WO2009145281A1 - ナノカーボン材料製造装置及び方法 - Google Patents

ナノカーボン材料製造装置及び方法 Download PDF

Info

Publication number
WO2009145281A1
WO2009145281A1 PCT/JP2009/059820 JP2009059820W WO2009145281A1 WO 2009145281 A1 WO2009145281 A1 WO 2009145281A1 JP 2009059820 W JP2009059820 W JP 2009059820W WO 2009145281 A1 WO2009145281 A1 WO 2009145281A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon material
catalyst
nanocarbon
treatment
oxygen
Prior art date
Application number
PCT/JP2009/059820
Other languages
English (en)
French (fr)
Inventor
潔 龍原
友章 杉山
敦 田中
稔彦 瀬戸口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2010514542A priority Critical patent/JP5291707B2/ja
Priority to US12/991,197 priority patent/US8771629B2/en
Priority to KR1020107026600A priority patent/KR101231385B1/ko
Priority to CN2009801200002A priority patent/CN102046527A/zh
Priority to EP09754789.7A priority patent/EP2279982B1/en
Publication of WO2009145281A1 publication Critical patent/WO2009145281A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00592Controlling the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00681Agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants

Definitions

  • the present invention relates to a nanocarbon material manufacturing apparatus and a nanocarbon manufacturing method in which the yield of an effective nanocarbon material is improved.
  • the carbon nanotube is a tubular carbon polyhedron having a structure in which a graphite (graphite) sheet is closed in a cylindrical shape.
  • the carbon nanotube includes a multi-layer nanotube having a multilayer structure in which a graphite sheet is closed in a cylindrical shape, and a single-wall nanotube having a single-layer structure in which a graphite sheet is closed in a cylindrical shape.
  • Non-Patent Document 1 One multi-walled nanotube was discovered by Iijima in 1991. That is, it was discovered that multi-walled nanotubes exist in the carbon mass deposited on the cathode of the arc discharge method (Non-Patent Document 1). Since then, research on multi-walled nanotubes has been actively conducted, and in recent years, it has become possible to synthesize a large number of multi-walled nanotubes.
  • single-walled nanotubes have an inner diameter of approximately 0.4 to 10 nanometers (nm), and their synthesis was simultaneously reported in 1993 by a group of Iijima and IBM.
  • the electronic state of single-walled nanotubes has been predicted theoretically, and it is thought that the electronic properties change from metallic properties to semiconducting properties depending on how the spiral is wound. Therefore, such single-walled nanotubes are considered promising as future electronic materials.
  • single-walled nanotubes include conductive composite materials, nanoelectronic materials, field electron emitters, highly directional radiation sources, soft X-ray sources, one-dimensional conducting materials, high thermal conducting materials, hydrogen storage materials, etc. It has been. Further, it is considered that the use of single-walled nanotubes is further expanded by functionalization of the surface, metal coating, and inclusion of foreign substances.
  • the single-walled nanotubes described above are manufactured by mixing a metal such as iron, cobalt, nickel, or lanthanum into a carbon rod of an anode and performing arc discharge (Patent Document 1).
  • a metal such as iron, cobalt, nickel, or lanthanum
  • multi-walled nanotubes, graphite, and amorphous carbon are mixed in the product, and not only the yield is low, but also the diameter and length of single-walled nanotubes vary. It was difficult to produce single-walled nanotubes with relatively uniform diameter and length in high yield.
  • Patent Documents 2 to 4 In addition to the arc method described above, a gas-phase pyrolysis method, a laser sublimation method, a condensed phase electrolysis method, and the like have been proposed as methods for producing carbon nanotubes (Patent Documents 2 to 4).
  • any of the production methods disclosed in these documents is a laboratory or small-scale production method, and there is a problem that the yield of carbon materials is particularly low.
  • Patent Documents 5 to 8 an apparatus and method for producing carbon nanofibers, which are nano-unit carbon materials that can be continuously mass-produced using a fluidized bed reaction method.
  • the fluidized catalyst that combines the fluidized material and the catalyst uses secondary particles that are granulated from primary particles and coarsened.
  • a bubble-bed fluidized bed reactor is formed to allow sufficient reaction time of the catalyst particles, but the carbon material is generated while being complicatedly entangled inside the secondary particles, which are the primary particles. Therefore, there is a problem that the carbon material is agglomerated with the progress of generation and the dispersibility is lowered.
  • a plurality of the catalysts 103 made of the active component 102 supported on the carrier 101 are granulated.
  • the granulated catalyst 104A as a fluidizing material.
  • the nanocarbon material 105 grows from the active component 102 as shown in FIG.
  • the nanocarbon material grows while being complicatedly entangled in the pores in the support 101 and the gap between the catalysts 103, even after the catalyst 103 is dissolved and removed by acid treatment, the complicated entanglement of the nanocarbon material is present. Since it dries without being unwound, it is presumed to be an aggregate of nanocarbon materials.
  • the nanocarbon dense layer 107 containing the nanocarbon material is generated on the apparent surface of the granulated catalyst 104B formed by the aggregation of the catalyst 103.
  • This nanocarbon dense layer 107 cannot be used as a nanocarbon material, and causes a reduction in the yield of an effective nanocarbon material.
  • the nanocarbon material with catalyst 106 in which the nanocarbon material is grown from the catalyst shows primary particles, and a plurality of primary particles are collected to form a nanocarbon material growth product.
  • a certain granulation catalyst 104B is formed, and at this time, carbon is intertwined to form the nanocarbon dense layer 107 because it is most in contact with the raw material gas and has a remarkable carbon growth on the outer surface. It is eagerly desired to unwind the carbon dense layer 107 and reduce the yield of effective nanocarbon materials and the bulk density of carbon.
  • an object of the present invention is to provide a nanocarbon material manufacturing apparatus and method capable of efficiently manufacturing a large amount of a carbon material with little aggregation.
  • 1st invention supplies the nanocarbon material production part which manufactures a nanocarbon material using the granulation catalyst formed by granulating the support
  • an acid treatment part that dissolves and separates the catalyst with an acid solution, and a repulsive action between oxygen-containing functional groups added to the nanocarbon material provided on either or both of the front side or the rear side of the acid treatment part
  • the nanocarbon material manufacturing apparatus includes an anti-aggregation processing unit (new matter: unpublished in the basic application) that performs an anti-aggregation process for preventing aggregation of nanocarbons.
  • the aggregation preventing treatment part is provided on the rear side of the water washing part for washing the acid-treated nanocarbon material, and the pH of the aqueous solution after the water washing is set to the weak alkali side.
  • Nanocarbon material production characterized in that it is a pH adjusting unit to adjust, and oxygen-containing functional groups dissociated on the alkali side are electrostatically repelled, thereby widening the distance of nanocarbon and preventing aggregation In the device.
  • the aggregation-preventing treatment unit is provided on the front side of the acid treatment unit, and the catalyst-containing nanocarbon material obtained by the nanocarbon production apparatus has an oxygen-containing functional group.
  • This is an oxygen-containing functional group addition processing unit for adding a nanocarbon material, wherein the distance between nanocarbons is increased and aggregation is prevented by repulsion between the added oxygen-containing functional groups.
  • the agglomeration prevention treatment unit is provided on the rear side of the acid treatment unit, and the oxygen-containing functional group adds an oxygen-containing functional group to the nanocarbon material from which the catalyst has been removed. It is a group addition processing unit, and is in a nanocarbon material production apparatus characterized in that the distance between nanocarbons is increased and aggregation is prevented by repulsion between added oxygen-containing functional groups.
  • the fifth invention is the first invention, wherein the anti-aggregation treatment part comprises two types, the first anti-aggregation treatment part is provided on the upstream side of the acid treatment part, and the nanocarbon production
  • This is an oxygenated functional group addition treatment unit that adds oxygenated functional groups to the catalyst-coated nanocarbon material obtained by the equipment. The repulsion between the added oxygenated functional groups increases the distance between nanocarbons and prevents aggregation.
  • the second aggregation preventing treatment part is provided after the water washing part for washing the acid-treated nanocarbon material with water, and is a pH adjusting part for adjusting the pH of the aqueous solution after water washing to the weak alkali side,
  • the oxygen-containing functional groups dissociated in step 1 are electrostatically repelled to further increase the distance between the nanocarbons and prevent aggregation.
  • a sixth aspect of the present invention is the nanocarbon material manufacturing apparatus according to the second aspect, further comprising a quick-drying solvent replacement unit that is provided on the downstream side of the water-washing unit and replaces the quick-drying solvent. is there.
  • the seventh invention is a nanocarbon material manufacturing apparatus according to the third invention, further comprising a quick-drying solvent replacement unit that is provided on the downstream side of the water-washing unit and replaces the quick-drying solvent. is there.
  • the eighth invention is the nanocarbon material manufacturing apparatus according to the fifth invention, further comprising a quick-drying solvent replacement unit that is provided on the downstream side of the water-washing unit and replaces the quick-drying solvent. is there.
  • a ninth invention is the nanocarbon material manufacturing apparatus according to the third invention, wherein a water-soluble dispersion support agent for dispersing and supporting the nanocarbon material is supplied to the acid treatment unit.
  • the tenth invention is the nanocarbon material production apparatus according to the first invention, wherein the production apparatus for producing the catalyst-coated nanocarbon material is a fluidized bed reactor.
  • the eleventh aspect of the present invention is the nanocarbon material production apparatus according to the tenth aspect, further comprising a fluidized catalyst supply device for supplying a fluidized catalyst to be supplied to the fluidized bed reactor. is there.
  • the twelfth invention is the nanocarbon material production apparatus using a fluidized bed reactor according to the eleventh invention, wherein the fluidized catalyst has a particle diameter of 200 ⁇ m to 5 mm.
  • a thirteenth aspect of the invention is that in the first aspect of the invention, the granulation catalyst obtained by granulating the carrier carrying the active ingredient is a catalyst that obtains a granulation catalyst by granulating the carrier carrying the active ingredient. It is obtained from a granule part and a granulation catalyst surface treatment part which treats the surface of the granulation catalyst and reduces or eliminates the proportion of the active component on the surface present in at least the outermost layer of the granulation catalyst. It is in the nanocarbon material manufacturing equipment.
  • the fourteenth invention is the nanocarbon material manufacturing apparatus according to the second invention, wherein the alkali adjusting agent is either ammonia or amines.
  • the fifteenth aspect of the invention is a pre-stage side in which a nanocarbon material is produced using a granulation catalyst obtained by granulating a carrier carrying an active ingredient, and the catalyst-coated nanocarbon material is dispersed in an acid solution and subjected to an acid treatment.
  • a method for producing a nanocarbon material is provided, which performs an aggregation preventing treatment for preventing aggregation of nanocarbons by a repulsive action between oxygen-containing functional groups added to the nanocarbon material. It is in.
  • the aggregation preventing treatment is performed on the downstream side of the water washing treatment for washing the acid-treated nanocarbon material, and the pH of the aqueous solution after water washing is adjusted to the weak alkali side.
  • the present invention is a method for producing a nanocarbon material, which is a pH adjustment treatment, wherein oxygen-containing functional groups dissociated on the alkali side are electrostatically repelled to increase the distance between nanocarbons and prevent aggregation.
  • an oxygen-containing functional group is added to the nanocarbon material with catalyst obtained by the nanocarbon production apparatus, wherein the aggregation prevention treatment is performed on the upstream side of the acid treatment.
  • This is an oxygen-containing functional group addition treatment, and there is a nanocarbon material manufacturing method characterized in that the distance between nanocarbons is increased by repulsion between added oxygen-containing functional groups to prevent aggregation.
  • the agglomeration prevention treatment is performed on the subsequent stage of the acid treatment, and the oxygen-containing functional group addition treatment for adding an oxygen-containing functional group to the nanocarbon material from which the catalyst has been removed.
  • the distance between the nanocarbons is increased by repulsion between the added oxygen-containing functional groups to prevent aggregation.
  • the nineteenth invention is obtained by the nanocarbon manufacturing apparatus according to the fifteenth invention, wherein the aggregation prevention treatment is composed of two types, and the first aggregation prevention treatment is performed on the front side of the acid treatment section.
  • Oxygen-containing functional group addition treatment for adding oxygen-containing functional groups to the catalyst-supported nanocarbon material, and by repulsion between the added oxygen-containing functional groups, the distance of the nanocarbon is widened to prevent aggregation
  • the second anti-aggregation treatment is a pH adjustment treatment for adjusting the pH of the aqueous solution after washing to the weak alkali side, which is carried out on the rear side of the water washing portion for washing the acid-treated nanocarbon material, and includes the dissociation on the alkali side.
  • the method of producing a nanocarbon material is characterized in that the oxygen functional groups repel each other electrostatically to further increase the distance between the nanocarbons and prevent aggregation.
  • the twentieth aspect of the invention is the method for producing a nanocarbon material according to the sixteenth aspect of the invention, characterized in that a quick-drying solvent replacement process for replacing the quick-drying solvent is performed on the rear stage side of the water washing process.
  • the twenty-first invention is the method for producing a nanocarbon material according to the seventeenth invention, wherein a quick-drying solvent substitution treatment for replacing the fast-drying solvent is performed on the downstream side of the water washing treatment.
  • the twenty-second invention is the method for producing a nanocarbon material according to the nineteenth invention, characterized in that a quick-drying solvent substitution treatment for replacing the fast-drying solvent is performed on the downstream side of the water washing treatment.
  • a twenty-third invention is the method for producing a nanocarbon material according to the seventeenth invention, wherein a water-soluble dispersion support that disperses and supports the nanocarbon material is supplied during the acid treatment.
  • the twenty-fourth invention is the method for producing a nanocarbon material according to the fifteenth invention, wherein the nanocarbon material with catalyst is produced in a fluidized bed reactor.
  • the granulation catalyst obtained by granulating the carrier carrying the active ingredient treats the surface of the granulation catalyst and is present in at least the outermost layer of the granulation catalyst.
  • the granulated catalyst surface treatment is performed to reduce or eliminate the ratio of the active component on the surface.
  • the twenty-sixth invention is the method for producing a nanocarbon material according to the sixteenth invention, wherein the alkali adjusting agent is either ammonia or amines.
  • a nanocarbon material manufacturing unit that manufactures a nanocarbon material using a catalyst granule formed by granulating a carrier carrying an active ingredient, and a catalyst-supplied nanocarbon material is supplied to an acid solution. It is formed on the surface of the secondary particles where the catalyst primary particles in which the nanocarbon material is grown are provided, either on the acid treatment unit that dissolves and separates with the solution, on the upstream side of the acid treatment unit or on the acid treatment unit.
  • a nanocarbon material production unit for producing a nanocarbon material using a catalyst granulated body obtained by granulating a carrier carrying an active ingredient, and supplying the catalyst-coated nanocarbon material to an acid solution, An acid treatment unit that dissolves and separates the solution, a water washing unit that rinses the acid-treated nanocarbon material, and a drying unit that dries the washed nanocarbon material.
  • An apparatus for producing a nanocarbon material characterized in that a water-soluble dispersion support for dispersion support is supplied.
  • a nano-carbon material production unit that produces a nano-carbon material using a catalyst granule formed by granulating a carrier carrying an active ingredient, and a secondary particle in which catalyst primary particles grown by the nano-carbon material are assembled.
  • a resin fixing treatment part for fixing the periphery of a catalyst granule having a nanocarbon dense layer in which nanocarbon formed on the surface is aggregated with a resin, and the granule with catalyst fixed with the resin are pulverized together with the resin,
  • An apparatus for producing nanocarbon material comprising: a water washing section for washing the acid-treated nanocarbon material; and a drying section for drying the water-washed nanocarbon material.
  • a granulated catalyst surface treatment unit for zeroing a nanocarbon material production unit for producing a nanocarbon material using the surface-treated granulated catalyst, and supplying the catalyst-coated nanocarbon material to an acid solution
  • An acid treatment part that dissolves and separates with a solution
  • a water washing part that is provided on the downstream side of the acid treatment part and that rinses the acid-treated nanocarbon material
  • a drying part that dries the washed nanocarbon material.
  • a nanocarbon material production department that produces a nanocarbon material from a carbon raw material using a granulation catalyst obtained by granulating a carrier carrying an active ingredient, and a secondary in which primary particles of the catalyst on which the nanocarbon material has grown gathered
  • Combustion removal substance addition section for adding a substance for burning and removing nanocarbon around the catalyst granulation body having a nanocarbon dense layer in which nanocarbon formed on the surface of the particles is aggregated, and surface-treated catalyst granulation
  • a nanocarbon material production comprising a water washing section for washing the acid-treated nanocarbon material and a drying section for drying the water-washed nanocarbon material, provided on the downstream side Location.
  • a nanocarbon material is produced using a granulation catalyst obtained by granulating a carrier carrying an active ingredient, and the catalyst-treated nanocarbon material is dispersed in an acid solution before and after acid treatment.
  • the aggregation of the nanocarbon materials is prevented by performing the aggregation prevention treatment for preventing the aggregation of the nanocarbons by the repulsive action of the oxygen-containing functional groups added to the nanocarbon material.
  • FIG. 1 is a schematic diagram of a nanocarbon material manufacturing apparatus that prevents entanglement of carbon nanofibers by pH adjustment according to Embodiment 1.
  • FIG. 2 is a schematic diagram showing the behavior of nanocarbon by pH adjustment.
  • FIG. 3 is a schematic diagram of another nanocarbon material manufacturing apparatus that prevents entanglement of carbon nanofibers by pH adjustment according to the first embodiment.
  • FIG. 4 is a schematic view of a quick-drying solvent replacement step in the quick-drying solvent replacement part.
  • FIG. 5 is a schematic view of the nanocarbon material manufacturing department.
  • FIG. 6 is a schematic view of a nanocarbon material manufacturing apparatus for adding oxygen-containing functional groups according to the second embodiment.
  • FIG. 7 is a schematic diagram showing the behavior of nanocarbon due to repulsion of oxygen-containing functional groups.
  • FIG. 8 is a schematic diagram of another nanocarbon material manufacturing apparatus for adding oxygen-containing functional groups according to the second embodiment.
  • FIG. 9 is a schematic diagram of another nanocarbon material manufacturing apparatus that performs an addition treatment of an oxygen-containing functional group according to the second embodiment.
  • FIG. 10 is a schematic diagram of another nanocarbon material manufacturing apparatus that performs an addition treatment of an oxygen-containing functional group according to Embodiment 2.
  • FIG. 11 is a schematic diagram of another nanocarbon material manufacturing apparatus that performs an addition treatment of an oxygen-containing functional group according to Embodiment 2.
  • FIG. 12 is a schematic view of a nanocarbon material manufacturing apparatus for adding oxygen-containing functional groups according to Embodiment 3.
  • FIG. 13 is a schematic view of another nanocarbon material manufacturing apparatus for performing an addition treatment of an oxygen-containing functional group according to Embodiment 3.
  • FIG. 14 is a schematic diagram of another nanocarbon material manufacturing apparatus for performing an addition treatment of an oxygen-containing functional group according to Embodiment 3.
  • FIG. 15 is a schematic diagram of another nanocarbon material manufacturing apparatus that performs an addition treatment of an oxygen-containing functional group according to Embodiment 3.
  • FIG. 16 is a schematic view of a nanocarbon material manufacturing apparatus that supplies a water-soluble dispersion support according to Embodiment 4 in acid treatment.
  • FIG. 17 is a schematic view of acid treatment using a water-soluble dispersion support agent.
  • FIG. 18 is a schematic view of another nanocarbon material production apparatus for supplying a water-soluble dispersion support according to Embodiment 4 in acid treatment.
  • FIG. 19 is a schematic diagram of a nanocarbon material manufacturing apparatus that performs crushing treatment before acid treatment according to the fifth embodiment.
  • FIG. 20 is a schematic diagram showing crushing of the catalyst granule of secondary particles.
  • FIG. 21 is a schematic view of another nanocarbon material manufacturing apparatus that performs a crushing process before the acid treatment according to the fifth embodiment.
  • FIG. 22 is a schematic view of another nanocarbon material manufacturing apparatus that performs crushing treatment before acid treatment according to the fifth embodiment.
  • FIG. 23 is a schematic diagram of a nanocarbon material manufacturing apparatus that performs crushing treatment using a resin before acid treatment according to Embodiment 6.
  • FIG. 24 is a schematic diagram showing crushing of the catalyst granule of secondary particles by a resin.
  • FIG. 25 is a schematic diagram showing crushing together with a resin in one unit of a catalyst granule of secondary particles.
  • FIG. 26 is a schematic diagram of another nanocarbon material manufacturing apparatus that performs crushing treatment using a resin before acid treatment according to Embodiment 6.
  • FIG. 27 is a schematic view of a nanocarbon material manufacturing apparatus that pretreats the granulation catalyst according to Embodiment 7.
  • FIG. 28 is a schematic diagram of the pretreatment state of the granulation catalyst.
  • FIG. 29 is a schematic view of a surface treatment apparatus for the outermost layer of secondary particles.
  • FIG. 30 is a schematic diagram of the surface treatment of the outermost layer of secondary particles.
  • FIG. 31 is a schematic view of another surface treatment apparatus for the outermost layer of secondary particles.
  • FIG. 32 is a schematic view of another nanocarbon material manufacturing apparatus that pretreats the granulation catalyst according to Embodiment 7.
  • FIG. 33 is a schematic diagram of another nanocarbon material manufacturing apparatus that pretreats the granulation catalyst according to Embodiment 7.
  • FIG. 34 is a schematic diagram of a nanocarbon material manufacturing apparatus that performs a process of adding a substance for burning and removing nanocarbon according to the eighth embodiment.
  • FIG. 35 is a schematic view of a CNT-disappearing substance adding portion by a CVD method.
  • FIG. 36 is a schematic diagram of another nanocarbon material manufacturing apparatus that performs the combustion removal process according to the eighth embodiment.
  • FIG. 37 is a schematic view of another nanocarbon material manufacturing apparatus that performs a process of adding a substance for burning and removing nanocarbon according to the eighth embodiment.
  • FIG. 38 is a schematic diagram of a granulation catalyst.
  • FIG. 39 is a schematic diagram of a nanocarbon material with a catalyst.
  • FIG. 40 is a schematic diagram of a catalyst granule (a nanocarbon material growth product).
  • Nanocarbon material production equipment 14 Nanocarbon material with catalyst 15 Nanocarbon material production part 21 Acid treatment part 22 Water washing part 23 pH adjustment part 24 Drying part 25 Heat treatment part 26 Purified nanocarbon material 27 Oxygen-containing functional group Group addition part 28 Quick-drying solvent replacement part
  • the nanocarbon material manufacturing apparatus includes a nanocarbon material manufacturing unit that manufactures a nanocarbon material using a granulation catalyst obtained by granulating a carrier supporting an active ingredient, and a catalyst-coated nanocarbon material in an acid solution.
  • An acid treatment unit that dissolves and separates the catalyst with an acid solution, and an oxygen-containing functional group that is provided on one or both of the front side and the rear side of the acid treatment unit and added to the nanocarbon material.
  • a coagulation preventing treatment unit for performing an anticoagulation treatment for improving the hydrophilicity and preventing the aggregation of the nanocarbons by the repulsive action between the oxygen-containing functional groups.
  • the oxygen-containing functional group is, for example, a hydroxyl group (—OH), a carboxyl group (—COOH), or the like, and in a state in which these are added or dissociated by pH adjustment, By the repulsive action, the distance between the nanocarbons that are intertwined with each other is expanded to unravel the entanglement.
  • —OH hydroxyl group
  • COOH carboxyl group
  • FIG. 1 shows a schematic diagram of a nanocarbon material manufacturing apparatus that prevents entanglement of carbon nanofibers by pH adjustment according to the present embodiment.
  • the nanocarbon material manufacturing apparatus 10-1A according to the embodiment includes a nanocarbon material manufacturing unit 15 that manufactures a catalyst-coated nanocarbon material 14 using a fluidized bed reactor, and the obtained catalyst-coated nanocarbon.
  • the carbon material 14 is dispersed in an acid solution, and an acid treatment unit 21 that dissolves and separates the fluidized catalyst 12 that is a granulation catalyst with an acid solution; and an acid-treated nanocarbon provided on the downstream side of the acid treatment unit 21
  • the pH adjustment part 23 which is provided in the downstream of the said water washing part 22 and adjusts the pH of the aqueous solution after water washing to the weak alkali side with a chemical
  • a drying unit 24 that dries the nanocarbon material and a heat treatment unit 25 that removes the alkali-adjusting agent by heat treatment to form a purified nanocarbon material 26 are provided.
  • reference numeral 17 denotes a recovery device that separates the nanocarbon material with catalyst 14 and the fluidized catalyst 12, 18 denotes a reuse line that reuses the separated fluidized catalyst 12 in the fluidized bed reactor 13, and 19 denotes Each exhaust gas is illustrated.
  • FIG. 2 is a schematic diagram showing the behavior of each nanocarbon by pH adjustment.
  • nanocarbon three in this example
  • 30-1 to 30 in the aqueous solution pH 5 to 6
  • aqueous solution pH 5 to 6
  • an oxygen-containing functional group such as a hydroxyl group (—OH) or a carboxyl group (—COOH).
  • the hydroxyl groups of nanocarbons (three in this example) 30-1 to 30-3
  • Oxygen-containing functional groups such as (—OH) and carboxyl groups (—COOH) dissociate.
  • the dissociated oxygen-containing functional groups repel 31 electrostatically, thereby widening the distance between the nanocarbons and preventing aggregation.
  • FIG. 2 only the —OH group is schematically illustrated as the oxygen-containing functional group, but the present invention is not limited to this.
  • the nanocarbon material from which aggregation has been prevented is dried in the drying section 24 and then sent to the heat treatment section 25, where it is heated at 300 to 1,100 ° C. for 30 minutes to 2 minutes in a nitrogen atmosphere.
  • Heat treatment is performed for about 1 hour, preferably at 300 to 900 ° C. for about 1 hour.
  • the alkali adjusting agent disappears, and a purified nanocarbon material 26 without aggregation is obtained.
  • examples of the pH-adjusting agent in the present invention include alkali salts containing amines such as ammonia and diethylamine, and first group elements such as Na and K, but the pH is adjusted to be weakly alkaline. Any material can be used as long as it easily disappears in heat treatment.
  • the dispersion may be performed by, for example, a stirrer or an ultrasonic homogenizer.
  • a strong acid such as sulfuric acid, hydrochloric acid, nitric acid, aqua regia, or hydrofluoric acid is preferably used.
  • an auxiliary agent such as hydrogen peroxide may be added.
  • the drying unit 24 can be exemplified by spray drying drying means, freeze drying means, low temperature spray freeze drying means, etc. in addition to drying by a normal dryer, and is not particularly limited.
  • the nanocarbon material 31 is grown from the active component 102 of the granulation catalyst 104A as shown in FIG. Further, the granulation catalyst 104A is obtained by aggregating or agglomerating catalyst primary particles made of a carrier carrying an active component, and the granulated catalyst as a secondary particle has a particle diameter of 200 ⁇ m to 5 mm, The thickness is preferably 500 ⁇ m to 2000 ⁇ m, more preferably 500 ⁇ m to 1000 ⁇ m.
  • the catalyst primary particles are granulated with a binder, or after pressing the catalyst primary particles with a pressure device to obtain a molded body, a predetermined product is obtained. It means what is obtained by sizing so as to obtain a particle size.
  • the specific surface area of the catalyst composed of the secondary particles is preferably 100 m 2 or more from the viewpoint of improving the yield of the carbon material from the viewpoint of improving the yield.
  • the growth space of the carbon material is limited by the (small pore diameter) / (large pore diameter) ratio of the carrier, particularly in the size of the pores.
  • the entanglement dispersibility is affected.
  • the small pore diameter is 5 nm and the large pore diameter is 100 nm as the representative diameter
  • the pore volume ratio of the pore system is 20 or less, preferably 10 or less. This is because when the ratio exceeds 20, the carbon material grown on the carrier is more strongly entangled and the dispersibility is lowered. As a result, when the ratio exceeds 20, the active component is dispersed in the pores having a narrow diameter ( ⁇ ) of the carrier, and the nanocarbon material grows from the active component. It will be entangled. Such an entangled nanocarbon material does not have good dispersibility in, for example, a solution or a resin.
  • the ratio is 20 or less, preferably 10 or less
  • the active ingredient is dispersed on a flat surface of the carrier and the nanocarbon material grows from the active ingredient.
  • the nanocarbon material is all straight.
  • the percentage of the growth is increased.
  • dispersibility in a solution, a resin, or the like is improved.
  • the ratio is 5 or less, preferably 3 or less, more preferably 1 or less.
  • the ratio is 10 or less, preferably 8 or less, more preferably 3 or less. Good. This is preferable because the pores of 50 nm and 100 nm are relatively large with respect to the pores of 5 nm, so that the dispersibility becomes high.
  • the ratio is 20 or less. , Preferably 10 or less.
  • the size is not determined with 30 nm as a boundary.
  • the size may be determined with 20 nm, 15 nm, or 10 nm as a boundary.
  • the proportion of the bundle carbon material existing in a bundled state without the nanocarbon material being isolated is 1 to 95%, more preferably 1 to 80%. desirable.
  • the bundle carbon material is an aggregate of two or more carbon materials, and includes those having a small number of aggregates and a large number of aggregates.
  • the structure of the nanocarbon material of the present invention is preferably any of a fibrous structure, a granular structure, and a tubular structure.
  • the granular form is formed by a collection of crystallites composed of a graphite layer made of one carbon hexagonal mesh surface.
  • the fibrous structure is formed by laminating carbon hexagonal mesh surfaces, and the laminating method is the fiber axis, the so-called platelet laminating oblique direction (1 to 89 °) is the fiber axis, so-called herring.
  • Bone (Herringbone) or Fishbone (Fishbone) structure one having a fiber axis perpendicular to the lamination direction, so-called tubular, ribbon (Ribbon) or para-rail (Parallel) structure.
  • the herringbone structure has a pair of diagonals, and the slopes of both do not have to be equal.
  • the carbon material of the present invention has a tube shape, and the tube wall is preferably a single layer or a double layer structure.
  • the concentration is 20 to 99%, more preferably 85 to 99%.
  • the combined concentration of the single layer and the two layers is 20 to 99%, more preferably 75 to 99%.
  • the ratio of the carbon hexagonal network surface of a multilayer structure of three or more layers is 1.3 to 30%, more preferably 1.3 to 15%.
  • the diameter of the nanocarbon material is preferably 0.4 nm or more, but preferably has a diameter of 0.4 to 3.5 nm, more preferably 1.5 to 3.5 nm.
  • the ratio of those having a diameter of 1.5 to 3.5 nm is preferably 85%.
  • the active component examples include V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, and any one of these, or a combination thereof. It is not limited to these.
  • the carrier examples include aluminum compounds such as alumina, silica, sodium aluminate, alum, and aluminum phosphate; calcium compounds such as calcium oxide, calcium carbonate, and calcium sulfate; and magnesium compounds such as magnesium oxide, magnesium hydroxide, and magnesium sulfate.
  • examples thereof include apatite systems such as calcium phosphate and magnesium phosphate, but the present invention is not limited thereto. Moreover, these may contain 2 or more types.
  • M Ca, Pb, Ba, Sr, Cd, Zn, Ni, Mg, Na, K, Fe, Al and other ZO 4: PO 4, AsO 4 , VO 4, SO 4, SiO 4, CO 4 X: F, OH, Cl, Br, O, I
  • mesoporous materials such as talc (MgAl 2 O 3 ), other minerals, zeolite, and mesoporous silicate may be used.
  • a diffusion layer of both is formed on the surface of the carrier, the diffusion layer covers a part of the active component catalyst, and the exposed portion of the active component catalyst is refined It is good also as what you did. In this case, since the nanocarbon material grows only from the refined active component portion, only a single-layer nanocarbon material can be produced satisfactorily.
  • FIG. 3 shows a schematic diagram of another nanocarbon material manufacturing apparatus that prevents entanglement of carbon nanofibers by pH adjustment according to the first embodiment.
  • the nanocarbon material manufacturing apparatus 10-1B according to the embodiment further includes a quick-drying solvent replacement unit 28 on the downstream side of the pH adjusting unit 23 in the manufacturing apparatus 10-1A of FIG. Is provided.
  • FIG. 4 the schematic diagram of the process of the quick-drying solvent substitution in a quick-drying solvent substitution part is shown.
  • the quick-drying solvent replacement unit 28 as shown in FIG. 4, the nanocarbon material 32 from which the catalyst has been removed floats in the washing solution 33 in the water tank that has been subjected to the washing treatment in the washing unit 22.
  • the same amount (50 ml) of alcohol (for example, ethanol) 34 is added to this water washing solution (50 ml) 33 to obtain a first mixed solution 35.
  • the first mixed liquid 34 is 50% alcohol and 50% water.
  • the first mixed solution 35 is filtered and concentrated by means such as centrifugation, so that the total amount of the concentrated first mixed solution 36 is 50 ml.
  • acetone which is a quick-drying solvent 37
  • 50 ml of acetone which is a quick-drying solvent 37
  • alcohol is 25%
  • water is 25%
  • acetone is 50%. Since about 50% of the second mixed liquid 38 is replaced with acetone, which is the quick-drying solvent 37, the drying speed in the subsequent drying section 24 is improved, and aggregation of the nanocarbon materials is prevented.
  • the solvent used in the quick-drying solvent replacement unit 28 for example, lower alcohols such as ethanol, methanol, isopropyl alcohol, acetone, or hexane are particularly preferable.
  • the substitution ratio from water is preferably at least 50%. This is because if it is less than 50%, the effect of suppressing the condensation of the nanocarbon material during drying in the drying section 24 is not exhibited.
  • about 50% of the second mixed liquid 38 is replaced with acetone, which is the quick-drying solvent 37, and the subsequent drying speed in the drying unit 24. And the aggregation of the nanocarbon materials is further prevented.
  • FIG. 5 is a schematic view of the nanocarbon material manufacturing department.
  • a catalyst for producing nanocarbon material of secondary particles having a predetermined particle size in which primary particles of catalyst made of a carrier (magnesium oxide) supporting an active ingredient (iron) are consolidated has a catalytic action and a fluid action. Is used as a fluidized catalyst 61.
  • the nanocarbon material production unit 15 includes a fluidized bed reaction unit 62-1 filled with a fluidized catalyst 61 that serves both as a catalyst and a fluidized material, and a carbon source carbon.
  • -1 is a free board part 62-2 having a space in which the fluid catalyst 61, which is a fluid material within, scatters and flows down, and a fluid gas 65 introduced into the fluidized bed reaction part 62-1 to cause the fluid catalyst 61 inside to flow.
  • the catalyst-containing nano-carbon material 14 from 1 extracted by the recovery line 68 is for and a recovery device 17 for recovering.
  • the fluidized bed reactor 62 is composed of the fluidized bed reaction section 62-1, the freeboard section 62-2, and the heating section 62-3.
  • the free board section 62-2 preferably has a larger flow path cross-sectional area than the fluidized bed reaction section 62-1.
  • the carbon raw material 11 that is a raw material gas supplied from the raw material supply device 63 may be any compound as long as it is a compound containing carbon, such as CO, CO 2 , methane, ethane, propane, hexane, and the like. Alkanes, unsaturated organic compounds such as ethylene, propylene and acetylene, aromatic compounds such as benzene and toluene, organic compounds having oxygen-containing functional groups such as alcohols, ethers and carboxylic acids, polymers such as polyethylene and polypropylene Examples of the material include petroleum, coal (including coal conversion gas), and the like, but the present invention is not limited thereto. In order to control the oxygen concentration, two or more oxygen-containing carbon sources CO, CO 2 , alcohols, ethers, carboxylic acids and the like and carbon sources not containing oxygen can be supplied in combination.
  • the carbon raw material 11 is supplied in a gas state into the fluidized bed reaction section 62-1, and a uniform reaction is performed by stirring with the fluidized catalyst 61 that is a fluidized material, thereby growing the nanocarbon material.
  • an inert gas is separately introduced into the fluidized bed reaction unit 62-1 by the fluidized gas supply device 66 as the fluidized gas 65 so as to satisfy the predetermined fluidization conditions.
  • the inside of the fluidized bed reaction unit 62-1 is set to a temperature range of 300 ° C. to 1300 ° C., more preferably a temperature range of 400 ° C. to 1200 ° C. by the heating unit 62-3, and the carbon raw material 11 such as methane is converted into the impurity carbon decomposition product.
  • Nanocarbon materials are synthesized by contacting the catalyst for a certain period of time in a coexisting environment.
  • the collection device 17 other than the cyclone, known separation means such as a bag filter, a ceramic filter, and a sieve can be used.
  • the nanocarbon material with catalyst 14 separated by the recovery device 17 is attached to the nanocarbon material by the acid treatment unit 21, the water washing unit 22, the pH adjustment unit 23, and the drying unit 24.
  • the catalyst is removed and purified to be recovered as a purified nanocarbon material (for example, carbon nanotube, carbon nanofiber, etc.) 26 in nano units without aggregation.
  • a quick-drying solvent replacement unit 28 on the downstream side of the pH adjusting unit 23, the nano-unit purified nanocarbon material (for example, carbon nanotube, carbon nanofiber, etc.) 26 without further aggregation is recovered. Yes.
  • FIG. 6 shows a schematic diagram of a nanocarbon material manufacturing apparatus for adding oxygen-containing functional groups according to the present embodiment.
  • FIG. 7 is a schematic diagram showing the behavior of nanocarbon due to repulsion of oxygen-containing functional groups.
  • a nanocarbon material production apparatus 10-2A according to Embodiment 2 includes a nanocarbon material production unit 15 that produces a nanocarbon material with catalyst 14 using a fluidized bed reactor 13, and the obtained catalyst.
  • An oxygen-containing functional group addition treatment unit 27 for adding an oxygen-containing functional group to the attached nanocarbon material 14 and a catalyst-coated nanocarbon material 14 to which the oxygen-containing functional group has been added are dispersed in an acid solution. It comprises an acid treatment unit 21 for dissolving and separating a fluid catalyst 12 with an acid solution, a water washing unit 22 for washing the acid-treated nanocarbon material, and a drying unit 24 which is dried after washing and used as a purified nanocarbon material 26. Is.
  • the oxygen-containing functional group addition treatment unit 27 is not particularly limited as long as it is a means for adding or adding an oxygen-containing functional group to the surface of the nanocarbon material.
  • Physical treatment or chemical treatment is not particularly limited. This can be done by either or both.
  • Examples of the physical treatment include heat treatment under an oxygen atmosphere, steam oxidation treatment, plasma treatment, sputtering treatment, or discharge treatment such as glow discharge, arc discharge, corona discharge, and streamer discharge.
  • an oxygen-containing functional group is added or added to the surface of the nanocarbon material.
  • Examples of the chemical treatment include polymer grafting treatment with a polymer or the like, surface modification reaction treatment by oxidation treatment, and surfactant treatment, and any one of these or a combination thereof may be used.
  • an oxygen-containing functional group is added to or added to the surface of the nanocarbon material.
  • oxidation treatment examples include oxidation treatment with a strong acid such as sulfuric acid and nitric acid.
  • a strong acid such as sulfuric acid and nitric acid.
  • the addition of the oxygen-containing functional group and the dissolution / separation by the acid solution of the fluidized catalyst 12 as the granulation catalyst can be performed in one process. That is, although an acid treatment tank for adding oxygen-containing functional groups may be provided separately, the oxygen-containing functional group addition treatment and the catalyst removal treatment are simultaneously performed in the acid treatment tank for catalyst removal. You may do it.
  • any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant may be used.
  • the nanocarbon material is still in a state where a catalyst (this catalyst is composed of an active component and a carrier) is attached, but the illustration of the catalyst is omitted.
  • the nanocarbons 31-1 to 31-3 (three in the present description) constituting the carbon dense layer are intertwined in a complicated manner (see FIG. 7, left diagram).
  • an oxygen-containing functional group for example, —OH
  • FIG. 7, see the middle figure the oxygen-containing functional group addition processing unit 27
  • the repulsion between the added oxygen-containing functional groups for example, —OH
  • the dense carbon layer has not contributed as effective nanocarbon in the past, but the entanglement between the nanocarbon materials is unraveled, resulting in an improvement in the yield of nanocarbon materials with good quality without entanglement. Will contribute.
  • examples of the oxygen-containing functional group include a carboxyl group (—COOH), an oxo group ( ⁇ O), an ether group (—O—), and the like.
  • the oxygen ratio is increased by adding oxygen-containing functional groups such as a carboxyl group (—COOH), an oxo group ( ⁇ O), and an ether group (—O—) in addition to the hydroxyl group (—OH). I try to let them. Therefore, as a result of the increase in the number of oxygen due to the addition of the oxygen-containing functional group according to the present invention, the nanocarbon material of the present invention has an O (number of oxygen in atomic state) / C (number of carbon in atomic state) ratio. 0.01 to 0.2, preferably 0.02 to 0.1, and more preferably 0.02 to 0.08.
  • O number of oxygen in atomic state
  • C number of carbon in atomic state
  • the ratio of O (the number of oxygen in the atomic state) / C (the number of carbon in the atomic state) is set to 0.01 to 0.2 when the oxygen-containing functional group treatment is performed too much. If the number of oxygen in the atomic state is increased, defects are generated on the surface of the nanocarbon material or the nanocarbon material is cut, which is not preferable.
  • the oxygen-containing functional group addition processing unit 27 by adding an oxygen-containing functional group in the oxygen-containing functional group addition processing unit 27, it becomes hydrophilic, and the combined action of preventing aggregation when contacting with moisture in the subsequent acid processing unit 21 can also be exhibited. it can.
  • an oxygen-containing functional group addition treatment unit 27 may be provided on the downstream side of the acid treatment unit 21 to perform an oxygen-containing functional group addition treatment.
  • an oxygen-containing functional group addition processing unit 27 may be provided on the downstream side of the water washing unit 22 to perform the oxygen-containing functional group addition processing.
  • the catalyst is removed by the acid in the acid treatment unit 21. Therefore, the oxygen-containing functional group is not added to the nanocarbon material with catalyst, but the oxygen-containing functional group is added to the nanocarbon material from which the catalyst has been removed. In addition, when a catalyst is not partially removed, an oxygen-containing functional group is added to the nanocarbon material with catalyst.
  • a pH adjusting unit 23 is further added, and the oxygen-containing functional group on the alkali side is added. Causing dissociation of.
  • the dissociated oxygen-containing functional groups may electrostatically utilize the repulsion 31 to increase the distance between the nanocarbons and prevent aggregation. As a result, dissociation of the oxygen-containing functional group added by the acid treatment is promoted to increase the electrostatic repulsion force, so that a synergistic effect of improving the repulsion degree is exhibited.
  • the nanocarbon material manufacturing apparatus 10-1A for preventing the entanglement of the carbon nanofibers by adjusting the pH according to the first embodiment shown in FIG. 1 described above.
  • an oxygen-containing functional group addition processing unit 27 may be provided on the downstream side of the pH adjusting unit 23.
  • the pH adjustment in the pH adjusting unit 23 causes the dissociated oxygen-containing functional groups to repel electrostatically, thereby widening the distance between the nanocarbons and preventing aggregation.
  • the dissociation effect is increased by further adding oxygen-containing functional groups in the oxygen-containing functional group addition processing unit 27.
  • the drying unit 24 performs drying treatment, and the subsequent heat treatment unit 25 prevents aggregation in the step of removing the alkaline agent.
  • FIG. 12 shows a schematic diagram of a nanocarbon material manufacturing apparatus that performs the replacement with the quick-drying solvent according to the third embodiment.
  • the nanocarbon material manufacturing apparatus 10-3A includes a nanocarbon material manufacturing unit 15 that manufactures a nanocarbon material 14 with a catalyst using a fluidized bed reactor 13, and the obtained catalyst-attached nanocarbon material.
  • the nanocarbon material 14 is dispersed in an acid solution, and the acid catalyst 21 that dissolves and separates the fluidized catalyst 12 that is a granulation catalyst by the acid solution, and the acid-treated nanoparticle provided on the downstream side of the acid processor 21.
  • the water-washing part 22 for washing the carbon material, the quick-drying solvent replacing part 28 for replacing the fast-drying solvent provided on the downstream side of the water-washing part 22, and the nanocarbon material substituted with the quick-drying solvent are dried.
  • a quick-drying solvent replacement section 28 is provided on the downstream side of the water washing section 22. Then, the drying speed in the subsequent drying unit 24 may be improved to prevent aggregation of the nanocarbon materials.
  • a quick-drying solvent replacement section 28 is provided on the downstream side of the water washing section 22. Then, the drying speed in the subsequent drying unit 24 may be improved to prevent aggregation of the nanocarbon materials.
  • a quick-drying solvent is provided on the downstream side of the oxygen-containing functional group addition processing unit 27.
  • a replacement unit 28 may be provided to improve the drying speed in the subsequent drying unit 24 and prevent aggregation of the nanocarbon materials.
  • FIG. 16 shows a schematic diagram of a nanocarbon material manufacturing apparatus that supplies the water-soluble dispersion support agent according to Embodiment 4 in the acid treatment.
  • FIG. 17 is a schematic view of acid treatment using a water-soluble dispersion support.
  • a nanocarbon material production apparatus 10-4A according to Embodiment 4 includes a nanocarbon material production unit 15 that produces a catalyst-equipped nanocarbon material 14 using a fluidized bed reactor 13, and the obtained catalyst. And an acid treatment unit 21 that dissolves and separates the fluidized catalyst 12 that is a granulation catalyst with an acid solution.
  • the acid treatment unit 21 is water-soluble.
  • the dispersion support agent 41 is supplied.
  • the water-soluble dispersion support agent 41 By dispersing and supporting the nanocarbon material with the water-soluble dispersion support agent 41, aggregation of the nanocarbon materials isolated from the active metal component by an acid is suppressed. Thereafter, the nanocarbon material in which aggregation is suppressed is washed in the washing unit 22 and then dried in the drying unit 24.
  • the water-soluble dispersion support 41 is thermally decomposed and removed by high-temperature heat treatment (for example, 700 to 1100 ° C.) in the heat treatment section 25 to obtain a purified nanocarbon material 26.
  • the water-soluble dispersion support 41 added to the acid treatment unit 21 supports the nanocarbon material when only the nanocarbon material in which the carrier and the active ingredient are dissolved in the acid solution is isolated. is there. That is, in the nanocarbon material with catalyst 14 supplied to the acid solution, the active component and the carrier constituting the catalyst are dissolved by the acid of the acid treatment unit 21 to form a simple nanocarbon material and float in the acid solution. Become. At this time, if there is a water-soluble dispersion support 41 dissolved in the acid solution, the water-soluble dispersion support 41 is interposed between the purified nanocarbon materials 26 as shown in FIG. Contact between each other is suppressed, and aggregation of the nanocarbon material is suppressed.
  • the nanocarbon material grown from the active ingredient is liberated from the catalytically active ingredient during the acid treatment, and as a result, the water-soluble dispersion support agent 41 intervenes at this time, and therefore, it is switched to this. As a result, aggregation is suppressed.
  • the water-soluble dispersion support agent 41 it is preferable to use a material having both a hydrophobic group and a hydrophilic group that are easily compatible with the hydrophobic group of the nanocarbon material. Therefore, it is preferable to use any one of these resin compounds, surfactants, polysaccharides, and anti-aggregation agents, or a combination thereof. Moreover, you may make it add a dispersion aid as needed.
  • the resin compound examples include polyethylene glycol (PEG), polyethylene oxide (PEO), and polycarbonate (PC).
  • PEG polyethylene glycol
  • PEO polyethylene oxide
  • PC polycarbonate
  • the surfactant may be any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • anionic surfactant a cationic surfactant
  • amphoteric surfactant a nonionic surfactant.
  • nonionic surfactant for example, inorganic acid ester, cyclic ether, carboxyl Acid anhydride, dicarboxylic acid, aliphatic carboxylic acid, unsaturated carboxylic acid, alicyclic ketone, alicyclic alcohol, aliphatic alcohol, aliphatic chlorine compound, aliphatic amine, aliphatic nitrile, unsaturated fatty acid, carboamide, Aromatic polyamides, azo compounds, pyrene functionalized block copolymers, cellulose derivatives, long chain benzenediazonium, glucose oxidase, nitrile alicyclic compounds, quinoid compounds, polyols, diols,
  • polysaccharide examples include xanthan gum, starch, amylose, amylopectin, glycogen, cellulose, chitin, agarose, carrageenan, heparin, hyaluronic acid, pectin, and xyloglucan.
  • Examples of the aggregation inhibitor include polyaniline sulfonic acid (PAS).
  • PAS polyaniline sulfonic acid
  • FIG. 18 A schematic diagram of another nanocarbon material manufacturing apparatus according to the present embodiment is shown in FIG. As shown in FIG. 18, the nanocarbon material manufacturing apparatus 10-4B according to the present embodiment is obtained on the upstream side of the acid treatment unit 21 in the nanocarbon material manufacturing apparatus 10-4A shown in FIG.
  • An oxygen-containing functional group addition treatment unit 27 for adding an oxygen-containing functional group to the obtained nanocarbon material with catalyst 14 is provided.
  • the oxygen-containing functional group addition processing unit 27 is not particularly limited as long as it is a means for adding or adding an oxygen-containing functional group to the surface of the nanocarbon material. This can be done by either or both chemical treatments.
  • FIG. 19 shows a schematic diagram of a nanocarbon material manufacturing apparatus that performs crushing treatment before acid treatment according to the fifth embodiment.
  • FIG. 20 is a schematic diagram showing crushing of the catalyst granule of secondary particles.
  • a nanocarbon material production apparatus 10-5A according to Embodiment 5 includes a nanocarbon material production unit 15 that produces a nanocarbon material 14 with a catalyst using a fluidized bed reactor 13, and the obtained catalyst.
  • the nano-carbon material 14 is provided on the upstream side of the acid treatment unit 21, which is obtained by dispersing the attached nanocarbon material 14 in the acid solution and dissolving and separating the fluidized catalyst 12, which is a granulation catalyst, with the acid solution.
  • cleans the nanocarbon material which washed, and the drying part 24 which dries the nanocarbon material which washed water are comprised.
  • the nanocarbon dense layer 107 (see FIG. 40) formed on the surface of the secondary particles as the granulation catalyst 104B was crushed and separated. From the crushed product 52, the catalyst primary particles in which the nanocarbon material 105 existing inside is grown are well dispersed. As a result, the yield of effective nanocarbon can be improved and the bulk density of carbon can be reduced.
  • the crushing processing unit 51 is provided on the upstream side of the acid processing unit 21, but the crushing processing may be performed simultaneously with the acid processing unit 21.
  • the crushing treatment unit 51 efficiently crushes the nanocarbon dense layer aggregated on the catalyst surface by adding a shearing or crushing action to the granulated catalyst during or before the acid treatment. To do.
  • Examples of the crushing processing unit 51 include a ball mill, a high shear stirrer (for example, “TK homomixer” (trade name: manufactured by Primix), and “Ultra Turrax” (trade name: manufactured by IKA Japan KK). ) And the like.
  • TK homomixer trade name: manufactured by Primix
  • Ultra Turrax trade name: manufactured by IKA Japan KK
  • an impurity removal unit is provided by various separation means such as a centrifugal separation means, a sieving means, an electrophoresis means, and an air classification means. Only a nanocarbon material can be used.
  • FIG. 21 shows a schematic diagram of another nanocarbon material manufacturing apparatus that performs crushing treatment before acid treatment according to the fifth embodiment.
  • another nanocarbon material manufacturing apparatus 10-5B according to the fifth embodiment is different from the nanocarbon material manufacturing apparatus 10-5A shown in FIG. It is provided on the side.
  • the nanocarbon dense layer agglomerated on the catalyst surface is efficiently crushed, and the hydroxyl group (—OH), carboxyl of the nanocarbon by pH adjustment is obtained.
  • oxygen-containing functional groups such as a group (—COOH)
  • electrostatically repelling 31 the dissociated oxygen-containing functional groups, the distance between nanocarbons can be increased and aggregation can be prevented.
  • FIG. 22 shows a schematic diagram of still another nanocarbon material manufacturing apparatus that performs crushing treatment before acid treatment according to the fifth embodiment.
  • another nanocarbon material manufacturing apparatus 10-5C according to the fifth embodiment is similar to the nanocarbon material manufacturing apparatus 10-5B shown in FIG.
  • a replacement unit 28 is provided.
  • acetone which is a quick-drying solvent, for example, the drying speed in the subsequent drying part 24 improves, and aggregation of nanocarbon materials is further prevented.
  • FIG. 23 shows a schematic diagram of a nanocarbon material manufacturing apparatus that performs crushing treatment using a resin before acid treatment according to the sixth embodiment.
  • FIG. 24 is a schematic diagram showing crushing of secondary particle catalyst granule by resin
  • FIG. 25 is a schematic diagram showing crushing together with resin in one unit of secondary particle catalyst granule.
  • the nanocarbon material production apparatus 10-6A according to the embodiment includes a nanocarbon material production unit 15 that produces a nanocarbon material with catalyst 14 using a fluidized bed reactor 13, and a nanocarbon material grown.
  • the granulated body is pulverized together with the resin
  • the resin crushing processing unit 54 for crushing the resin fixing the nanocarbon dense layer, and the catalyst-coated nanocarbon material 14 pulverized together with the resin are supplied to the acid solution, and the catalyst is acidified.
  • a water washing unit 22 that is provided on the downstream side of the acid treatment unit 21 to wash the acid-treated nanocarbon material, and the water-washed nanocarbon material It is intended to and a drying unit 24 for drying.
  • the nanocarbon dense layer is formed on the surface of the secondary particles, it is fixed preferentially over nanocarbon or carbon nanotubes with excellent dispersibility grown inside the secondary particles when hardened with resin. become.
  • FIG. 24 is a schematic diagram in which the granulation catalyst is fixed with a resin, and in fact, an infinite number of granulation catalysts are fixed to the resin.
  • the periphery of the granulation catalyst 104B is fixed with a resin 55 as shown in FIG. Thereafter, in the crushing process, the resin crushing processed product 56 is broken into pieces. And the catalyst primary particle which the nano carbon material 105 which exists inside grows will be disperse
  • examples of the resin to be fixed include epoxy resin, polycarbonate, polyethylene, polypropylene, polyurethane, polyester, polystyrene, urea resin, phenol resin, and vinyl resin.
  • the resin crushing processing unit 54 is desirably performed under cooling with liquid nitrogen, liquid air, or the like.
  • a brittle additive that weakens the resin may be added to the resin in advance to make the resin brittle and facilitate crushing.
  • examples of the brittle additive include sand, silica, silica sand, and alumina.
  • a brittle additive becomes an impurity, it is preferable to make the addition amount as small as possible.
  • the resin crushing processing unit 54 for example, a ball mill, a high shear stirrer (for example, “TK homomixer” (trade name: manufactured by Primix), “Ultra Tarrax” (trade name: IKA Japan k.k). Etc.) and the like.
  • TK homomixer trade name: manufactured by Primix
  • Ultra Tarrax trade name: IKA Japan k.k. Etc.
  • the nanocarbon dense layer 107 crushed with the resin includes those that cannot be used as nanocarbon, the nanocarbon fixed to the crushed resin as shown in the nanocarbon material manufacturing apparatus 10-6B in FIG. It is also possible to provide a removal unit 57 for removing the dense layer on the downstream side of the resin crushing processing unit 54 so that only an effective nanocarbon material is used.
  • the removing unit 57 may be provided on the downstream side of the drying unit 24 in addition to the downstream side of the resin crushing processing unit 54.
  • examples of the removing unit 57 include separation / removal means of various separation means such as centrifugal separation means, sieving means, electrophoresis means, and air classification means. At this time, the crushed resin fragments are also removed, and the nanocarbon dense layer fixed in the resin is also removed together with the resin fragments.
  • FIG. 27 shows a schematic diagram of a nanocarbon material manufacturing apparatus that pretreats the granulation catalyst according to the seventh embodiment.
  • FIG. 28 is a schematic diagram of the pretreatment state of the granulation catalyst.
  • FIG. 29 is a schematic diagram of the surface treatment of the outermost layer of secondary particles.
  • FIG. 30 is a schematic view of another surface treatment apparatus for the outermost layer of secondary particles.
  • the nanocarbon material manufacturing apparatus 10-7A according to the embodiment includes a catalyst granulation unit 71 that granulates a carrier carrying an active ingredient to obtain a granulation catalyst, and a surface of the granulation catalyst.
  • a nanocarbon material production unit 15 that produces the nanocarbon material with catalyst 14 an acid treatment unit 21 that supplies the catalyst-equipped nanocarbon material 14 to the acid solution, and dissolves and separates the catalyst with the acid solution, and the acid treatment It is provided on the downstream side of the unit 21 and includes a water washing unit 22 for washing the acid-treated nanocarbon material with water and a drying unit 24 for drying the water-washed nanocarbon material.
  • the fluidized catalyst 12 that also serves as a fluidizing material is pretreated so that the generation of the nanocarbon material dense layer is suppressed during the production of the nanocarbon material. That is, the fluidized catalyst granulated in the catalyst granulation unit 71 shown in FIG. 27 was supported on the primary particles 103A located on the surface side by the water washing treatment in the granulation catalyst surface treatment unit 72 as shown in FIG. The active ingredient 101 is removed.
  • the granulation catalyst according to the present invention treats the surface of the obtained granulation catalyst, and reduces or eliminates the ratio of the active component present in at least the outermost layer of the granulation catalyst.
  • FIG. 28 is a schematic diagram of the pretreatment state of the granulation catalyst, and is a schematic diagram in the vicinity of the surface where the primary particles are aggregated.
  • the surface side is the surface side of the secondary particles, and the inner side is the center side of the secondary particles.
  • the surface-treated primary particles 103B exist on the surface side constituting the secondary particles of the granulation catalyst, and the growth of the nanocarbon material is inhibited.
  • the inside is untreated primary particles 103A, and the nanocarbon material is grown from the active component as in the conventional case.
  • the formation of the dense nanocarbon layer 107 around the catalyst granule 107B as shown in FIG. 40 is suppressed.
  • the water washing process in the granulated catalyst surface treatment unit 72 is carried on the carrier by immersing the net basket 112 containing the secondary particles 100 in the water tank 110 and washing with the washing water 111.
  • the active ingredient is removed.
  • a reaction inhibitor such as an alkali metal salt such as Na or K (potassium carbonate, sodium carbonate, etc.) or an alkaline earth metal salt such as Mg salt (magnesium carbonate, etc.) is supported on the surface of the primary particles. You may do it.
  • an inert substance such as alumina may be supported.
  • the alkali metal salt or the like is catalytically combusted and gasified when nanocarbon undergoes a growth reaction from active metal (Fe), and is converted into a nanocarbon material (CNT) on the surface side of the secondary particles. ) Will be inhibited.
  • active metal Fe
  • CNT nanocarbon material
  • the nanocarbon material does not grow or is short. Therefore, generation
  • catalytic combustion with an alkali metal proceeds at 450 ° C. or lower, the reaction of the nanocarbon material in the fluidized bed reactor 13 can be performed at 300 to 450 ° C.
  • alkali metal salt such as Na and K and the alkaline earth metal salt such as Mg salt may be supported in a powder state in addition to the liquid state.
  • FIG. 31 it may be supported in a vapor phase using a CVD reaction tube 120 (CVD method: Chemical Vapor Deposition method).
  • CVD method Chemical Vapor Deposition method
  • a boat 122-1 containing an Na salt aqueous solution 121 and a boat 122-2 containing a granulating catalyst 104 are placed in a CVD reaction tube 120, and a granulation catalyst is obtained by performing a CVD process.
  • the Na salt is vapor-deposited on the surface of the primary particles of the outermost layer constituting 104.
  • H 1 and H 2 indicate heaters for heating the inside of the CVD reaction tube.
  • water washing process and the reaction inhibitor loading process may be used in combination.
  • the fluid catalyst 12 is obtained by aggregating or agglomerating catalyst primary particles comprising a carrier carrying an active component, and the particle diameter of the granulated catalyst as the secondary particles is preferably 200 ⁇ m to 5 mm. Is preferably 500 ⁇ m to 2000 ⁇ m, more preferably 500 ⁇ m to 1000 ⁇ m.
  • the nanocarbon material production apparatus 10-7B shown in FIG. 32 is further provided on the downstream side of the water washing section 22 in the nanocarbon material production apparatus 10-7A shown in FIG. Is provided.
  • the nanocarbon material is entangled by the combined effect of suppressing the generation of the nanocarbon dense layer in the outermost layer of the secondary particles when producing the granulation catalyst and adjusting the pH after the acid treatment. Can be suppressed.
  • a quick-drying solvent replacement unit 28 is provided on the rear stage side of the pH adjusting unit 23.
  • a treatment for suppressing the formation of a dense nanocarbon layer in the outermost layer of the secondary particles a pH adjustment treatment after acid treatment, and substitution with a fast-drying solvent such as acetone, for example.
  • a fast-drying solvent such as acetone
  • FIG. 34 shows a schematic diagram of a nanocarbon material manufacturing apparatus that performs a process of adding a substance for burning and removing nanocarbon according to the eighth embodiment.
  • FIG. 35 is a schematic view of a CNT-disappearing substance adding portion by a CVD method.
  • the nanocarbon material production apparatus 10-8A uses a granulation catalyst obtained by granulating a carrier carrying an active ingredient to convert the nanocarbon material from the carbon raw material 11 into a fluidized bed reaction.
  • a granulation catalyst having a nanocarbon dense layer in which nanocarbons are formed on the surface of secondary particles in which the primary particles of the nanocarbon material grown are aggregated and the nanocarbon material production unit 15 produced in the vessel 13 CNT combustion removal material addition unit 73 for adding a material for burning and removing nanocarbon (CNT combustion removal material), combustion treatment unit 74 for combustion treatment of the nanocarbon dense layer of the surface-treated granulated catalyst, and combustion
  • the treated nanocarbon material with catalyst is supplied to the acid solution, and the acid treatment unit 21 for dissolving and separating the catalyst with the acid solution is provided on the downstream side of the acid treatment unit to perform the acid treatment.
  • a washing unit 22 for washing the nano-carbon material is for and a drying unit 24 for drying the washed nano-carbon material.
  • the catalyst-coated nanocarbon material 14 is produced in the fluidized bed reactor 13
  • a substance for burning and removing nanocarbon is added to the generated nanocarbon dense layer, and the nanocarbon is combusted. By burning together with the material to be removed, the generated nanocarbon dense layer is lost.
  • Examples of the substance for burning and removing the nanocarbon include alkali metal salts (potassium carbonate, sodium carbonate, etc.) such as Na and K salts, and alkaline earth metal salts (magnesium carbonate, etc.) such as Mg salts.
  • alkali metal salts potassium carbonate, sodium carbonate, etc.
  • alkaline earth metal salts magnesium carbonate, etc.
  • Mg salts magnesium carbonate, etc.
  • the net basket containing the nanocarbon material with catalyst 14 may be immersed in a water tank containing an alkaline earth metal aqueous solution in advance. Moreover, you may make it add the powder of alkaline-earth metal salt.
  • This alkali metal salt or the like is present in the vicinity of the surface of the nanocarbon dense layer generated on the surface side of the secondary particles, and the nanocarbon dense layer is burned down by combustion with oxygen.
  • the combustion condition in the combustion processing section 74 is preferably 450 ° C. or less, and more preferably in the range of 300 to 450 ° C.
  • alkali metal salts such as Na and K salts
  • alkaline earth metal salts such as Mg salts
  • CVD method Chemical Vapor Deposition method
  • a boat 122-1 containing an Mg salt aqueous solution 121 and a boat 122-2 containing a nanocarbon material with catalyst 14 are disposed and subjected to CVD treatment.
  • K salt is deposited on the surface of the primary particles of the outermost layer constituting the granulation catalyst.
  • H 1 and H 2 indicate heaters for heating the inside of the CVD reaction tube.
  • the combustion-treated product in which a substance for burning and removing nanocarbon is added to the nanocarbon material with catalyst 14 in the CNT combustion removal substance adding unit 73 and then the carbon material dense layer is lost in the combustion processing unit 74 is an acid treatment. Sent to the unit 21 for acid treatment.
  • a heat treatment part is further provided on the downstream side of the drying part 24, and at a high temperature (300 to 1200 ° C., more preferably 600 to 900 ° C. in a nitrogen atmosphere, 30 minutes to 2 hours, preferably around 1 hour). Heat treatment may be performed. By this high temperature heat treatment, impurities (for example, sulfate radicals by sulfuric acid treatment, etc.) are removed.
  • the nanocarbon material with less aggregation can be manufactured by performing the process of removing the nanocarbon dense layer.
  • FIG. 36 shows a schematic diagram of another nanocarbon material manufacturing apparatus according to the eighth embodiment.
  • the nanocarbon material production apparatus 10-8B according to the embodiment uses a nanocarbon material production unit that produces a nanocarbon material using a granulation catalyst obtained by granulating a carrier carrying an active ingredient.
  • Unit 75 a steam oxidation treatment for performing a steam oxidation treatment on a granulated catalyst having a nanocarbon dense layer in which nanocarbons are formed on the surface of secondary particles in which the primary particles of the catalyst in which the nanocarbon material has grown are assembled Unit 75, an acid treatment unit 21 for supplying the catalyst-treated nanocarbon material subjected to the steam oxidation treatment to the acid solution, and dissolving and separating the catalyst with the acid solution, and provided on the downstream side of the acid treatment unit,
  • cleans the nanocarbon material which washed, and the drying part 24 which dries the nanocarbon material which washed water are comprised.
  • the secondary particles of the catalyst primary particles in which the nanocarbon material is grown are collected by the steam oxidation treatment. It is possible to remove the nanocarbon dense layer in which nanocarbons formed on the surface are assembled.
  • the temperature of the water vapor is preferably 300 to 600 ° C, more preferably 400 to 500 ° C.
  • the nanocarbon material with less aggregation can be manufactured by performing the steam oxidation treatment for removing the nanocarbon dense layer.
  • the nanocarbon material production apparatus 10-8C shown in FIG. 37 is the same as the nanocarbon material production apparatus 10-8A shown in FIG. While performing a process, the pH adjustment part 23 and the quick-drying solvent replacement part 28 are further provided in the back
  • FIG. As a result, when the granulated catalyst is produced, the nanocarbon dense layer is eliminated in advance by adding the CNT disappearing substance, and the disappearance treatment is also performed on the nanocarbon material with catalyst. Further, after the acid treatment by the acid treatment unit 21, the pH adjustment unit 23 performs pH adjustment treatment to repel the nanocarbons caused by dissociation, and then the fast-drying solvent replacement unit 28 replaces the fast-drying solvent with, for example, acetone.
  • the entanglement of the nanocarbon material can be suppressed by the combined effect of improving the drying speed in the subsequent drying unit 24 and preventing the aggregation of the nanocarbon materials.
  • the nanocarbon material with catalyst is dispersed by repulsion between the oxygen-containing functional groups added to the nanocarbon material either before or after performing the acid treatment by dispersing the nanocarbon material with catalyst in the acid solution.
  • the anti-aggregation treatment that prevents the carbons from aggregating, aggregation between the nanocarbon materials is prevented.
  • the present invention is not limited to the above embodiment, and the functions and effects of the present invention may be achieved by further combining the above embodiments.
  • nanocarbon material manufacturing apparatus and method of the present invention aggregation can be suppressed and the yield of the nanocarbon material can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 活性成分を担持した担体を造粒してなる流動触媒12を用いてナノカーボン材料を製造するナノカーボン材料製造部15と、触媒付ナノカーボン材料14を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部21と、前記酸処理部21の後段側に設けられ、ナノカーボン材料に付加された含酸素官能基同士の解離による反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行う凝集防止処理部であるpH処理部23とを具備する。

Description

ナノカーボン材料製造装置及び方法
 本発明は、有効なナノカーボン材料の収率を向上させたナノカーボン材料製造装置、ナノカーボン製造方法に関する。
 カーボンナノチューブは、黒鉛(グラファイト)シートが円筒状に閉じた構造を有するチューブ状の炭素多面体である。このカーボンナノチューブには、黒鉛シートが円筒状に閉じた多層構造を有する多層ナノチューブと、黒鉛シートが円筒状に閉じた単層構造を有する単層ナノチューブとがある。
 一方の多層ナノチューブは、1991年に飯島により発見された。すなわち、アーク放電法の陰極に堆積した炭素の塊の中に、多層ナノチューブが存在することが発見された(非特許文献1)。その後、多層ナノチューブの研究が積極的になされ、近年は多層ナノチューブを多量に合成できるまでにもなった。
 これに対して、単層ナノチューブは概ね0.4~10ナノメータ(nm)程度の内径を有しており、その合成は、1993年に飯島とIBMのグループにより同時に報告された。単層ナノチューブの電子状態は理論的に予測されており、ラセンの巻き方により電子物性が金属的性質から半導体的性質まで変化すると考えられている。従って、このような単層ナノチューブは、未来の電子材料として有望視されている。
 単層ナノチューブのその他の用途としては、導電性複合材料、ナノエレクトロニクス材料、電界電子放出エミッタ、高指向性放射源、軟X線源、一次元伝導材、高熱伝導材、水素貯蔵材等が考えられている。また、表面の官能基化、金属被覆、異物質内包により、単層ナノチューブの用途はさらに広がると考えられている。
 従来、上述した単層ナノチューブは、鉄、コバルト、ニッケル、ランタン等の金属を陽極の炭素棒に混入し、アーク放電を行うことにより製造されている(特許文献1)。
 しかし、この製造方法では、生成物中に、単層ナノチューブの他、多層ナノチューブ、黒鉛、アモルファスカーボンが混在し、収率が低いだけでなく、単層ナノチューブの径及び長さにもばらつきがあり、径及び長さの比較的揃った単層ナノチューブを高収率で製造することは困難であった。
 なお、カーボンナノチューブの製造方法としては、上述したアーク法の他、気相熱分解法、レーザー昇華法、凝縮相の電解法などが提案されている(特許文献2~4)。
 しかしながら、これらの文献等に開示する製造方法はいずれも実験室又は小規模レベルの製造方法であり、特に炭素材料の収率が低い、という問題がある。
 そこで、本出願人は流動層反応方法を用いて連続的に大量生産することができるナノ単位の炭素材料であるカーボンナノファイバの製造装置及び方法を先に提案した(特許文献5~8)。
特開平06-280116号公報 特許第3100962号公報 特公表2001-520615号公報 特開2001-139317号公報 特開2004-76197号公報 特開2008-37694号公報 特開2008-37695号公報 特開2008-37696号公報
S,Iijima,Nature,354,56(1991)
 先に提案した流動層反応方法によるナノ単位のカーボン材料の製造においては、流動材と触媒とを兼用してなる流動触媒は一次粒子を造粒して粗粒化した二次粒子を用いることで、気泡上昇型の流動層反応機を形成し、触媒粒子の反応時間を十分に取るようにしているが、一次粒子の造粒体である二次粒子内部にカーボン材料が複雑に絡み合いながら生成するため、生成の進行と共にカーボン材料の凝集が進み分散性が低下するという問題がある。
 このナノカーボン材料の凝集が生じる要因としては、流動層反応器を用いるナノカーボン材料の製造においては、図38に示すように、担体101に担持された活性成分102からなる触媒103が複数造粒された造粒触媒104Aを流動材として用いることによる。
 すなわち、流動層反応器内では造粒触媒104は炭素原料の供給により、図39に示すように活性成分102からナノカーボン材料105が成長し、触媒付ナノカーボン材料106となる。しかしながら、担体101内の細孔や、触媒103同士の間隙にナノカーボン材料が複雑に絡み合いながら成長するので、触媒103を酸処理により溶解させて除去した後でも、ナノカーボン材料の複雑な絡み合いがほどかれることなく乾燥するので、ナノカーボン材料凝集物となると推察されている。
 さらに、図40に示すように、触媒103が集合してなる造粒触媒の104Bのみかけ上の表面において、ナノカーボン材料を含むナノカーボン緻密層107が生成することとなる。このナノカーボン緻密層107は、ナノカーボン材料として利用することができずに、有効なナノカーボン材料の収率の低下を招いている。
 すなわち、図39及び図40に示すように、触媒からナノカーボン材料が生長した触媒付ナノカーボン材料106は、一次粒子を示しており、この一次粒子が複数集まって形でナノカーボン材料生長品である造粒触媒104Bを構成しており、その際に、原料ガスと最も接触してその外表面においてカーボン生長が著しいために、カーボンが絡み合い、ナノカーボン緻密層107を形成することとなり、このナノカーボン緻密層107を解きほぐして有効なナノカーボン材料の収率及びカーボンの嵩密度の低下を図るということが切望されている。
 また、近年炭素材料の種々の用途が拡大しているが、凝集がないナノカーボン材料はその適用の幅が広がるので、大量にしかも凝集が少ないナノカーボン材料を効率よく製造することができる製造装置及び方法の出現が望まれている。
 本発明は、上記の事情に鑑み、凝集が少ないカーボン材料を大量にしかも効率よく製造することができるナノカーボン材料製造装置及び方法を提供することを課題とする。
 上述した課題を解決し、目的を達成する発明の構成を以下に示す。
1) 第1の発明は、活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造するナノカーボン材料製造部と、触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理部の前段側又は後段側のいずれか一方又は両方に設けられ、ナノカーボン材料に付加された含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行う凝集防止処理部(新規事項:基礎出願では未出)とを具備することを特徴とするナノカーボン材料製造装置にある。
2) 第2の発明は、第1の発明において、前記凝集防止処理部が、酸処理したナノカーボン材料を水洗する水洗部の後段側に設けられ、水洗後の水溶液のpHを弱アルカリ側に調整するpH調整部であり、アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離を広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置にある。
3) 第3の発明は、第1の発明において、前記凝集防止処理部が、前記酸処理部の前段側に設けられ、ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理部であり、付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置にある。
4) 第4の発明は、第1の発明において、前記凝集防止処理部が、酸処理部の後段側に設けられ、触媒が除去されたナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理部であり、付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置にある。
5) 第5の発明は、第1の発明において、前記凝集防止処理部が二種類のものからなり、第1の凝集防止処理部が、前記酸処理部の前段側に設けられ、ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理部であり、付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなると共に、第2の凝集防止処理部が、酸処理したナノカーボン材料を水洗する水洗部の後に設けられ、水洗後の水溶液のpHを弱アルカリ側に調整するpH調整部であり、アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離をさらに広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置にある。
6) 第6の発明は、第2の発明において、前記水洗部の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部を具備することを特徴とするナノカーボン材料製造装置にある。
7) 第7の発明は、第3の発明において、前記水洗部の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部を具備することを特徴とするナノカーボン材料製造装置にある。
8) 第8の発明は、第5の発明において、前記水洗部の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部を具備することを特徴とするナノカーボン材料製造装置にある。
9) 第9の発明は、第3の発明において、前記酸処理部に、ナノカーボン材料を分散支持する水溶性分散支持剤を供給してなることを特徴とするナノカーボン材料製造装置にある。
10) 第10の発明は、第1の発明において、前記触媒付ナノカーボン材料を製造する製造装置が流動層反応器であることを特徴とするナノカーボン材料製造装置にある。
11) 第11の発明は、第10の発明において、前記流動層反応器に供給する流動触媒を供給する流動触媒供給装置を具備することを特徴とする流動層反応器によるナノカーボン材料製造装置にある。
12) 第12の発明は、第11の発明において、前記流動触媒の粒子径が200μm~5mmであることを特徴とする流動層反応器によるナノカーボン材料製造装置にある。
13) 第13の発明は、第1の発明において、前記活性成分を担持した担体を造粒してなる造粒触媒が、活性成分を担持した担体を造粒して造粒触媒を得る触媒造粒部と、造粒触媒の表面を処理し、造粒触媒の少なくとも最外層に存在する表面の活性成分の割合を低減又は零とする造粒触媒表面処理部とから得られることを特徴とするナノカーボン材料製造装置にある。
14) 第14の発明は、第2の発明において、アルカリ調整薬剤が、アンモニア又はアミン類のいずれかであることを特徴とするナノカーボン材料製造装置にある。
15) 第15の発明は、活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造し、触媒付ナノカーボン材料を酸溶液に分散して酸処理する前段側又は後段側のいずれか一方又は両方において、ナノカーボン材料に付加された含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行うことを特徴とするナノカーボン材料製造方法にある。
16) 第16の発明は、第15の発明において、前記凝集防止処理が、酸処理したナノカーボン材料を水洗する水洗処理の後段側において行う、水洗後の水溶液のpHを弱アルカリ側に調整するpH調整処理であり、アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離を広げ、凝集を防止することを特徴とするナノカーボン材料製造方法にある。
17) 第17の発明は、第15の発明において、前記凝集防止処理が、前記酸処理の前段側において行う、ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理であり、付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止することを特徴とするナノカーボン材料製造方法にある。
18) 第18の発明は、第15の発明において、前記凝集防止処理が、酸処理の後段側において行う、触媒が除去されたナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理であり、付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止することを特徴とするナノカーボン材料製造方法にある。
19) 第19の発明は、第15の発明において、前記凝集防止処理が二種類のものからなり、第1の凝集防止処理が、前記酸処理部の前段側において行う、ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理であり、付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなると共に、第2の凝集防止処理が、酸処理したナノカーボン材料を水洗する水洗部の後段側において行う、水洗後の水溶液のpHを弱アルカリ側に調整するpH調整処理であり、アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離をさらに広げ、凝集を防止することを特徴とするナノカーボン材料製造方法にある。
20) 第20の発明は、第16の発明において、前記水洗処理の後段側で、速乾性溶剤と置換する速乾性溶剤置換処理を行うことを特徴とするナノカーボン材料製造方法にある。
21) 第21の発明は、第17の発明において、前記水洗処理の後流側で、速乾性溶剤と置換する速乾性溶剤置換処理を行うことを特徴とするナノカーボン材料製造方法にある。
22) 第22の発明は、第19の発明において、前記水洗処理の後流側で、速乾性溶剤と置換する速乾性溶剤置換処理を行うことを特徴とするナノカーボン材料製造方法にある。
23) 第23の発明は、第17の発明において、前記酸処理の際に、ナノカーボン材料を分散支持する水溶性分散支持剤を供給することを特徴とするナノカーボン材料製造方法にある。
24) 第24の発明は、第15の発明において、前記触媒付ナノカーボン材料を流動層反応器で製造することを特徴とするナノカーボン材料製造方法にある。
25) 第25の発明は、第15の発明において、前記活性成分を担持した担体を造粒してなる造粒触媒が、造粒触媒の表面を処理し、造粒触媒の少なくとも最外層に存在する表面の活性成分の割合を低減又は零とする造粒触媒表面処理を施してなることを特徴とするナノカーボン材料製造方法にある。
26) 第26の発明は第16の発明において、アルカリ調整薬剤が、アンモニア又はアミン類のいずれかであることを特徴とするナノカーボン材料製造方法にある。
 さらに、上述した課題を解決するために下記の構成とするようにしてもよい。
27) 活性成分を担持した担体を造粒してなる触媒造粒体を用いてナノカーボン材料を製造するナノカーボン材料製造部と、触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理部の前流側又は酸処理部のいずれかに設けられ、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を破砕する破砕処理部と、酸処理部の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部と、水洗したナノカーボン材料を乾燥する乾燥部とを具備することを特徴とするナノカーボン材料製造装置。
28) 活性成分を担持した担体を造粒してなる触媒造粒体を用いてナノカーボン材料を製造するナノカーボン材料製造部と、触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理したナノカーボン材料を水洗する水洗部と、水洗したナノカーボン材料を乾燥する乾燥部とを具備すると共に、前記酸処理部に、ナノカーボン材料を分散支持する水溶性分散支持剤を供給してなることを特徴とするナノカーボン材料製造装置。
29) 活性成分を担持した担体を造粒してなる触媒造粒体を用いてナノカーボン材料を製造するナノカーボン材料製造部と、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を有する触媒造粒体の周囲を樹脂で固定する樹脂固定処理部と、樹脂で固定された触媒付造粒体を樹脂と共に粉砕し、ナノカーボン緻密層を固定した樹脂を破砕する樹脂粉砕処理部と、触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理部の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部と、水洗したナノカーボン材料を乾燥する乾燥部とを具備することを特徴とするナノカーボン材料製造装置。
30) 活性成分を担持した担体を造粒して造粒触媒を得る触媒造粒部と、造粒触媒の表面を処理し、造粒触媒の最外層に存在する表面の活性成分の割合を低減又は零とする造粒触媒表面処理部と、表面処理した造粒触媒を用いてナノカーボン材料を製造するナノカーボン材料製造部と、触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理部の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部と、水洗したナノカーボン材料を乾燥する乾燥部とを具備することを特徴とするナノカーボン材料製造装置。
31) 活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を炭素原料から製造するナノカーボン材料製造部と、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を有する触媒造粒体の周囲にナノカーボンを燃焼除去するための物質を添加する燃焼除去物質添加部と、表面処理した触媒造粒体のナノカーボン緻密層を燃焼処理する燃焼処理部と、燃焼処理された触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理部の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部と、水洗したナノカーボン材料を乾燥する乾燥部とを具備することを特徴とするナノカーボン材料製造装置。
 本発明によれば、活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造し、触媒付ナノカーボン材料を酸溶液に分散して酸処理を行う前後のいずれか一方又は両方において、ナノカーボン材料に付加された含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行うことにより、ナノカーボン材料同士の凝集が防止される。
図1は、実施の形態1に係るpH調整によってカーボンナノファイバの絡みつきを防止するナノカーボン材料製造装置の概略図である。 図2は、pH調整によるナノカーボンの挙動を示す模式図である。 図3は、実施の形態1に係るpH調整によってカーボンナノファイバの絡みつきを防止する他のナノカーボン材料製造装置の概略図である。 図4は、速乾性溶剤置換部における速乾性溶剤置換の工程の模式図である。 図5は、ナノカーボン材料製造部の概略図である。 図6は、実施の形態2に係る含酸素官能基を付加処理するナノカーボン材料製造装置の概略図である。 図7は、含酸素官能基の反発によるナノカーボンの挙動を示す模式図である。 図8は、実施の形態2に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図9は、実施の形態2に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図10は、実施の形態2に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図11は、実施の形態2に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図12は、実施の形態3に係る含酸素官能基を付加処理するナノカーボン材料製造装置の概略図である。 図13は、実施の形態3に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図14は、実施の形態3に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図15は、実施の形態3に係る含酸素官能基を付加処理する他のナノカーボン材料製造装置の概略図である。 図16は、実施の形態4に係る水溶性分散支持剤を酸処理において供給するナノカーボン材料製造装置の概略図である。 図17は、水溶性分散支持剤を用いた酸処理の模式図である。 図18は、実施の形態4に係る水溶性分散支持剤を酸処理において供給する他のナノカーボン材料製造装置の概略図である。 図19は、実施の形態5に係る酸処理の前に破砕処理を行うナノカーボン材料製造装置の概略図である。 図20は、二次粒子の触媒造粒体の破砕を示す模式図である。 図21は、実施の形態5に係る酸処理の前に破砕処理を行う他のナノカーボン材料製造装置の概略図である。 図22は、実施の形態5に係る酸処理の前に破砕処理を行う他のナノカーボン材料製造装置の概略図である。 図23は、実施の形態6に係る酸処理の前に樹脂を用いて破砕処理をするナノカーボン材料製造装置の概略図である。 図24は、二次粒子の触媒造粒体の樹脂による破砕を示す模式図である。 図25は、二次粒子の触媒造粒体の一単位において樹脂と共に破砕を示す模式図である。 図26は、実施の形態6に係る酸処理の前に樹脂を用いて破砕処理をする他のナノカーボン材料製造装置の概略図である。 図27は、実施の形態7に係る造粒触媒に前処理を行うナノカーボン材料製造装置の概略図である。 図28は、造粒触媒の前処理の状態の模式図である。 図29は、二次粒子の最外層の表面処理装置の概略図である。 図30は、二次粒子の最外層の表面処理の模式図である。 図31は、二次粒子の最外層の他の表面処理装置の概略図である。 図32は、実施の形態7に係る造粒触媒に前処理を行う他のナノカーボン材料製造装置の概略図である。 図33は、実施の形態7に係る造粒触媒に前処理を行う他のナノカーボン材料製造装置の概略図である。 図34は、実施の形態8に係るナノカーボンを燃焼除去するための物質を添加する処理を行うナノカーボン材料製造装置の概略図である。 図35は、CVD法によるCNT消失物質添加部の概略図である。 図36は、実施の形態8に係る燃焼除去処理を行う他のナノカーボン材料製造装置の概略図である。 図37は、実施の形態8に係るナノカーボンを燃焼除去するための物質を添加する処理を行う他のナノカーボン材料製造装置の概略図である。 図38は、造粒触媒の模式図である。 図39は、触媒付ナノカーボン材料の模式図である。 図40は、触媒造粒体(ナノカーボン材料成長品)の模式図である。
 10-1A~10-8C ナノカーボン材料製造装置
 14 触媒付ナノカーボン材料
 15 ナノカーボン材料製造部
 21 酸処理部
 22 水洗部
 23 pH調整部
 24 乾燥部
 25 熱処理部
 26 精製ナノカーボン材料
 27 含酸素官能基付加部
 28 速乾性溶剤置換部
 以下に、本発明にかかるナノカーボン材料製造装置及び方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明に係るナノカーボン材料製造装置は、活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造するナノカーボン材料製造部と、触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、前記酸処理部の前段側又は後段側のいずれか一方又は両方に設けられ、ナノカーボン材料に付加された含酸素官能基により親水性を向上させ、かつ含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行う凝集防止処理部とを具備するものである。この含酸素官能基の反発作用によって、絡み合っている一本一本のナノカーボン同士の間隔を拡張させて、絡みつきを解きほぐすようにしている。あるいは、既にときほぐされたものが絡みつきにくくしている。
 ここで、含酸素官能基としては、後述するように例えば水酸基(-OH)、カルボキシル基(-COOH)等であり、これらが付加された状態又はpH調整により解離した状態で、官能基同士の反発作用により、絡み合っている一本一本のナノカーボン同士の間隔を拡張させて、絡みつきを解きほぐすこととなる。
 以下、本発明の内容を具体的な実施形態に基づき詳述する。
[実施の形態1]
 本実施の形態に係るpH調整によってカーボンナノファイバの絡みつきを防止するナノカーボン材料製造装置の概略図を図1に示す。
 図1に示すように、実施の形態に係るナノカーボン材料製造装置10-1Aは、流動層反応器により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、得られた触媒付ナノカーボン材料14を酸溶液に分散してなり、造粒触媒である流動触媒12を酸溶液により溶解分離する酸処理部21と、酸処理部21の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、前記水洗部22の後流側に設けられ、水洗後の水溶液のpHを薬剤で弱アルカリ側に調整するpH調整部23と、水溶液がpH調整された状態でナノカーボン材料を乾燥する乾燥部24と、前記アルカリ調整する薬剤を熱処理により消失させ、精製ナノカーボン材料26とする熱処理部25とを具備するものである。
 なお、図1中、符号17は触媒付ナノカーボン材料14と流動触媒12とを分離する回収装置、18は分離された流動触媒12を流動層反応器13で再利用する再利用ライン、19は排ガスを各々図示する。
 図2はpH調整によるナノカーボン一本ごとの挙動を示す模式図である。
 図2に示すように、先ず、酸処理部21で酸処理した後に、水洗部22で水洗処理した水溶液(pH5~6)中には、ナノカーボン(本例では3本)30-1~30-3に水酸基(-OH)、カルボキシル基(-COOH)等の含酸素官能基が付加されている。
 そして、このpH5~6の状態から、pH7以上のアルカリ側(より好適にはpH8~10程度)にpH調整することで、ナノカーボン(本例では3本)30-1~30-3の水酸基(-OH)、カルボキシル基(-COOH)等の含酸素官能基が解離する。この解離した含酸素官能基同士が静電的に反発31することで、ナノカーボン同士の距離を広げ、凝集を防止するようにしている。
 なお、図2においては、含酸素官能基として-OH基のみを模式的に図示しているが、本発明はこれに限定されるものではない。
 凝集が防止されたナノカーボン材料は、図1に示すように、乾燥部24において乾燥された後、熱処理部25に送られ、ここで窒素雰囲気下において、300~1,100℃で30分から2時間、好適には、それぞれ、300~900℃,1時間前後熱処理される。この熱処理によって、アルカリ調整薬剤が消失し、凝集のない精製ナノカーボン材料26を得ることとなる。
 ここで、本発明でpH調整用の薬剤としては、例えばアンモニア、ジエチルアミン等のアミン類、Na、K等の第1属元素を含むアルカリ塩を挙げることができるが、pHを弱アルカリ性に調整し、熱処理において容易に消滅するものであればいずれのものを用いてもよい。
 また前記酸処理部21で触媒を除去する際には、例えば攪拌装置又は超音波ホモジナイザにより分散を行なうようにしてもよい。ここで、酸処理部21で用いる酸としては、例えば硫酸、塩酸、硝酸、王水、ふっ酸等の強酸を用いるのが好ましい。また、強酸に加えて過酸化水素等の助剤を添加するようにしてもよい。なお、界面活性剤を用いて分散作用を促進するようにしてもよい。
 また、本発明で乾燥部24は、通常の乾燥機による乾燥の他に、スプレードライ乾燥手段、凍結乾燥手段、低温噴霧凍結乾燥手段等を例示することができ、特に限定されるものではない。
 ここで、ナノカーボン材料31は、前述した図38に示すような造粒触媒104Aの活性成分102から成長してなるものである。また、前記造粒触媒104Aは、活性成分を担持してなる担体からなる触媒一次粒子が集合又は凝集されたものであると共に、その二次粒子である造粒触媒の粒子径が200μm~5mm、好適には500μm~2000μm、より好適には500μm~1000μmとするのがよい。
 ここで、触媒一次粒子が集合又は凝集された造粒触媒を得るには触媒一次粒子をバインダーで造粒したものや、触媒一次粒子を加圧装置で加圧して成形体を得た後、所定粒径となるように整粒して得られるものをいう。
 また、前記二次粒子からなる触媒の比表面積としては、カーボン材料の収率を向上させる点から100m2以上であることが収率の向上から望ましい。
 また、担体は無数の細孔が存在するので、それらの細孔の大きさにおいて、特に前記担体の(小さい細孔径)/(大きい細孔径)比によりカーボン材料の成長空間が制限され、カーボン材料の絡み合い分散性が影響される。小さい細孔径5nm、大きい細孔径100nmを代表径とした場合、その細孔系の細孔容量比が、20以下、好ましくは10以下とするのがよい。これは、前記比率が20を超えると、当該担体上に成長するカーボン材料がより強く絡み合い分散性が低下するからである。
 この結果、前記比率が20を超える場合には、担体の狭い径(φ)の細孔内において活性成分が分散し、該活性成分からナノカーボン材料が生長する結果、ナノカーボン材料がその生長の際に絡まったものとなる。このような絡まったナノカーボン材料は、例えば溶液、樹脂等における分散性が良好とはならないものとなる。
 これに対し、前記比率が20以下、好ましくは10以下の場合には、担体の平坦なところにおいて活性成分が分散し、該活性成分からナノカーボン材料が生長する結果、ナノカーボン材料が全て真っ直ぐに生長したものの割合が多くなる。この結果、例えば溶液、樹脂等における分散性においても良好なものとなる。
 一例として前記小さい細孔径の代表径が5nmであり、大きい細孔径の代表径が50nmの場合においては、その比率が5以下、好ましくは3以下、より好ましくは1以下とするのがよい。
 また他の一例として前記小さい細孔径の代表径が5nmであり、大きい細孔径の代表径が100nmの場合においては、その比率が10以下、好ましくは8以下、より好ましくは3以下とするのがよい。
 これは、5nmの細孔に対して、相対的に50nm、100nmと細孔が大きくなるので分散性が高くなり、好ましい。
 ここで、前記小さい細孔径が30nm以下、好適には0.1~30nmの範囲であり、大きい細孔径が30nm以上、好適には30~200nmの場合とする場合には、その比率が20以下、好ましくは10以下とするのがよい。
 なお、細孔径分布が小さい場合には、30nmを境として大小を決定するものではなく、例えば20nm又は15nm又は10nmを境として大小を決定するようにしてもよい。
 また、本発明にかかるナノカーボン材料は、ナノカーボン材料が孤立しないで、複数束ねた状態で存在するバンドルカーボン材料の割合は、1~95%、より好適には1~80%であることが望ましい。なお、本発明でバンドルカーボン材料とは2本以上のカーボン材料が集合したものであり、集合本数が少ないものから多いものまで含まれる。
 本発明のナノカーボン材料の構造は、繊維状、粒状、チューブ状構造のいずれかであることが好ましい。
 ここで、粒状は炭素六角網面一枚から形成されたものからなる黒鉛層からなる結晶子の集合によって形成したものである。
 前記繊維状構造は、炭素六角網面が積層して、その積層方法が繊維軸であるもの、所謂プレートリット(Platelet)積層の斜め方向(1~89°)が繊維軸であるもの、所謂ヘリングボーン(Herringbone)又はフィシュボーン(Fishbone)構造、積層方向に対して垂直に繊維軸があるもの、所謂チューブラ(Tubular)、リボン(Ribbon)またはパラレール(Parallel)のいずれかの構造である。なお、ヘリングボーン(Herringbone)構造は、その斜めが対になっており、その双方の傾きは等しくなくともよい。
 本発明のカーボン材料は、チューブ状をしてなり、そのチューブ壁が単層又は二層構造であることが望ましい。
 ここで、単層の場合にはその濃度は、20~99%、より好ましくは85~99%である。また、単層と二層とを併せた濃度は、20~99%、より好ましくは75~99%である。
 さらには、三層以上の多層構造の炭素六角網面の割合が1.3~30%、より好ましくは1.3~15%からなるチューブ状であることが好ましい。
 ナノカーボン材料の径は0.4nm以上とするのが好ましいが、好適には0.4~3.5nm、より好適には1.5~3.5nmの直径を有するものが好ましい。また、1.5~3.5nmの直径を有するものの割合は85%とするのがよい。
 また、前記活性成分としては、例えばV、Cr、Mn、Fe、Co、Ni、Cu、Zn、W、Moのいずれか一種又はこれらの組合せであるものを例示することができるが、本発明はこれらに限定されるものではない。
 前記担体としては、例えばアルミナ、シリカ、アルミン酸ナトリウム、ミョウバン、リン酸アルミニウム等のアルミニウム化合物、酸化カルシウム、炭酸カルシウム、硫酸カルシウム等のカルシウム化合物、酸化マグネシウム、水酸化マグネシウム、硫酸マグネシウム等のマグネシウム化合物、リン酸カルシウム、リン酸マグネシウム等のアパタイト系を例示することができるが、本発明はこれらに限定されるものではない。また、これらを二種以上含むものであってもよい。
 ここで、アパタイトとは、M10 2+(Z5-4)62 -の組成をもつ鉱物でM、ZO4、Xに対して次のような各元素が単独あるいは2種類以上の固溶状態で入るものをいう。
 M:Ca、Pb、Ba、Sr、Cd、Zn、Ni、Mg、Na、K、Fe、Alその他
 ZO4:PO4、AsO4、VO4、SO4、SiO4、CO4
 X:F、OH、Cl、Br、O、I
 また、担体としては、タルク(MgAl23)、その他鉱物類、ゼオライト、メソポーラスシリケート等のメソポーラス材料を用いるようにしてもよい。
 また、前記活性成分と前記担体との相互作用により、担体の表面に両者の拡散層を形成し、該拡散層によって前記活性成分触媒の一部を覆い、前記活性成分触媒の露出部分を微細化したものとしてもよい。
 この場合には、微細化された活性成分部分からのみナノカーボン材料が生長することになるので、単層のナノカーボン材料のみを良好に製造することもできる。
 実施の形態1に係るpH調整によってカーボンナノファイバの絡みつきを防止する他のナノカーボン材料製造装置の概略図を図3に示す。
 図3に示すように、実施の形態に係るナノカーボン材料製造装置10-1Bは、図1の製造装置10-1Aにおいて、さらに、pH調整部23の後流側に、速乾性溶剤置換部28を設けている。
 図4に、速乾性溶剤置換部における速乾性溶剤置換の工程の模式図を示す。前記速乾性溶剤置換部28においては、図4に示すように、水洗部22で水洗処理された水槽内の水洗液33中には触媒が除去されたナノカーボン材料32が浮遊している。
 先ず、図4に示すように、この水洗液(50ml)33に、アルコール(例えばエタノール)34を同量(50ml)投入し、第1の混合液35を得る。この第1の混合液34はアルコールが50%、水が50%となっている。その後この第1の混合液35を濾過し、遠心分離等の手段で濃縮して、濃縮第1の混合液36の全量を50mlとする。
 その後速乾性溶剤37であるアセトン50mlを濃縮第1の混合液36に投入し、第2の混合液38を得る。この第2の混合液38は、アルコールが25%、水が25%、アセトンが50%となっている。
 この第2の混合液38中では速乾性溶剤37であるアセトンに5割程度置換されているので、その後の乾燥部24での乾燥速度が向上し、ナノカーボン材料同士の凝集が防止される。
 ここで、前記速乾性溶剤置換部28で用いる溶剤としては、例えばエタノール、メタノール、イソプロピルアルコール等の低級アルコール、アセトン又はヘキサンが特に好ましい。
 また、水からの置換比率は少なくとも50%とすることが好ましい。これは、50%未満であると乾燥部24での乾燥の際のナノカーボン材料の凝縮の抑制効果が発揮されないからである。
 このように、速乾性溶剤置換部28を設けることで、第2の混合液38中では速乾性溶剤37であるアセトンに5割程度置換されることになり、その後の乾燥部24での乾燥速度が向上し、ナノカーボン材料同士の凝集がさらに防止される。
 次に、ナノカーボン材料を製造する反応器として流動層反応器を用いた場合の一例について図5を参照しつつ説明する。図5は、ナノカーボン材料製造部の概略図である。なお、本実施形態では、活性成分(鉄)を担持した担体(酸化マグネシウム)からなる触媒一次粒子を圧密した所定粒径の二次粒子のナノカーボン材料製造用触媒を、触媒作用と流動作用とを兼用とする流動触媒61として用いている。
 図5に示すように、本実施形態にかかるナノカーボン材料製造部15は、内部に触媒と流動材とを兼用した流動触媒61を充填した流動層反応部62-1と、炭素源である炭素原料11を前記流動層反応部62-1内に供給する原料供給装置63と、流動触媒61を前記流動層反応部62-1内に供給する流動触媒供給装置64と、前記流動層反応部62-1内の流動材である流動触媒61が飛散及び流下する空間を有するフリーボード部62-2と、前記流動層反応部62-1に導入し、内部の流動触媒61を流動させる流動ガス65を供給する流動ガス供給装置66と、流動層反応部62-1を加熱する加熱部62-3と、該フリーボード部62-2から排出される排ガス19を処理する排ガス処理装置67と、前記流動層反応部62-1から触媒付ナノカーボン材料14を回収ライン68により抜出して回収する回収装置17とを具備するものである。
 前記流動層反応部62-1の流動層反応形式には気泡型流動層型と噴流型流動層型とがあるが、本発明ではいずれのものを用いてもよい。
 本実施形態では、流動層反応部62-1とフリーボード部62-2と加熱部62-3とから流動層反応器62を構成している。また、フリーボード部62-2は、流動層反応部62-1よりもその流路断面積の大きいものが好ましい。
 前記原料供給装置63より供給される原料ガスである炭素原料11は、炭素を含有する化合物であれば、いずれのものでもよく、例えばCO、CO2の他、メタン、エタン、プロパン及びヘキサン等のアルカン類、エチレン、プロピレン及びアセチレン等の不飽和有機化合物、ベンゼン、トルエン等の芳香族化合物、アルコール類、エーテル類、カルボン酸類等の含酸素官能基を有する有機化合物、ポリエチレン、ポリプロピレン等の高分子材料、又は石油や石炭(石炭転換ガスを含む)等を挙げることができるが、本発明はこれらに限定されるものではない。また、酸素濃度制御のため、含酸素炭素源CO、CO2、アルコール類、エーテル類、カルボン酸類等と、酸素を含まない炭素源とを2つ以上組み合わせて供給することもできる。
 この炭素原料11は、流動層反応部62-1内にガス状態で供給し、流動材である流動触媒61による攪拌により均一な反応が行われ、ナノカーボン材料を生長させている。この際、所定の流動条件となるように、別途流動ガス65として流動ガス供給装置66により不活性ガスを流動層反応部62-1内に導入している。
 そして、加熱部62-3により流動層反応部62-1内を300℃~1300℃の温度範囲、より好ましくは400℃~1200℃の温度範囲とし、メタン等の炭素原料11を不純物炭素分解物の共存環境下で一定時間触媒に接触することによってナノカーボン材料を合成している。
 前記回収装置17としてサイクロン以外には、例えばバグフィルタ、セラミックフィルタ、篩等の公知の分離手段を用いることができる。
 また、前記回収装置17で分離された触媒付ナノカーボン材料14は、前述したように、酸処理部21、水洗部22、pH調整部23及び乾燥部24により、ナノカーボン材料に付着している触媒を除去して精製し、凝集がないナノ単位の精製ナノカーボン材料(例えばカーボンナノチューブ、カーボンナノファイバ等)26として回収するようにしている。
 また、pH調整部23の後流側に速乾性溶剤置換部28を設けることにより、さらに凝集がないナノ単位の精製ナノカーボン材料(例えばカーボンナノチューブ、カーボンナノファイバ等)26として回収するようにしている。
[実施の形態2]
 本実施の形態に係る含酸素官能基を付加処理するナノカーボン材料製造装置の概略図を図6に示す。図7は含酸素官能基の反発によるナノカーボンの挙動を示す模式図である。なお、図1に示す実施の形態1の装置と同一の構成については、同一の符号を付してその説明は省略する(以下、同様)。
 図6に示すように、実施の形態2に係るナノカーボン材料製造装置10-2Aは、流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、得られた触媒付ナノカーボン材料14に含酸素官能基を付加する含酸素官能基付加処理部27と、含酸素官能基が付加された触媒付ナノカーボン材料14を酸溶液に分散してなり、造粒触媒である流動触媒12を酸溶液により溶解分離する酸処理部21と、前記酸処理したナノカーボン材料を水洗する水洗部22と、水洗後に乾燥して精製ナノカーボン材料26とする乾燥部24とからなるものである。
 ここで、前記含酸素官能基付加処理部27は、ナノカーボン材料の表面に含酸素官能基を付加又は付加させる手段であれば、特に限定されるものではなく、物理的処理又は化学的処理のいずれか一方又は両方により行うことができる。
 また、前記物理的処理としては、例えば酸素雰囲気下での加熱処理、水蒸気酸化処理、プラズマ処理、スパッタリング処理又はグロー放電、アーク放電、コロナ放電、ストリーマ放電等の放電処理を挙げることができ、これらのいずれか一つ又はこれらの組合せとすることにより、ナノカーボン材料の表面に含酸素官能基を付加又は添加させるようにしている。
 また、前記化学的処理としては、ポリマー等による高分子グラフト化処理、酸化処理による表面修飾反応処理や、界面活性剤処理を挙げることができ、これらのいずれか一つ又はこれらの組合せとすることにより、ナノカーボン材料の表面に含酸素官能基を付加又は添加させるようにしている。
 酸化処理として、硫酸、硝酸などの強酸による酸化処理を挙げることができる。その場合、含酸素官能基の付加と造粒触媒である流動触媒12の酸溶液により溶解分離とを、一つのプロセスで行うことも可能である。
 すなわち、含酸素官能基の付加のための酸処理槽を別途独立して設けてもよいが、触媒除去のための酸処理槽において、含酸素官能基の付加処理と触媒除去処理とを同時に行うようにしてもよい。
 ここで、含酸素官能基を付加する界面活性剤としては、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤のいずれを用いてもよく、例えば無機酸エステル、環状エーテル、カルボン酸無水物、ジカルボン酸、脂肪族カルボン酸、不飽和カルボン酸、脂環式ケトン、脂環式アルコール、脂肪族アルコール、脂肪族塩素化合物、脂肪族アミン、脂肪族ニトリル、不飽和脂肪酸、カルボアミド、芳香族ポリアミド、アゾ化合物、ピレン官能化ブロック共重合体、セルロース誘導体、長鎖ベンゼンジアゾニウム、グルコースオキシダーゼ、ニトリル脂環式化合物、キノイド化合物、ポリオール、ジオール、ジアミン、ジエン等を挙げることができる。
 ここで、図7を参照して、緻密層を構成するナノカーボン材料に含酸素官能基を付加して、ナノカーボン同士が解ける様子を説明する。なお、本実施形態においては、ナノカーボン材料はまだ触媒(この触媒は活性成分及び担体から構成されている。)が付着した状態であるが、触媒について図示は省略する。
 図7に示すように、先ずカーボン緻密層を構成するナノカーボン31-1~31-3(本説明では3本とする。)は複雑に絡み合っている(図7、左側の図参照)。次に、含酸素官能基付加処理部27で処理を施すことにより、カーボン緻密層を構成するナノカーボン31-1~31-3の表面に含酸素官能基(例えば-OH)を付加する(図7、真ん中の図参照)。このときは、まだ絡み合った状態である。
 その後、付加された含酸素官能基(例えば-OH)同士の反発によりナノカーボン材料の間隙が拡がり、ナノカーボン材料が解れることとなる(図7、右側の図参照)。
 この結果、従来は緻密なカーボン層は有効なナノカーボンとして寄与することがなかったが、ナノカーボン材料同士の絡みつきが解れる結果、絡みつきがなく品質が良好なナノカーボン材料の収率の向上に寄与することとなる。
 また、前記含酸素官能基としては、水酸基(-OH)の他に、例えばカルボキシル基(-COOH)、オキソ基(=O)、エーテル基(-O-)等を例示することができる。
 このように、水酸基(-OH)の他にカルボキシル基(-COOH)、オキソ基(=O)、エーテル基(-O-)等の含酸素官能基を付加することで、酸素の比率を増大させるようにしている。よって、本発明による含酸素官能基の付加により、酸素の数が増大する結果、本発明のナノカーボン材料は、O(原子状態の酸素の数)/C(原子状態の炭素の数)比が、0.01~0.2、好ましくは0.02~0.1、より好ましくは0.02~0.08となるようにしている。
 ここで、両者の割合について、O(原子状態の酸素の数)/C(原子状態の炭素の数)比が、0.01~0.2とするのは、あまり含酸素官能基処理を施して、原子状態の酸素の数が増大すると、ナノカーボン材料の表面に欠陥が生じたり、ナノカーボン材料が切断されてしまい、好ましくないからである。
 また、含酸素官能基付加処理部27で含酸素官能基を付加することで、親水性となり、その後の酸処理部21において水分と接触する際の凝集を防止するという複合作用も発揮することもできる。
 また、含酸素官能基付加処理部27は、図6のナノカーボン材料製造装置10-2Aのように、酸処理部21の前で処理する以外に、図8に示すナノカーボン材料製造装置10-2Bのように、酸処理部21の後流側に含酸素官能基付加処理部27を設け、含酸素官能基付加処理するようにしてもよい。
 また、図9に示すナノカーボン材料製造装置10-2Cのように、水洗部22の後流側に含酸素官能基付加処理部27を設け、含酸素官能基付加処理するようにしてもよい。
 ここで、図8及び図9に示すように、酸処理部21の後流側に含酸素官能基付加処理部27を設ける場合には、前記酸処理部21において、酸により触媒が除去されているので、触媒付ナノカーボン材料に含酸素官能基を付加するものではなく、触媒が除去されたナノカーボン材料に含酸素官能基を付加こととなる。なお、一部触媒が除去されていない場合には、触媒付ナノカーボン材料に含酸素官能基を付加することとなる。
 なお、含酸素官能基付加処理部27で含酸素官能基を付加することで、親水性となり、その後の水洗部22において水分と接触する際の凝集を防止するので、図8に示すような、水洗処理の前段階で含酸素官能基付加処理する方が、好ましい。
 また、図10に示すナノカーボン材料製造装置10-2Dに示すように、図6に示すナノカーボン材料製造装置10-2Aにおいて、さらにpH調整部23を追加して、アルカリ側における含酸素官能基の解離を発生させ。この解離した含酸素官能基同士が静電的に反発31を利用して、ナノカーボンの距離を広げ、凝集を防止するようにしてもよい。これにより、酸処理で付加された含酸素官能基の解離を進めて静電的な反発力を強めることになるので、反発度合いが向上するという相乗効果を発揮することとなる。
 また、図11に示すナノカーボン材料製造装置10-2Eに示すように、前述した図1に示す実施の形態1に係るpH調整によってカーボンナノファイバの絡みつきを防止するナノカーボン材料製造装置10-1Aにおいて、さらにpH調整部23の後流側に、含酸素官能基付加処理部27を設けるようにしてもよい。
 この結果、pH調整部23におけるpH調整により、この解離した含酸素官能基同士が静電的に反発することで、ナノカーボン同士の距離を広げ、凝集を防止することとなる。さらに、含酸素官能基付加処理部27で含酸素官能基をさらに追加することで、解離の効果が増大する。そして、pHがアルカリ側の状態で、乾燥部24で乾燥処理し、その後の熱処理部25でアルカリ剤を除去する工程おける凝集を防止することとなる。
[実施の形態3]
 実施の形態3に係る速乾性溶剤で置換する処理を行うナノカーボン材料製造装置の概略図を図12に示す。
 図12に示すように、実施の形態に係るナノカーボン材料製造装置10-3Aは、流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、得られた触媒付ナノカーボン材料14を酸溶液に分散してなり、造粒触媒である流動触媒12を酸溶液により溶解分離する酸処理部21と、酸処理部21の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、前記水洗部22の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部28と、速乾性溶剤に置換されたナノカーボン材料を乾燥して、精製ナノカーボン材料26とする乾燥部24とを具備するものである。
 これにより、その後の乾燥部24での乾燥速度を向上させ、ナノカーボン材料同士の凝集を防止するようにしてもよい。
 また、図13に示すナノカーボン材料製造装置10-3Bのように、図6に示すナノカーボン材料製造装置10-2Aにおいて、前記水洗部22の後流側に、速乾性溶剤置換部28を設け、その後の乾燥部24での乾燥速度を向上させ、ナノカーボン材料同士の凝集を防止するようにしてもよい。
 また、図14に示すナノカーボン材料製造装置10-3Cのように、図8に示すナノカーボン材料製造装置10-2Bにおいて、前記水洗部22の後流側に、速乾性溶剤置換部28を設け、その後の乾燥部24での乾燥速度を向上させ、ナノカーボン材料同士の凝集を防止するようにしてもよい。
 また、図15に示すナノカーボン材料製造装置10-3Dのように、図9に示すナノカーボン材料製造装置10-2Cにおいて、前記含酸素官能基付加処理部27の後流側に、速乾性溶剤置換部28を設け、その後の乾燥部24での乾燥速度を向上させ、ナノカーボン材料同士の凝集を防止するようにしてもよい。
[実施の形態4]
 実施の形態4に係る水溶性分散支持剤を酸処理において供給するナノカーボン材料製造装置の概略図を図16に示す。図17は水溶性分散支持剤を用いた酸処理の模式図である。
 図16に示すように、実施の形態4に係るナノカーボン材料製造装置10-4Aは、流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、得られた触媒付ナノカーボン材料14を酸溶液に分散してなり、造粒触媒である流動触媒12を酸溶液により溶解分離する酸処理部21とを具備するものであり、前記酸処理部21において、水溶性分散支持剤41を供給するものである。
 この水溶性分散支持剤41により、ナノカーボン材料を分散支持することで、酸により活性金属成分から単離されたナノカーボン材料同士の凝集を抑制するようにしている。
 その後、前記凝集が抑制されたナノカーボン材料は水洗部22で水洗された後、乾燥部24で乾燥するようにしている。そして、前記水溶性分散支持剤41は熱処理部25において、高温熱処理(例えば700~1100℃)することで熱分解除去し、精製ナノカーボン材料26を得るようにしている。
 ここで、前記酸処理部21に添加する水溶性分散支持剤41は、酸溶液に担体及び活性成分が溶解されたナノカーボン材料のみが単離される際に、当該ナノカーボン材料を支持するものである。
 すなわち、酸溶液に供給された触媒付ナノカーボン材料14は酸処理部21の酸により触媒を構成する活性成分と担体とが溶解され、ナノカーボン材料単味となり、酸溶液中に浮遊することとなる。その際、酸溶液中に溶解している水溶性分散支持剤41が存在すると、図17に示すように、精製ナノカーボン材料26の間に水溶性分散支持剤41が介在する結果、ナノカーボン材料同士の接触を抑制することとなり、ナノカーボン材料の凝集が抑制されることとなる。
 このように、活性成分から生長されたナノカーボン材料は酸処理の際に、触媒活性成分から遊離されるが、その際に水溶性分散支持剤41が介在する結果、これに乗り換えることとなり、その結果凝集が抑制されることとなる。
 本発明において、前記水溶性分散支持剤41としては、ナノカーボン材料の疎水性基となじみ易い疎水性基及び親水性基を併せ持つ材料を用いるのが好ましいものとなる。よって、これらの特質を有する樹脂化合物、界面活性剤、多糖類、凝集防止剤のいずれか一つ又はこれらの組合せとするのが好ましい。また、必要に応じて分散助剤を添加するようにしてもよい。
 ここで、前記樹脂化合物としては、例えばポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、ポリカーボネート(PC)等を挙げることができる。
 特に、ナノカーボン材料を分散する製品となる樹脂と同等又は同質の樹脂を用いることにより、樹脂化合物を消失することがなく、好ましい。
 また、前記界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤のいずれを用いてもよく、例えば無機酸エステル、環状エーテル、カルボン酸無水物、ジカルボン酸、脂肪族カルボン酸、不飽和カルボン酸、脂環式ケトン、脂環式アルコール、脂肪族アルコール、脂肪族塩素化合物、脂肪族アミン、脂肪族ニトリル、不飽和脂肪酸、カルボアミド、芳香族ポリアミド、アゾ化合物、ピレン官能化ブロック共重合体、セルロース誘導体、長鎖ベンゼンジアゾニウム、グルコースオキシダーゼ、ニトリル脂環式化合物、キノイド化合物、ポリオール、ジオール、ジアミン、ジエン等を挙げることができる。
 前記多糖類としては、例えばキサンタンガム、デンプン、アミロース、アミロペクチン、グリコーゲン、セルロース、キチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、キシログルカン等を挙げることができる。
 前記凝集防止剤としては、例えばポリアニリンスルフォン酸(PAS)等を挙げることができる。
 本実施の形態に係る他のナノカーボン材料製造装置の概略図を図18に示す。図18に示すように、本実施の形態に係るナノカーボン材料製造装置10-4Bは、図16に示すナノカーボン材料製造装置10-4Aにおいて、さらに、酸処理部21の前流側において、得られた触媒付ナノカーボン材料14に含酸素官能基を付加する含酸素官能基付加処理部27を有するものである。
 ここで、前記含酸素官能基付加処理部27は、ナノカーボン材料の表面に含酸素官能基を付加又は付加させる手段であれば、特に限定されるものではなく、前述したような物理的処理又は化学的処理のいずれか一方又は両方により行うことができる。
[実施の形態5]
 実施の形態5に係る酸処理の前に破砕処理を行うナノカーボン材料製造装置の概略図を図19に示す。図20は、二次粒子の触媒造粒体の破砕を示す模式図である。
 図19に示すように、実施の形態5に係るナノカーボン材料製造装置10-5Aは、流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、得られた触媒付ナノカーボン材料14を酸溶液に分散してなり、造粒触媒である流動触媒12を酸溶液により溶解分離する酸処理部21と、酸処理部21の前流側に設けられ、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を破砕する破砕処理部51と、酸処理部21の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、水洗したナノカーボン材料を乾燥する乾燥部24とを具備するものである。
 前記破砕処理部51を設けることにより、図20に示すように、造粒触媒104Bである二次粒子の表面に形成されるナノカーボン緻密層107(図40参照)が破砕され、バラバラとなった破砕処理品52から、内部に存在するナノカーボン材料105が生長した触媒一次粒子が良好に分散されることとなる。この結果、有効なナノカーボンの収率向上とカーボンの嵩密度の低下を図ることができる。
 本実施の形態では、酸処理部21の前流側に破砕処理部51を設けているが、酸処理部21と同時に破砕処理を行うようにしてもよい。
 ここで、前記破砕処理部51は、酸処理中又は酸処理前に、造粒触媒に対して、剪断又は破砕作用を付加することで、触媒表面に凝集したナノカーボン緻密層を効率的に破砕するものである。
 この破砕処理部51としては、例えばボールミル、高剪断攪拌器(例えば「T.K.ホモミクサー」(商品名:プライミクス社製)、「ウルトラタラックス」(商品名:IKA Japan k.k.社製)等を例示することができる。
 また、破砕処理されたナノカーボン緻密層107は、ナノカーボンとして活用できないものを含むので、遠心分離手段、篩手段、電気泳動手段、風力分級手段等の各種分離手段による不純物除去部を設け、有効なナノカーボン材料のみとすることもできる。
 実施の形態5に係る酸処理の前に破砕処理を行う他のナノカーボン材料製造装置の概略図を図21に示す。
 図21に示すように、実施の形態5に係る他のナノカーボン材料製造装置10-5Bは、図19に示すナノカーボン材料製造装置10-5Aにおいて、さらにpH調整部23を水洗部22の後段側に設けたものである。
 これにより、造粒触媒に対して、剪断又は破砕作用を付加することで、触媒表面に凝集したナノカーボン緻密層を効率的に破砕すると共に、pH調整によるナノカーボンの水酸基(-OH)、カルボキシル基(-COOH)等の含酸素官能基を解離させ、この解離した含酸素官能基同士が静電的に反発31することで、ナノカーボン同士の距離を広げ、凝集を防止することができる。
 実施の形態5に係る酸処理の前に破砕処理を行うさらに他のナノカーボン材料製造装置の概略図を図22に示す。
 図22に示すように、実施の形態5に係る他のナノカーボン材料製造装置10-5Cは、図21に示すナノカーボン材料製造装置10-5Bにおいて、pH調整部23の後段側に速乾性溶剤置換部28を設けたものである。
 これにより、さらに、速乾性溶剤である例えばアセトンを置換することで、その後の乾燥部24での乾燥速度が向上し、ナノカーボン材料同士の凝集がさらに防止される。
[実施の形態6]
 実施の形態6に係る酸処理の前に樹脂を用いて破砕処理をするナノカーボン材料製造装置の概略図を図23に示す。図24は二次粒子の触媒造粒体の樹脂による破砕を示す模式図、図25は二次粒子の触媒造粒体の一単位において樹脂と共に破砕を示す模式図である。
 図23に示すように、実施の形態に係るナノカーボン材料製造装置10-6Aは、流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を有する造粒触媒の周囲を樹脂で固定する樹脂固定処理部53と、樹脂で固定された触媒付造粒体を樹脂と共に粉砕し、ナノカーボン緻密層を固定した樹脂を破砕する樹脂破砕処理部54と、樹脂と共に粉砕された触媒付ナノカーボン材料14を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部21と、酸処理部21の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、水洗したナノカーボン材料を乾燥する乾燥部24とを具備するものである。
 ここで、ナノカーボン緻密層は二次粒子の表面に形成されるため、樹脂で固めると二次粒子の内部に成長した分散性に優れたナノカーボン又はカーボンナノチューブよりも優先的に固定されることになる。
 前記樹脂工程処理部を設けることにより、図24に示すように、造粒触媒104Bである二次粒子の表面に形成されるナノカーボン緻密層(図示省略)の周囲を樹脂55で被覆することとなり、その後樹脂破砕処理部54において、破砕され、樹脂破砕処理品56となり、バラバラとなった破砕物56aの内部に存在するナノカーボン材料が生長した触媒一次粒子が良好に分散されることとなる。この結果、有効なナノカーボンの収率向上とカーボンの嵩密度の低下を図ることができる。なお、図24は樹脂で造粒触媒を固定する模式的なものであり、実際は無数の造粒触媒が樹脂に固定されることとなる。
 ここで、造粒触媒104Bの一単位において、模式的に説明する図25に示すように、造粒触媒104Bの周囲を樹脂55で固定する。その後、破砕処理において、バラバラに砕けた樹脂破砕処理品56となる。そして、内部に存在するナノカーボン材料105が生長した触媒一次粒子が良好に分散されることとなる。
 ここで、前記固定する樹脂としては、例えばエポキシ樹脂、ポリカーボネイト、ポリエチレン、ポリプロピレン、ポリウレタン、ポリエステル、ポリスチレン、尿素樹脂、フェノール樹脂、ビニル樹脂等を挙げることができる。
 特に、ナノカーボン材料を分散する製品となる樹脂と同等又は同質の樹脂を用いることにより、樹脂化合物を消失又は除去する必要がなく、好ましい。
 前記樹脂破砕処理部54は、液体窒素、液体空気などによる冷却下において行うことが望ましい。
 また、樹脂を脆弱化させる脆弱添加剤を樹脂に予め添加しておき、樹脂を脆くしておき、破砕が容易となるようにしてもよい。
 ここで、脆弱添加剤としては、例えば、砂、シリカ、ケイ砂、アルミナ等を挙げることができる。
 なお、脆弱添加剤は不純物となるので、できるだけ少ない添加量とするのが好ましい。
 さらに、前記樹脂破砕処理部54としては、例えばボールミル、高剪断攪拌器(例えば「T.K.ホモミクサー」(商品名:プライミクス社製)、「ウルトラタラックス」(商品名:IKA Japan k.k.社製)等を例示することができる。
 また、樹脂と共に破砕処理されたナノカーボン緻密層107は、ナノカーボンとして活用できないものを含むので、図26のナノカーボン材料製造装置10-6Bに示すように、破砕処理した樹脂に固定したナノカーボン緻密層を除去する除去部57を樹脂破砕処理部54の後流側に設け、有効なナノカーボン材料のみとすることもできる。なお、前記除去部57は、樹脂破砕処理部54の後流側以外に、乾燥部24の後流側に設けるようにしてもよい。
 ここで、前記除去部57としては、例えば遠心分離手段、篩手段、電気泳動手段、風力分級手段等の各種分離手段の分離・除去手段を挙げることができる。
 このとき、同時に破砕された樹脂の破片も除去される他、樹脂中に固定されたナノカーボン緻密層も樹脂の破片とともに除去される。
[実施の形態7]
 実施の形態7に係る造粒触媒に前処理を行うナノカーボン材料製造装置の概略図を図27に示す。図28は造粒触媒の前処理の状態の模式図である。図29は二次粒子の最外層の表面処理の模式図である。図30は二次粒子の最外層の他の表面処理装置の概略図である。
 図27に示すように、実施の形態に係るナノカーボン材料製造装置10-7Aは、活性成分を担持した担体を造粒して造粒触媒を得る触媒造粒部71と、造粒触媒の表面を処理し、造粒触媒の最外層に存在する一次粒子の表面の活性成分の割合を低減又は零とする造粒触媒表面処理部72と、表面処理した流動触媒12を用いて流動層反応器13により触媒付ナノカーボン材料14を製造するナノカーボン材料製造部15と、触媒付ナノカーボン材料14を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部21と、前記酸処理部21の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、水洗したナノカーボン材料を乾燥する乾燥部24とを具備するものである。
 本発明においては、流動層反応器13において流動材を兼用する流動触媒12を前処理することで、ナノカーボン材料の製造の際において、ナノカーボン材料緻密層の発生を抑えるようにしている。
 すなわち図27に示す触媒造粒部71で造粒された流動触媒を造粒触媒表面処理部72における水洗処理により、図28に示すように、表面側に位置する一次粒子103Aに担持されていた活性成分101を除去するようにしている。
 このように、本発明に係る造粒触媒は、得られた造粒触媒の表面を処理し、造粒触媒の少なくとも最外層に存在する活性成分の割合を低減又は零としてなるものである。
 ここで、図28は造粒触媒の前処理の状態の模式図であり、一次粒子が集合した表面近傍の模式図である。なお、図28中、表面側とは二次粒子の表面側であり、内側とは二次粒子の中心側を示す。
 これにより、造粒触媒の二次粒子を構成する表面側において、表面処理一次粒子103Bが存在することとなり、ナノカーボン材料の生長が阻害されることとなる。なお、内側は未処理の一次粒子103Aであり、従来と同様活性成分からナノカーボン材料が生長することとなる。
 この結果、図40に示すような触媒造粒体107B周囲のナノカーボン緻密層107の形成が抑制されることとなる。
 この造粒触媒表面処理部72における水洗処理は、図29に示すように、二次粒子100を入れた網カゴ112を水槽110に浸漬させ、洗浄水111で洗浄することで、担体に担持されている活性成分を除去するようにしている。
 また、水洗の代わりに、Na,K等のアルカリ金属塩(炭酸カリウム,炭酸ナトリウム等)、Mg塩等のアルカリ土類金属塩(炭酸マグネシウム等)の反応阻害物質を一次粒子の表面に担持させるようにしてもよい。また、アルカリ金属の他に、アルミナ等の不活性物質を担持させるようにしてもよい。
 このアルカリ金属塩等は、例えば、図30に示すように、活性金属(Fe)からナノカーボンが生長反応をする際、触媒燃焼し、ガス化し、二次粒子の表面側におけるナノカーボン材料(CNT)の生長を阻害することとなる。この結果、反応阻害物質が付着された一次粒子においては、ナノカーボン材料の生長が無い又は短いものとなる。よって、二次粒子の最外層におけるナノカーボン緻密層の発生を抑制することができる。
 ここで、アルカリ金属による触媒燃焼は450℃以下で進行するので、ナノカーボン材料の流動層反応器13における反応は300~450℃とすることも可能である。
 また、Na,K等のアルカリ金属塩、Mg塩等のアルカリ土類金属塩の担持は、液体状態での担持以外に粉体状態で付着するようにしてもよい。
 さらに、図31に示すように、CVD反応管120を用いた気相状態での担持(CVD法:化学気相成長(Chemical Vapor Deposition)法)としてもよい。図31は、CVD反応管120内に、Na塩水溶液121を入れたボート122-1と、造粒触媒104を入れたボート122-2とを配置し、CVD処理を行うことで、造粒触媒104を構成する最外層の一次粒子の表面にNa塩を蒸着させるようにしている。なお、図31中、H1、H2はCVD反応管内部を加熱する各々ヒータを図示する。
 また、水洗処理と反応阻害物質の担持処理とを併用するようにしてもよい。
 また、前記流動触媒12は、活性成分を担持してなる担体からなる触媒一次粒子が集合又は凝集されたものであると共に、その二次粒子である造粒触媒の粒子径が200μm~5mm、好適には500μm~2000μm、より好適には500μm~1000μmとするのがよい。
 また、図32に示すナノカーボン材料製造装置10-7Bは、図27に示すナノカーボン材料製造装置10-7Aにおいて、水洗部22の後流側に、さらに実施形態1において説明したpH調整部23を設けるようにしている。
 これにより、造粒触媒を製造する際に二次粒子の最外層におけるナノカーボン緻密層の発生を抑制する処理と、酸処理した後にpH調整処理することの併用効果により、ナノカーボン材料の絡みつきを抑制することができる。
 また、図33に示すナノカーボン材料製造装置10-7Cは、図32に示すナノカーボン材料製造装置10-7Bにおいて、さらにpH調整部23の後段側に速乾性溶剤置換部28を設けるようにしている。
 これにより、造粒触媒を製造する際に二次粒子の最外層におけるナノカーボン緻密層の発生を抑制する処理と、酸処理した後にpH調整処理すると共に、速乾性溶剤である例えばアセトンに置換することで、その後の乾燥部24での乾燥速度が向上し、ナノカーボン材料同士の凝集を防止するという併用効果により、ナノカーボン材料の絡みつきを抑制することができる。
[実施の形態8]
 実施の形態8に係るナノカーボンを燃焼除去するための物質を添加する処理を行うナノカーボン材料製造装置の概略図を図34に示す。図35は、CVD法によるCNT消失物質添加部の概略図である。
 図34に示すように、実施形態に係るナノカーボン材料製造装置10-8Aは、活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を炭素原料11から流動層反応器13で製造するナノカーボン材料製造部15と、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を有する造粒触媒の周囲にナノカーボンを燃焼除去するための物質(CNT燃焼除去物質)を添加するCNT燃焼除去物質添加部73と、表面処理した造粒触媒のナノカーボン緻密層を燃焼処理する燃焼処理部74と、燃焼処理された触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部21と、前記酸処理部の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、水洗したナノカーボン材料を乾燥する乾燥部24とを具備するものである。
 本発明においては、流動層反応器13において触媒付ナノカーボン材料14を製造した後において、発生したナノカーボン緻密層に対してナノカーボンを燃焼除去するための物質を添加し、該ナノカーボンを燃焼除去するための物質と共に燃焼させることで、発生したナノカーボン緻密層を消失させるようにしている。
 前記ナノカーボンを燃焼除去するための物質は、Na,K塩等のアルカリ金属塩(炭酸カリウム,炭酸ナトリウム等)、Mg塩等のアルカリ土類金属塩(炭酸マグネシウム等)を挙げることができる。
 このナノカーボンを燃焼除去するための物質を添加するには、触媒付ナノカーボン材料14を入れた網カゴを、予めアルカリ土類金属の水溶液を入れた水槽に浸漬させるようにすればよい。
 また、アルカリ土類金属塩の粉体を添加するようにしてもよい。
 このアルカリ金属塩等は、二次粒子の表面側に発生したナノカーボン緻密層の表面近傍に存在することとなり、酸素による燃焼により、ナノカーボン緻密層を焼失させることとなる。
 前記燃焼処理部74での燃焼条件は450℃以下とするのが好ましいく、より好ましくは、300~450℃の範囲で行うようにするのが良い。
 また、Na,K塩等のアルカリ金属塩、Mg塩等のアルカリ土類金属塩の担持は、液体状態での担持以外に粉体状態で付着するようにしてもよい。
 さらに、気相状態での担持(CVD法:化学気相成長(Chemical Vapor Deposition)法)としてもよい。図35に示すように、CVD反応管120内に、Mg塩水溶液121を入れたボート122-1と、触媒付ナノカーボン材料14を入れたボート122-2とを配置し、CVD処理を行うことで、造粒触媒を構成する最外層の一次粒子の表面にK塩を蒸着させるようにしている。なお、図35中、H1、H2はCVD反応管内部を加熱する各々ヒータを図示する。
 このCNT燃焼除去物質添加部73で触媒付ナノカーボン材料14にナノカーボンを燃焼除去するための物質を添加し、その後燃焼処理部74でカーボン材料緻密層を消失させた燃焼処理品は、酸処理部21に送られ、酸処理を行う。
 また、前記乾燥部24の後流側に熱処理部をさらに設け、高温(窒素雰囲気下で300~1200℃、より好ましくは600~900℃で、30分から2時間、好適には1時間前後)で熱処理を行うようにしてもよい。この高温熱処理により、不純物(例えば硫酸処理等による硫酸根等)が除去されることとなる。
 本実施形態によれば、ナノカーボン材料を製造した後に、ナノカーボン緻密層を除去する処理を行うことで、凝集が少ないナノカーボン材料を製造することができる。
 また、実施形態8の他のナノカーボン材料製造装置の概略図を図36に示す。図36に示すように、実施形態に係るナノカーボン材料製造装置10-8Bは、活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造するナノカーボン材料製造部15と、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を有する造粒触媒に対して、水蒸気酸化処理を行う水蒸気酸化処理部75と、水蒸気酸化処理された触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部21と、前記酸処理部の後流側に設けられ、酸処理したナノカーボン材料を水洗する水洗部22と、水洗したナノカーボン材料を乾燥する乾燥部24とを具備するものである。
 本実施形態では、実施形態1のアルカリ金属塩等を添加して処理する代わりに、水蒸気酸化処理部75において、水蒸気酸化処理により、ナノカーボン材料が生長した触媒一次粒子が集合した二次粒子の表面に形成されるナノカーボンが集合したナノカーボン緻密層を除去することができる。
 水蒸気の温度は300~600℃、より好ましくは400~500℃とするのが好ましい。
 本実施形態によれば、ナノカーボン材料を製造した後に、ナノカーボン緻密層を除去する水蒸気酸化処理を行うことで、凝集が少ないナノカーボン材料を製造することができる。
 また、図37に示すナノカーボン材料製造装置10-8Cは、図34に示すナノカーボン材料製造装置10-8Aにおいて、触媒造粒部71と造粒触媒表面処理部72とにより造粒触媒の前処理を行うと共に、水洗部22の後段側に、さらにpH調整部23と、速乾性溶剤置換部28を設けるようにしている。
 これにより、造粒触媒を製造する際に予めCNT消失物質の添加によりナノカーボン緻密層を消失させると共に、触媒付ナノカーボン材料においても消失処理を行うようにしている。さらに、酸処理部21で酸処理した後にpH調整部23において、pH調整処理して解離によるナノカーボン同士を反発させ、その後速乾性溶剤置換部28において速乾性溶剤である例えばアセトンに置換することで、その後の乾燥部24での乾燥速度が向上し、ナノカーボン材料同士の凝集を防止するという併用効果により、ナノカーボン材料の絡みつきを抑制することができる。
 以上、本発明によれば、触媒付ナノカーボン材料を酸溶液に分散して酸処理を行う前後のいずれか一方又は両方において、ナノカーボン材料に付加された含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行うことにより、ナノカーボン材料同士の凝集が防止される。
 本発明は以上の実施形態に限定されるものではなく、前記実施形態をさらに組み合わせることで本発明の作用・効果を奏するようにしてもよい。
 以上のように、本発明に係るナノカーボン材料製造装置及び方法によれば、凝集が抑制され、ナノカーボン材料の収率の向上を図ることができる。

Claims (26)

  1.  活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造するナノカーボン材料製造部と、
     触媒付ナノカーボン材料を酸溶液に供給して、触媒を酸溶液により溶解分離する酸処理部と、
     前記酸処理部の前段側又は後段側のいずれか一方又は両方に設けられ、
     ナノカーボン材料に付加された含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行う凝集防止処理部とを具備することを特徴とするナノカーボン材料製造装置。
  2.  請求項1において、
     前記凝集防止処理部が、酸処理したナノカーボン材料を水洗する水洗部の後段側に設けられ、水洗後の水溶液のpHを弱アルカリ側に調整するpH調整部であり、
     アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離を広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置。
  3.  請求項1において、
     前記凝集防止処理部が、前記酸処理部の前段側に設けられ、ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理部であり、
     付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置。
  4.  請求項1において、
     前記凝集防止処理部が、酸処理部の後段側に設けられ、触媒が除去されたナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理部であり、
     付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置。
  5.  請求項1において、
     前記凝集防止処理部が二種類のものからなり、
     第1の凝集防止処理部が、前記酸処理部の前段側に設けられ、
    ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理部であり、
     付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなると共に、
     第2の凝集防止処理部が、酸処理したナノカーボン材料を水洗する水洗部の後に設けられ、
     水洗後の水溶液のpHを弱アルカリ側に調整するpH調整部であり、
     アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離をさらに広げ、凝集を防止してなることを特徴とするナノカーボン材料製造装置。
  6.  請求項2において、
     前記水洗部の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部を具備することを特徴とするナノカーボン材料製造装置。
  7.  請求項3において、
     前記水洗部の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部を具備することを特徴とするナノカーボン材料製造装置。
  8.  請求項5において、
     前記水洗部の後流側に設けられ、速乾性溶剤と置換する速乾性溶剤置換部を具備することを特徴とするナノカーボン材料製造装置。
  9.  請求項3において、
     前記酸処理部に、ナノカーボン材料を分散支持する水溶性分散支持剤を供給してなることを特徴とするナノカーボン材料製造装置。
  10.  請求項1において、
     前記触媒付ナノカーボン材料を製造する製造装置が流動層反応器であることを特徴とするナノカーボン材料製造装置。
  11.  請求項10において、
     前記流動層反応器に供給する流動触媒を供給する流動触媒供給装置を具備することを特徴とする流動層反応器によるナノカーボン材料製造装置。
  12.  請求項11において、
     前記流動触媒の粒子径が200μm~5mmであることを特徴とする流動層反応器によるナノカーボン材料製造装置。
  13.  請求項1において、
     前記活性成分を担持した担体を造粒してなる造粒触媒が、
     活性成分を担持した担体を造粒して造粒触媒を得る触媒造粒部と、
     造粒触媒の表面を処理し、造粒触媒の少なくとも最外層に存在する表面の活性成分の割合を低減又は零とする造粒触媒表面処理部とから得られることを特徴とするナノカーボン材料製造装置。
  14.  請求項2において、
     アルカリ調整薬剤が、アンモニア又はアミン類のいずれかであることを特徴とするナノカーボン材料製造装置。
  15.  活性成分を担持した担体を造粒してなる造粒触媒を用いてナノカーボン材料を製造し、触媒付ナノカーボン材料を酸溶液に分散して酸処理する前段側又は後段側のいずれか一方又は両方において、
     ナノカーボン材料に付加された含酸素官能基同士の反発作用によりナノカーボン同士の凝集を防止する凝集防止処理を行うことを特徴とするナノカーボン材料製造方法。
  16.  請求項15において、
     前記凝集防止処理が、酸処理したナノカーボン材料を水洗する水洗処理の後段側において行う、水洗後の水溶液のpHを弱アルカリ側に調整するpH調整処理であり、
     アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離を広げ、凝集を防止することを特徴とするナノカーボン材料製造方法。
  17.  請求項15において、
     前記凝集防止処理が、前記酸処理の前段側において行う、ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理であり、
     付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止することを特徴とするナノカーボン材料製造方法。
  18.  請求項15において、
     前記凝集防止処理が、酸処理の後段側において行う、触媒が除去されたナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理であり、
     付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止することを特徴とするナノカーボン材料製造方法。
  19.  請求項15において、
     前記凝集防止処理が二種類のものからなり、
     第1の凝集防止処理が、前記酸処理部の前段側において行う、
    ナノカーボン製造装置で得られた触媒付ナノカーボン材料に含酸素官能基を付加する含酸素官能基付加処理であり、
     付加した含酸素官能基同士の反発により、ナノカーボンの距離を広げ、凝集を防止してなると共に、
     第2の凝集防止処理が、酸処理したナノカーボン材料を水洗する水洗部の後段側において行う、
     水洗後の水溶液のpHを弱アルカリ側に調整するpH調整処理であり、
     アルカリ側で解離した含酸素官能基同士が静電的に反発することで、ナノカーボンの距離をさらに広げ、凝集を防止することを特徴とするナノカーボン材料製造方法。
  20.  請求項16において、
     前記水洗処理の後段側で、速乾性溶剤と置換する速乾性溶剤置換処理を行うことを特徴とするナノカーボン材料製造方法。
  21.  請求項17において、
     前記水洗処理の後流側で、速乾性溶剤と置換する速乾性溶剤置換処理を行うことを特徴とするナノカーボン材料製造方法。
  22.  請求項19において、
     前記水洗処理の後流側で、速乾性溶剤と置換する速乾性溶剤置換処理を行うことを特徴とするナノカーボン材料製造方法。
  23.  請求項17において、
     前記酸処理の際に、ナノカーボン材料を分散支持する水溶性分散支持剤を供給することを特徴とするナノカーボン材料製造方法。
  24.  請求項15において、
     前記触媒付ナノカーボン材料を流動層反応器で製造することを特徴とするナノカーボン材料製造方法。
  25.  請求項15において、
     前記活性成分を担持した担体を造粒してなる造粒触媒が、
     造粒触媒の表面を処理し、造粒触媒の少なくとも最外層に存在する表面の活性成分の割合を低減又は零とする造粒触媒表面処理を施してなることを特徴とするナノカーボン材料製造方法。
  26.  請求項16において、
     アルカリ調整薬剤が、アンモニア又はアミン類のいずれかであることを特徴とするナノカーボン材料製造方法。
PCT/JP2009/059820 2008-05-30 2009-05-28 ナノカーボン材料製造装置及び方法 WO2009145281A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010514542A JP5291707B2 (ja) 2008-05-30 2009-05-28 ナノカーボン材料製造装置及び方法
US12/991,197 US8771629B2 (en) 2008-05-30 2009-05-28 Nano-carbon material production apparatus and method
KR1020107026600A KR101231385B1 (ko) 2008-05-30 2009-05-28 나노 카본 재료 제조 장치 및 방법
CN2009801200002A CN102046527A (zh) 2008-05-30 2009-05-28 纳米碳材料制造装置及方法
EP09754789.7A EP2279982B1 (en) 2008-05-30 2009-05-28 Apparatus for the production of nanocarbon material

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2008143698 2008-05-30
JP2008-143698 2008-05-30
JP2008-158360 2008-06-17
JP2008158360 2008-06-17
JP2008-158361 2008-06-17
JP2008158361 2008-06-17
JP2008174825 2008-07-03
JP2008-174825 2008-07-03
JP2008-212224 2008-08-20
JP2008212224 2008-08-20
JP2008258877 2008-10-03
JP2008-258877 2008-10-03
JP2008-292750 2008-11-14
JP2008292750 2008-11-14

Publications (1)

Publication Number Publication Date
WO2009145281A1 true WO2009145281A1 (ja) 2009-12-03

Family

ID=41377150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059820 WO2009145281A1 (ja) 2008-05-30 2009-05-28 ナノカーボン材料製造装置及び方法

Country Status (6)

Country Link
US (1) US8771629B2 (ja)
EP (1) EP2279982B1 (ja)
JP (1) JP5291707B2 (ja)
KR (1) KR101231385B1 (ja)
CN (1) CN102046527A (ja)
WO (1) WO2009145281A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116667A (ja) * 2010-11-29 2012-06-21 Toray Ind Inc カーボンナノチューブ含有組成物の製造方法。
JP2013076180A (ja) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp カーボンナノファイバー、およびカーボンナノファイバー分散液

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472535B1 (ko) 2013-03-13 2014-12-16 한국화학연구원 2,3-부탄디올로부터 1,3-부타디엔과 메틸에틸케톤을 제조하는 방법
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
CN110713021B (zh) * 2018-07-11 2021-03-12 河北鸿科碳素有限公司 一种煅后焦吸料输送系统装置
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
CA3137064A1 (en) 2019-04-17 2020-10-22 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11767466B2 (en) 2019-04-17 2023-09-26 Saudi Arabian Oil Company Nanocomposite coated proppants and methods of making same
US11370951B2 (en) 2019-04-17 2022-06-28 Saudi Arabian Oil Company Methods of suspending weighting agents in a drilling fluid
US11377944B2 (en) 2019-04-17 2022-07-05 Saudi Arabian Oil Company Methods of suspending proppants in hydraulic fracturing fluid
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US11370706B2 (en) 2019-07-26 2022-06-28 Saudi Arabian Oil Company Cement slurries, cured cement and methods of making and use thereof
CN117228746B (zh) * 2023-11-10 2024-02-02 泾河新城陕煤技术研究院新能源材料有限公司 高球形度富锰前驱体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300716A (ja) * 2001-11-14 2003-10-21 Toray Ind Inc 炭素質材料の処理方法、カーボンナノチューブ分散液、溶液を得る方法。
JP2005097029A (ja) * 2003-09-24 2005-04-14 Toray Ind Inc カーボンナノチューブを含有する組成物の精製方法およびカーボンナノチューブ組成物
JP2005220245A (ja) * 2004-02-06 2005-08-18 Toyo Ink Mfg Co Ltd カーボンナノチューブ組成物、およびそれを含有するカーボンナノチューブ分散液
JP2006231198A (ja) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd ナノカーボン材料製造用触媒、その製造方法、ナノカーボン材料の製造装置
JP2008037695A (ja) * 2006-08-04 2008-02-21 Mitsubishi Heavy Ind Ltd ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP2008056765A (ja) * 2006-08-30 2008-03-13 Mitsubishi Rayon Co Ltd カーボンナノチューブ含有構造体及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845675B2 (ja) 1992-06-30 1999-01-13 日本電気株式会社 カーボンナノチューブの製造方法
US6183714B1 (en) 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
JP3100962B1 (ja) 1999-07-01 2000-10-23 株式会社荏原製作所 カーボンナノファイバーの製造方法及び装置
JP2001139317A (ja) 1999-11-09 2001-05-22 Natl Inst Of Advanced Industrial Science & Technology Meti 一方向配列カーボンチューブの製造方法
JP4349793B2 (ja) 2002-11-25 2009-10-21 三菱樹脂株式会社 導電性樹脂積層フィルム及びその製造方法
JP4064759B2 (ja) 2002-08-19 2008-03-19 三菱重工業株式会社 カーボンナノファイバーの製造装置及び方法
EP1428793B1 (en) * 2002-12-12 2011-02-09 Sony Deutschland GmbH Soluble carbon nanotubes
JP2006225246A (ja) 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd ナノカーボン材料
JP2007297255A (ja) * 2006-05-03 2007-11-15 The Inctec Inc カーボンナノチューブを含有する分散液
JP2008037696A (ja) 2006-08-04 2008-02-21 Mitsubishi Heavy Ind Ltd ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP2008037694A (ja) 2006-08-04 2008-02-21 Mitsubishi Heavy Ind Ltd ナノカーボン材料製造装置及びナノカーボン材料精製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300716A (ja) * 2001-11-14 2003-10-21 Toray Ind Inc 炭素質材料の処理方法、カーボンナノチューブ分散液、溶液を得る方法。
JP2005097029A (ja) * 2003-09-24 2005-04-14 Toray Ind Inc カーボンナノチューブを含有する組成物の精製方法およびカーボンナノチューブ組成物
JP2005220245A (ja) * 2004-02-06 2005-08-18 Toyo Ink Mfg Co Ltd カーボンナノチューブ組成物、およびそれを含有するカーボンナノチューブ分散液
JP2006231198A (ja) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd ナノカーボン材料製造用触媒、その製造方法、ナノカーボン材料の製造装置
JP2008037695A (ja) * 2006-08-04 2008-02-21 Mitsubishi Heavy Ind Ltd ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP2008056765A (ja) * 2006-08-30 2008-03-13 Mitsubishi Rayon Co Ltd カーボンナノチューブ含有構造体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2279982A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116667A (ja) * 2010-11-29 2012-06-21 Toray Ind Inc カーボンナノチューブ含有組成物の製造方法。
JP2013076180A (ja) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp カーボンナノファイバー、およびカーボンナノファイバー分散液

Also Published As

Publication number Publication date
JPWO2009145281A1 (ja) 2011-10-13
EP2279982B1 (en) 2020-08-19
CN102046527A (zh) 2011-05-04
JP5291707B2 (ja) 2013-09-18
KR20100135958A (ko) 2010-12-27
US20110060162A1 (en) 2011-03-10
KR101231385B1 (ko) 2013-02-07
US8771629B2 (en) 2014-07-08
EP2279982A1 (en) 2011-02-02
EP2279982A4 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5291707B2 (ja) ナノカーボン材料製造装置及び方法
Wei et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis
KR100814217B1 (ko) 탄소 나노튜브 생성 방법
US9126828B2 (en) Mixed structures of single walled and multi walled carbon nanotubes
US7201887B2 (en) Catalytic growth of single-and double-wall carbon nanotubes from metal particles
US7150864B1 (en) Ropes comprised of single-walled and double-walled carbon nanotubes
JP3453377B2 (ja) カーボンナノチューブ・カーボンナノホーン複合体とその製造方法
JP2008037696A (ja) ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP2009520673A (ja) カーボンナノチューブの合成方法
JP2008274502A (ja) 再分散用微細炭素繊維集合塊およびその製造方法
JP2007230816A (ja) カーボン材料の分散方法及びカーボン材料製造装置
JP2008037695A (ja) ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP2008037694A (ja) ナノカーボン材料製造装置及びナノカーボン材料精製方法
Oku et al. Formation of carbon onions with Pd clusters in a high-resolution electron microscope
JP5422625B2 (ja) ナノカーボン材料の製造方法
JP2008093494A (ja) ナノカーボン材料製造用触媒及びナノカーボン材料製造用触媒の製造方法
WO2020031883A1 (ja) 窒化ホウ素ナノチューブ材料、窒化ホウ素ナノチューブ複合材料、及び窒化ホウ素ナノチューブ材料の製造方法
JP5818954B2 (ja) ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP2011178660A (ja) ナノカーボン材料製造装置及びナノカーボン材料精製方法
JP4551240B2 (ja) ナノカーボン材料製造用触媒、その製造方法、ナノカーボン材料の製造装置
Patole et al. Effective in situ synthesis and characteristics of polystyrene nanoparticle‐covered multiwall carbon nanotube composite
Mhlanga et al. The Use of CaCO3 and Ca3 (PO4) 2 as Supports for Fe‐Co Catalysts for Carbon Nanotube Synthesis: A Comparative Study

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120000.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514542

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12991197

Country of ref document: US

Ref document number: 2009754789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107026600

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE