、反応させることにより試料中のTYR mRNAを検出することができる。
 逆転写酵素及び鎖置換型DNAポリメラーゼは、公知のものを用いることができる。
 さらに、実施形態1の検出方法の工程(I-1)及び(II-1)及び実施形態2の検出方法の工程(I-2)では、各工程における酵素反応に好適な条件を与える緩衝剤をも用いることが好ましい。
 TYR mRNA検出に供される試料としては、生体から採取した組織(リンパ節、リンパ液、血液等)や便等が例示される。
 実施形態1の検出方法において、RT-LAMP法を用いる場合、TYR mRNAの検出は、増幅工程〔前記工程(I-1)及び(II-1)〕及び検出工程〔前記工程(III-1)〕を経て行なわれる。
 まず、生体から採取したTYR mRNAを含む試料と、上述のプライマーセット、逆転写酵素、dNTPs及び鎖置換型DNAポリメラーゼとを混合する。そして、得られた混合物を一定の温度(例えば、65℃)まで加温してRT反応及びLAMP反応を行ない、TYR mRNAを鋳型としてTYR cDNAを合成するとともに、このTYR cDNAを鋳型として当該TYR cDNAをさらに合成して増幅する〔前記工程(I-1)及び(II-1)〕。
 RT反応及びLAMP反応の機序は、以下の通りである。
 まず、反応液中のTYR mRNAの領域R2cにRIPの第二配列がハイブリダイズする。その後、逆転写酵素によってRIPの3’末端からTYR mRNAを鋳型としてTYR cDNAが合成される。これにより、RIPから伸長したTYR cDNA(RIP伸長鎖)とTYR mRNAとからなる二本鎖核酸が合成される。
 次に、TYR mRNAの領域R3cにR3プライマーがハイブリダイズする。その後、鎖置換型DNAポリメラーゼによって、TYR mRNAを鋳型として、R3プライマーの3’末端から、既にTYR mRNAと結合しているRIP伸長鎖が剥がされながら(置換されながら)、TYR cDNAが合成される。
 前記RIP伸長鎖は、一本鎖の状態になっており、TYR mRNAと相補的な配列を有するため、RIP伸長鎖にはTYR mRNAの領域F2に相補的な領域F2cが含まれている。このRIP伸長鎖の領域F2cにFIPの第四配列がハイブリダイズする。
 その後、FIPの3’末端から鎖置換型DNAポリメラーゼによってRIP伸長鎖を鋳型としてDNA合成が行なわれる。ここで合成されたDNAは、5’末端に第三配列(領域F1にハイブリダイズするポリヌクレオチドの配列)を持っているため、第三配列からなるポリヌクレオチドは、このDNA上の領域F1にハイブリダイズしてステムループ構造を形成する。また、このDNAは、3’末端に第一配列の相補配列(領域R1cにハイブリダイズする配列)を持っているため、第一配列の相補配列は、このDNA上の領域R1cにハイブリダイズしてステムループ構造を形成する。したがって、このDNAは5’末端と3’末端の両方でステムループ構造を形成したダンベル構造となる。
 前記ダンベル構造のDNA(ダンベルDNA)は、3’末端から当該ダンベルDNA中の他の部分を鋳型として5’末端側のステムループ構造が解かれながら鎖置換型DNAポリメラーゼにより伸長され、伸長鎖が得られる。この伸長鎖は、5’末端、3’末端及びこれらの中央にそれぞれ互いに相補的な配列を有するため、伸長鎖内では、3つのステムループ構造が形成される。さらに、前記伸長鎖は、3’末端から当該伸長鎖中の他の部分を鋳型としてステムループ構造を解きながら鎖置換型DNAポリメラーゼにより伸長される。この反応が実質的に等温下で繰り返されることにより、分子内に特定の配列を複数有する核酸が合成される(反応の詳細は米国特許第6410278号公報及び米国特許第6974670号公報参照)。
 このようにして得られた増幅産物中の核酸の大部分は、dsDNA(二本鎖DNA)であるため、検出工程〔前記工程(III-1)〕では、この増幅産物を蛍光インターカレーター、例えば、エチジウムブロマイド、SYBR(登録商標) GREEN I、Pico Green(登録商標)等で蛍光染色し、紫外線を照射することによって蛍光を生じさせることにより、当該増幅産物を検出することができる。
 蛍光染色は、増幅反応後〔前記工程(II-1)後〕の反応液に蛍光色素を添加することによって行なってもよく、あらかじめ反応液に蛍光色素を添加し、蛍光色素の存在下で核酸増幅を実施することにより行なってもよい。検出工程〔前記工程(III-1)〕では、蛍光が検出されるか否かにより、試料中にTYR mRNAが存在しているか否かを判定することができる。また、増幅反応後〔前記工程(II-1)後〕の反応液の蛍光強度を測定することによって増幅産物の定量を行なうことができ、この定量結果に基づいて試料に含まれるTYR mRNAを定量することも可能である。特に、蛍光色素の存在下で核酸増幅を行なう場合は、反応液の蛍光強度の増大をリアルタイムに測定し、一定の蛍光強度に達するまでの時間を測定することによって、試料中のTYR mRNAの量に換算することもできる(リアルタイムRT-PCR法、リアルタイムRT-LAMP法等)。
 また、前記工程(II-1)におけるLAMP反応では、副産物として水に不溶なピロリン酸マグネシウムが生成する。前記ピロリン酸マグネシウムは核酸増幅が進むにつれて増加し、この増加に伴って反応液が白濁する。そのため、i)反応液の濁りを目視により確認すること、ii)反応液の吸光度や散乱光強度を測定して濁度を測定すること、又はiii)反応液を有色のフィルターで濾過し、フィルター上の残渣を確認することにより、標的核酸を検出することができる(国際公開第01/83817号を参照)。反応液の吸光度や散乱光強度を測定して濁度を測定する場合、前記蛍光色素を用いた場合と同様に、濁度変化をリアルタイムでモニターすることによって閉鎖系でDNAの増幅と濁度の増加が追跡可能である。したがって、検出工程〔前記工程(III-1)〕では、反応液が白濁するか否かで、試料中にTYR mRNAが存在しているか否かを判定することができる。また、増幅産物の濁度を測定することによって増幅産物の定量を行なうことができ、定量結果に基づいて試料に含まれるTYR mRNAを定量することも可能である。濁度の増大をリアルタイムに測定する場合は、一定の濁度に達するまでの時間(以下、増幅立ち上がり時間とする)を測定し、この時間を試料中のTYR mRNAの量に換算することも可能である。
 一方、実施形態2の検出方法においては、工程(I-2)は、前記実施形態1の検出方法における増幅工程〔前記工程(I-1)及び(II-1)〕に対応する増幅工程である。かかる工程(I-2)では、前記工程(I-1)及び(II-1)における二種類の酵素(逆転写酵素および鎖置換型DNAポリメラーゼ)の代わりに、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた一種類の酵素が用いられることを除き、前記工程(I-1)及び(II-1)と同様に行なうことができる。
 また、実施形態2の検出方法では、工程(II-2)は、前記実施形態1の検出方法における検出工程〔前記工程(III-1)〕と同様に行なうことができる。
 本発明においては、前記工程(I-1)、工程(II-1)及び工程(I-2)で用いられる試薬をmRNA検出用試薬キットとして提供することができる。かかるmRNA検出用試薬キットは、上述したプライマーセットと、dNTPsと、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素、又はRNA依存性DNAポリメラーゼ及びDNA依存性DNAポリメラーゼとを含むものである。
 上述の各試薬はそれぞれ別々の容器に収容されていてもよい。また、逆転写酵素及び鎖置換型DNAポリメラーゼは、同一の容器に収容されていてもよい。また、dNTPs、緩衝剤、及び各種プライマーのうち少なくとも二種類の試薬が、同一の容器に収容されていてもよい。
 以下、本発明を実施例により詳細に説明するが、本発明は、かかる実施例により限定されるものではない。
(実施例1)
 表1に示されるプライマーセット1~45を用いてTYR mRNAを検出できるか否かを以下の通り検証した。
(1)試料調製
 5×1010コピー/μLのTYR mRNAをRNaseフリーの超純水にて段階希釈し、2.5×10コピー/μLのTYR mRNA試料を調製した。
(2)反応液の調製
 表1に示されるF3プライマー、FIP、RIP及びR3プライマーを、下記組成となるように、緩衝液〔10mM トリスHCl(pH8.0)〕に添加し、プライマーミックスを調製した。
   16μM FIP
   16μM RIP
    1μM F3プライマー
    1μM R3プライマー
   12μM ループプライマーF
   12μM ループプライマーR
   10mM トリスHCl(pH8.0)
 また、下記組成となるように、各試薬を混合し、RT-LAMP反応用緩衝液を調製した。
     53mM トリスHCl(pH8.8)
     1.8× Thermopol buffer
            (New England Biolabs製)
   1.43mM dNTPs(Invitrogen製)
   5.36mM MgSO〔ナカライテスク(株)製〕
   8.93mM DTT 〔和光純薬(株)製〕
     2体積% Tergitol(Sigma製)
 次に、下記組成となるように、各試薬を混合し、酵素液(3.04μL)を調製した。
   10U/μL AMV逆転写酵素(Promega製)    0.14μL
    8U/μL BstDNAポリメラーゼ
          (New England Biolabs製)      2.27μL
   40U/μL RNase inhibitor
          (Promega製)            0.63μL
 下記組成となるように、各試薬を混合し、25μLの反応液を調製した。なお、反応液は、45種類のプライマーセットそれぞれについて調製された。
   RT-LAMP反応用緩衝液      14.0μL
   酵素液                 3.0μL
   プライマーミックス           5.0μL
   10mM トリスHCl(pH8.0)  1.0μL
   RNA試料               2.0μL
 45種類の反応液のそれぞれに対応するネガティブコントロール(NC)として2.0μLのRNA試料の代わりに超純水2.0μLを添加したNC用反応液(45種類)も調製した。
(3)検出及び検出結果
 45種類のプライマーセットのいずれかを含む反応液を収容したチューブを、あらかじめ65℃に加温しておいたリアルタイム濁度測定装置〔テラメックス社製、商品名:LA-200〕にセットした。その後、65℃で前記チューブ内の反応液をインキュベーションし、LAMP反応を行なった。反応開始から反応液の濁度が0.1に達するまでの時間を測定した。ネガティブコントロールの測定は、1回行なった。また、RNA試料を含む反応液の測定は、3回行なった(n=3)。ネガティブコントロールの場合の測定結果及びRNA試料を含む反応液の場合の測定結果の平均値を、表2に示す。表中、「NC」は、ネガティブコントロールの場合の測定結果を示す。また、表中、「-(ハイフン)」は60分以内に濁度が0.1に達しなかったことを示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示される結果から、ネガティブコントロールの場合、60分以内に、非特異的な核酸増幅が起こらず、TYR mRNAの存在を検出することができないことがわかる。しかしながら、RNA試料を含む反応液の場合、60分以内に反応液の濁度が0.1に達したため、本発明の一実施形態に係るプライマーセット1~45のいずれを用いた場合であっても、TYR mRNAを迅速に検出できることがわかった。

Claims (21)

  1.  試料中のチロシナーゼのmRNAを検出するためのチロシナーゼmRNA検出用プライマーであって、
     5’末端側に第一配列、3’末端側に第二配列を含んでなり、
     前記第一配列が、
    (a1) 10~30ヌクレオチドの長さを有し、
    (b1) 配列番号1の一部の領域である第一領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、
     前記第二配列が、
    (c1) 10~30ヌクレオチドの長さを有し、
    (d1) 配列番号1において第一領域よりも3’末端側に位置する第二領域にハイブリダイズ可能なポリヌクレオチドの配列であり、
     前記第二領域が、
    (i) 配列番号1の901及び902番目のヌクレオチド;又は
    (ii) 配列番号1の1118及び1119番目のヌクレオチド;
    を含む領域である、プライマー。
  2.  (A1)配列番号14~19の何れかに記載のヌクレオチド配列からなるポリヌクレオチド;又は
    (B1)前記(A1)のポリヌクレオチドにおいて一個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなる、請求項1記載のプライマー。
  3.  配列番号1の886~908番目の領域;
     配列番号1の1110~1133番目の領域;
     配列番号1の1114~1131番目の領域;及び
     配列番号1の1114~1133番目の領域
    のいずれかにハイブリダイズする、請求項1記載のプライマー。
  4.  前記第二配列が、3’末端に、前記第二領域の配列に完全に相補的な連続した3ヌクレオチドからなる配列を含んでいる、請求項1記載のプライマー。
  5.  試料中のチロシナーゼのmRNAを検出するためのチロシナーゼmRNA検出用プライマーセットであって、
     第一プライマー、第二プライマー、及び第三プライマーを含み、
     前記第一プライマーが、請求項1記載のプライマーであり、
     前記第二プライマーが、5’末端側に第三配列、3’末端側に第四配列を含み、
     前記第三配列が、
    (a2) 10~30ヌクレオチドの長さを有し、
    (b2) 前記配列番号1の第一領域よりも5’末端側に位置する第三領域にハイブリダイズ可能なポリヌクレオチドの配列であり、
     前記第四配列が、
    (c2) 10~30ヌクレオチドの長さを有し、
    (d2) 前記配列番号1の第三領域よりも5’末端側に位置する第四領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列であり、
     前記第三プライマーが、前記配列番号1の第四領域よりも5’末端側に位置する第五領域の相補鎖にハイブリダイズ可能なポリヌクレオチドの配列からなるプライマーである、チロシナーゼmRNA検出用プライマーセット。
  6.  前記第二プライマーが、
    (A2) 配列番号7~13の何れかに記載のヌクレオチド配列からなるポリヌクレオチド;又は
    (B2) 前記(A2)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなり、
     前記第三プライマーが、
    (A3) 配列番号2~6のいずれかに記載のヌクレオチド配列からなるポリヌクレオチド;又は
    (B3) 前記(A3)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなる、請求項5記載のプライマーセット。
  7.  前記第二プライマーが、
     配列番号1の731~751番目の領域;
     配列番号1の963~977番目の領域;
     配列番号1の964~986番目の領域;
     配列番号1の971~992番目の領域;
     配列番号1の972~992番目の領域;及び
     配列番号1の986~1008番目の領域;
    のいずれかの領域の相補領域にハイブリダイズする請求項5記載のプライマーセット。
  8.  前記第三プライマーが、
     配列番号1の703~722番目の領域;
     配列番号1の931~953番目の領域;
     配列番号1の945~962番目の領域;
     配列番号1の950~962番目の領域;及び
     配列番号1の966~985番目の領域;
    のいずれかの領域の相補領域にハイブリダイズする請求項5記載のプライマーセット。
  9.  前記配列番号1の第二領域よりも3’末端側に位置する第六領域にハイブリダイズ可能である第四プライマーをさらに含む、請求項5記載のプライマーセット。
  10.  前記第四プライマーが、
    (A4) 配列番号20~25のいずれかに記載のヌクレオチド配列からなるポリヌクレオチド;又は
    (B4) 前記(A4)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなる、請求項9記載のプライマーセット。
  11.  前記第四プライマーが、
     配列番号1の917~936番目の領域;
     配列番号1の1135~1153番目の領域;
     配列番号1の1138~1155番目の領域;
     配列番号1の1138~1156番目の領域;
     配列番号1の1141~1160番目の領域;及び
     配列番号1の1142~1161番目の領域;
    のいずれかにハイブリダイズする、請求項9記載のプライマーセット。
  12.  前記配列番号1の前記第三領域と前記第四領域との間に位置する第七領域にハイブリダイズする第五プライマーをさらに含む請求項5記載のプライマーセット。
  13.  前記第五プライマーが、
    (A5) 配列番号26~55のいずれかに記載のポリヌクレオチド;又は
    (B5) 前記(A5)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド。
    からなる、請求項12記載のプライマーセット。
  14.  前記第五プライマーが、
     配列番号1の752~776番目の領域;
     配列番号1の981~1004番目の領域;
     配列番号1の982~1004番目の領域;
     配列番号1の982~1006番目の領域;
     配列番号1の986~1010番目の領域;
     配列番号1の987~1011番目の領域;
     配列番号1の988~1011番目の領域;
     配列番号1の988~1012番目の領域;
     配列番号1の989~1011番目の領域;
     配列番号1の989~1012番目の領域;
     配列番号1の989~1013番目の領域;
     配列番号1の990~1012番目の領域;
     配列番号1の990~1013番目の領域;
     配列番号1の990~1014番目の領域;
     配列番号1の992~1015番目の領域;
     配列番号1の993~1016番目の領域;
     配列番号1の994~1016番目の領域;
     配列番号1の995~1016番目の領域;
     配列番号1の995~1018番目の領域;
     配列番号1の996~1018番目の領域;
     配列番号1の1000~1019番目の領域;
     配列番号1の1001~1020番目の領域;
     配列番号1の1003~1022番目の領域;
     配列番号1の1004~1022番目の領域;
     配列番号1の1005~1024番目の領域;
     配列番号1の1006~1024番目の領域;
     配列番号1の1008~1027番目の領域;
     配列番号1の1009~1027番目の領域;
     配列番号1の1009~1028番目の領域;及び
     配列番号1の1010~1029番目の領域
    のいずれかにハイブリダイズする、請求項12記載のプライマーセット。
  15.  前記配列番号1の前記第一領域と第二領域との間に位置する第八領域の相補領域にハイブリダイズする第六プライマーをさらに含む、請求項5記載のプライマーセット。
  16.  前記第六プライマーが、
    (A6)配列番号56~75のいずれかに記載のポリヌクレオチド;又は
    (B6)前記(A6)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなる、請求項15記載のプライマーセット。
  17.  前記第六プライマーが、
     配列番号1の860~884番目の領域;
     配列番号1の1063~1087番目の領域;
     配列番号1の1065~1089番目の領域;
     配列番号1の1066~1090番目の領域;
     配列番号1の1067~1089番目の領域;
     配列番号1の1067~1090番目の領域;
     配列番号1の1068~1091番目の領域;
     配列番号1の1068~1092番目の領域;
     配列番号1の1069~1091番目の領域;
     配列番号1の1069~1092番目の領域;
     配列番号1の1069~1093番目の領域;
     配列番号1の1070~1093番目の領域;
     配列番号1の1070~1094番目の領域;
     配列番号1の1073~1097番目の領域;
     配列番号1の1074~1098番目の領域;
     配列番号1の1075~1099番目の領域;
     配列番号1の1082~1104番目の領域;
     配列番号1の1083~1105番目の領域;
     配列番号1の1084~1105番目の領域;及び
     配列番号1の1085~1107番目の領域
    のいずれかの領域の相補領域にハイブリダイズする、請求項15記載のプライマーセット。
  18.  請求項5記載のプライマーセットと、
     dNTPsと、
     RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素、又はRNA依存性DNAポリメラーゼ及びDNA依存性DNAポリメラーゼと
    を含んでなるチロシナーゼmRNA検出用試薬キット。
  19.  前記第二プライマーが、
    (A2) 配列番号7~13の何れかに記載のヌクレオチド配列からなるポリヌクレオチド;又は
    (B2) 前記(A2)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなり、
     前記第三プライマーが、
    (A3)配列番号2~6のいずれかに記載のヌクレオチド配列からなるポリヌクレオチド;又は
    (B3)前記(A3)のポリヌクレオチドにおいて1個又は複数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を有し、核酸増幅反応においてプライマー機能を有するポリヌクレオチド
    からなる、請求項18記載のチロシナーゼmRNA検出用試薬キット。
  20.  試料と、請求項5記載のプライマーセットと、RNA依存性DNAポリメラーゼとを反応させて、前記試料中のチロシナーゼmRNAからcDNAを合成する工程、
     前記プライマーセットと、DNA依存性DNAポリメラーゼと、前記工程で合成されたcDNAとを反応させて、前記cDNAを増幅する工程、及び
     前記工程で増幅されたcDNAを検出することにより、前記試料中のチロシナーゼmRNAを検出する工程
    を含む、チロシナーゼmRNAの検出方法。
  21.  試料と、請求項5記載のプライマーセットと、RNAを鋳型としてDNAを合成する作用と鎖置換を行ないながらDNAを鋳型にDNAを合成する作用とを備えた酵素とを反応させて、前記試料中のチロシナーゼmRNAを鋳型としてcDNAを合成するとともに、このcDNAを鋳型として当該cDNAをさらに合成して増幅する工程、及び
     前記工程で増幅されたcDNAを検出することにより、前記試料中のチロシナーゼmRNAを検出する工程
    を含む、チロシナーゼmRNAの検出方法。
PCT/JP2009/059876 2008-05-29 2009-05-29 チロシナーゼのmRNAを検出するためのプライマー WO2009145303A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801196416A CN102046789A (zh) 2008-05-29 2009-05-29 检测酪氨酸酶mRNA用引物
EP09754811A EP2298885A4 (en) 2008-05-29 2009-05-29 PRIMER FOR DETECTION OF TYROSINASE mRNA
JP2010514555A JPWO2009145303A1 (ja) 2008-05-29 2009-05-29 チロシナーゼのmRNAを検出するためのプライマー
US12/994,710 US20110076689A1 (en) 2008-05-29 2009-05-29 PRIMER FOR DETECTING TYROSINASE mRNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008141665 2008-05-29
JP2008-141665 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009145303A1 true WO2009145303A1 (ja) 2009-12-03

Family

ID=41377172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059876 WO2009145303A1 (ja) 2008-05-29 2009-05-29 チロシナーゼのmRNAを検出するためのプライマー

Country Status (5)

Country Link
US (1) US20110076689A1 (ja)
EP (1) EP2298885A4 (ja)
JP (1) JPWO2009145303A1 (ja)
CN (1) CN102046789A (ja)
WO (1) WO2009145303A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059166A1 (en) * 2014-10-15 2016-04-21 Fundació Hospital Universitari Vall D'hebron - Institut De Recerca Humanized neuromelanin-containing rodent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
JPH08140699A (ja) * 1994-11-22 1996-06-04 Pola Chem Ind Inc チロシナーゼmRNA量の測定法
US6153388A (en) * 1994-10-27 2000-11-28 University Of South Florida Method of determining melanoma micrometastasis using tyrosinase
JP2002512202A (ja) * 1998-04-23 2002-04-23 アーチ・デヴェロップメント・コーポレイション メラノーマの免疫治療用のワクチンアジュバント
US6410278B1 (en) 1998-11-09 2002-06-25 Eiken Kagaku Kabushiki Kaisha Process for synthesizing nucleic acid
JP2004154088A (ja) * 2002-11-08 2004-06-03 Sysmex Corp Cea検出のための核酸増幅用プライマーおよび該プライマーを用いた検査方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080399A (en) * 1998-04-23 2000-06-27 Arch Development Corporation Vaccine adjuvants for immunotherapy of melanoma

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US6153388A (en) * 1994-10-27 2000-11-28 University Of South Florida Method of determining melanoma micrometastasis using tyrosinase
JPH08140699A (ja) * 1994-11-22 1996-06-04 Pola Chem Ind Inc チロシナーゼmRNA量の測定法
JP2002512202A (ja) * 1998-04-23 2002-04-23 アーチ・デヴェロップメント・コーポレイション メラノーマの免疫治療用のワクチンアジュバント
US6410278B1 (en) 1998-11-09 2002-06-25 Eiken Kagaku Kabushiki Kaisha Process for synthesizing nucleic acid
US6974670B2 (en) 1998-11-09 2005-12-13 Eiken Kagaku Kabushiki Kaisha Method of synthesizing nucleic acid
JP2004154088A (ja) * 2002-11-08 2004-06-03 Sysmex Corp Cea検出のための核酸増幅用プライマーおよび該プライマーを用いた検査方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ABRAHAMSEN ET AL., QUANTIFICATION OF MELANOMA MRNA MARKERS IN SENTINEL NODES: PRE-CLINICAL EVALUATION OF A SINGLE-STEP REAL-TIME REVERSETRANSCRIPTASE-POLYMERASE CHAIN REACTION ASSAY, vol. 6, no. 3, August 2004 (2004-08-01), pages 253 - 259
NOTOMI T. ET AL.: "Shinki Idenshi Zofukuho (LAMP-ho) no Genri to Oyo", BIO INDUSTRY, vol. 18, 12 February 2001 (2001-02-12), pages 15 - 23, XP008140873 *
SAMBROOK, J. ET AL.: "Molecular Cloning: A Laboratory Manual (2nd ed.)", 1998, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2298885A4
TAKANO H. ET AL.: "Atarashii Idenshi Zofukuho: LAMP-ho", BIO VENTURE, vol. 1, 1 July 2001 (2001-07-01), pages 109 - 115, XP008142968 *

Also Published As

Publication number Publication date
US20110076689A1 (en) 2011-03-31
JPWO2009145303A1 (ja) 2011-10-20
EP2298885A4 (en) 2012-12-19
CN102046789A (zh) 2011-05-04
EP2298885A1 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
CN110191961B (zh) 制备经不对称标签化的测序文库的方法
CA2750547C (en) Methods for enrichment of selected rna molecules
US9284602B2 (en) Compositions of toehold primer duplexes and methods of use
EP2379753B1 (en) Single-cell nucleic acid analysis
CN101528763B (zh) 分离和检测小多核苷酸的方法和物质
JP5680078B2 (ja) ライゲーションに基づく核酸の正規化した定量化方法
JP2009284896A (ja) 核酸増幅方法
EP1876246A1 (en) Self-complementary primers used in LAMP gene amplification method
KR101906037B1 (ko) 표고버섯 품종 천장 3호 감별용 caps 마커 및 이의 용도
JP2021514651A (ja) 単一分子配列決定のための一本鎖環状dna鋳型の作成
JP7134186B2 (ja) Rnaおよびdnaからの核酸ライブラリーの作製
WO2009119331A1 (ja) サイトケラチン7のmRNAの検出用プライマを含む試薬
US20200370108A1 (en) Methods and compositions for selecting and amplifying dna targets in a single reaction mixture
WO2009145303A1 (ja) チロシナーゼのmRNAを検出するためのプライマー
JP2008072950A (ja) 変換処理の確認方法及びこれに用いられる核酸分子
CN114134208A (zh) 荧光定量pcr试剂盒、反应系统及核酸定量检测方法
JP7306722B2 (ja) プライマー及びその使用
JP4942160B2 (ja) RecAタンパク質を利用した核酸の等温増幅法
JP7226926B2 (ja) cDNAの合成方法、標的RNAの検出方法及び試薬キット
CN117070669A (zh) 新型冠状病毒全基因组捕获试剂盒
JP2007306817A (ja) Rsウイルスを検出するためのポリヌクレオチド及びこれを用いた検出方法
JP2020516274A (ja) ライブラリーの定量および定性
JP2005151877A (ja) Dnaの増幅方法及びdnaの検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119641.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514555

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12994710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009754811

Country of ref document: EP