WO2009142170A1 - シームレスカプセル - Google Patents

シームレスカプセル Download PDF

Info

Publication number
WO2009142170A1
WO2009142170A1 PCT/JP2009/059123 JP2009059123W WO2009142170A1 WO 2009142170 A1 WO2009142170 A1 WO 2009142170A1 JP 2009059123 W JP2009059123 W JP 2009059123W WO 2009142170 A1 WO2009142170 A1 WO 2009142170A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
layer
seamless capsule
capsule
biocatalyst
Prior art date
Application number
PCT/JP2009/059123
Other languages
English (en)
French (fr)
Inventor
正智 吉門
雅章 中辻
雅宣 浅田
良誠 釜口
高寺 貴秀
村松 利光
Original Assignee
森下仁丹株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森下仁丹株式会社 filed Critical 森下仁丹株式会社
Priority to ES09750532.5T priority Critical patent/ES2548979T3/es
Priority to EP09750532.5A priority patent/EP2292752B9/en
Priority to US12/993,141 priority patent/US20110117622A1/en
Publication of WO2009142170A1 publication Critical patent/WO2009142170A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4883Capsule finishing, e.g. dyeing, aromatising, polishing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4891Coated capsules; Multilayered drug free capsule shells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a seamless capsule that contains a biocatalyst such as an enzyme or a living cell and can be applied as a bioreactor.
  • bioreactor substances that produce substances by adding biocatalysts such as biologically derived enzymes, microorganisms, animal or plant derived cells or tissues to reaction vessels for the purpose of not burdening the environment Production is increasing.
  • biocatalysts such as biologically derived enzymes, microorganisms, animal or plant derived cells or tissues
  • technologies in the bioengineering field and the bioscience field are applied.
  • a technique for immobilizing the biocatalyst is used in the bioreactor.
  • a carrier binding method for immobilization of the biocatalyst, for example, a carrier binding method, a crosslinking method, a comprehensive method, and a combination thereof are used.
  • a comprehensive method for immobilization of cells or tissues derived from microorganisms or animals and plants, a comprehensive method (specifically, a comprehensive method using a polymer gel such as agar, carrageenan, alginic acid, photocurable resin, polyacrylamide) is used. It is used.
  • the conventional entrapment method specifically suspends microorganisms and living cells in a sol before forming a polymer gel and gels it. Therefore, only living cells near the gel surface are effectively used, and the reaction rate per living cell is low. In addition, living cells may escape from the gel matrix.
  • Patent Documents 1 to 3 In order to solve these problems, various inclusive methods have been proposed (for example, Patent Documents 1 to 3).
  • Patent Document 1 discloses a microcapsule composed of a hollow porous outer shell, and discloses that microorganisms and the like are enclosed in the microcapsule. Specifically, an O / W emulsion is prepared by dispersing an organic phase containing calcium alginate beads including yeast in an aqueous phase, and the emulsion is dried to obtain microcapsules (coacervation method). Furthermore, it is disclosed that the yeast is enclosed in the hollow microcapsule by dissolving and removing calcium alginate encapsulated in the microcapsule by washing with hydrochloric acid. However, since the polystyrene film is mainly used for the microcapsule film, a harmful organic solvent may have to be used during capsule formation. Furthermore, in the coacervation method, the particle size and film thickness of the obtained microcapsules are not uniform, and therefore, the reaction by yeast in the nucleus may vary.
  • Patent Document 2 discloses a seamless capsule enclosing living cells and tissues.
  • Patent Document 3 discloses a three-layer seamless capsule using a photocurable resin as a film. All of these contain water in the nucleus, and the live cell-containing liquid to be enclosed is an aqueous system, so it is necessary to pay attention to contamination. In addition, the drying time becomes long, the process becomes complicated, and the cost for producing seamless capsules may increase.
  • Patent Document 4 includes a suspension containing a prepolymer having a molecular weight of 3500 or more and 20000 or less, a cross-linking agent having a molecular weight of 71 or more and a ratio of 0.045 or less to the prepolymer molecular weight, and microorganisms in a predetermined ratio.
  • a method for producing an immobilized microorganism in which microorganisms are entrapped and immobilized inside a crosslinked polymer by preparing and polymerizing the suspension is disclosed.
  • Immobilized microorganisms that contain microorganisms obtained by this method, as the reaction progresses, the surface microorganisms grow, resulting in the inclusion of the contained microorganisms in the reaction solution and the reaction solution becoming cloudy. There's a problem.
  • Patent Document 5 discloses that a dry powder containing live bacteria having an intestinal action is suspended in fats and oils from the viewpoint of storage stability of live bacteria.
  • a stable viable preparation characterized by the above is disclosed, and it is disclosed that a soft capsule is used as a form of use of the live fungus preparation.
  • Patent Document 6 discloses a two-layer capsule in which useful intestinal bacteria that have been orally ingested reach the intestine, in which capsules having a diameter of 3 mm or less are filled with dispersed oil. .
  • a capsule that can be applied to a bioreactor having a biocatalyst immobilized thereon is desired.
  • An object of the present invention is to provide a seamless capsule applicable to a bioreactor.
  • the seamless capsule is composed of two layers: an inner layer made of a suspension composition in which a biocatalyst is suspended in an oily substance, and an outer layer made of a coating composition containing a water-permeable substrate (see FIG. ) Is immersed in an aqueous liquid material, and a seamless capsule (see FIG. 1 (b)) having a pseudo-three-layer structure of an outer layer, an oil layer, and an aqueous layer in which the aqueous liquid material is sealed in the inner layer is added to the bioreactor. I found it applicable.
  • the outer layer of the two-layered seamless capsule is water permeable, for example, the microorganism (biocatalyst) is immersed by immersing the seamless capsule enclosing the microorganism (biocatalyst) in an aqueous liquid such as a liquid medium.
  • the liquid medium can be taken into the capsule through the outer layer while being held inside the capsule.
  • the seamless capsule has a pseudo three-layer structure of outer layer-oil layer-water layer as shown in FIG. Inside the seamless capsule having such a quasi-three-layer structure, medium components are assimilated by microorganisms, and metabolites (useful components) produced thereby can be released from the inside of the capsule to the outside.
  • the seamless capsule having a pseudo three-layer structure of outer layer-oil layer-water layer of the present invention is composed of an inner layer made of a suspension composition in which a biocatalyst is suspended in an oily substance, and a film composition containing a water-permeable base material. It is composed of two outer layers and is obtained by immersing the seamless capsule in an aqueous liquid.
  • the biocatalyst is at least one selected from the group consisting of enzymes, microorganisms, animal cells, plant cells, and plant tissues.
  • the biocatalyst is at least one selected from the group consisting of microorganisms, animal cells, plant cells, and plant tissues, and the biocatalyst is an outer layer-oil layer-water layer pseudo three-layer structure. Activated by.
  • the film composition comprises carrageenan, agar, glucomannan, alginic acid, acrylate oligomer, unsaturated polyester oligomer, epoxy oligomer, vinyl ether oligomer, polyene / thiol oligomer, and cinnamic acid. It contains at least one selected from the group consisting of oligomers.
  • the oily substance is olive oil, jojoba oil, corn oil, rapeseed oil, lard, beef tallow, whale oil, castor oil, soybean oil, rice oil, rice germ oil, coconut oil, palm oil, cocoa oil.
  • the present invention also provides a bioreactor, which comprises a seamless capsule having a pseudo three-layer structure of the outer layer-oil layer-water layer.
  • the present invention provides a method for producing a seamless capsule having a pseudo-three-layer structure of outer layer-oil layer-water layer, the method comprising an inner layer composed of a suspension composition in which a biocatalyst is suspended in an oily substance, and water permeation.
  • the seamless capsule composed of the two layers uses a capsule manufacturing apparatus including a concentric double nozzle having a first nozzle and a second nozzle from the innermost side, and a biocatalyst is supplied from the first nozzle.
  • a suspension composition suspended in an oily substance and a coating composition containing a water-permeable substrate from the second nozzle are simultaneously extruded into a liquid.
  • the seamless capsule of the present invention is a seamless capsule composed of two layers, an inner layer made of a suspension composition in which a biocatalyst is suspended in an oily substance, and an outer layer made of a film composition containing a water-permeable substrate. It is obtained by soaking in a liquid material.
  • the biocatalyst is suspended in the oily substance in the inner layer, so that the biocatalyst is well blocked from water (ie, in a dry state). Therefore, the biocatalyst is less likely to cause contamination and is stable for a long time.
  • the seamless capsule of the present invention is, for example, the result of incorporating the liquid medium into the capsule while immobilizing the microorganism inside the capsule by immersing the two-layer seamless capsule encapsulating the microorganism (biocatalyst) in the liquid medium.
  • a pseudo three-layer structure of outer layer-oil layer-water layer is formed. Metabolites (useful components) produced by microorganisms can be released from the inside of the capsule to the outside.
  • the seamless capsule having a pseudo-three-layer structure of the outer layer-oil layer-water layer of the present invention is useful because it can be applied to a bioreactor as a biocatalyst immobilized product. Furthermore, as described above, the seamless capsule of the present invention once prepares a two-layered seamless capsule, and then allows a liquid substrate (aqueous liquid, such as a liquid medium) to permeate from the outer layer to the inner layer. There is no need to enclose a liquid substrate, and therefore, the biocatalyst can be stably stored until it is used as a two-layered seamless capsule in which the biocatalyst is encapsulated at a higher concentration than the conventional immobilized biocatalyst.
  • a liquid substrate aqueous liquid, such as a liquid medium
  • the seamless capsule of the present invention does not need to cool the aqueous suspension containing the biocatalyst of the innermost layer in order to prevent the biocatalyst from being deactivated, unlike the conventional three-layer seamless capsule.
  • the seamless capsule having a three-layer structure obtained by the conventional manufacturing method has a limit in reducing the diameter, but the seamless capsule having a pseudo three-layer structure of the outer layer-oil layer-water layer of the present invention has 2 Since it is based on seamless capsules of layers, it is possible to stably make smaller diameters.
  • FIG. 1 It is a cross-sectional schematic diagram of a seamless capsule. It is a schematic diagram which shows an example of the capsule manufacturing apparatus for manufacturing the seamless capsule of this invention. It is a photograph which shows the state change of the capsule in the manufacture process of the seamless capsule of this invention.
  • the seamless capsule of the present invention is obtained by immersing a two-layer seamless capsule having a specific inner layer and outer layer in an aqueous liquid.
  • the seamless capsule of the present invention has a pseudo three-layer structure of outer layer-oil layer-water layer.
  • the two-layer seamless capsule used in the present invention is composed of an inner layer made of a suspension composition in which a biocatalyst is suspended in an oily substance, and an outer layer made of a film composition containing a water-permeable substrate.
  • the inner layer is made of a suspension composition in which a biocatalyst is suspended in an oily substance.
  • the biocatalyst is not particularly limited. Any reaction can be used as long as the reaction is activated in the presence of an aqueous liquid, that is, in a pseudo three-layer structure of outer layer-oil layer-water layer, and examples include those used as reaction elements in bioreactors.
  • Biocatalysts may be used alone or in combination of two or more.
  • the biocatalyst is contained in the suspension composition in a proportion of 0.001 to 30% by mass, preferably 0.01 to 20% by mass, for example, when the biocatalyst is in powder form (enzyme, fungal powder, etc.). .
  • the biocatalyst is a living cell such as a microorganism, an animal cell, a plant cell, or a plant tissue, 1 cell / mL to 5 ⁇ 10 11 cells / mL, preferably 1 ⁇ 10 3 cells / mL to 1 in the suspension composition. ⁇ 10 11 cells / mL is included.
  • the oily substance is not particularly limited as long as it is liquid when the two-layer seamless capsule is produced. From the viewpoint of preventing the deactivation of the biocatalyst, it is preferable to use an oily substance having a melting point of ⁇ 30 ° C. to 60 ° C.
  • oily substances examples include olive oil, jojoba oil, corn oil, rapeseed oil, lard, beef tallow, whale oil, castor oil, soybean oil, rice oil, rice germ oil, coconut oil, palm oil, cocoa oil, avocado oil, macadamia nut oil, squalane, mink oil, turtle oil, hydrocarbons with 8-30 carbon atoms, beeswax, carnauba wax, rice wax, lanolin, liquid paraffin, petroleum jelly, fatty acids with 4-30 carbon atoms, carbon number Is an ester of a fatty acid having 4 to 30 with sucrose (sucrose fatty acid ester), an ester of a fatty acid with 4 to 30 carbon atoms and glycerol (fatty acid monoglyceride, fatty acid diglyceride, or fatty acid triglyceride), having 4 to 30 carbon atoms Aliphatic alcohols such as esters of fatty acids having 4 to 30 carbon atoms and aliphatic alcohols having 4
  • the hydrocarbons, fatty acid glycerides, sucrose fatty acid esters, or fatty acids constituting the fatty acids may be either saturated fatty acids or unsaturated fatty acids.
  • the hydrocarbon group constituting the aliphatic alcohol may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the oily substances may be used alone or in combination of two or more. The viscosity or density of the oily substance is not particularly limited and can be appropriately adjusted.
  • the inner layer In the case of using an ester of fatty acid having 4 to 30 carbon atoms and glycerol (particularly fatty acid triglyceride) or fats and oils containing them as the oily substance, the inner layer ( It is also possible to add lipase in the suspension composition).
  • the capsules When two layers of seamless capsules are immersed in water, the capsules swell, thereby allowing water to penetrate into the capsules. This permeated water activates lipase and decomposes fats and oils. And this oil and fat decomposition product can be melt
  • the volume of oil and fat inside the capsule is reduced, and accordingly, an aqueous liquid can be easily taken into the capsule, and the contact between the biocatalyst and the aqueous component (substrate) can be made more efficient. it can.
  • the suspension composition can be obtained by suspending the biocatalyst in the oily substance.
  • a method commonly used by those skilled in the art, such as stirring, is used.
  • the outer layer includes a water-permeable base material and is made of a coating composition that may contain other components as necessary. Therefore, the outer layer permeates the aqueous liquid, and has a stretchability that allows the aqueous liquid to be taken into the capsule when the obtained two-layer seamless capsule is immersed in the aqueous liquid.
  • the water permeable substrate is preferably at least one of a gelling agent and a photocurable resin, and the film obtained thereby has a high permeability to an aqueous liquid. Further, the swelling of the film itself with water is not large, but it has an appropriate stretchability, and an aqueous liquid can be easily taken into the seamless capsule.
  • the aqueous liquid refers to water or an aqueous solution containing an aqueous component.
  • the aqueous component is a water-soluble component that can serve as a substrate for the biocatalyst, and is appropriately selected according to the type of the biocatalyst.
  • examples of the aqueous component include a medium component (including a carbon source, a nitrogen source, a mineral, and the like).
  • Gelling agent examples include carrageenan, agar, glucomannan, alginic acid, gellan gum, xanthan gum, locust bean gum, pectin, psyllium seed gum, guar gum, far celeran, arabinogalactan, arabinoxylan, gum arabic, Examples include polysaccharides such as dextrin, modified dextrin, starch, modified starch, pullulan, and carboxymethylcellulose salt. Carrageenan, agar, glucomannan, and alginic acid are preferred.
  • the gelling agent is contained in the coating composition at a solid content concentration of preferably 0.1 to 40% by mass, more preferably 0.3 to 30% by mass.
  • a photocurable resin is a resin that is cured by a reaction caused by light irradiation, and is usually a photopolymerizable monomer, a photopolymerizable oligomer, or a photopolymerizable monomer or a photopolymerizable oligomer. These addition polymers are used.
  • a photocurable resin may be used independently or may be used in combination of 2 or more types.
  • the photo-curable resin is preferably used in combination with a polymerization initiator.
  • Examples of the photopolymerizable oligomer include a photopolymerizable oligomer that is cured by radical polymerization and a photopolymerizable oligomer that is cured by a cationic polymerization reaction.
  • the number average molecular weight of the photopolymerizable oligomer is in the range of 300 to 30,000, preferably 500 to 20,000.
  • the photopolymerizable oligomer that is cured by radical polymerization has, for example, (meth) acryloyl group, vinyl group and the like as functional groups.
  • (meth) acryloyl group vinyl group and the like as functional groups.
  • urethane (meth) acrylate oligomer epoxy (meth) acrylate oligomer, ester (meth) acrylate oligomer, (meth) acrylate oligomer, unsaturated polyester oligomer, polyene / thiol oligomer, and cinnamic acid
  • An oligomer is mentioned.
  • a resin having a photopolymerizable ethylenically unsaturated group at both ends of polyalkylene glycol polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, alkyl chain having 4 to 10 carbon atoms.
  • (meth) acrylate indicates at least one of acrylate and methacrylate.
  • polyethylene glycol di (meth) acrylate refers to at least one of polyethylene glycol diacrylate and polyethylene glycol dimethacrylate.
  • a photopolymerizable oligomer that is cured by a cationic polymerization reaction has, for example, an epoxy group, a vinyl ether group, or the like as a functional group.
  • an epoxy group for example, there are epoxy oligomers and vinyl ether oligomers.
  • acrylate oligomers unsaturated polyester oligomers, polyene / thiol oligomers, cinnamic acid oligomers, epoxy oligomers, and vinyl ether oligomers are particularly preferably used.
  • photocurable resins particularly ionic or nonionic hydrophilic groups sufficient to be uniformly dispersed in an aqueous medium, such as hydroxyl groups, amino groups, carboxyl groups, phosphoric acid groups, sulfonic acid groups, ethers
  • a resin containing a bond or the like is preferably used.
  • Such photo-curable resins are disclosed in, for example, Japanese Patent Publication No. 55-40, Japanese Patent Publication No. 55-20676, Japanese Patent Publication No. 62-19837, and the like.
  • hydrophilic resin compounds having at least two ethylenically unsaturated bonds in one molecule high acid value unsaturated polyesters, high acid value unsaturated epoxides, anionic unsaturated acrylic resins, unsaturated Polyamide or the like is preferably used.
  • hydrophilic resin compounds having at least two ethylenically unsaturated bonds in one molecule are preferably used.
  • hydrophilic resin compound having at least two ethylenically unsaturated bonds in one molecule examples include resins having photopolymerizable ethylenically unsaturated groups at both ends of polyalkylene glycol.
  • polyethylene glycol di (meth) acrylates in which both terminal hydroxyl groups of polyethylene glycol having a molecular weight of 400 to 6000 are esterified with 2 moles of (meth) acrylic acid (2) both polypropylene glycol having a molecular weight of 200 to 4000 Polypropylene glycol di (meth) acrylates whose terminal hydroxyl groups are esterified with 2 moles of (meth) acrylic acid;
  • 1 moles of both end hydroxyl groups of polyethylene glycol having a molecular weight of 400 to 6000 are diisocyanate compounds (tolylene diisocyanate, xylylene Urethanated with 2 moles of diisocyanate, isophorone diisocyanate, etc., and further unsatur
  • Examples of the high acid value unsaturated polyesters include salts of unsaturated polyesters having an acid value of 40 to 200 obtained by esterification of a polyhydric carboxylic acid having an unsaturated bond and a polyhydric alcohol. It is done.
  • Examples of the high acid value unsaturated epoxides include unsaturated epoxy resins having an acid value of 40 to 200.
  • Such a resin can be prepared, for example, by preparing an addition reaction product of an epoxy resin and an unsaturated carboxyl compound ((meth) acrylic acid, etc.) and adding an acid anhydride to the hydroxyl group remaining in the addition reaction product. Obtained by.
  • the anionic unsaturated acrylic resin for example, it is derived from at least two (meth) acrylic monomers of (meth) acrylic acid and (meth) acrylic acid ester, and has a carboxyl group, a phosphoric acid group, and Examples thereof include a resin having a photopolymerizable ethylenically unsaturated group introduced into a copolymer having a sulfonic acid group.
  • Examples of the unsaturated polyamide include adding an adduct of diisocyanate (tolylene diisocyanate, xylylene diisocyanate, etc.) and an ethylenically unsaturated hydroxy compound (such as 2-hydroxyethyl acrylate) to a water-soluble polyamide such as gelatin. Can be obtained.
  • diisocyanate tolylene diisocyanate, xylylene diisocyanate, etc.
  • an ethylenically unsaturated hydroxy compound such as 2-hydroxyethyl acrylate
  • those that can be used particularly advantageously in the present invention are resins having polymerizable ethylenically unsaturated groups at both ends of polyalkylene glycol, typically Kansai Paint Co., Ltd. They are sold by the company under the trade names such as ENT-1000, ENT-2000, ENT-3400, ENT-4000, ENTG-2000, ENTG-3800.
  • the photocurable resin is contained in the coating composition as a solid content, preferably 10 to 99% by mass, more preferably 20 to 90% by mass, and still more preferably 40 to 90% by mass.
  • a gelling aid a water-soluble compound having an unsaturated bond
  • a polymerization initiator a photosensitizer, a colorant, and A pore forming agent is mentioned.
  • a gelling agent it is preferable to use a gelling aid.
  • a photocurable resin it is preferable to use a polymerization initiator, especially a photopolymerization initiator.
  • the gelling aid is used for the purpose of increasing the strength of the film containing the gelling agent.
  • the gelling aid can be appropriately selected depending on the type of gelling agent.
  • the gelation aid include sorbitol, mannitol, glycerin, propylene glycol, polyethylene glycol, glucose, fructose, galactose, arabinose, mannose, rhamnose, maltose, raffinose, sucrose, erythritol, maltitol, trehalose, lactose, xylose, etc.
  • Gelling aids may be used alone or in combination of two or more.
  • alginic acid, gellan gum, pectin, or carrageenan is included as the gelling agent, it is preferable to use an alkali metal salt, alkaline earth metal salt, ammonium salt, or the like as the gelling aid.
  • the gelling aid is contained in the coating composition at a solid concentration of preferably 0.1 to 30% by mass, preferably 0.5 to 20% by mass.
  • a water-soluble compound having an unsaturated bond is used for the purpose of increasing the strength of a film containing a photocurable resin.
  • a substance that dissolves in an aqueous solvent at 80 ° C. or lower is preferably used.
  • itaconic acid N, N′-methylenebisacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, N, N′-methylenebisacrylamide, N-isopropylacrylamide, N-vinylpyrrolidone, acryloylmorpholine, N, Examples thereof include N′-dimethylacrylamide, N-vinylformamide, (meth) acrylate, and the like.
  • the water-soluble compounds having an unsaturated bond may be used alone or in combination of two or more.
  • the water-soluble compound having an unsaturated bond is contained in the coating composition in a solid concentration of 0.01 to 30% by mass, preferably 0.1 to 25% by mass.
  • the polymerization initiator is not particularly limited, but a photopolymerization initiator is preferably used.
  • the photopolymerization initiator is a compound that generates a polymerization initiating species by light irradiation and promotes polymerization or a crosslinking reaction.
  • Typical examples include benzoin, acetoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzophenone, benzyl, Michler's ketone, xanthone, chlorothioxanthone, isopropyl thioxanthone, benzyl dimethyl ketal, naphthol, anthraquinone, hydroxyanthracene, acetophenone.
  • Examples include diethyl ketal, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methylphenylpropane, aromatic iodonium salt, aromatic sulfonium salt, iodonium salt, sulfonium salt, triarylsulfonium salt, trifluorocarbonsulfonium salt and the like.
  • the polymerization initiators may be used alone or in combination of two or more.
  • the polymerization initiator is contained in the coating composition in a solid content concentration of 0.001 to 20% by mass, preferably 0.1 to 10% by mass.
  • the photosensitizer is contained when a photocurable resin is used as the water permeable substrate.
  • photosensitizers include ruthenium complexes and porphyrin compounds. Such a photosensitizer imparts sufficient sensitivity in the visible light region.
  • the colorant is not particularly limited, and natural colorants, synthetic colorants and the like are appropriately used as necessary.
  • the pore forming agent examples include starch, modified starch (alkylated starch, etherified starch, etc.), polymers such as dextrin having an average molecular weight of 1000 or more, cellulose, and protein.
  • the pore-forming agent is used for the purpose of further enhancing the membrane permeability of the resulting seamless capsule. For example, after the capsule is formed, the pore-forming agent is removed from the film by enzyme treatment, acid, alkali treatment, etc. (for example, the polymer is cut, decomposed, or dissolved) to form pores in the capsule film, or exist The diameter of the hole to be made can be increased, and a capsule having high membrane permeability can be obtained.
  • the above-mentioned two-layer seamless capsule (FIG. 1 (a)) is, for example, a submerged dropping method using a capsule manufacturing apparatus equipped with a concentric double nozzle.
  • a capsule manufacturing apparatus comprising a concentric double nozzle having a first nozzle and a second nozzle from the inside, a suspension composition obtained by suspending a biocatalyst in an oily substance from the first nozzle, and from the second nozzle It is prepared by a method including a step of simultaneously extruding a coating composition containing a water-permeable substrate into a liquid.
  • a liquid oily substance liquid oil
  • the above-mentioned oily substance that is liquid at 0 to 40 ° C. is used. This liquid is preferably used after being cooled.
  • the two-layer seamless capsule is manufactured by, for example, a submerged dropping method using a manufacturing apparatus shown in FIG.
  • a concentric double nozzle 1 is arranged with a discharge port facing downward in a carrier fluid 2 (liquid oil) flowing down at a steady speed.
  • the contents 32 to be encapsulated are supplied from the innermost nozzle (inner nozzle 11) in the concentric double nozzle 1 and from the outer layer composition (coating composition) 31.
  • the droplet in the carrier fluid 2 is cooled, or the droplet is irradiated with light in the carrier fluid 2 or in a state where the carrier fluid 2 is separated.
  • a gelling agent is contained in the coating composition
  • a coating is formed by sol-gel transition when cooled.
  • the film composition contains a photocurable resin
  • the film is formed by light irradiation.
  • alginic acid, gellan gum, pectin, or carrageenan is used as a gelling agent, it may be added dropwise to a divalent or higher metal ion solution. In this way, a two-layer seamless capsule 3 is obtained.
  • the solidification temperature is set within a range of ⁇ 10 to 30 ° C., preferably 0 to 20 ° C.
  • the wavelength of the actinic ray necessary for curing the photocurable resin is generally in the range of about 200 nm to about 600 nm, and a light source that emits light having such a wavelength is used. It is advantageous to use for irradiation. Examples of such a light source include a mercury lamp, a fluorescent lamp, a xenon lamp, a carbon arc lamp, and a metal halide lamp.
  • a light source include a mercury lamp, a fluorescent lamp, a xenon lamp, a carbon arc lamp, and a metal halide lamp.
  • the above-mentioned film composition contains a photosensitizer, it is preferable in that sufficient sensitivity is imparted to the visible light region.
  • it can be cured using an actinic ray having a short wavelength in the ultraviolet region.
  • the irradiation time varies depending on the intensity and distance of the light source, but is generally in the range of 0.05 seconds to 10 minutes, preferably 0.5 seconds to 2
  • the particle size range of the two-layer seamless capsule is usually 0.1 mm to 10 mm, preferably 0.3 mm to 8 mm.
  • the prepared capsules may be used without being dried and with moisture remaining in the capsules depending on the use, or may be used after being dried by a normal pressure or vacuum drying method.
  • the two-layer seamless capsule has no seams and has a uniform size and film thickness.
  • a capsule having desired characteristics can be prepared in the same manner as a conventional capsule by using a film composition containing various additives such as a colorant.
  • the seamless capsule of the present invention is obtained by immersing the two-layer seamless capsule in an aqueous liquid.
  • aqueous liquid for example, water as described above or an aqueous solution containing an aqueous component such as a liquid medium is used.
  • the amount of the aqueous liquid is not particularly limited as long as the seamless capsule can be immersed therein. There are no particular restrictions on the immersion conditions. From the viewpoint of preventing the deactivation of the biocatalyst contained in the seamless capsule, for example, it is performed at 4 to 60 ° C. for 1 hour to 60 days. Stirring is preferred in that the aqueous liquid can be efficiently enclosed.
  • FIG. 3 shows changes in the state of the capsule when two layers of seamless capsules are immersed in an aqueous liquid.
  • a spherical capsule having a depression as shown in FIG. 3B is formed. Is done. This indicates that a part of the outer layer (film) expands and contracts, whereby the aqueous liquid is taken into the capsule, and an aqueous liquid layer is formed in the capsule.
  • the coating of the outer layer is further swollen, and the capsule dent is gradually disappeared to form a spherical seamless capsule as shown in FIG.
  • a spherical colored layer as shown in FIG. 1B is formed in the spherical seamless capsule. Therefore, it is clear that the seamless capsule of the present invention forms a pseudo three-layer structure of outer layer-oil layer-water layer.
  • a biocatalyst is activated and a useful substance can be produced by contacting the biocatalyst with an aqueous liquid.
  • a two-layer seamless capsule encapsulating a biocatalyst such as a microorganism is immersed in a liquid medium, the liquid medium is taken into the capsule and the seamless capsule of the present invention is obtained.
  • microorganisms assimilate the components in the medium, so that the microorganisms grow and further metabolites (useful components) are produced. This metabolite can then permeate the outer layer and be released from the inside of the capsule to the outside.
  • the seamless capsule of the present invention can be used as a bioreactor.
  • the seamless capsule of the present invention can also be used as a sustained-release drug.
  • a seamless capsule encapsulating Langerhans when administered to a patient who develops diabetes, the blood glucose level can be maintained in a normal range for a long period of time.
  • a capsule manufacturing apparatus having a concentric double nozzle shown in FIG. 2 was prepared, and vegetable oil cooled to 15 ° C. was circulated as a carrier fluid.
  • the liquid was ejected to obtain droplets (seamless capsules).
  • the droplets (seamless capsules) in the carrier fluid were irradiated with ultraviolet rays using a high-pressure mercury lamp (wavelength: 320 to 400 nm) to polymerize the photocurable resin (ENTG-3800).
  • the obtained seamless capsules had a particle size of 4 mm.
  • the dextrin concentration in water increased with time. This is because the dextrin having an average molecular weight of about 1,000 existing inside the seamless capsule is dissolved by the water that has penetrated through the coating (outer layer) from the outside of the capsule, and further penetrates the coating and passes from the inside of the capsule to the outside. Indicates that it has been diffused.
  • the pullulan concentration in water increased with time. This means that the pullulan having an average molecular weight of about 120,000 existing inside the seamless capsule is dissolved by the water that has penetrated through the film (outer layer) from the outside of the capsule, and further penetrates the film and passes from the inside of the capsule to the outside. Indicates that it has been diffused. Even such a polymer can penetrate the outer layer.
  • the above coating composition and suspension composition were ejected in the same manner as in Reference Example 1 using a capsule manufacturing apparatus having a concentric double nozzle to obtain droplets (seamless capsules).
  • This droplet (seamless capsule) was irradiated with ultraviolet rays using a high-pressure mercury lamp (wavelength: 320 to 400 nm) to polymerize a photocurable resin (ENT-3400).
  • the obtained seamless capsules had a particle size of 4 mm. Further, this seamless capsule was dried to obtain a dry seamless capsule having a particle size of 3.5 mm.
  • the 20 dried seamless capsules obtained were collected in a 100 mL beaker. Next, 50 mL of distilled water was added to the beaker to immerse the seamless capsule, and the mixture was allowed to stand at 20 ° C. for 6 hours. Ten seamless capsules immersed were taken out, the film thickness and particle size were measured, and the average value of each was obtained. Further, the film volume was calculated based on the obtained film thickness and particle size measurements. The results are shown in Table 3.
  • the seamless capsules after water immersion showed a large increase in particle size, although the film thickness and film volume were not significantly different from the seamless capsules before water immersion. This indicates that by immersing the seamless capsule in water, the film itself is less swollen by water and water is transferred into the seamless capsule.
  • Lactic acid bacteria (Lactococcus lactis subsp. Lactis JCM 7638) were statically cultured at 37 ° C. for 15 hours using Deman Rogosa Sharp (MRS) bouillon medium (Oxoid) containing marble.
  • the viable cell count of the obtained culture suspension was 1.5 ⁇ 10 10 cfu / mL.
  • cfu is an abbreviation for colony forming unit and represents the number of viable bacteria.
  • This culture suspension was centrifuged at 10,000 ⁇ g for 20 minutes at 4 ° C., and the resulting precipitate was lyophilized to prepare lactic acid bacteria powder.
  • a coating composition was prepared by adding 20 parts by mass of PEG 1000 (polyethylene glycol having an average molecular weight of about 1,000) to 180 parts by mass of a 2% agar aqueous solution maintained at 80 ° C.
  • PEG 1000 polyethylene glycol having an average molecular weight of about 1,000
  • the lactic acid bacteria powder was suspended in a mixture of 85 parts by mass of long-chain fatty acid triglyceride and 15 parts by mass of sucrose fatty acid ester to prepare a suspension composition.
  • a capsule manufacturing apparatus having a concentric double nozzle shown in FIG. 2 was prepared, and vegetable oil cooled to 9 ° C. was circulated as a carrier fluid.
  • the viable cell count and pH of the MRS liquid medium used for shaking culture were measured.
  • the viable cell count was below the detection limit, and the pH was 4.0, which was lower than before the culture (pH 6.5). From the result of the viable count, it can be seen that lactic acid bacteria are not leaking from the seamless capsule.
  • the results of pH and the increase in lactic acid concentration over time in Table 4 it is considered that lactic acid produced by lactic acid bacteria permeates the seamless capsule film and is released to the outside of the capsule.
  • the seamless capsule of the present invention is useful as a bioreactor.
  • Example 2 As a film composition, a mixture of 60 parts by mass of 40% ENT-3400 (manufactured by Kansai Paint Co., Ltd.), 0.6 parts by mass of benzoin isobutyl ether, and 20 parts by mass of 1% acryloylmorpholine (manufactured by Kojin Co., Ltd.) Prepared. A mixture of 100 parts by mass of soybean oil and 20 parts by mass of liquid paraffin was prepared as an oily substance, and 20 parts by mass of pressed bread yeast (manufactured by Oriental Yeast Co., Ltd.) was suspended in this oily substance to prepare a suspension composition. . The coating composition and the suspension composition were ejected in the same manner as in Reference Example 1 using a capsule manufacturing apparatus having a concentric double nozzle to obtain droplets (two-layer seamless capsules).
  • ENT-3400 manufactured by Kansai Paint Co., Ltd.
  • benzoin isobutyl ether 0.6 parts by mass of benzoin isobutyl
  • This droplet (two-layer seamless capsule) was irradiated with ultraviolet rays using a high-pressure mercury lamp (wavelength: 320 to 400 nm) to polymerize a photocurable resin (ENT-3400).
  • the obtained seamless capsules had a particle size of 4 mm.
  • the viable cell count was measured for the YM liquid medium used for shaking culture. As a result, the viable cell count was below the detection limit.
  • the seamless capsule cultured in the YM liquid medium was washed with water and the medium was removed, 50 parts by mass of the seamless capsule was added to a glucose liquid medium (54 g of glucose in a 0.1 mol / L phosphate buffer (pH 6.0).
  • the medium obtained by dissolving in 1 L) was subjected to shaking culture at 30 ° C. under the condition of 20 cpm, and the ethanol concentration and glucose concentration in the glucose liquid medium were measured over time.
  • the ethanol concentration was measured by gas chromatography under the following conditions.
  • the Sommoji Nelson method was used to measure the glucose concentration. The results are shown in Table 5.
  • the culture was finally performed for 48 hours.
  • Example 3 As the coating composition, a mixture of 60 parts by mass of 40% nona (ethylene glycol) diacrylate aqueous solution, 0.6 parts by mass of benzoin isobutyl ether, and 20 parts by mass of 30% calcium acrylate aqueous solution was prepared. Separately, mouse Langerhans islet cells were cultured until 80% confluent in Dulbecco's modified Eagle's medium (DMEM) (manufactured by Difco), trypsinized, and centrifuged at 4 ° C. under conditions of 5000 ⁇ g. went.
  • DMEM Dulbecco's modified Eagle's medium
  • an oily substance a mixture of 60 parts by mass of soybean oil and 60 parts by mass of liquid paraffin was prepared, and the obtained mouse Langerhans islet cells were suspended in this oily substance so as to be 5 ⁇ 10 3 cells / mL.
  • a composition was prepared.
  • the coating composition and the suspension composition were ejected in the same manner as in Reference Example 1 using a capsule manufacturing apparatus having a concentric double nozzle to obtain droplets (two-layer seamless capsules).
  • This droplet (two-layer seamless capsule) was irradiated with ultraviolet rays using a high-pressure mercury lamp (wavelength: 320 to 400 nm) to polymerize a photocurable resin (nona (ethylene glycol) diacrylate).
  • the obtained seamless capsules had a particle size of 4 mm.
  • Comparative Example 1 As a film composition, 60 parts by mass of 40% ENTG-3800 (manufactured by Kansai Paint Co., Ltd.), 0.6 parts by mass of benzoin isobutyl ether, 20 parts by mass of 1% acryloylmorpholine (manufactured by Kojin Co., Ltd.), and A mixture of 20 parts by mass of lyophilized powder of lactic acid bacteria obtained in Example 1 was prepared.
  • 40% ENTG-3800 manufactured by Kansai Paint Co., Ltd.
  • benzoin isobutyl ether 20 parts by mass of 1% acryloylmorpholine
  • a mixture of 20 parts by mass of lyophilized powder of lactic acid bacteria obtained in Example 1 was prepared.
  • a capsule manufacturing apparatus having a concentric double nozzle shown in FIG. 2 was prepared, and vegetable oil cooled to 9 ° C. was circulated as a carrier fluid.
  • the coating composition (outer layer composition) was injected into the carrier fluid from the inner nozzle of this apparatus so that the jet was at a constant speed (555 mm / second) to obtain beads having a particle diameter of 4 mm.
  • the beads were separated from the carrier fluid (vegetable oil) and washed with sterile saline. The obtained 10 beads were crushed and the number of viable bacteria was evaluated using an MRS agar medium. As a result, it was 3.5 ⁇ 10 9 cfu / grain. 20 parts by mass of these beads were placed in 100 parts by mass of MRS liquid medium (pH 6.5, glucose concentration 0.3 M), and shaking culture was performed at 37 ° C. for 48 hours under the condition of 100 cpm.
  • MRS liquid medium pH 6.5, glucose concentration 0.3 M
  • the seamless capsule of the present invention is useful as a bioreactor.
  • the seamless capsule having a pseudo three-layer structure of outer layer-oil layer-water layer of the present invention comprises an inner layer made of a suspension composition in which a biocatalyst such as an enzyme or a living cell is suspended in an oily substance, and a water-permeable substrate. It is obtained by immersing a seamless capsule composed of two outer layers composed of a coating composition to be contained in an aqueous liquid. In the two-layer seamless capsule, since the biocatalyst is suspended in the oily substance in the inner layer, the biocatalyst is stable for a long period of time.
  • the outer layer that allows the aqueous liquid to permeate allows only the aqueous liquid to permeate inside and outside the capsule without allowing the biocatalyst to permeate outside. Therefore, when the two-layer seamless capsule is immersed in an aqueous liquid, the aqueous liquid is taken into the capsule (inner layer) to form an aqueous liquid layer. As a result, the outer layer-oil layer-water layer The pseudo three-layer structure is formed. The biocatalyst inside the capsule is activated by the incorporated aqueous liquid to produce a useful substance.
  • the seamless capsule of the present invention is useful as a bioreactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

 本発明のシームレスカプセルは、生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセルを、水性液状物に浸漬させることによって得られる。本発明のシームレスカプセルは、外層-油層-水層の擬三層構造を有し、例えば、バイオリアクタに応用できる点で有用である。

Description

シームレスカプセル
 本発明は、酵素、生細胞などの生体触媒を含有し、バイオリアクタなどとして応用可能なシームレスカプセルに関する。
 1950年以降、環境に負荷をかけないことを目的として、反応容器に、生物由来の酵素、微生物、動植物由来の細胞または組織などの生体触媒を添加して物質生産を行う、いわゆるバイオリアクタによる物質生産が増加している。このバイオリアクタには、バイオエンジニアリング分野およびバイオサイエンス分野の技術が応用されている。例えば、生体触媒を有効利用する観点から、バイオリアクタ中では、生体触媒を固定化する技術が用いられている。
 生体触媒の固定化には、例えば、担体結合法、架橋法、包括法、およびそれらの組み合わせによる方法などが用いられる。特に、微生物、または動植物由来の細胞若しくは組織の固定化には、包括法(具体的には、寒天、カラゲナン、アルギン酸、光硬化性樹脂、ポリアクリルアマイドなどの高分子ゲルを用いる包括法)が用いられている。
 しかし、従来の包括法は、具体的には、高分子ゲルを形成させる前のゾルに、微生物および生細胞を懸濁させ、それをゲル化させるものである。そのため、ゲル表面近傍の生細胞しか有効利用されず、生細胞あたりの反応率が低い。また、ゲルマトリックスから、生細胞が抜け出す場合もある。
 これらの課題を解決するために、種々の包括法が提案されている(例えば、特許文献1~3)。
 特許文献1には、中空の多孔質外殻よりなるマイクロカプセルが開示され、このマイクロカプセルに微生物などを封入することが開示されている。具体的には、酵母を包括したアルギン酸カルシウムビーズを含む有機相を水相中に分散することによってO/Wエマルションを調製し、このエマルションを乾燥してマイクロカプセルを得る(コアセルベーション法)。さらにマイクロカプセルに内包されるアルギン酸カルシウムを塩酸洗浄により溶解・除去することによって、中空のマイクロカプセル内に酵母を封入することが開示されている。しかし、このマイクロカプセルの皮膜には、主にポリスチレンが用いられるため、カプセル形成時に有害な有機溶媒を使用しなければならない場合がある。さらに、コアセルべーション法では、得られるマイクロカプセルの粒径、皮膜厚が揃わず、そのため、核における酵母による反応にばらつきが生じる場合がある。
 特許文献2には、生細胞及び組織を封入したシームレスカプセルが開示されている。特許文献3には、光硬化性樹脂を皮膜とした3層シームレスカプセルが開示されている。これらは、いずれも水を核に含み、封入する生細胞含有液が水系であるので、コンタミネーションに留意する必要がある。また、乾燥時間が長時間となる、工程が煩雑となる、シームレスカプセルを製造するためのコストが高くなる場合がある。
 特許文献4には、分子量3500以上20000以下のプレポリマーと、分子量が71以上で且つ前記プレポリマー分子量に対する比が0.045以下の架橋剤と、微生物とを所定の割合で含む懸濁液を作成し、該懸濁液を重合することによって、架橋ポリマー内部に微生物を包括固定化した固定化微生物の製造方法が開示されている。この方法で得られた微生物が包括された固定化微生物(ビーズ)は、反応の進行に伴い、表面の微生物が増殖する結果、包括された微生物が反応液に移行して反応液が濁るなどの問題がある。
 ところで、包括法とは全く関係を異にするが、特許文献5には、生菌の保存安定性の観点から、整腸作用を有する生菌を含有する乾燥粉末を油脂中に懸濁させることを特徴とする安定な生菌製剤が開示され、この生菌製剤の使用形態として軟カプセルに充填して用いることが開示されている。特許文献6には、経口摂取した腸内有用細菌を腸に到達させることを目的として、腸内有用細菌を、分散した油を直径3mm以下のカプセルに充填した2層のカプセルが開示されている。
 上記以外にも、生体触媒が固定化されたバイオリアクタに応用可能なカプセルが求められている。
特開2003-88747号公報 特開2001-245660号公報 特開2003-325638号公報 特開2006-61097号公報 特開昭56-2908号公報 特開昭62-201823号公報
 本発明の目的は、バイオリアクタに応用可能なシームレスカプセルを提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセル(図1(a)参照)を水性液状物に浸漬させることによって得られる、内層に水性液状物が封入された外層-油層-水層の擬三層構造を有するシームレスカプセル(図1(b)参照)が、バイオリアクタに応用可能であることを見出した。すなわち、上記2層のシームレスカプセルの外層は水透過性であるため、例えば、微生物(生体触媒)を封入したシームレスカプセルを液体培地などの水性液状物に浸漬させることによって、微生物(生体触媒)をカプセル内部に保持しつつ、液体培地を、外層を介してカプセル内部に取り込むことが可能である。この場合、シームレスカプセルは、図1(b)に示すような外層-油層-水層の擬三層構造を有することになる。このような擬三層構造のシームレスカプセル内部では、培地成分が微生物により資化され、それによって産生された代謝産物(有用成分)がカプセル内部から外部に放出され得る。
 本発明の外層-油層-水層の擬三層構造を有するシームレスカプセルは、生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成され、該シームレスカプセルを水性液状物に浸漬させることによって得られる。
 ある実施態様においては、上記生体触媒は、酵素、微生物、動物細胞、植物細胞、および植物組織からなる群より選択される少なくとも1種である。
 ある実施態様においては、上記生体触媒は、微生物、動物細胞、植物細胞、および植物組織からなる群より選択される少なくとも1種であり、該生体触媒が外層-油層-水層の擬三層構造により活性化される。
 ある実施態様においては、上記皮膜組成物は、カラギーナン、寒天、グルコマンナン、アルギン酸、アクリレート系オリゴマー、不飽和ポリエステル系オリゴマー、エポキシ系オリゴマー、ビニルエーテル系オリゴマー、ポリエン・チオール系オリゴマー、及びケイ皮酸系オリゴマーからなる群より選択される少なくとも1種を含む。
 ある実施態様においては、上記油性物質は、オリーブ油、ホホバ油、コーン油、ナタネ油、豚脂、牛脂、鯨油、ヒマシ油、大豆油、米油、米胚芽油、ヤシ油、パーム油、カカオ油、アボガド油、マカデミアナッツ油、スクワラン、ミンク油、タートル油、炭素数が8~30の炭化水素類、ミツロウ、カルナウバロウ、ライスワックス、ラノリン、流動パラフィン、ワセリン、炭素数が4~30の脂肪酸、炭素数が4~30の脂肪酸とショ糖とのエステル、炭素数が4~30の脂肪酸とグリセロールとのエステル、炭素数が4~30の脂肪族アルコール、および炭素数が4~30の脂肪酸と炭素数が4~30の脂肪族アルコールとのエステルからなる群より選択される少なくとも1種である。
 本発明はまた、バイオリアクタを提供し、該バイオリアクタは、上記外層-油層-水層の擬三層構造を有するシームレスカプセルからなる。
 本発明は、外層-油層-水層の擬三層構造を有するシームレスカプセルの製造方法を提供し、該方法は、生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセルを水性液状物に浸漬させる工程を包含する。
 ある実施態様においては、上記2層で構成されるシームレスカプセルは、最内側から第1ノズルおよび第2ノズルを有する同心二重ノズルを備えるカプセル製造装置を用い、該第1ノズルから、生体触媒を油性物質に懸濁した懸濁組成物を、そして該第2ノズルから水透過性基材を含む皮膜組成物を同時に液中に押出す工程を包含する方法により得られる。
 本発明のシームレスカプセルは、生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセルを、水性液状物に浸漬させることによって得られる。この2層のシームレスカプセルは、内層において、生体触媒が油性物質に懸濁されているため、生体触媒が水から程よく遮断される(すなわちドライ状態にある)。そのため、生体触媒がコンタミネーションを起こすことが少なく、長期間安定である。さらに水性液状物を透過する外層により、生体触媒を外部に透過させることなく、水性液状物のみをカプセルの内外に透過させることが可能である。したがって、本発明のシームレスカプセルは、例えば、微生物(生体触媒)を封入した2層のシームレスカプセルを液体培地に浸漬させることによって、微生物をカプセル内部に固定化しつつ、液体培地をカプセル内部に取り込む結果、外層-油層-水層の擬三層構造を形成する。そして微生物が産生した代謝産物(有用成分)をカプセル内部から外部に放出することが可能である。このように、本発明の外層-油層-水層の擬三層構造を有するシームレスカプセルは、生体触媒固定化物としてバイオリアクタに応用できるため有用である。さらに、本発明のシームレスカプセルは、上述のように、一旦、2層のシームレスカプセルを調製した後に、液状の基質(水性液状物、例えば、液体培地など)を外層から内層に透過させるため、予め液状の基質を封入する必要がなく、そのため、従来の固定化生体触媒に比べて、生体触媒を高濃度でカプセル内部に封入した2層のシームレスカプセルとして使用するまで安定に保存できる。したがって、従来のゲル中に生体触媒を混合した固定化生体触媒を用いる場合に比べて効率的である。さらに、本発明のシームレスカプセルは、従来の3層のシームレスカプセルのように、生体触媒の失活を防止するために最内層の生体触媒を含む水性懸濁液を冷却する必要がない。また、従来の製造方法によって得られる3層構造を有するシームレスカプセルでは径を小さくすることに限界があったが、本発明の外層-油層-水層の擬三層構造を有するシームレスカプセルは、2層のシームレスカプセルを基礎にするため、安定してより小さい径にすることが可能である。
シームレスカプセルの断面模式図である。 本発明のシームレスカプセルを製造するためのカプセル製造装置の一例を示す模式図である。 本発明のシームレスカプセルの製造過程におけるカプセルの状態変化を示す写真である。
 本発明のシームレスカプセルは、特定の内層および外層を有する2層のシームレスカプセルを、水性液状物に浸漬させることによって得られる。本発明のシームレスカプセルは、外層-油層-水層の擬三層構造を有する。
 (2層のシームレスカプセル)
 本発明に用いられる2層のシームレスカプセルは、生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層で構成される。
 (1)内層(懸濁組成物)
 内層は、生体触媒を油性物質に懸濁した懸濁組成物でなる。生体触媒は特に制限されない。水性液状物の存在下、すなわち外層-油層-水層の擬三層構造において、反応が活性化されるものであればよく、例えば、バイオリアクタなどの反応素子として用いられるものが挙げられる。具体的には、酵素、微生物(乳酸菌など)、動物細胞(ランゲルハンス島、脂肪細胞など)、植物細胞(脱分化カルスなど)、植物組織(不定胚、不定芽、多芽体、茎頂、生長点、プロトコルム様体、不定根、毛状根など)などが用いられる。生体触媒は、単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。
 生体触媒は、例えば、生体触媒が粉末形態(酵素、菌体粉末など)の場合、懸濁組成物中に0.001~30質量%、好ましくは0.01~20質量%の割合で含まれる。生体触媒が微生物、動物細胞、植物細胞、植物組織などの生きた細胞の場合、懸濁組成物中に1cells/mL~5×1011cells/mL、好ましくは1×10cells/mL~1×1011cells/mL程度含まれる。
 油性物質は、2層のシームレスカプセル製造時において液状のものであればよく特に制限されない。生体触媒の失活を防止する観点から、-30℃~60℃の融点を有する油性物質を用いることが好ましい。このような油性物質としては、例えば、オリーブ油、ホホバ油、コーン油、ナタネ油、豚脂、牛脂、鯨油、ヒマシ油、大豆油、米油、米胚芽油、ヤシ油、パーム油、カカオ油、アボガド油、マカデミアナッツ油、スクワラン、ミンク油、タートル油、炭素数が8~30の炭化水素類、ミツロウ、カルナウバロウ、ライスワックス、ラノリン、流動パラフィン、ワセリン、炭素数が4~30の脂肪酸、炭素数が4~30の脂肪酸とショ糖とのエステル(ショ糖脂肪酸エステル)、炭素数が4~30の脂肪酸とグリセロールとのエステル(脂肪酸モノグリセリド、脂肪酸ジグリセリド、または脂肪酸トリグリセリド)、炭素数が4~30の脂肪族アルコール、炭素数が4~30の脂肪酸と炭素数が4~30の脂肪族アルコールとのエステルなどが挙げられる。上記炭化水素類、脂肪酸グリセリド、ショ糖脂肪酸エステル、または脂肪酸を構成する脂肪酸は、飽和脂肪酸および不飽和脂肪酸のいずれであってもよい。脂肪族アルコールを構成する炭化水素基についても飽和炭化水素基および不飽和炭化水素基のいずれであってもよい。油性物質は、単独で用いてもよいし、あるいは2種以上組み合わせて用いてもよい。油性物質の粘度または密度は、特に制限されず、適度に調整され得る。
 油性物質として、炭素数が4~30の脂肪酸とグリセロールとのエステル(特に脂肪酸トリグリセリド)またはそれらを含む油脂類を用いる場合、2層のシームレスカプセル調製後に油脂類を分解する目的で、上記内層(懸濁組成物)中にリパーゼを加えることも可能である。2層のシームレスカプセルを水に浸漬すると、カプセルが膨潤し、それによりカプセル内部に水が透過される。この透過された水がリパーゼを活性化し、油脂類を分解する。そしてこの油脂類分解物は、透過された水に溶解してカプセル内部から外部に放出され得る。そのため、カプセル内部の油脂の体積が減少するとともに、その分、水性液状物を容易に、カプセル内部に取り込むことができ、生体触媒と水性成分(基質)との接触をより効率的にすることができる。
 上記懸濁組成物は、上記生体触媒を上記油性物質に懸濁することによって得られる。懸濁方法は、攪拌などの当業者が通常用いる方法が用いられる。
 (2)外層(外層組成物)
 外層は、水透過性基材を含み、必要に応じて、その他の成分を含み得る皮膜組成物でなる。そのため、外層は水性液状物を透過し、かつ得られる2層のシームレスカプセルを水性液状物に浸漬した場合に、カプセル内部に水性液状物が取り込まれる程度の伸縮性を有する。水透過性基材は、好ましくはゲル化剤および光硬化性樹脂の少なくとも1種であり、これによって得られる皮膜は、水性液状物の透過性が高い。さらに、皮膜自体の水による膨潤は大きくないが、適度な伸縮性を有し、シームレスカプセル内部に水性液状物を容易に取り込むことができる。本明細書において、水性液状物とは、水または水性成分を含む水溶液を示す。水性成分とは、生体触媒の基質となり得る水溶性成分であり、生体触媒の種類に応じて適宜選択される。水性成分としては、例えば、培地成分(炭素源、窒素源、ミネラルなどを含む)が挙げられる。
 (2-1)ゲル化剤
 ゲル化剤としては、カラギーナン、寒天、グルコマンナン、アルギン酸、ゲランガム、ザンサンガム、ローカストビーンガム、ペクチン、サイリウムシードガム、グアーガム、ファーセレラン、アラビノガラクタン、アラビノキシラン、アラビアガム、デキストリン、変性デキストリン、デンプン、化工デンプン、プルラン、カルボキシメチルセルロース塩などの多糖類が挙げられる。好ましくは、カラギーナン、寒天、グルコマンナン、およびアルギン酸である。ゲル化剤は、皮膜組成物中に固形分濃度で、好ましくは0.1~40質量%、より好ましくは0.3~30質量%含有される。
 (2-2)光硬化性樹脂
 光硬化性樹脂は、光照射により引き起こされる反応により硬化する樹脂であり、通常、光重合性モノマー、光重合性オリゴマー、または光重合性モノマー若しくは光重合性オリゴマーの付加重合物が用いられる。光硬化性樹脂は、単独で用いてもよいし、あるいは2種以上組み合わせて用いてもよい。光硬化性樹脂は、重合開始剤と組み合わせて用いることが好ましい。
 上記光重合性オリゴマーとしては、例えば、ラジカル重合により硬化する光重合性オリゴマーおよびカチオン重合反応により硬化する光重合性オリゴマーが挙げられる。光重合性オリゴマーの数平均分子量は、300~30,000、好ましくは500~20,000の範囲内である。
 ラジカル重合により硬化する光重合性オリゴマーは、例えば、官能基として (メタ)アクリロイル基、ビニル基などを有する。例えば、ウレタン(メタ)アクリレート系オリゴマー、エポキシ(メタ)アクリレート系オリゴマー、エステル(メタ)アクリレート系オリゴマー、(メタ)アクリレート系オリゴマー、不飽和ポリエステル系オリゴマー、ポリエン・チオール系オリゴマー、およびケイ皮酸系オリゴマーが挙げられる。具体的には、ポリアルキレングリコールの両末端に光重合可能なエチレン性不飽和基を有する樹脂(ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、アルキル鎖の炭素数が4~10であるポリアルキレングリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなど)、高酸価不飽和ポリエステル類、高酸価不飽和ポリエポキシド類、アニオン性不飽和アクリル樹脂類、カチオン性不飽和アクリル樹脂類、不飽和ポリアミド類などが挙げられる。上記用語「(メタ)アクリレート」は、アクリレートおよびメタクリレートの少なくとも一方を示す。例えば、ポリエチレングリコールジ(メタ)アクリレートとは、ポリエチレングリコールジアクリレートおよびポリエチレングリコールジメタクリレートのうちの少なくとも一方を示す。
 カチオン重合反応により硬化する光重合性オリゴマーは、例えば、官能基としてエポキシ基、ビニルエーテル基などを有する。例えば、エポキシ系オリゴマーおよびビニルエーテル系オリゴマーがある。
 上記の光重合成性オリゴマーの中でも、特に、アクリレート系オリゴマー、不飽和ポリエステル系オリゴマー、ポリエン・チオール系オリゴマー、ケイ皮酸系オリゴマー、エポキシ系オリゴマー、およびビニルエーテル系オリゴマーが好ましく用いられる。
 上記光硬化性樹脂のうち、特に水性媒体中に均一に分散するのに十分なイオン性又は非イオン性の親水性基、例えば水酸基、アミノ基、カルボキシル基、リン酸基、スルホン酸基、エーテル結合などを含む樹脂が好適に用いられる。このような光硬化性樹脂は、例えば、特公昭55-40号公報、特公昭55-20676号公報、特公昭62-19837号公報などに開示されている。具体的には、1分子中に少なくとも2個のエチレン性不飽和結合を有する親水性樹脂化合物、高酸価不飽和ポリエステル類、高酸価不飽和エポキシド類、アニオン性不飽和アクリル樹脂、不飽和ポリアミドなどが好適に用いられる。これらの中でも1分子中に少なくとも2個のエチレン性不飽和結合を有する親水性樹脂化合物が好ましく用いられる。
 上記1分子中に少なくとも2個のエチレン性不飽和結合を有する親水性樹脂化合物としては、ポリアルキレングリコールの両末端に光重合可能なエチレン性不飽和基を有する樹脂が挙げられる。例えば、(1)分子量400~6000のポリエチレングリコールの両末端水酸基を、(メタ)アクリル酸2モルでエステル化したポリエチレングリコールジ(メタ)アクリレート類;(2)分子量200~4000のポリプロピレングリコールの両末端水酸基を、(メタ)アクリル酸2モルでエステル化したポリプロピレングリコールジ(メタ)アクリレート類;(3)分子量400~6000のポリエチレングリコール1モルの両末端水酸基を、ジイソシアネート化合物(トリレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネートなど)2モルでウレタン化し、さらに不飽和モノヒドロキシ化合物((メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなど)2モルを付加した不飽和ポリエチレングリコールウレタン化物;および(4)分子量200~4000のポリプロピレングリコール1モルの両末端水酸基を、ジイソシアネート化合物2モルでウレタン化し、さらに不飽和モノヒドロキシ化合物2モルを付加した不飽和ポリプロピレングリコールウレタン化物が挙げられる。
 上記高酸価不飽和ポリエステル類としては、例えば、不飽和結合を有する多価カルボン酸と、多価アルコールとのエステル化により得られる、酸価が40~200の不飽和ポリエステルの塩類などが挙げられる。
 上記高酸価不飽和エポキシド類としては、例えば、酸価40~200の不飽和エポキシ樹脂などが挙げられる。このような樹脂は、例えば、エポキシ樹脂と不飽和カルボキシル化合物((メタ)アクリル酸など)との付加反応物を調製し、この付加反応物に残存するヒドロキシル基に、酸無水物を付加することによって得られる。
 上記アニオン性不飽和アクリル樹脂としては、例えば、(メタ)アクリル酸および(メタ)アクリル酸エステルのうちの少なくとも2種の(メタ)アクリル系モノマー由来であって、かつカルボキシル基、リン酸基および/またはスルホン酸基を有する共重合体に、光重合可能なエチレン性不飽和基を導入した樹脂などが挙げられる。
 上記不飽和ポリアミドは、例えば、ジイソシアネート(トリレンジイソシアネート、キシリレンジイソシアネートなど)とエチレン性不飽和ヒドロキシ化合物(アクリル酸2-ヒドロキシエチルなど)との付加物を、ゼラチンなどの水溶性ポリアミドに付加することにより得られる。
 これらの光硬化性樹脂のうち、本発明において特に有利に使用し得るものは、ポリアルキレングリコールの両末端に重合可能なエチレン性不飽和基を有する樹脂であり、代表的には、関西ペイント株式会社からENT-1000、ENT-2000、ENT-3400、ENT-4000、ENTG-2000、ENTG-3800などの商品名で販売されている。
 上記光硬化性樹脂は、皮膜組成物中に固形分として、好ましくは10~99質量%、より好ましくは20~90質量%、さらに好ましくは40~90質量%含有される。
 (2-3)その他の成分
 皮膜組成物に含まれ得るその他の成分としては、例えば、ゲル化助剤、不飽和結合を有する水溶性化合物、重合開始剤、光増感剤、着色剤、および細孔形成剤が挙げられる。ゲル化剤を用いる場合には、ゲル化助剤を用いることが好ましい。光硬化性樹脂を用いる場合は、重合開始剤、特に光重合開始剤を用いることが好ましい。
 ゲル化助剤は、ゲル化剤を含む皮膜の強度を高める目的で用いられる。ゲル化助剤は、ゲル化剤の種類に応じて適宜選択し得る。ゲル化助剤としては、例えば、ソルビトール、マンニトール、グリセリン、プロピレングリコール、ポリエチレングリコール、グルコース、フルクトース、ガラクトース、アラビノース、マンノース、ラムノース、マルトース、ラフィノース、スクロース、エリスリトール、マルチトール、トレハロース、ラクトース、キシロースなどの水溶性多価アルコール、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩が挙げられる。ゲル化助剤は、単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。特にゲル化剤として、アルギン酸、ゲランガム、ペクチン、またはカラギーナンが含まれる場合、ゲル化助剤として、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩などを併用することが好ましい。ゲル化助剤は、皮膜組成物中に固形分濃度で、好ましくは0.1~30質量%、好ましくは0.5~20質量%含有される。
 不飽和結合を有する水溶性化合物は、光硬化性樹脂を含む皮膜の強度を高める目的で用いられる。光重合開始剤から発生する活性種に依存しない重合を抑制する観点から、特に80℃以下で水性溶媒に溶解する物質が好ましく使用される。具体的には、イタコン酸、N,N’-メチレンビスアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、N,N’-メチレンビスアクリルアミド、N-イソプロピルアクリルアミド、N-ビニルピロリドン、アクリロイルモルフォリン、N,N’-ジメチルアクリルアミド、N-ビニルホルムアミド、(メタ)アクリル酸塩などが挙げられる。不飽和結合を有する水溶性化合物は、単独で用いてもよいし、あるいは2種以上組み合わせて用いてもよい。不飽和結合を有する水溶性化合物は、皮膜組成物中に固形分濃度で0.01~30質量%、好ましくは0.1~25質量%含まれる。
 重合開始剤は特に制限されないが、光重合開始剤が好適に用いられる。光重合開始剤は、光照射によって重合開始種を発生し、重合または架橋反応を促進させる化合物である。その代表的な例としては、ベンゾイン、アセトイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾフェノン、ベンジル、ミヒラーズケトン、キサントン、クロロチオキサントン、イソプロピルチオキサントン、ベンジルジメチルケタール、ナフトール、アントラキノン、ヒドロキシアントラセン、アセトフェノンジエチルケタール、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルフェニルプロパン、芳香族ヨードニウム塩、芳香族スルホニウム塩、ヨードニウム塩、スルホニウム塩、トリアリールスルホニウム塩、トリフルオロカーボンスルホニウム塩などが挙げられる。重合開始剤は、単独で用いてもよいし、あるいは2種以上組み合わせて用いてもよい。重合開始剤は、皮膜組成物中に固形分濃度で0.001~20質量%、好ましくは0.1~10質量%含まれる。
 光増感剤は、水透過性基材として光硬化性樹脂を用いる場合に含有される。光増感剤としては、例えば、ルテニウム錯体、ポルフィリン系化合物などが挙げられる。このような光増感剤により可視光領域に十分な感度が付与される。
 着色剤は、特に制限されず、必要に応じて、天然着色料、合成着色料などが適宜用いられる。
 細孔形成剤としては、例えば、澱粉、化工澱粉(アルキル化澱粉、エーテル化澱粉など)、平均分子量1000以上のデキストリン、セルロース、タンパク質などの高分子が挙げられる。細孔形成剤は、得られるシームレスカプセルの膜透過性をさらに高める目的で用いられる。例えば、カプセル形成後、酵素処理、酸、アルカリ処理などにより細孔形成剤を皮膜から除去(例えば、高分子を切断、分解、溶解する)ことによって、カプセル皮膜に孔を形成すること、あるいは存在する孔の径を大きくすることができ、膜透過性の高いカプセルを得ることができる。
 (3)2層のシームレスカプセルの調製
 上記2層のシームレスカプセル(図1(a))は、例えば、同心二重ノズルを備えるカプセル製造装置を用いた液中滴下法、具体的には、最内側から第1ノズルおよび第2ノズルを有する同心二重ノズルを備えるカプセル製造装置を用い、該第1ノズルから、生体触媒を油性物質に懸濁した懸濁組成物を、そして該第2ノズルから水透過性基材を含む皮膜組成物を同時に液中に押出す工程を包含する方法などにより調製される。液としては、液状の油性物質(液状油)、例えば、0~40℃で液体の上述の油性物質などが用いられる。この液は、好ましくは冷却して用いられる。
 2層のシームレスカプセルは、例えば、図2に示す製造装置を用いた液中滴下法によって製造される。この装置においては、定常速度で流下するキャリア流体2(液状油)中に、同心二重ノズル1が吐出口を下向きにして配置されている。封入すべき内容物32(生体触媒を油性物質に懸濁した懸濁組成物)をこの同心二重ノズル1における最も内側のノズル(内側ノズル11)から、そして外層組成物(皮膜組成物)31を外側のノズル(外側ノズル12)からそれぞれ同時に一定速度で液中に押出す(射出する)と、キャリア流体2と外層組成物31との間に作用する界面張力によって、2層構造のジェットが形成される。ジェットは、その後、球状の液滴となる。得られるシームレスカプセルのサイズの均一性を高める点で、このジェット流に振動を加えてもよい。
 次いで、液滴の表面に皮膜を形成させるために、キャリア流体2中の液滴を冷却する、あるいはキャリア流体2中で、あるいはキャリア流体2を分離した状態で液滴に光照射する。皮膜組成物中にゲル化剤を含む場合は、冷却すると、ゾルゲル転移により皮膜が形成される。他方、皮膜組成物中に光硬化性樹脂を含む場合は、光照射することにより皮膜が形成される。ゲル化剤として、アルギン酸、ゲランガム、ペクチン、またはカラギーナンを用いる場合、二価またはそれ以上の金属イオン溶液に滴下してもよい。このようにして、2層のシームレスカプセル3が得られる。
 皮膜組成物中にゲル化剤を含む場合、固化温度を-10~30℃、好ましくは0~20℃の範囲内に設定する。
 皮膜組成物中に光硬化性樹脂を含む場合、光硬化性樹脂の硬化に必要な活性光線の波長は、一般に約200nm~約600nmの範囲内であり、このような波長の光を発する光源を用いて照射を行うのが有利である。そのような光源としては、水銀灯、蛍光灯、キセノンランプ、カーボンアーク灯、メタルハライド灯などが挙げられる。上述の皮膜組成物中に光増感剤が含有されていると、可視光領域に十分な感度が付与される点で好ましい。光硬化性樹脂の種類によっては紫外領域の短波長の活性光線を用いて硬化させることもできる。照射時間は光源の強さや距離により異なるが、一般には0.05秒間~10分間、好ましくは0.5秒間~2分間の範囲である。
 2層のシームレスカプセルの粒径範囲は、通常0.1mm~10mm、好ましくは0.3mm~8mmである。調製後のカプセルは、その用途により、未乾燥でカプセル中の水分を残存させたまま使用してもよいし、あるいは常圧または真空乾燥法により乾燥させてから使用してもよい。
 2層のシームレスカプセルは、継ぎ目がなく、サイズや皮膜の厚みが均一である。2層のシームレスカプセルは、着色剤などの種々の添加剤を含む皮膜組成物を用いることにより、従来のカプセルと同様に、所望の特徴を有するカプセルを調製することができる。
 (本発明のシームレスカプセル)
 本発明のシームレスカプセルは、上記2層のシームレスカプセルを、水性液状物に浸漬させることによって得られる。水性液状物としては、例えば、上述のような水、あるいは液体培地などの水性成分を含む水溶液が用いられる。水性液状物の量は、シームレスカプセルが浸漬できる量であればよく特に制限されない。浸漬条件についても、特に制限されない。シームレスカプセルに含まれる生体触媒の失活を防止する観点から、例えば、4~60℃にて1時間~60日間で行われる。効率的に水性液状物を封入できる点で攪拌することが好ましい。
 本発明のシームレスカプセルの製造例として、2層のシームレスカプセルを水性液状物に浸漬させたときのカプセルの状態変化を図3に示す。図3(a)の乾燥した2層のシームレスカプセルを、例えば、常温(約20℃)の水に約20分間程度浸漬させると、図3(b)のような窪みを有する球状のカプセルが形成される。これは、外層(皮膜)の一部が伸縮することによって、水性液状物がカプセル内部に取り込まれ、カプセル内で水性液状物の層が形成されていることを示す。さらに浸漬を続けると(例えば、6時間浸漬)、この外層の皮膜がさらに膨潤し、カプセルの窪みが徐々になくなり、図3(c)に示すような球状のシームレスカプセルとなる。このシームレスカプセルは、例えば、内層を構成する油性物質を着色料などで着色しておくと、球状のシームレスカプセル中に、図1(b)に示すような球状の着色層が形成される。したがって、本発明のシームレスカプセルが外層-油層-水層の擬三層構造を形成していることは明らかである。
 本発明のシームレスカプセルは、生体触媒と水性液状物とが接触することによって、生体触媒が活性化し、有用物質が生産され得る。例えば、微生物などの生体触媒を封入した2層のシームレスカプセルを、液体培地に浸漬すると、カプセル内部に液体培地が取り込まれ、本発明のシームレスカプセルが得られる。このシームレスカプセル中においては、培地中の成分を微生物が資化することにより微生物が増殖し、さらに代謝産物(有用成分)が産生される。そしてこの代謝産物は外層を透過し、カプセル内部から外部に放出され得る。このように、本発明のシームレスカプセルをバイオリアクタとして用いることができる。
 本発明のシームレスカプセルはまた、徐放性の薬剤として利用することができる。例えば、糖尿病を発症した患者に対して、ランゲルハンス島を封入したシームレスカプセルを投与すると、血糖値を長期間正常範囲に維持することが可能である。
 (参考例1:皮膜(外層)の透過性の検証1)
 皮膜組成物として、40%ENTG-3800(関西ペイント株式会社製)水溶液60質量部、アセトイン0.6質量部、および0.5%ポバール(平均分子量約9,000)水溶液20質量部の混合物を準備した。油性物質として、大豆油100質量部および流動パラフィン20質量部の混合物を準備し、この油性物質に、平均分子量約1,000のデキストリン20質量部を懸濁し、懸濁組成物を調製した。
 図2に示す同心二重ノズルを有するカプセル製造装置を準備し、キャリア流体として15℃に冷却した植物油を循環させた。この装置の外側ノズルから皮膜組成物(外層組成物)を、そして内側ノズルから懸濁組成物を、形成される二層複合ジェットが一定速度(540mm/秒)となるように、キャリア流体中に射出し、液滴(シームレスカプセル)を得た。
 キャリア流体中の液滴(シームレスカプセル)について、高圧水銀灯(波長320~400nm)を用いて紫外線を照射し、光硬化性樹脂(ENTG-3800)を重合させた。得られたシームレスカプセルの粒径は4mmであった。
 得られたシームレスカプセル20粒を50mL容のビーカーに採取した。次いで、上記ビーカーに、蒸留水30mLを加えてシームレスカプセルを浸漬させ、20℃にて20時間攪拌し、水中のデキストリン濃度をフェノール・硫酸法を用いて経時的に測定した。結果を表1に示す。なお、攪拌終了時において、破れたシームレスカプセルはなかった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、水中のデキストリン濃度が経時的に増加していた。このことは、シームレスカプセル内部に存在する平均分子量約1,000のデキストリンが、カプセル外部から皮膜(外層)を透過して侵入してきた水により溶解され、さらに皮膜を透過してカプセル内部から外部に拡散されたことを示す。
 (参考例2:皮膜(外層)の透過性の検証2)
 ポバールの代わりにポビドン(平均分子量約1,300,000)を用いて皮膜組成物を調製したこと、および平均分子量約1,000のデキストリンの代わりに平均分子量約120,000のプルランを用いて懸濁組成物を調製したこと以外は、実施例1と同様にして、粒径4mmのシームレスカプセルを得た。さらに実施例1と同様にして、プルラン濃度の経時変化を測定した。結果を表2に示す。なお、攪拌終了時において、破れたシームレスカプセルはなかった。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、水中のプルラン濃度が経時的に増加していた。このことは、シームレスカプセル内部に存在する平均分子量約120,000のプルランが、カプセル外部から皮膜(外層)を透過して侵入してきた水により溶解され、さらに皮膜を透過してカプセル内部から外部に拡散されたことを示す。このような高分子であっても外層を透過することが可能である。
 (参考例3:皮膜(外層)の透過性の検証3)
 皮膜組成物として、40%ENT-3400(関西ペイント株式会社製)水溶液80質量部およびベンゾインイソブチルエーテル0.6質量部の混合物を準備した。油性物質として、大豆油100質量部および流動パラフィン20質量部の混合物を準備し、この油性物質に、平均分子量約1,000のデキストリン20質量部を懸濁し、懸濁組成物を調製した。
 上記の皮膜組成物および懸濁組成物を、参考例1と同様にして、同心二重ノズルを有するカプセル製造装置を用いて射出し、液滴(シームレスカプセル)を得た。
 この液滴(シームレスカプセル)について、高圧水銀灯(波長320~400nm)を用いて紫外線を照射し、光硬化性樹脂(ENT-3400)を重合させた。得られたシームレスカプセルの粒径は4mmであった。さらにこのシームレスカプセルを乾燥させ、粒径3.5mmの乾燥シームレスカプセルを得た。
 得られた乾燥シームレスカプセル20粒を100mL容のビーカーに採取した。次いで、上記ビーカーに、蒸留水50mLを加えてシームレスカプセルを浸漬させ、20℃にて6時間静置した。浸漬しているシームレスカプセル10粒を取り出し、皮膜厚および粒径を測定し、それぞれの平均値を求めた。さらに得られた皮膜厚および粒径の測定値に基づいて皮膜体積を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、水浸漬後のシームレスカプセルは、水浸漬前のシームレスカプセルに比べて、皮膜厚および皮膜体積は大きく異ならないものの、粒径が大きく増加した。このことは、シームレスカプセルを水に浸漬させることによって、皮膜自体の水による膨潤が少なく、シームレスカプセル内部に水が移行していることを示す。
 (実施例1)
 乳酸菌(Lactococcus lactis subsp. lactis JCM 7638)を、大理石を含むデマン・ロゴサ・シャープ(MRS)ブイヨン培地(オキソイド社製)を用いて37℃にて15時間静置培養した。得られた培養懸濁液の生菌数は、1.5×1010cfu/mLであった。なお、cfuは、colony forming unitの略語であり、生菌数を表す。この培養懸濁液を10,000xgの条件下で4℃にて20分間遠心分離し、得られた沈殿物を凍結乾燥して乳酸菌末を調製した。
 80℃に保持した2%寒天水溶液180質量部に、PEG1000(平均分子量約1,000のポリエチレングリコール)20質量部を添加して、皮膜組成物を調製した。他方、長鎖脂肪酸トリグリセリド85質量部および蔗糖脂肪酸エステル15質量部の混合物に、上記乳酸菌末を懸濁し、懸濁組成物を調製した。
 図2に示す同心二重ノズルを有するカプセル製造装置を準備し、キャリア流体として9℃に冷却した植物油を循環させた。この装置の外側ノズルから皮膜組成物(外層組成物)を、そして内側ノズルから懸濁組成物を、形成される二層複合ジェットが一定速度(555mm/秒)となるように、キャリア流体中に射出し、粒径4mmの2層のシームレスカプセルを得た。
 キャリア流体(植物油)から分離し、滅菌生理食塩水で洗浄した2層のシームレスカプセル20質量部を、MRS液体培地(pH6.5、グルコース濃度0.3M)100質量部を用いて100cpmの条件下、37℃にて振盪培養を行い、外層-油層-水層の擬三層構造を有するシームレスカプセルを得た。MRS液体培地中の乳酸濃度およびグルコース濃度を経時的に測定した。乳酸濃度の測定には、Lactate assay kit(フナコシ社製)を用い、グルコース濃度の測定には、ソモジ・ネルソン法を用いた。結果を表4に示す。培養は最終的に48時間行った。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、培養が進むにつれて、MRS液体培地中のグルコース濃度が減少し、乳酸濃度が増加した。
 培養後、培養されたシームレスカプセル10粒を採取し、水洗して培地を除去した後、各シームレスカプセルを破砕し、シームレスカプセル中の内容物の生菌数を、MRS寒天培地(オキソイド社製)を用いて評価した。その結果、2.3×1010cfu/粒であった。この生菌数は、培養前(8.1×10cfu/粒)に比べて増殖していた。さらに、得られたシームレスカプセルの粒径は、4mmから4.5mmに増加していた。
 他方、振盪培養に用いたMRS液体培地について、生菌数およびpHを測定した。その結果、生菌数は検出限界以下であり、pHは4.0と培養前(pH6.5)に比べて低下していた。生菌数の結果から、乳酸菌がシームレスカプセルから漏れていないことがわかる。また、pHの結果および表4の乳酸濃度の経時的な増加を考慮すると、乳酸菌により産生された乳酸がシームレスカプセルの皮膜を透過し、カプセル外部に放出されていると考えられる。
 以上の結果から、本発明のシームレスカプセルは、バイオリアクタとして有用であることが示された。
 (実施例2)
 皮膜組成物として、40%ENT-3400(関西ペイント株式会社製)水溶液60質量部、ベンゾインイソブチルエーテル0.6質量部、および1%アクリロイルモルフォリン(株式会社興人製)水溶液20質量部の混合物を準備した。油性物質として、大豆油100質量部および流動パラフィン20質量部の混合物を準備し、この油性物質に、圧搾パン酵母(オリエンタル酵母株式会社製)20質量部を懸濁し、懸濁組成物を調製した。上記の皮膜組成物および懸濁組成物を、参考例1と同様にして、同心二重ノズルを有するカプセル製造装置を用いて射出し、液滴(2層のシームレスカプセル)を得た。
 この液滴(2層のシームレスカプセル)について、高圧水銀灯(波長320~400nm)を用いて紫外線を照射し、光硬化性樹脂(ENT-3400)を重合させた。得られたシームレスカプセルの粒径は4mmであった。
 キャリア流体(植物油)から分離し、滅菌生理食塩水で洗浄した2層のシームレスカプセル20質量部を、YM液体培地100質量部(グルコース10g、酵母エキス2g、麦芽エキス2g、および大豆ペプトン2gを蒸留水1Lに溶解し、pH6.2に調整した培地)100質量部を用いて100cpmの条件下、37℃にて48時間振盪培養を行い、外層-油層-水層の擬三層構造を有するシームレスカプセルを得た。培養中、皮膜表面上から炭酸ガスの発生が観察された。
 培養後、シームレスカプセル10粒を採取し、水洗して培地を除去した後、各シームレスカプセルを破砕し、シームレスカプセル中の内容物の生菌数を、YM寒天培地(グルコース10g、酵母エキス2g、麦芽エキス2g、大豆ペプトン2g、および寒天20gを蒸留水1Lに懸濁してpH6.2に調整し、121℃にて15分間加熱後、放冷した固化した培地)を用いて評価した。その結果、9.3×10cfu/粒であった。この生菌数は、培養前(8.1×10cfu/粒)に比べて増殖していた。
 他方、振盪培養に用いたYM液体培地について、生菌数を測定した。その結果、生菌数は検出限界以下であった。
 さらに、YM液体培地で培養されたシームレスカプセルを水洗して培地を除去した後、このシームレスカプセル50質量部を、グルコース液体培地(グルコース54gを0.1mol/Lのリン酸緩衝液(pH6.0)1Lに溶解して得た培地)を用いて20cpmの条件下、30℃にて振盪培養を行い、グルコース液体培地中のエタノール濃度およびグルコース濃度を経時的に測定した。エタノール濃度の測定は、ガスクロマトグラフィーにより以下の条件で行った。グルコース濃度の測定には、ソモジ・ネルソン法を用いた。結果を表5に示す。培養は最終的に48時間行った。
 (ガスクロマトグラフィーの条件)
  内部標準:  アセトン
  カラム:   内径3mmおよび長さ2mのガラス製カラム
  固定相:   ポリエチレングリコール1000(10%、60~80mesh通過)
  導入温度:  200℃
  カラム温度: 100℃
  検出器:   水素炎イオン化検出器
  検出器温度: 150℃
  キャリアガス:窒素
  流量:    30~40mL/分
Figure JPOXMLDOC01-appb-T000005
 表5の結果から明らかなように、培養が進むにつれて、グルコース液体培地中のグルコース濃度が減少し、エタノール濃度が増加した。酵母によりグルコースが消費され、エタノールが産生されたことがわかる。
 (実施例3)
 皮膜組成物として、40%ノナ(エチレングリコール)ジアクリレート水溶液60質量部、ベンゾインイソブチルエーテル0.6質量部、および30%アクリル酸カルシウム水溶液20質量部の混合物を準備した。これとは別に、マウスランゲルハンス島細胞をダルベッコ変法イーグル培地(DMEM)(Difco社製)にて80%コンフルエントとなるまで培養し、トリプシン処理した後、5000xgの条件下4℃にて遠心分離を行った。油性物質として、大豆油60質量部および流動パラフィン60質量部の混合物を準備し、この油性物質に、得られたマウスランゲルハンス島細胞を5×10cells/mLとなるように懸濁し、懸濁組成物を調製した。上記の皮膜組成物および懸濁組成物を、参考例1と同様にして、同心二重ノズルを有するカプセル製造装置を用いて射出し、液滴(2層のシームレスカプセル)を得た。
 この液滴(2層のシームレスカプセル)について、高圧水銀灯(波長320~400nm)を用いて紫外線を照射し、光硬化性樹脂(ノナ(エチレングリコール)ジアクリレート)を重合させた。得られたシームレスカプセルの粒径は4mmであった。
 体重20gのDDY系マウス(雄、6週齢)に200mg/kgのストレプトゾトシンを腹腔内投与した。その後、マウスの血糖値を測定したところ、422mg/dLであり、糖尿病(血糖値300mg/dL以上)を発症していることを確認した。
 次いで、血糖値を測定してから3日後に、糖尿病マウスの腹腔内に上記ランゲルハンス島が封入されたシームレスカプセルを移植した。所定期間ごとに血糖値を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果から、糖尿病マウスにシームレスカプセルを移植すると、長期間にわたり血糖値が正常値を示しており、糖尿病の治療効果が認められた。移植されたシームレスカプセルを摘出すると、外層-油層-水層の擬三層構造を有していた。なお、試験期間において、シームレスカプセルに対する拒絶反応は観察されなかった。
 (比較例1)
 皮膜組成物として、40%ENTG-3800(関西ペイント株式会社製)水溶液60質量部、ベンソインイソブチルエーテル0.6質量部、1%アクリロイルモルフォリン(株式会社興人製)水溶液20質量部、および実施例1で得られた乳酸菌凍結乾燥菌末20質量部の混合物を準備した。
 図2に示す同心二重ノズルを有するカプセル製造装置を準備し、キャリア流体として9℃に冷却した植物油を循環させた。この装置の内側ノズルから皮膜組成物(外層組成物)を、ジェットが一定速度(555mm/秒)となるように、キャリア流体中に射出し、粒径4mmのビーズを得た。
 キャリア流体(植物油)からビーズを分離し、滅菌生理食塩水で洗浄した。得られたビーズ10粒を破砕し、生菌数を、MRS寒天培地を用いて評価したところ、3.5×10cfu/粒であった。このビーズ20質量部を、MRS液体培地(pH6.5、グルコース濃度0.3M)100質量部中にいれ、100cpmの条件下、37℃にて48時間振盪培養を行った。
 培養後、培養されたビーズ10粒を採取し、水洗して培地を除去した後、各ビーズを破砕し、ビーズ中の生菌数を、MRS寒天培地を用いて評価した。その結果、生菌数は、9.1×10cfu/粒であり、培養前(3.5×10cfu/粒)に比べて増殖していた。また、倍地中の生菌数も評価したところ、5.5×10cfu/mLであった。この結果は、ビーズ外部に乳酸菌が漏出していることを示す。
 以上の実施例および比較例の結果から明らかなように、本発明のシームレスカプセルは、バイオリアクタとして有用であることがわかる。
 本発明の外層-油層-水層の擬三層構造を有するシームレスカプセルは、酵素、生細胞などの生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセルを、水性液状物で浸漬させることによって得られる。2層のシームレスカプセルは、内層において、生体触媒が油性物質に懸濁されているため、生体触媒が長期間安定である。さらに水性液状物を透過する外層により、生体触媒を外部に透過させることなく、水性液状物のみをカプセルの内外に透過させることが可能である。したがって、この2層のシームレスカプセルを水性液状物に浸漬させた場合に、水性液状物がカプセル内部(内層)に取り込まれ、水性液状物の層が形成され、その結果、外層-油層-水層の擬三層構造が形成される。そしてカプセル内部の生体触媒は、この取り込まれた水性液状物によって活性化され、有用物質を生産する。例えば、微生物(生体触媒)を封入したシームレスカプセルを液体培地に浸漬させることによって、微生物をカプセル内部に固定化しつつ、液体培地をカプセル内部に取り込み、そして微生物が産生した代謝産物(有用成分)をカプセル内部から外部に放出することが可能である。このように、本発明のシームレスカプセルは、バイオリアクタとして有用である。
 1  同心二重ノズル
 2  キャリア流体
 3  シームレスカプセル
 11  内側ノズル
 12  外側ノズル
 31  外層組成物
 32  内容物

Claims (8)

  1.  生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセルを水性液状物に浸漬させることによって得られる、外層-油層-水層の擬三層構造を有するシームレスカプセル。
  2.  前記生体触媒が、酵素、微生物、動物細胞、植物細胞、および植物組織からなる群より選択される少なくとも1種である、請求項1に記載のシームレスカプセル。
  3.  前記生体触媒が、微生物、動物細胞、植物細胞、および植物組織からなる群より選択される少なくとも1種であり、該生体触媒が外層-油層-水層の擬三層構造により活性化される、請求項1に記載のシームレスカプセル。
  4.  前記皮膜組成物が、カラギーナン、寒天、グルコマンナン、アルギン酸、アクリレート系オリゴマー、不飽和ポリエステル系オリゴマー、エポキシ系オリゴマー、ビニルエーテル系オリゴマー、ポリエン・チオール系オリゴマー、及びケイ皮酸系オリゴマーからなる群より選択される少なくとも1種を含む、請求項1から3のいずれかの項に記載のシームレスカプセル。
  5.  前記油性物質が、オリーブ油、ホホバ油、コーン油、ナタネ油、豚脂、牛脂、鯨油、ヒマシ油、大豆油、米油、米胚芽油、ヤシ油、パーム油、カカオ油、アボガド油、マカデミアナッツ油、スクワラン、ミンク油、タートル油、炭素数が8~30の炭化水素類、ミツロウ、カルナウバロウ、ライスワックス、ラノリン、流動パラフィン、ワセリン、炭素数が4~30の脂肪酸、炭素数が4~30の脂肪酸とショ糖とのエステル、炭素数が4~30の脂肪酸とグリセロールとのエステル、炭素数が4~30の脂肪族アルコール、および炭素数が4~30の脂肪酸と炭素数が4~30の脂肪族アルコールとのエステルからなる群より選択される少なくとも1種である、請求項1から4のいずれかの項に記載のシームレスカプセル。
  6.  請求項1から5のいずれかの項に記載の外層-油層-水層の擬三層構造を有するシームレスカプセルからなる、バイオリアクタ。
  7.  生体触媒を油性物質に懸濁した懸濁組成物でなる内層、および水透過性基材を含む皮膜組成物でなる外層の2層で構成されるシームレスカプセルを水性液状物に浸漬させる工程
    を包含する、外層-油層-水層の擬三層構造を有するシームレスカプセルの製造方法。
  8.  前記2層で構成されるシームレスカプセルが、
     最内側から第1ノズルおよび第2ノズルを有する同心二重ノズルを備えるカプセル製造装置を用い、
     該第1ノズルから、生体触媒を油性物質に懸濁した懸濁組成物を、そして該第2ノズルから水透過性基材を含む皮膜組成物を同時に液中に押出す工程
    を包含する方法により得られる、請求項7に記載の製造方法。
PCT/JP2009/059123 2008-05-19 2009-05-18 シームレスカプセル WO2009142170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES09750532.5T ES2548979T3 (es) 2008-05-19 2009-05-18 Cápsula sin uniones
EP09750532.5A EP2292752B9 (en) 2008-05-19 2009-05-18 Seamless capsule
US12/993,141 US20110117622A1 (en) 2008-05-19 2009-05-18 Seamless capsule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008131114A JP5259253B2 (ja) 2008-05-19 2008-05-19 シームレスカプセル
JP2008-131114 2008-05-19

Publications (1)

Publication Number Publication Date
WO2009142170A1 true WO2009142170A1 (ja) 2009-11-26

Family

ID=41340103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059123 WO2009142170A1 (ja) 2008-05-19 2009-05-18 シームレスカプセル

Country Status (6)

Country Link
US (1) US20110117622A1 (ja)
EP (1) EP2292752B9 (ja)
JP (1) JP5259253B2 (ja)
ES (1) ES2548979T3 (ja)
TW (1) TWI441660B (ja)
WO (1) WO2009142170A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130288330A1 (en) * 2010-11-02 2013-10-31 Morishita Jintan Co., Ltd. Capsule for non-ferrous metal collection and method of collecting non-ferrous metal
US20160338948A1 (en) * 2014-01-31 2016-11-24 Morishita Jintan Co., Ltd. Orally administered agent for ruminants and ruminant feed containing same
JPWO2021193921A1 (ja) * 2020-03-27 2021-09-30

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125091A1 (ja) * 2010-04-02 2011-10-13 株式会社 ツキオカ 可食フィルム
WO2015052969A1 (ja) * 2013-10-07 2015-04-16 フロイント産業株式会社 植物性シームレスカプセル、及びその利用
US9821287B2 (en) * 2013-10-29 2017-11-21 Lawrence Livermore National Security, Llc Systems for production of polymer encapsuated solids
CN107361392B (zh) * 2017-07-26 2019-10-25 云南芯韵科技开发有限公司 一种三层含水胶囊及其制备方法
EP3694491A1 (en) * 2017-10-10 2020-08-19 Capsugel Belgium NV Gelling multiparticulates
WO2019111398A1 (ja) * 2017-12-08 2019-06-13 森下仁丹株式会社 非水素添加油脂で構成された三層構造カプセルおよびその製造方法
WO2019213075A1 (en) * 2018-04-30 2019-11-07 The Trustees Of Columbia University In The City Of New York Methods, systems, and apparatus for encapsulating a sequestration medium
US11980214B2 (en) * 2019-11-15 2024-05-14 Inovobiologic Inc. Dietary fiber compositions with psyllium and methods of use
GB2624233A (en) * 2022-11-11 2024-05-15 Douwe Egberts Bv Edible beads

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520676A (en) 1978-08-03 1980-02-14 Iony Kk Polishing device of polished rice
JPS562908A (en) 1979-06-20 1981-01-13 Nikken Kagaku Kk Preparation of stable live bacterial pharmaceutical remedy
JPS61151127A (ja) * 1984-12-25 1986-07-09 Meiji Milk Prod Co Ltd ビフイズス菌含有ソフトカプセルの製造方法
JPS6219837A (ja) 1985-07-19 1987-01-28 Mitsubishi Rayon Co Ltd 透過型スクリ−ン
JPS62201823A (ja) 1986-02-28 1987-09-05 Freunt Ind Co Ltd 腸内有用細菌含有物およびその製造方法
JPH08103271A (ja) * 1994-10-07 1996-04-23 Oriental Yeast Co Ltd 酵母プロトプラストによる細胞表層物質の生産方法
JPH11508477A (ja) * 1996-02-23 1999-07-27 サーシ・バイオメディカル・インコーポレーテッド 新規の人工膵臓
JPH11302158A (ja) * 1998-04-16 1999-11-02 Oruto Corporation:Kk 腸溶性シームカプセルを用いた整腸作用を有する健康食品
JP2000086525A (ja) * 1998-09-16 2000-03-28 Morishita Jintan Kk カプセル配合打錠剤
JP2001245660A (ja) 1999-12-28 2001-09-11 Morishita Jintan Kk 生きた細胞または組織を包含するカプセル
JP2003088747A (ja) 2001-09-19 2003-03-25 Yasuo Hatate 中空かつ多孔性外殻を有するマイクロカプセルおよびその製造法ならびに活性物質を封入する方法
JP2003325638A (ja) 2002-05-13 2003-11-18 Morishita Jintan Kk シームレスカプセル
JP2006501281A (ja) * 2002-09-26 2006-01-12 プロバイオヘルス・エルエルシー 油乳化プロバイオティックカプセル封入物のプレバイオティックおよび保存的使用
JP2006061097A (ja) 2004-08-27 2006-03-09 Hitachi Plant Eng & Constr Co Ltd 固定化微生物の製造方法、及びそれによって製造された固定化微生物、並びにその固定化微生物を用いた反応装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195129A (en) * 1975-11-26 1980-03-25 Kansai Paint Co., Ltd. Method for immobilizing enzymes and microbial cells
US6780507B2 (en) * 2000-02-09 2004-08-24 Analytical Research Systems, Inc. Hydrocapsules and method of preparation thereof
AU2002246679B2 (en) * 2000-12-18 2006-11-16 Probiohealth Llc Probiotic compounds derived from lactobacillus casei strain KE01
US7214370B2 (en) * 2000-12-18 2007-05-08 Probiohealth, Llc Prebiotic and preservative uses of oil-emulsified probiotic encapsulations
US6982095B2 (en) * 2001-06-28 2006-01-03 Morishita Jintan Co., Ltd. Capsules containing vital cells or tissues
US8895060B2 (en) * 2002-09-26 2014-11-25 Vita-Herb Nutriceuticals, Inc. Methods and apparatus for sealing capsules
EP1596831A2 (en) * 2003-02-11 2005-11-23 Venture Management Alliance, LLC Material incapsulation system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520676A (en) 1978-08-03 1980-02-14 Iony Kk Polishing device of polished rice
JPS562908A (en) 1979-06-20 1981-01-13 Nikken Kagaku Kk Preparation of stable live bacterial pharmaceutical remedy
JPS61151127A (ja) * 1984-12-25 1986-07-09 Meiji Milk Prod Co Ltd ビフイズス菌含有ソフトカプセルの製造方法
JPS6219837A (ja) 1985-07-19 1987-01-28 Mitsubishi Rayon Co Ltd 透過型スクリ−ン
JPS62201823A (ja) 1986-02-28 1987-09-05 Freunt Ind Co Ltd 腸内有用細菌含有物およびその製造方法
JPH08103271A (ja) * 1994-10-07 1996-04-23 Oriental Yeast Co Ltd 酵母プロトプラストによる細胞表層物質の生産方法
JPH11508477A (ja) * 1996-02-23 1999-07-27 サーシ・バイオメディカル・インコーポレーテッド 新規の人工膵臓
JPH11302158A (ja) * 1998-04-16 1999-11-02 Oruto Corporation:Kk 腸溶性シームカプセルを用いた整腸作用を有する健康食品
JP2000086525A (ja) * 1998-09-16 2000-03-28 Morishita Jintan Kk カプセル配合打錠剤
JP2001245660A (ja) 1999-12-28 2001-09-11 Morishita Jintan Kk 生きた細胞または組織を包含するカプセル
JP2003088747A (ja) 2001-09-19 2003-03-25 Yasuo Hatate 中空かつ多孔性外殻を有するマイクロカプセルおよびその製造法ならびに活性物質を封入する方法
JP2003325638A (ja) 2002-05-13 2003-11-18 Morishita Jintan Kk シームレスカプセル
JP2006501281A (ja) * 2002-09-26 2006-01-12 プロバイオヘルス・エルエルシー 油乳化プロバイオティックカプセル封入物のプレバイオティックおよび保存的使用
JP2006061097A (ja) 2004-08-27 2006-03-09 Hitachi Plant Eng & Constr Co Ltd 固定化微生物の製造方法、及びそれによって製造された固定化微生物、並びにその固定化微生物を用いた反応装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Dai 60 Kai Abstracts of the Annual Meeting of the Society for Biotechnology, Japan", 11 July 2008, article MASANORI ASADA ET AL.: "Seikin Iri Seamless Capsule no Kenkyu Kaihatsu", pages: 222, XP008146611 *
MASANORI ASADA: "Funtai Gijutsu·Capsule-ka Gijutsu, Seamless Capsule-ka Gijutsu no Tokucho to sono Oyo", THE FOOD INDUSTRY, vol. 47, no. 24, 30 November 2004 (2004-11-30), pages 45 - 51, XP001077078 *
RYOSEI KAMAGUCHI: "Taso Seamless Capsule no Shokuhin eno Oyo", FOOD STYLE 21, vol. 13, no. 3, 1 March 2009 (2009-03-01), pages 74 - 75, XP008161813 *
RYOSEI KAMAGUCHI: "Yuyosei Kin no Capsule-ka Gijutsu", CHEMICAL ENGINEERING OF JAPAN, vol. 71, no. 2, 2007, pages 123 - 126, XP008146610 *
See also references of EP2292752A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130288330A1 (en) * 2010-11-02 2013-10-31 Morishita Jintan Co., Ltd. Capsule for non-ferrous metal collection and method of collecting non-ferrous metal
US9458423B2 (en) 2010-11-02 2016-10-04 Morishita Jintan Co., Ltd. Capsule for non-ferrous metal collection and method for collecting non-ferrous metal
EP2636760B1 (en) * 2010-11-02 2018-08-29 Morishita Jintan Co., Ltd. Capsule for non-ferrous metal collection and method for collecting non-ferrous metal
US20160338948A1 (en) * 2014-01-31 2016-11-24 Morishita Jintan Co., Ltd. Orally administered agent for ruminants and ruminant feed containing same
JPWO2021193921A1 (ja) * 2020-03-27 2021-09-30
WO2021193921A1 (ja) * 2020-03-27 2021-09-30 富士カプセル株式会社 水溶性組成物を内容物とする二層シームレスカプセル
JP7383318B2 (ja) 2020-03-27 2023-11-20 富士カプセル株式会社 水溶性組成物を内容物とする二層シームレスカプセル

Also Published As

Publication number Publication date
EP2292752A4 (en) 2011-12-28
EP2292752B1 (en) 2015-09-23
TWI441660B (zh) 2014-06-21
ES2548979T3 (es) 2015-10-22
JP2009278874A (ja) 2009-12-03
TW201000151A (en) 2010-01-01
JP5259253B2 (ja) 2013-08-07
EP2292752B9 (en) 2016-02-17
US20110117622A1 (en) 2011-05-19
EP2292752A1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5259253B2 (ja) シームレスカプセル
Pan et al. 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties
Baroli Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications
Nedovic et al. Fundamentals of cell immobilisation biotechnology
US6495161B1 (en) Cytoprotective biocompatible containment systems for biologically active materials and methods of making same
Chen et al. Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy
US20080193536A1 (en) Cell-Laden Hydrogels
Melvik et al. Alginate as a carrier for cell immobilisation
Koyama et al. Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol
Zhao et al. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing
FR3066116A1 (fr) Procede de preparation de capsules biodegradables et capsules obtenues
AU2015269678A1 (en) Microencapsulation technique and products thereof
Tao et al. Nanoparticle‐stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs
WO2022111595A1 (zh) 一种核壳微凝胶、氧气缓释材料、药物缓释制剂和一种多功能细胞包裹系统
CN114796617B (zh) 一种复合3d打印墨水及其应用
JPH1147581A (ja) 徐放性カプセル及びその製造方法
CN109529126A (zh) 一种人工真皮及其制备方法
JP4217029B2 (ja) シームレスカプセル
Ghahri et al. Development of osteon-like scaffold-cell construct by quadruple coaxial extrusion-based 3D bioprinting of nanocomposite hydrogel
Hu et al. 3D printing GelMA/PVA interpenetrating polymer networks scaffolds mediated with CuO nanoparticles for angiogenesis
JP2009051748A (ja) シームレスカプセルの製造方法
CN114957759B (zh) 一种核壳结构微载体及其制备方法
Wang et al. Conformational Transition‐Driven Self‐Folding Hydrogel Based on Silk Fibroin and Gelatin for Tissue Engineering Applications
KR102124579B1 (ko) 세포 괴사를 최소화하는 바이오잉크 조성물 및 이를 이용한 생체구조체의 제조방법
EP3328923A1 (fr) Procédé de préparation de matrices poreuse polymères biocompatibles et biodegradables trimensionnelles et leurs applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009750532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12993141

Country of ref document: US