WO2009143690A1 - 薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品 - Google Patents

薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品 Download PDF

Info

Publication number
WO2009143690A1
WO2009143690A1 PCT/CN2009/000228 CN2009000228W WO2009143690A1 WO 2009143690 A1 WO2009143690 A1 WO 2009143690A1 CN 2009000228 W CN2009000228 W CN 2009000228W WO 2009143690 A1 WO2009143690 A1 WO 2009143690A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
strip
film
strips
lower layer
Prior art date
Application number
PCT/CN2009/000228
Other languages
English (en)
French (fr)
Inventor
卢志超
方玲
周少雄
李德仁
朱景森
刘迎春
闫有花
邓俊民
张博
王冰
Original Assignee
安泰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安泰科技股份有限公司 filed Critical 安泰科技股份有限公司
Priority to EP09753408A priority Critical patent/EP2290702A4/en
Publication of WO2009143690A1 publication Critical patent/WO2009143690A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, and more particularly to a method and apparatus for splicing assembly of a thin film solar cell module, and to a thin film solar cell module product produced by the method and apparatus.
  • Thin film solar cells mainly include polycrystalline silicon-microcrystalline silicon thin film solar cells, amorphous silicon thin film solar cells, CdTe thin film solar cells, Cu(In,Ga)(S,Se)2 thin film solar cells, etc., in order to reduce production cost, thin film solar energy Battery production requires a large area of production. However, the large-scale production process brings about the problem that the uniformity of product performance is difficult to control, and the difficulty of equipment control technology is also increased.
  • Thin film solar cells generally use thin film preparation technology to sequentially prepare relevant thin film layers for solar cells on a large area of substrate material.
  • large-area batteries are drawn by mechanical cutting or laser cutting.
  • the trough is divided into small battery cells, and the electrode ends of the battery cells are connected by electrode materials, so that the cells inside the battery components are connected in series to form a complete battery assembly.
  • the metal strip is used as the substrate material, in order to solve the problem of insulation between the lower electrode and the substrate material of the battery, it is necessary to prepare an insulating film between the substrate material and the thin film battery, and the insulating film layer is processed. The increase will increase the cost of battery preparation to some extent.
  • U.S. Patent 4,278,473 discloses a method for connecting solar cell modules in series, using an insulating material as a substrate material for a solar cell, and cutting a trapezoidal groove at a certain interval on the prepared battery, the depth of the groove being lower than the insulating lining a bottom material, then preparing an insulating layer on one side of the trapezoidal groove and preparing a conductive layer on the insulating layer, one side of the conductive layer is connected to the upper electrode layer of one battery cell, and the other side is connected to the adjacent electrode
  • the lower electrode layer of the cell realizes the series connection of adjacent battery cells.
  • the method is to prepare a battery on a large area, and then divide into small battery cells for series connection of the battery, which can achieve high working voltage requirements, but the uniformity of battery performance is difficult to control due to the large-area preparation technology.
  • U.S. Patent No. 4,173,496 discloses a method for connecting a solar cell module, instead of dividing the battery cell by a groove method, but using a material modification method to fix the PN junction of the fixed region. It becomes an electrically insulating area to achieve separation between battery cells.
  • the series connection material between the battery cells may be the primary electrode material of the battery or an additional conductive paste. This method is also to prepare a battery on a large area, and product uniformity is difficult to control.
  • U.S. Patent No. 5,266,125 provides a circuit connection of a polycrystalline silicon thin film solar cell module.
  • the insulating ceramic material is used as a substrate, and the cell is cut into small cells by vertical trenches to make it a battery unit.
  • the series connection between the batteries is achieved by contacting the upper surface electrode material of the battery with the lower electrode.
  • the method is also to prepare a battery over a large area, and its uniformity is difficult to control.
  • U.S. Patent No. 4,131,123 discloses a method of encapsulating a silicon solar cell module in which a cell sheet is packaged in the middle of two layers of insulating material, and a conductive coating is used to extract the positive and negative electrodes of adjacent cells, and then conductive. The paint leads are connected to achieve a series connection between the cells. This method also produces a battery over a large area, and its uniformity is difficult to control.
  • An object of the present invention is to provide a continuous assembly method and apparatus for a roll-to-roll of a thin film solar cell module.
  • the use of the method and apparatus for preparing a thin film solar cell module can avoid the requirement for large-area film formation during battery production, and the battery can be prepared on a narrow base tape.
  • the battery assembly produced by the method has the advantages that the length of the battery assembly is not limited, the connection reliability is high, the production efficiency is high, the quality is stable, and the operation is convenient.
  • the thin film solar cell can be discarded on the preparation technology route.
  • the inside of the battery strip may not be designed to connect the wire groove or the collecting gate in series.
  • the battery strip is the basic battery unit, and then the battery assembly piece can be formed by the parallel and edge overlapping between the strip and the strip, and the battery strips are electrically connected by a conductive adhesive to realize the series connection, the length of the battery assembly piece.
  • the extension of the direction is equivalent to increasing the effective current of the battery pack and can be considered as parallel connection of components.
  • the spliced battery strip series piece is a complete battery component, and the number of splicing pieces can be designed according to the required electrical requirements of the battery component to meet the voltage requirement of the battery component.
  • the length of the spliced battery strip can be designed to meet the current requirements of the battery pack according to the required electrical performance requirements of the battery component.
  • a small number of spliced battery cell sheets can be used for simple wire bonding to form a larger-sized battery component that meets the requirements.
  • the strip splicing method it is achieved by the strip splicing method that the production equipment of a narrow-sized battery strip is used to obtain a large-sized solar battery module. Not only can it reduce the equipment requirements for large-area uniformity production, but also improve the uniformity of battery performance and reduce equipment investment.
  • the extension of the length of the battery module piece can be regarded as the parallel connection of the components, so the main function of the splicing device is to realize the series connection between the strip and the strip.
  • the method of splicing at the same time can specifically determine the specific number of battery strips according to the specific voltage range of the battery components, and the design equipment can reserve enough Volume location and winding range.
  • a method of splicing an assembled thin film solar cell module comprising: guiding and continuously outputting an underlying film onto a conveying surface, the conveying surface being heated; guiding and successively feeding a plurality of battery strips Ground output to the underlying film, each battery strip has an electrically conductive front side and a back side opposite the front side, first First, press one battery strip with the lower layer of the film and then make each two adjacent battery strips overlap in parallel; conductive glue in a continuous location in the overlap region; after the adjacent battery strips are overlapped The strip is pressed to press the strips and the strips against the underlying film; the strip and the underlying film are wound up.
  • an apparatus for splicing an assembled thin film solar cell module comprising: a conveying surface which is heatable; and a lower layer coating roll which continuously lowers the lower layer through the lower layer coating roller The film is ejected onto the heated conveying surface; a plurality of battery strip discharge rolls are fixed on the fixing panel and are disposed at equal intervals in the conveying direction above the conveying surface, and the battery strip is fixed on the fixing panel
  • the guide roller outputs the battery strip to the lower layer film, wherein each of the battery strips has a conductive front surface and a back surface opposite to the front surface; a plurality of dispensers, each of which is fixed to the fixed panel, located After the battery strip is guided by the guide roller, and under the corresponding discharge roll except for the discharge drum which is the most downstream in the conveying direction, the conductive adhesive is used for continuous points on the strip; a plurality of pressing mechanisms, each pressing The mechanism is fixed on the fixed panel and located under each discharge roll, except for the pressing mechanism other than the pressing
  • the pressing mechanism is a pressure roller, but other suitable compression mechanisms are also possible.
  • the number of battery strips connected in series can be set according to a determined open circuit voltage requirement.
  • the production method is a continuous production method of roll-to-roll, so the length of the battery assembly can be continuously extended to reach 1000 meters long or longer, suitable for cutting in actual use according to user requirements.
  • the width of a commonly used battery pack can be designed as a standard for a battery pack. If it is necessary to increase the size (voltage or current) of the battery pack, the standard component strip can be externally connected to increase the size (voltage or current) of the battery pack. .
  • the assembled solar cell module of the present invention may be re-packaged by vacuum or non-vacuum packaging.
  • Fig. 1 is a schematic view showing a splicing and assembling apparatus for a thin film solar cell module according to the present invention.
  • FIG. 2 is a left side view of a thin film solar cell module splicing assembly apparatus according to the present invention, for the sake of brevity and clarity, only two battery strip discharge rolls and one dispenser are shown, and the winder is omitted. Control the root.
  • FIG. 3 is a schematic enlarged plan view showing a strip bonding of a thin film solar cell module prepared according to the present invention, wherein P represents a dispensing point, XM represents a lower layer film, TD1 represents a first battery strip, and TD2 represents a second battery strip. band.
  • Figure 4 is an enlarged side elevational view of the edge of the tandem strip of thin film solar cells prepared in accordance with the present invention, wherein SM represents the upper film, TD represents the battery strip, and P represents the dispensing point.
  • Figure 5 is a schematic view showing the composition of a battery strip used in the present invention.
  • Figure 6 is a schematic illustration of an example of a final product of a battery assembly.
  • the lower layer film is continuously fed from the lower layer film feed roll 10, and the lower layer film is output to the surface of a heating plate 12 supported on the holder 14 via the lower layer coating roller 11. Go up and move on it, during the march
  • the hot plate 12 is heated and kept at a constant temperature, for example 120 °C.
  • the lower layer coating film may be a precoat film coated on one side and not coated on the other side, and the uncoated side may be in direct contact with the heating plate 12; or the lower layer film may be in the form of a multilayer film, such as a layer.
  • the heating temperature of the heating plate enables the pre-coated glue or melts the film while the underlying film is not bonded to the heating plate so as to be able to travel continuously.
  • ten battery strip discharge rolls 6 are mounted on the fixed panel 13 by bearings, which are adjacent to each other and arranged at equal intervals.
  • the mounting position of the battery strip discharge roll 6 can be staggered up and down at the same level or without affecting the battery strip drive.
  • the battery strip discharge rolls 6 may not be ten, and the mounting position and number of the battery strip discharge rolls may be increased or decreased depending on the number of battery strips that are desired to be connected in series.
  • the battery strip has at least two discharge rolls. In the embodiment shown in Fig.
  • the first to tenth battery strip discharge rolls 6 are sequentially disposed from upstream to downstream along the advancing direction of the lower layer coating on the heating plate. As shown in FIG. 2, the distance of each of the next battery strip discharge rolls 6 from the fixed panel 13 is farther than the distance from the previous battery strip discharge roll 6 from the fixed panel 13, and the difference is equal. Both are smaller than the width of one battery strip.
  • a battery belt guide roller 15 is fixed on the fixing panel 13, and each of the battery strip guide rollers 15 corresponds to a battery strip discharge roller 6, and the battery strip guide roller 15 is located under the battery strip discharge roller 6 and Arranged close to the heating plate; in the case where the battery strip discharge rolls 6 are at the same level, the battery strip guide rolls 15 are also at the same level.
  • each of the battery strip discharge rolls 6 continuously and successively outputs the battery strips 16 through the battery tape guide roller 15 to the lower layer film continuously passing through the heating plate 12, so that the adjacent battery strips are outputted. All are parallel to each other and the edges are overlapped, and the amount of overlap between each two adjacent battery strips is equal. Specifically, the front side of each of the battery strips outputted to the lower layer of the film is facing downward, and the back side of each of the preceding battery strips is adjacent to the next one. The front of the battery strip is overlapped. As shown in FIG. 5, the battery strip includes a transparent conductive layer, a P-type semiconductor layer, an N-type semiconductor layer, and a conductive substrate layer. The transparent conductive layer is on the front side and the conductive substrate layer is on the back side.
  • each dispenser is equal in height to the surface of the heated plate. However, the distance difference between each two adjacent dispensers from the fixed panel corresponds to the difference in distance of the respective discharge rolls as described above, so that each dispenser can just overlap the adjacent battery strips.
  • the conductive paste is pre-filled into the conductive hose, and the dispenser 7 continuously applies the conductive paste to the overlap region of the battery strip.
  • the dispensing needle of the dispenser has a diameter of 0.2 mm to 0.8 mm, preferably 0.4 mm, and the dispensing pressure can be, for example, 0.4 MPa.
  • the fixed dispensing method is used to make the dispensing point of the dispenser fixed during the running of the tape to ensure uniform dispensing of the conductive adhesive.
  • Ten pressure rollers 8 are also fixed to the fixed panel 13, and each of the pressure rollers 8 is located between the dispenser 7 and the battery strip guide roller 15 and adjacent to each other.
  • the pressure roller is continuously rotated and maintains a suitable gap with the surface of the heating plate so that the battery strip can be pressed against the battery strip and the underlying film.
  • the press roll 8 below the last battery strip discharge roll 6 is only adjacent to the corresponding battery strip guide roll 15, and Located downstream of the corresponding battery strip guide roller 15.
  • the width of the battery strip and the width of the battery belt overlap region are much smaller than that of the pressure roller 8, the distance from which the pressure roller 8 protrudes from the fixed panel can be the same as long as each battery is secured.
  • the strip and the overlap area of each of the two battery strips are all within the width of the roll body of the press roll.
  • the pressure roller corresponding to the first battery strip discharge roll is used, and the glue on the side of the lower layer is pre-coated (or the film) Layer) Melting at the temperature of the heated plate, which presses the battery strip onto the underlying film. Then, the first battery strip discharges the corresponding glue The machine starts dispensing and will continue to dispense afterwards.
  • the second battery strip is output and has a conductive adhesive on the front side thereof
  • the back side of the first battery strip is overlapped, and then passes through the corresponding pressure roller of the second battery strip discharge roll, so that the two battery strips are pressed with the first battery strip and the lower layer film. It then arrives at the dispenser of the second battery strip discharge roll, which dispenses at the edge of the two battery strips that are to be overlapped with the next battery strip. And so on, in the overlapping regions of each adjacent two battery cells, the back surface of the previous battery strip and the front surface of the next adjacent battery strip are connected by a conductive adhesive and pressed by a press roller to realize the battery.
  • the position of the dispensing point and the strap are as shown in Figures 3 and 4.
  • the battery strip 16 is only driven in the longitudinal direction, and the position in the width and thickness directions is restricted to be relatively fixed by the strip press roller.
  • the heating plate 12 is heated by hot oil or other means, so that the lower layer film and the battery strip can be effectively glued, which also facilitates further precise control of the relative position of the dispensing point and the battery strip, thereby reducing the battery strip driving process.
  • the relative position fluctuates.
  • a receiving shaft can be arranged above each of the battery strip discharge rolls 6, and the receiving shaft is rotated by a belt to facilitate recovery of the separator lining material of the battery strip coil.
  • the overlap size between the strips can be controlled by adjusting the position of the battery strip guide roller 15 with an overlap width of 0.5 mm to 2.5 mm, preferably 0.85 mm. Since the battery strip guide roller 15 is stationary during the strip drive, the overlap size between the strips can be precisely controlled.
  • the winder control 1 On the outlet side of the lower laminate and the assembly of the battery strip, the winder control 1 is disposed outside the structure of the bracket 14.
  • the winder control reject 1 is provided with a pair of upper and lower side press rolls 4 and 5 and a take-up reel 2, and at least one of the upper side press roll and the lower side press roll has a heating function.
  • the winder control 1 is provided with an upper film feed roll 3.
  • the upper layer of the film fed from the upper film feed roll 3 is guided by the guide roller around the upper side pressure roller 4, and It is applied to the assembly of the strip and the underlying film that are transported from the upstream.
  • the upper film may also be in the form of a single layer film or a multilayer film.
  • the take-up reel is driven by a servo motor, and the preset drive line speed is, for example, 3 cm/s.
  • the pneumatic pressure of the upper and lower pressure rollers is turned on, and the upper and lower pressure rollers are pressed.
  • the upper and lower film and the assembly of the strip are passed together by the nip of the upper and lower press rolls, thereby being tightly joined.
  • the upper and lower side pressure rollers can be cold pressed or hot pressed.
  • the upper and/or lower press rolls can be heated to, for example, 120 and held at 120 Torr.
  • the upper film, the strip and the lower film are combined and taken up by the take-up reel 2. In this way, the solar cell module is packaged to improve the environmental protection quality of the battery pack.
  • the upper and lower side film feed rolls may each be one or more to provide feeding of the plurality of upper and lower side film.
  • the strip can use the speed sensor 9 detection and feedback control during the transmission process to achieve the stability of the battery assembly production.
  • the control system of the equipment adopts PLC control system, image acquisition and analysis system, and touch screen man-machine interface system, which has the advantages of convenient control and high degree of automation.
  • the thin film solar cell module produced by the method and apparatus of the above embodiment has a final product width of 10 cm and an open circuit voltage of 5.5 V, and has an unrestricted length, for example, a length of 1000 m or more.
  • the width of the final product may vary depending on the number of spliced cells, for example, in the case of a battery pack with only one battery strip, the final product has a width of 1 cm; in the case of a battery pack of 30 battery strips
  • the final product has a width of 30cm. According to the user's request, the length of the battery assembly can be arbitrarily cut to a certain length. If a higher voltage is required, the battery components can be cascaded in series using metal wires.
  • a roll of lead strip strips can be used in place of the first battery strip discharge roll or the last strip discharge roll.
  • the take-up wire strip roll is pressed onto the lower layer film by a press roll; and, subsequent battery strips are discharged.
  • the battery strip of the output of the volume is outputted face down; and, the battery pack Two electrode leads are connected to the lead strip and the last strip, respectively.
  • the battery strips output by each of the battery strip discharge rolls are outputted face up; in this case, The two electrode leads of the battery assembly are respectively connected to the first battery strip and the lead strip.
  • the battery strip discharge roll is at least one.
  • the thin film solar cell module can be prepared continuously, efficiently, and conveniently.
  • the series connection between the battery strips is realized by the edge overlapping method of the strips, and the production of the continuous battery assembly can be realized.
  • the voltage of the battery assembly can be flexibly designed according to requirements, and is completed by the same equipment to realize the width and length of the solar battery module. Any adjustable. According to the apparatus and method of the present invention, the disadvantages of the embedded electrode method are avoided, and the production cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

薄膜太阳能电池组件拼接组装方法和
设备及由其生产的产品 技术领域
本发明涉及太阳能电池, 尤其是涉及一种薄膜太阳能电池组 件拼接组装方法和设备, 并且还涉及通过该方法和设备生产的薄 膜太阳能电池组件产品
背景技术
薄膜太阳能电池主要包括多晶硅 -微晶硅薄膜太阳能电池,非 晶硅薄膜太阳能电池, CdTe薄膜太阳能电池, Cu(In,Ga)(S,Se)2 薄膜太阳能电池等, 为降低生产成本, 薄膜太阳能电池生产需要 大面积的生产工艺。 但是, 大面积的生产工艺带来了产品性能均 匀性难以控制的问题, 另外也增加了设备控制技术难度。
薄膜太阳能电池一般是采用薄膜制备技术在较大面积的衬底 材料上依次制备太阳能电池所需的相关薄膜层, 在薄膜制备过程 中, 采用机械切割或者激光切割的方法对大面积的电池进行划槽 分成小的电池单元, 通过电极材料连接电池单元的电极端, 实现 电池组件内部的电池串联, 形成一个完整的电池組件。
另外, 如果是以金属薄带为衬底材料, 为解决电池的下电极 与衬底材料的绝缘问题, 需要在该衬底材料与薄膜电池之间制备 一层绝缘薄膜, 该绝缘薄膜层工艺环节的增加, 会在一定程度上 增加电池的制备成本。
美国专利 4,278,473报道了一种太阳电池组件串联连接方法, 采用绝缘材料作为太阳电池的衬底材料, 在制备好的电池上相距 一定间隔切割出梯形槽, 槽的深度低于绝缘衬底材料, 然后在梯 形槽的一个侧边制备绝缘层并在该绝缘层上制备一层导电层, 该 导电层的一侧连接一个电池单元的上电极层, 另一侧连接相邻电 池的下电极层, 实现相邻电池单元的串联。 该方法是在大面积上 制备电池, 然后分割成小的电池单元进行电池的串联, 可以实现 高的工作电压要求, 但由于采用大面积的制备技术, 电池性能的 均匀性很难控制。
另外也有不用物理方法分割电池的,美国专利 4,173,496报道 了一种太阳电池組件连接方法, 不是采用刻槽的方法分割电池单 元, 而是采用材料改性的方法将固定区域的 PN结变为电绝缘区 域, 实现电池单元之间的分离。 电池单元之间的串联连接材料可 以是电池的原电极材料或者是另外的导电浆料。 该方法同样是在 大面积上制备电池, 产品均匀性很难控制。
美国专利 5,266,125 提供了一种多晶硅薄膜太阳电池组件的 电路连接方式, 采用绝缘的陶瓷材料为村底, 电池片被垂直的沟 槽割断成小的电池, 使其成为一个电池单元, 再采用电池上表面 电极材料与下电极接触的方式来实现电池之间的串联。 该方法同 样是在大面积上制备电池, 其均匀性很难控制。
美国专利 4,131,123报道了一种封装硅太阳电池组件的方法, 将电池片封装在两绝缘材料层的中间, 同时采用印刷导电涂料的 方法引出相邻电池的正负极, 再将导电涂料引线连接起来, 实现 电池片之间的串联。 该方法同样是在大面积上制备电池, 其均匀 性很难控制。
发明内容
本发明的目的是提供一种薄膜太阳能电池组件卷对卷的连续 组装方法和设备。 利用该方法和设备制备薄膜太阳能电池组件, 可以避免对电池生产过程中大面积成膜的要求, 电池可以在较窄 的基带上制备。 利用该方法生产电池组件具有电池组件长度不受 限制、 连接可靠性高、 生产效率高、 质量稳定、 操作方便等优点。
根据本发明, 薄膜太阳能电池在制备技术路线上可以摈弃传 统的大面积、 一次性生产太阳能电池组件的方法, 而采用小面积 的方法制备电池单元, 然后将电池单元拼接成较大的电池组件。 即在较窄的奈带衬底材料上连续制备薄膜太阳能电池, 当电池条 带的宽度满足电池光收集要求时, 电池条带内部可以不设计串联 连接导线槽或者收集栅极。 电池条带即为基本电池单元, 然后可 以采用条带和条带之间平行且边缘搭接的形式形成电池組件片, 电池条带之间采用导电胶进行电连接实现串联, 电池组件片的长 度方向的延长等同于增加电池组件的有效电流, 可以视为组件的 并联。 这样拼接好的电池条带串联片就是一个完整的电池组件, 可以根据所需要的电池组件电性能要求设计拼接的条数达到符合 电池组件电压要求。 可以根据所需要的电池组件电性能要求设计 拼接的电池条带的长度达到符合电池组件电流要求。 为了得到更 大尺寸的太阳能电池組件, 可以用几片拼接好的电池组件片进行 简单的导线连接形成满足要求的更大尺寸的电池组件。 这样通过 条带拼接方法实现仅仅采用生产较窄的电池条带的生产设备获得 大尺寸太阳能电池组件的 ϋ的。 不但可以降低大面积均匀性生产 对设备要求, 而且可以提高电池性能的均匀性, 减少设备投资。 实际生产中,电池组件片的长度方向的延长可以视为组件的并联, 因此拼接设备的主要功能是实现了条带和条带之间的串联。
为提高生产效率, 采用多条电池条带同时传递、 多点同时点 胶, 同时拼接的方法, 具体可以根据电池組件的具体电压范围确 定具体的电池条带数量, 设计设备可以预留足够的放卷位置和收 卷范围。
根据本发明, 提供了一种拼接组装薄膜太阳能电池组件的方 法, 包括: 将下层覆膜引导并连续地输出到输送表面上, 该输送 表面是被加热的; 将多个电池条带引导并相继地输出到下层覆膜 上, 每个电池条带具有导电的正面以及与该正面相反的背面, 首 先将笫一个电池条带与下层覆膜压合并且随后使得每两个相邻的 电池条带之间平行搭接; 在搭接区域连续地点导电胶; 在相邻电 池条带搭接后再对条带施压, 以使条带之间以及条带与下层覆膜 压合; 将条带和下层覆膜的组件收卷。
根据本发明, 还提供了一种拼接組装薄膜太阳能电池組件的 设备, 包括: 输送表面, 该输送表面是可加热的; 下层覆膜送料 卷, 其经下层覆膜导辊而连续地将下层覆膜榆出到加热的输送表 面上; 多个电池条带放料卷, 它们被固定在固定面板上并且沿输 送方向等间距地设于输送表面上方, 经固定在固定面板上的电池 条带导辊将电池条带输出到下层覆膜上, 其中每个电池条带具有 导电的正面以及与该正面相反的背面; 多个点胶机, 每个点胶机 都固定在固定面板上, 位于电池条带导辊之后, 并位于除了沿输 送方向上最下游的放料卷之外的相应放料卷下方, 用于向条带上 连续地点导电胶; 多个压紧机构, 每个压紧机构固定在固定面板 上并且位于每个放料卷下方, 除了沿输送方向上最下游的放料卷 下的压紧机构之外的其它压紧机构均位于相应的点胶机与电池条 带导辊之间; 收卷机构, 其位于输送方向的下游出口侧, 用于收 取条带和下层覆膜的組件; 其特征在于, 电池条带放料卷从固定 面板上伸出的距离两两不同, 每两个相邻电池条带放料卷伸出的 距离之差均相等并小于一个电池条带的宽度, 以使输出到下层覆 膜上的电池条带之间彼此平行搭接; 同时, 每个点胶机从固定面 板上伸出一定距离, 以向电池条带搭接区域点导电胶。
根据本发明的优选实施例, 所述压紧机构为压辊, 但是其它 合适的压紧机构也是可以的。
该方法和设备生产出来的太阳电池組件中, 电池条带串联的 数量可以根据确定的开路电压要求而设定。 该生产方法为卷对卷 的连续化生产方式, 因此电池組件的长度可以连续延伸, 达到 1000米长或更长, 实际使用中可视用户要求适当裁剪。 可以将常 用的电池组件宽度设计为一个电池組件的标准, 如果需要增加电 池组件的尺寸 (电压或电流) 时, 可以将标准的组件条带进行外 导线连接提高电池组件的尺寸(电压或电流)。 为适应不同的环境 使用要求, 可以采用真空或非真空封装的方式对本发明组装拼接 好的太阳电池组件进行再次封装覆膜。
附图说明
参照附图, 可以更好地理解本发明的特征和优点。 附图中: 图 1为根据本发明的薄膜太阳能电池組件拼接组装设备的正 视示意图。
图 2为根据本发明的薄膜太阳能电池組件拼接组装设备的左 侧视示意图, 为了简洁和清楚起见, 仅示出了两个电池条带放料 卷和一个点胶机, 并且省略了收卷机控制根。
图 3为根据本发明制备的薄膜太阳能电池组件条带搭接的俯 视放大示意图, 其中 P表示点胶点, XM表示下层覆膜, TD1表 示第一条电池条带, TD2表示第二条电池条带。
图 4为根据本发明制备的薄膜太阳能电池串联条带的边缘搭 接侧视放大示意图, 其中 SM表示上层覆膜, TD表示电池条带, P表示点胶点。
图 5为本发明使用的电池条带的组成示意图。
图 6为电池组件最终产品一个实例的示意图。
具体实施方式
下面将结合实施例对本发明中的薄膜太阳能电池组件拼接组 装方法和装备作进一步的详细描述。
如图 1所示的本发明设备,由下层覆膜送料卷 10连续地送出 下层覆膜,该下层覆膜经由下层覆膜导辊 11被输出到支撑在支架 14上的一个加热平板 12的表面上并在其上行进, 行进过程中加 热平板 12是加热的并保持温度不变, 例如 120°C。 根据本发明, 下层覆膜可以是一面涂胶而另一面不涂胶的预涂膜, 不涂胶的一 面与加热平板 12 直接接触; 或者下层覆膜可以采用多层膜的形 式, 例如一层胶膜与一层或多层塑料膜的复合膜。 加热平板的加 热温度能够使预涂的胶或者使胶膜熔化, 同时下层覆膜又不会粘 接在加热平板上, 以便能够连续地行进。
如图 1所示的实施例, 在加热平板 12的上方, 十个电池条带 放料卷 6通过轴承安装在固定面板 13上,它们彼此相邻并等间距 地布置。 电池条带放料卷 6的安装位置可以在同一水平高度上或 在不影响电池条带传动的情况下上下交错排布。 根据本发明, 电 池条带放料卷 6可以不是十个, 根据希望串联的电池条带数量可 以增加或减少电池条带放料卷的安装位置和数量。 在不使用引出 导线条带的情况下(在本文的最后介绍使用引出导线条带), 电池 条带放料卷至少为两个。 在图 1所示实施例中, 沿着下层覆膜在 加热平板上的前进方向, 第一到第十个电池条带放料卷 6从上游 向下游依次顺序布置。 如图 2所示, 每下一个电池条带放料卷 6 从固定面板 13上伸出的距离比前一个电池条带放料卷 6从固定面 板 13 上伸出的距离远, 相差量相等且都小于一个电池条带的宽 度。 在固定面板 13上固定有电池奈带导辊 15, 每个电池条带导 辊 15与一个电池条带放料卷 6相对应, 电池条带导辊 15位于电 池条带放料卷 6下方并靠近加热平板布置; 在电池条带放料卷 6 处于同一水平高度的情况下,电池条带导辊 15也处于同一水平高 度。 这样,各个电池条带放料卷 6通过电池奈带导辊 15把电池条 带 16连续且相继地输出到在加热平板 12上连续通过的下层覆膜 上, 以使输出的相邻电池条带都相互平行且边缘搭接, 每两个相 邻的电池条带搭接的量相等。 具体为, 输出到下层覆膜上的每个 电池条带的正面均朝下, 每前一个电池条带的背面与相邻的下一 个电池条带的正面搭接。如图 5所示, 电池条带包括透明导电层、 P型半导体层、 N型半导体层和导电衬底层, 透明导电层所在的 一面为正面, 导电衬底层所在的一面为背面。
电池条带放料卷 6的下方设有九个点胶机 7, 其固定在固定 面板 13上。 如图 1所示, 只有最后一个电池条带放料卷(即第十 个)的下方没有点胶机。每个点胶机距加热平板表面的高度相等。 但是, 每两个相邻点胶机从固定面板上伸出的距离差与如上所述 各个放料卷伸出的距离差相应, 以便每个点胶机恰好能在相邻电 池条带搭接区域点胶。 将导电胶预先灌注于导电胶管中, 点胶机 7 连续地向电池条带搭接区域施加导电胶。 点胶机的点胶针头直 径为 0.2mm-0.8mm, 优选为 0.4mm, 点胶压力例如可以为 0.4MPa。 采用固定点胶方式使点胶机的点胶点在奈带运行过程中 固定不动, 以确保导电胶的点胶线条均匀。
在固定面板 13上还固定有十个压辊 8, 每个压辊 8位于点胶 机 7与电池条带导辊 15之间并且彼此紧邻。 压辊是连续转动的, 并与加热平板的表面之间保持合适的间隙, 以便可以将电池条带 与电池条带和下层覆膜压合。 这里要注意, 由于最后一个电池条 带放料卷 6下方没有点胶机, 因此该最后一个电池条带放料卷 6 下方的压辊 8只是与相应的电池条带导辊 15相邻,并处于该相应 的电池条带导辊 15的下游。 另外, 由于电池条带的宽度以及电池 奈带搭接区域的宽度相对于压辊 8而言小的多, 因此压辊 8从固 定面板上伸出的距离可以是相同的, 只要保证每个电池条带和每 两个电池条带的搭接区域均处在压辊的辊身宽度范围之内。
当第一个电池条带经导辊 15输出到下层覆膜上后,首先经过 第一个电池条带放料卷对应的压辊, 由于下层覆膜预涂胶一面的 胶(或是胶膜层) 在加热平板的温度下熔化, 该压辊将该电池条 带压合到下层覆膜上。 然后, 第一个电池条带放料卷对应的点胶 机开始点胶并且此后将连续点胶。 随后, 当载有笫一电池条带的 下层覆膜经过第二个电池条带放料卷的电池条带导辊下方时, 第 二个电池条带输出并以其正面与已点有导电胶的第一电池条带的 背面搭接, 再经过第二个电池条带放料卷对应的压辊, 从而笫二 个电池条带与第一个电池条带并与下层覆膜被压合。 然后到达第 二个电池条带放料卷对应的点胶机处, 该点胶机在笫二个电池条 带上要与下一个电池条带搭接的边缘处点胶。 如此类推, 随后相 邻的每两条电池奈带的相互搭接区域内, 采用导电胶连接前一电 池条带的背面和下一相邻电池条带的正面并用压辊压合, 从而实 现电池条带的串联。 点胶点位置与条带的搭接方式如图 3和图 4 所示。
根据本发明, 电池条带 16仅在长度方向上传动, 而在宽度和 厚度方向上的位置被条带压辊限制成相对固定不动。加热平板 12 用热油或其它方式加热, 以使下层覆膜和电池条带可以有效地胶 合, 这样也利于进一步精确控制点胶点和电池条带的相对位置, 从而减少电池条带传动过程中的相对位置波动。 在每个电池条带 放料卷 6的上方可设置一个收料轴, 用皮带带动该收料轴转动, 以便于回收电池条带盘卷的隔离衬层材料。 通过调整电池条带导 辊 15 的位置可控制条带之间的重叠尺寸, 重叠宽度为 0.5mm-2.5mm, 优选为 0.85mm。 由于电池条带导辊 15在条带传 动过程中是固定不动的, 因此条带之间的重叠尺寸可以精确地得 以控制。
在下层覆膜与电池条带的组件的出口侧, 收卷机控制拒 1设 置在支架 14结构的外部。收卷机控制拒 1内设有一对上下侧压辊 4和 5和一个收卷轴 2,上侧压辊和下侧压辊至少有一个具有加热 功能。 并且, 收卷机控制拒 1上设有上层覆膜送料卷 3。 上层覆 膜送料卷 3送出的上层覆膜经导辊导引绕在上侧压辊 4上, 并进 给到从上游输送来的条带和下层覆膜的组件上。 根据本发明, 上 层覆膜也可以是单层薄膜或多层薄膜的形式。 收卷轴由伺服电机 带动, 预置传动线速度例如 3cm/s。 开启上下侧压辊的气动压力, 将上下侧压辊压紧。 然后上下覆膜和条带的組件一起通过上下压 辊的压合部, 从而被紧密结合。 在此过程中, 上下侧压辊可进行 冷压或热压。 在热压的情况下, 可将上和 /或下侧压辊加热到例如 120 , 并保持 120Γ不变。 上层覆膜、 条带和下层覆膜结合后由 收卷轴 2卷取。 这样, 太阳能电池组件被封装, 提高电池组件的 环境保护质量。
另外,根据本发明, 上下侧覆膜送料卷均可以是一个或多个, 以提供多层上下侧薄膜的送料。 条带在传动过程中可釆用速度传 感器 9检测和反馈控制, 实现电池组件生产的稳定性。 该设备的 控制系统采用 PLC控制系统、 图像采集分析系统、触摸屏人机界 面系统, 具有控制方便, 自动化程度高的优点。
用上述实施例中方法和设备制得的薄膜太阳能电池组件最终 产品的宽度为 10cm, 开路电压为 5.5V, 具有长度不受限制的特 点, 例如长度可为 1000米甚至更长。最终产品的宽度可根据拼接 电池奈带的数量而定, 例如, 在只有一个电池条带的电池組件的 情况下, 最终产品的宽度为 1cm; 在拼接 30个电池条带的电池组 件的情况下, 最终产品的宽度为 30cm。可根据用户的要求任意截 取一定的长度达到对电池組件电流的要求。 如果需要更高的使用 电压, 可以采用金属导线对电池组件进行逐级串联。
此外, 如果需要的话, 可以用一卷引出导线条带放料卷来代 替第一个电池条带放料卷或最后一个条带放料卷。 在引出导线条 带卷代替笫一个电池条带放料卷的情况下, 首先是经笫一压辊将 引出导线条带卷压合到下层覆膜上; 并且, 随后的各电池条带放 料卷输出的电池条带以正面朝下的方式输出; 并且, 电池组件的 两个电极引线分别与引出导线条带和最后一个电池条带相连。 在 引出导线条带卷代替最后一个电池条带放料卷的情况下, 如前所 述,各电池条带放料卷输出的电池条带是以正面朝上的方式输出; 这种情况下, 电池组件的两个电极引线分别与第一个电池条带和 引出导线条带相连。 在使用引出导线条带的情况下, 电池条带放 料卷为至少一个。
按照本发明的薄膜太阳能电池组件组装拼接方法和装备, 可 以连续、 高效、 方便的制备薄膜太阳能电池组件。 通过条带的边 缘搭接方法实现电池条带之间的串联, 可实现连续电池组件的生 产, 电池组件的电压可以根据要求灵活设计, 并由同一台设备完 成, 实现太阳能电池组件的宽度和长度任意可调。 按照本发明的 设备和方法, 避免了预埋电极方式带来的诸多缺点, 并且生产成 本低廉。

Claims

1. 一种拼接組装薄膜太阳能电池组件的方法, 包括:
将下层覆膜引导并连续地输出到输送表面上, 该输送表面是 被力 p热的;
将多个电池条带引导并相继地输出到下层覆膜上, 每个电池 条带具有正面以及与该正面相反的背面, 首先将第一个电池条带 与下层覆膜压合并且随后使得每两个相邻的电池条带之间平行搭 接;
在搭接区域连续地点导电胶;
在相邻电池条带搭接后再对条带施压, 以使条带之间以及条 带与下层覆膜压合;
将条带和下层覆膜的组件收卷。
2. 如权利要求 1所述的方法, 其中, 条带和下层覆膜在输送 过程中仅在输送方向上运动。
3. 如权利要求 1所述的方法, 其中, 导电胶的点胶点位置保 持固定。
4. 如权利要求 1所述的方法, 其中, 在输出第一个电池条带 之前可输出一条引出导线条带, 或在输出最后一个电池条带之后 输出一条引出导线条带。
5. 如权利要求 1-4任意一项所述的方法, 其中, 将条带和下 层覆膜的组件收卷之前用上层覆膜封装该组件。
6. 如权利要求 5所述的方法, 其中, 上层覆膜和下层覆膜均 可为单层膜或多层复合膜的形式。
7. 一种拼接组装薄膜太阳能电池組件的设备, 包括:
输送表面, 该输送表面是可加热的;
下层覆膜送料卷, 其经下层覆膜导辊而连续地将下层覆膜输 出到加热的输送表面上;
多个电池条带放料卷, 它们被固定在固定面板上并且沿输送 方向等间距地设于输送表面上方, 经固定在固定面板上的电池条 带导辊将电池条带输出到下层覆膜上, 其中每个电池条带具有正 面以及与该正面相反的背面;
多个点胶机, 每个点胶机都固定在固定面板上, 位于电池条 带导辊之后, 并位于除了沿输送方向上最下游的放料卷之外的相 应放料卷下方, 用于向条带上连续地点导电胶;
多个压紧机构, 每个压紧机构固定在固定面板上并且位于每 个放料卷下方, 除了沿输送方向上最下游的放料卷下的压紧机构 之外的其它压紧机构均位于相应的点胶机与电池条带导辊之间; 收卷机构, 其位于输送方向的下游出口侧, 用于收取条带和 下层覆膜的组件;
其特征在于, 电池条带放料卷从固定面板上伸出的距离两两 不同, 每两个相邻电池条带放料卷伸出的距离之差均相等并小于 一个电池条带的宽度, 以使输出到下层覆膜上的电池条带之间彼 此平行搭接; 同时, 每个点胶机从固定面板上伸出一定距离, 以 向电池条带搭接区域点导电胶。
8. 如权利要求 7所述的设备, 其中, 一个引出导线条带放料 卷设置在所述多个电池条带放料卷之前或之后。
9. 如权利要求 7所述的设备, 其中, 收卷机构中设有: 上层 覆膜送料卷, 其将上层覆膜经上层覆膜导辊输出到条带和下层覆 膜的组件上; 和组件压紧机构, 以将上层覆膜与組件封装。
10. 如权利要求 7所述的设备, 其中, 所述多个电池条带放料 卷设在同一水平高度上或是在高度方向上交错。
11. 如权利要求 7所述的设备, 其中, 所述电池条带导辊是可 调节的, 以便调节搭接区域的重叠尺寸。
12. 如权利要求 9所述的设备, 其中, 上层覆膜和下层 可为单层膜或多层复合膜的形式。
13. 一种采用如权利要求 7 所述设备拼接的薄膜太阳 组件, 其中, 该产品宽 l-30cm, 长度连续。
PCT/CN2009/000228 2008-05-28 2009-03-04 薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品 WO2009143690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09753408A EP2290702A4 (en) 2008-05-28 2009-03-04 METHOD AND DEVICE FOR ASSEMBLING A FILMSOLAR BATTERY ASSEMBLY AND A PRODUCT MANUFACTURED THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810110740.5 2008-05-28
CN2008101107405A CN101281938B (zh) 2008-05-28 2008-05-28 薄膜太阳能电池组件拼接组装方法和设备

Publications (1)

Publication Number Publication Date
WO2009143690A1 true WO2009143690A1 (zh) 2009-12-03

Family

ID=40014298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000228 WO2009143690A1 (zh) 2008-05-28 2009-03-04 薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品

Country Status (3)

Country Link
EP (1) EP2290702A4 (zh)
CN (1) CN101281938B (zh)
WO (1) WO2009143690A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456824A (zh) * 2013-08-08 2013-12-18 刘庆云 一种管状跟踪聚光光伏组件
CN106653944A (zh) * 2016-12-07 2017-05-10 陈红 柔性电池片串联拼接软磁定位工装
CN109524510A (zh) * 2018-12-28 2019-03-26 东莞市沃德精密机械有限公司 光伏电池覆膜方法、设备及拼接组装光伏电池组件的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281938B (zh) * 2008-05-28 2011-10-05 安泰科技股份有限公司 薄膜太阳能电池组件拼接组装方法和设备
US20100252606A1 (en) * 2009-04-03 2010-10-07 United Solar Ovonic Llc Roll-to-roll deposition apparatus with improved web transport system
CN102034877A (zh) * 2009-09-30 2011-04-27 比亚迪股份有限公司 一种太阳能电池用导电浆料及其制备方法
CN104526191B (zh) * 2014-10-30 2017-01-18 信阳师范学院 多互联导线的光伏电池的滚动焊接装置及其焊接方法
CN109168324A (zh) * 2015-12-30 2019-01-08 各星有限公司 用于光伏串和模块的高级互连方法
CN110379876A (zh) * 2019-07-19 2019-10-25 苏州德星云智能装备有限公司 一种太阳能电池片薄膜敷合装置
CN113385493B (zh) * 2021-06-09 2022-11-22 江西佰嘉实业有限公司 一种为管道提供除尘和吸尘的装置
CN113878882B (zh) * 2021-09-29 2024-04-19 任进礼 可折叠气泡膜组件制造设备及使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131123A (en) 1977-01-13 1978-12-26 Solec International, Inc. Solar cell module and method of making same
US4173496A (en) 1978-05-30 1979-11-06 Texas Instruments Incorporated Integrated solar cell array
US4278473A (en) 1979-08-24 1981-07-14 Varian Associates, Inc. Monolithic series-connected solar cell
CN86102164B (zh) * 1985-04-01 1988-08-03 能源转换装置公司 增加有效面积的光电池
US5266125A (en) 1992-05-12 1993-11-30 Astropower, Inc. Interconnected silicon film solar cell array
CN2648608Y (zh) * 2003-08-27 2004-10-13 上海太阳能科技有限公司 带传送的太阳电池组件层压机
CN101118934A (zh) * 2007-08-24 2008-02-06 四川大学 一种可卷曲和折叠的柔性太阳电池装置
CN101281938A (zh) * 2008-05-28 2008-10-08 安泰科技股份有限公司 薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769091A (en) * 1972-03-31 1973-10-30 Us Navy Shingled array of solar cells
US4167644A (en) * 1978-09-29 1979-09-11 Exxon Research & Engineering Co. Solar cell module
DE3708548A1 (de) * 1987-03-17 1988-09-29 Telefunken Electronic Gmbh Solarzellenmodul mit parallel und seriell angeordneten solarzellen
CN2032539U (zh) * 1988-01-09 1989-02-15 李苏鸿 薄壁塑料接缝管及制管机
JP2001177138A (ja) * 1999-12-14 2001-06-29 Toshiba Corp 太陽電池パネルの製造装置及び製造方法
AU2002257180A1 (en) * 2002-01-04 2003-07-30 G.T. Equipment Technologies Inc. Solar cell stringing machine
JP2004153137A (ja) * 2002-10-31 2004-05-27 Fuji Electric Holdings Co Ltd 太陽電池モジュールの製造方法および製造装置
US7259030B2 (en) * 2004-03-29 2007-08-21 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
US7777128B2 (en) * 2004-06-01 2010-08-17 Konarka Technologies, Inc. Photovoltaic module architecture
DE102005036130A1 (de) * 2005-07-26 2007-02-01 Ernst Knoll Feinmechanik Gmbh Verfahren und Vorrichtung zum Herstellen eines Solarzellenstring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131123A (en) 1977-01-13 1978-12-26 Solec International, Inc. Solar cell module and method of making same
US4173496A (en) 1978-05-30 1979-11-06 Texas Instruments Incorporated Integrated solar cell array
US4278473A (en) 1979-08-24 1981-07-14 Varian Associates, Inc. Monolithic series-connected solar cell
CN86102164B (zh) * 1985-04-01 1988-08-03 能源转换装置公司 增加有效面积的光电池
US5266125A (en) 1992-05-12 1993-11-30 Astropower, Inc. Interconnected silicon film solar cell array
CN2648608Y (zh) * 2003-08-27 2004-10-13 上海太阳能科技有限公司 带传送的太阳电池组件层压机
CN101118934A (zh) * 2007-08-24 2008-02-06 四川大学 一种可卷曲和折叠的柔性太阳电池装置
CN101281938A (zh) * 2008-05-28 2008-10-08 安泰科技股份有限公司 薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2290702A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456824A (zh) * 2013-08-08 2013-12-18 刘庆云 一种管状跟踪聚光光伏组件
CN106653944A (zh) * 2016-12-07 2017-05-10 陈红 柔性电池片串联拼接软磁定位工装
CN109524510A (zh) * 2018-12-28 2019-03-26 东莞市沃德精密机械有限公司 光伏电池覆膜方法、设备及拼接组装光伏电池组件的方法
CN109524510B (zh) * 2018-12-28 2024-05-28 广东沃德精密科技股份有限公司 光伏电池覆膜方法、设备及拼接组装光伏电池组件的方法

Also Published As

Publication number Publication date
EP2290702A4 (en) 2012-06-13
EP2290702A1 (en) 2011-03-02
CN101281938B (zh) 2011-10-05
CN101281938A (zh) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2009143690A1 (zh) 薄膜太阳能电池组件拼接组装方法和设备及由其生产的产品
JP5775229B2 (ja) 極板をセパレータで挟む装置
EP2234181B1 (en) Manufacture method for a photovoltaic module
WO2017101435A1 (zh) 一种用于太阳能电池的无主栅焊带的制备方法
EP2525395B1 (en) Machine for manufacturing electrode tapes
CN103797404B (zh) 液晶显示元件的连续制造方法及装置
CN105789678B (zh) 电芯卷绕叠片机用上片装置
CN104137271A (zh) 用于制造太阳能电池模组的方法和设备以及包括柔性薄膜太阳能电池的太阳能电池模组
CN113809374A (zh) 五合一成型设备
WO2022179621A1 (zh) 电芯及叠片装置
KR101367297B1 (ko) 솔라셀의 전극 본딩장치 및 본딩방법
CN113002108A (zh) 一种模切产品转贴装置及应用其的转贴工艺
CN112768389A (zh) 贴膜装置、电池串贴膜设备及电池串贴膜方法
CN212062604U (zh) 贴胶装置及贴胶设备
CN205583044U (zh) 电芯卷绕叠片机用上片装置
JP2004047372A (ja) シート片の作製および取り付け方法、ならびに電池の製造方法
CN214727174U (zh) 一种模切产品转贴装置
CN101734440A (zh) 一种电池包装材料、一种电池包装方法及装置
JP2004153137A (ja) 太陽電池モジュールの製造方法および製造装置
CN214542153U (zh) 贴膜装置及电池串贴膜设备
KR20040079533A (ko) 와인딩 타입의 셀 스태킹머신
CN214542259U (zh) 电池串生产线及电池串生产设备
CN113036004B (zh) 一种无主栅太阳电池片电极复合膜制备方法
CN218101286U (zh) 一种光伏发电瓦芯片封装装置
CN116825902B (zh) 光伏组件用覆膜系统、覆膜方法及光伏组件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009753408

Country of ref document: EP