WO2009142033A1 - 表示装置、画素回路およびその駆動方法 - Google Patents

表示装置、画素回路およびその駆動方法 Download PDF

Info

Publication number
WO2009142033A1
WO2009142033A1 PCT/JP2009/052477 JP2009052477W WO2009142033A1 WO 2009142033 A1 WO2009142033 A1 WO 2009142033A1 JP 2009052477 W JP2009052477 W JP 2009052477W WO 2009142033 A1 WO2009142033 A1 WO 2009142033A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
wiring
potential
display device
pixel circuit
Prior art date
Application number
PCT/JP2009/052477
Other languages
English (en)
French (fr)
Inventor
誠二 大橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US12/937,890 priority Critical patent/US8648776B2/en
Priority to JP2010512952A priority patent/JP5121926B2/ja
Priority to CN2009801134212A priority patent/CN102007527B/zh
Priority to BRPI0912837A priority patent/BRPI0912837A2/pt
Publication of WO2009142033A1 publication Critical patent/WO2009142033A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0254Control of polarity reversal in general, other than for liquid crystal displays
    • G09G2310/0256Control of polarity reversal in general, other than for liquid crystal displays with the purpose of reversing the voltage across a light emitting or modulating element within a pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0272Details of drivers for data electrodes, the drivers communicating data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the present invention relates to a display device, and more particularly to a current-driven display device such as an organic EL display or FED, a pixel circuit of the display device, and a driving method of the pixel circuit.
  • a current-driven display device such as an organic EL display or FED
  • a pixel circuit of the display device and a driving method of the pixel circuit.
  • the organic EL element included in the organic EL display emits light with higher luminance as the applied voltage is higher and the flowing current is larger.
  • the relationship between the luminance and voltage of the organic EL element easily varies under the influence of driving time and ambient temperature. For this reason, when a voltage control type driving method is applied to the organic EL display, it becomes very difficult to suppress variations in luminance of the organic EL element.
  • the luminance of the organic EL element is substantially proportional to the current, and this proportional relationship is not easily influenced by external factors such as the ambient temperature. Therefore, it is preferable to apply a current control type driving method to the organic EL display.
  • the pixel circuit and the drive circuit of the display device are configured using TFTs (Thin Film Transistors) made of amorphous silicon, low-temperature polycrystalline silicon, CG (Continuous Grain) silicon, or the like.
  • TFTs Thin Film Transistors
  • CG Continuous Grain
  • a method for compensating for variations in TFT characteristics includes a current programming method in which the amount of current flowing in the driving TFT is controlled by a current signal, and a voltage programming method in which the amount of current is controlled by a voltage signal. It is roughly divided into If the current programming method is used, variations in threshold voltage and mobility can be compensated, and if the voltage programming method is used, only variations in threshold voltage can be compensated.
  • the influence of parasitic capacitance is set during setting of a current signal.
  • the influence of parasitic capacitance and the like is slight, and the circuit design is relatively easy.
  • the influence of the mobility variation on the current amount is smaller than the influence of the threshold voltage variation on the current amount, and the mobility variation can be suppressed to some extent in the TFT manufacturing process. Therefore, even with a display device to which the voltage program method is applied, sufficient display quality can be obtained.
  • FIG. 8 is a circuit diagram of a pixel circuit described in Non-Patent Document 4.
  • a pixel circuit 900 shown in FIG. 8 includes a driving TFT 910, switching TFTs 911 to 913, a capacitor 921, and an organic EL element 930. All of the TFTs included in the pixel circuit 900 are n-channel type.
  • a switching TFT 913, a driving TFT 910, and an organic EL element 930 are provided in series between a power supply wiring Vp having a potential VDD and a cathode CTD of the organic EL element 930.
  • a switching TFT 911 is provided between the source terminal of the driving TFT 910 and the data line Sj
  • a switching TFT 912 is provided between the gate terminal and the drain terminal of the driving TFT 910
  • the gate terminal of the driving TFT 910 A capacitor 921 is provided between the power supply wiring Vp.
  • the gate terminals of the switching TFTs 911 and 912 are both connected to the control wiring SLT, and the gate terminal of the switching TFT 913 is connected to the control wiring TNO.
  • FIG. 9 is a timing chart of the pixel circuit 900.
  • the potential of the control wiring SLT changes to a high level.
  • the switching TFTs 911 and 912 are turned on, and the data potential Vda is applied from the data line Sj to the source terminal of the driving TFT 910 via the switching TFT 911.
  • the potential of the cathode CTD of the organic EL element 930 also changes to a high level. Therefore, a reverse bias voltage is applied between the anode and the cathode of the organic EL element 930, and the organic EL element 930 enters a non-light emitting state.
  • the switching TFTs 912 and 913 are both conductive from time t1 to time t2, the gate potential of the driving TFT 910 becomes equal to the potential VDD of the power supply wiring Vp.
  • the potential of the control wiring TNO changes to a low level.
  • the switching TFT 913 becomes non-conductive, and a current flows from the gate terminal of the driving TFT 910 (and the drain terminal short-circuited thereto) to the data line Sj via the driving TFT 910 and the switching TFT 911,
  • the gate potential of the driving TFT 910 gradually decreases.
  • the driving TFT 910 is turned off.
  • the potential difference between the electrodes of the capacitor 921 becomes ⁇ Vp ⁇ (Vda + Vth) ⁇ . Thereafter, this potential difference is held in the capacitor 921.
  • the potential of the control wiring TNO changes to a high level, and the potential of the control wiring SLT changes to a low level. For this reason, the switching TFTs 911 and 912 are turned off, and the switching TFT 913 is turned on. Since the capacitor 921 holds the potential difference ⁇ Vp ⁇ (Vda + Vth) ⁇ , the gate potential of the driving TFT 910 remains (Vda + Vth) after time t3. At time t3, the potential of the cathode CTD of the organic EL element 930 changes to a low level.
  • a current corresponding to the potential Vda (equal to the data potential) obtained by subtracting the threshold voltage Vth of the driving TFT 910 from the gate potential (Vda + Vth) of the driving TFT 910 flows from the driving TFT 910 to the organic EL element 930,
  • the EL element 930 emits light with luminance corresponding to the current.
  • the current flowing from the driving TFT 910 to the organic EL element 930 after time t3 is determined by the data potential Vda and is not affected by the threshold voltage Vth of the driving TFT 910. Therefore, according to the display device including the pixel circuit 900, even when the threshold voltage Vth of the driving TFT 910 varies, a current corresponding to the data potential Vda and the threshold voltage Vth is supplied to the organic EL element 930, and the organic EL element The 930 can emit light with a desired luminance. “4.0-in. TFT-OLED Displays and a Novel Digital Driving Method”, SID'00 Digest, pp.
  • the organic EL element is used in a period (period from time t1 to t3) in which the gate-source voltage of the driving TFT 910 matches the threshold voltage Vth of the driving TFT 910. It is necessary to set the potential of the cathode 930 of 930 to a high level.
  • a general active matrix display device includes only one cathode common to all display elements. Therefore, even when the pixel circuit 900 is used, a display device (hereinafter referred to as a first display device) provided with only one cathode common to all the organic EL elements 930 can be considered.
  • the first display device when the data potential Vda is written to a certain pixel circuit 900, a reverse bias voltage is applied to all the organic EL elements 930 in the display device.
  • the element 930 does not emit light during this period. For this reason, the first display device has a problem that a sufficient light emission duty ratio cannot be obtained and display quality is lowered.
  • a display device in which the cathode CTD of the organic EL element 930 is provided for each row of pixel circuits (a display device in which the same number of cathode CTDs as the control wiring SLT is provided; hereinafter referred to as a second display device) Can think.
  • a display device in which the same number of cathode CTDs as the control wiring SLT is provided hereinafter referred to as a second display device
  • the second display device has a problem that one extra process for producing the organic EL element 930 is added and the manufacturing cost is increased.
  • the cathode CTD of the organic EL element 930 is patterned, there is a problem that the aperture ratio is lowered and the screen becomes dark.
  • an object of the present invention is to provide a display device with high display quality and low cost, which has a high light emission duty ratio and does not require patterning of one electrode of an electro-optic element.
  • a first aspect of the present invention is a current-driven display device, A plurality of pixel circuits arranged corresponding to the intersections of the plurality of scanning lines and the plurality of data lines; A scanning signal output circuit for selecting a pixel circuit to be written using the scanning line; A display signal output circuit for applying a potential corresponding to display data to the data line;
  • the pixel circuit includes: A driving element that is provided on a path connecting the first wiring and the second wiring and has a control terminal, a first terminal, and a second terminal, and controls a current flowing through the path; An electro-optic element that is connected to the first terminal of the driving element and is provided in series with the driving element on the path, and emits light with luminance according to a current flowing through the path; A first switching element provided between a first terminal of the driving element and the data line; A second switching element provided between a control terminal and a second terminal of the drive element; A third switching element provided between the second terminal of the driving element and the first wiring; A capacitor provided between a control terminal of
  • the pixel circuit further includes a fourth switching element provided between a control terminal of the driving element and a fourth wiring.
  • control terminal of the fourth switching element is connected to the fourth wiring.
  • the fourth wiring is provided with a potential at which the driving element becomes conductive.
  • the first and second switching elements are controlled to be in a conductive state, and the third switching element is controlled to be in a non-conductive state.
  • the scanning signal output circuit has a function of adjusting a change timing of a potential of the third wiring.
  • the scanning signal output circuit has a function of adjusting a change timing of a potential applied to a control terminal of the third switching element.
  • the electro-optical element is composed of an organic EL element.
  • a pixel circuit disposed in a current-driven display device in a plurality corresponding to each intersection of a plurality of scanning lines and a plurality of data lines,
  • a driving element that is provided on a path connecting the first wiring and the second wiring and has a control terminal, a first terminal, and a second terminal, and controls a current flowing through the path;
  • An electro-optic element that is connected to the first terminal of the driving element and is provided in series with the driving element on the path, and emits light with luminance according to a current flowing through the path;
  • a first switching element provided between a first terminal of the driving element and the data line;
  • a second switching element provided between a control terminal and a second terminal of the drive element;
  • a third switching element provided between the second terminal of the driving element and the first wiring;
  • a capacitor provided between a control terminal of the drive element and a third wiring;
  • a fourth switching element provided between the control terminal of the driving element and a fourth wiring is further provided.
  • An eleventh aspect of the present invention is the tenth aspect of the present invention,
  • the control terminal of the fourth switching element is connected to the fourth wiring.
  • a twelfth aspect of the present invention is a pixel circuit driving method in which a plurality of pixel circuits are arranged in a current-driven display device corresponding to the intersections of a plurality of scanning lines and a plurality of data lines.
  • a driving element provided on a path connecting the first wiring and the second wiring, the pixel circuit having a control terminal, a first terminal, and a second terminal, and controlling a current flowing through the path;
  • An electro-optic element connected in series to the drive element on the path connected to the first terminal of the drive element and emitting light with a luminance according to a current flowing through the path; and a first of the drive element
  • a first switching element provided between the terminal and the data line; a second switching element provided between the control terminal and the second terminal of the driving element; and a second switching element of the driving element.
  • a third switching element provided between the terminal and the first wiring, and a capacitor provided between the control terminal of the driving element and the third wiring,
  • the first and second switching elements are controlled to be in a conductive state
  • the third switching element is controlled to be in a non-conductive state
  • the data line changes according to display data
  • the electro-optical element is changed. Applying a potential at which the applied voltage is equal to or lower than the light emission threshold voltage; Changing the potential of the third wiring in two stages; Controlling the first and second switching elements to a non-conducting state and the third switching element to a conducting state.
  • a thirteenth aspect of the present invention is the twelfth aspect of the present invention,
  • the pixel circuit further includes a fourth switching element provided between a control terminal of the driving element and a fourth wiring
  • a potential at which the driving element becomes conductive is applied to the fourth wiring, and the first and second switching elements are in a conductive state and the third switching element is in a non-conductive state.
  • the method further includes the step of controlling the fourth switching element to a conductive state.
  • the electro-optic element since the data line is given a potential at which the voltage applied to the electro-optic element is equal to or lower than the light emission threshold voltage, the electro-optic element is simply written to the pixel circuit. Does not emit light, and the electro-optic element emits light after the potential of the third wiring changes. Further, if the second switching element is controlled to be in a conductive state and the third switching element is controlled to be in a non-conductive state, a threshold voltage can be applied between the control terminal of the driving element and the first terminal, In addition, by changing the potential of the third wiring, the electro-optical element can emit light with a desired luminance regardless of the threshold voltage of the driving element.
  • the electro-optic element when the potential corresponding to the display data is written in the pixel circuit while compensating for the variation in the threshold voltage of the driving element, the electro-optic element is brought into a non-light emitting state while the potential of the second wiring is fixed. be able to. For this reason, the electro-optical elements of other pixel circuits continue to emit light while writing to a certain pixel circuit, so the electro-optical elements of other pixel circuits emit light while writing to a certain pixel circuit. The light emission duty ratio becomes higher and the display quality becomes higher than when it disappears. In addition, since it is not necessary to divide and control the potential of the second wiring, it is not necessary to pattern the electrode on the second wiring side of the electro-optic element, and the cost of the display device is reduced accordingly.
  • the scanning signal output circuit that changes the potential of the third wiring in two stages can be easily configured. Therefore, it is possible to obtain a display device with high display quality and low cost, which has a high light emission duty ratio and does not require patterning of one electrode of the electro-optic element.
  • the potential of the first wiring is applied to the control terminal of the drive element by applying a suitable potential to the fourth wiring and controlling the fourth switching element to the conductive state.
  • a threshold voltage can be applied between the control terminal of the drive element and the first terminal without applying the voltage. Thereby, the power consumption of the display device can be reduced.
  • the control terminal of the fourth switching element by connecting the control terminal of the fourth switching element to the same wiring as the other terminals, one wiring is reduced, and the aperture ratio and yield of the display device are increased. Can do.
  • the electro-optical element by controlling the second switching element to the conductive state and the third switching element to the non-conductive state, between the control terminal of the drive element and the first terminal A threshold voltage can be applied. After that, by applying a potential at which the driving element becomes conductive to the third wiring, the electro-optical element can emit light with desired luminance regardless of the threshold voltage of the driving element.
  • the moving image which is a defect of the display device which performs the hold type display by adjusting the light emission duty ratio by adjusting the change timing of the potential of the third wiring in the scanning signal output circuit. Blur can be eliminated.
  • a display device that performs hold-type display by adjusting a light emission duty ratio by adjusting a change timing of a potential applied to a control terminal of a third switching element in a scanning signal output circuit. It is possible to eliminate the motion blur that is a drawback of the above.
  • a high display quality and low cost organic EL display having a high light emission duty ratio and requiring no patterning of the cathode of the organic EL element can be configured.
  • the pixel circuit included in the display device according to the first to third aspects of the present invention is configured, and using this, the light emission duty ratio is high, and the electro-optics A display device with high display quality and low cost which does not require patterning of one electrode of the element can be obtained.
  • the light emission duty ratio is increased.
  • the display quality can be increased.
  • a potential at which the drive element becomes conductive is applied to the fourth wiring, and the fourth switching element is controlled to be in the conductive state, whereby the potential of the first wiring is set to the drive element.
  • the threshold voltage can be applied between the control terminal of the drive element and the first terminal in a short time without being applied to the control terminal. As a result, the power consumption of the display device can be reduced and a display device with high resolution can be configured.
  • FIG. 1 is a circuit diagram of a pixel circuit included in a display device according to a first embodiment of the present invention.
  • 3 is a timing chart of the pixel circuit shown in FIG. It is a circuit diagram of an inverter.
  • the display device includes a pixel circuit including an electro-optical element, a driving element, a capacitor, and a plurality of switching elements.
  • the switching element can be composed of a low-temperature polysilicon TFT, a CG silicon TFT, an amorphous silicon TFT, or the like. Since the structure and manufacturing process of these TFTs are known, the description thereof is omitted here.
  • An organic EL element is used as the electro-optical element. Since the configuration of the organic EL element is also known, its description is omitted here.
  • FIG. 1 is a block diagram showing a configuration of a display device according to the first and second embodiments of the present invention.
  • a display device 10 shown in FIG. 1 includes a plurality of pixel circuits Aij (i is an integer of 1 to n, j is an integer of 1 to m), a display control circuit 11, a gate driver circuit 12, and a source driver circuit 13. It has.
  • the display device 10 is provided with a plurality of scanning lines Gi arranged in parallel to each other and a plurality of data lines Sj arranged in parallel to each other so as to be orthogonal to the scanning lines Gi.
  • the pixel circuits Aij are arranged in a matrix corresponding to the intersections of the scanning lines Gi and the data lines Sj.
  • a plurality of control wirings (Ri, Ui, Wi, etc .; not shown) are arranged in parallel to the scanning lines Gi.
  • the power supply wiring Vp and the common cathode Vcom are arranged in the arrangement region of the pixel circuit Aij, and the power supply wiring Vref may be arranged in some embodiments.
  • the scanning line Gi and the control wiring are connected to the gate driver circuit 12, and the data line Sj is connected to the source driver circuit 13.
  • the display control circuit 11 outputs a timing signal OE, a start pulse YI, and a clock YCK to the gate driver circuit 12, and outputs a start pulse SP, a clock CLK, display data DA, and a latch pulse LP to the source driver circuit 13. To do.
  • the gate driver circuit 12 includes a shift register circuit, a logical operation circuit, and a buffer (all not shown).
  • the shift register circuit sequentially transfers the start pulse YI in synchronization with the clock YCK.
  • the logical operation circuit performs a logical operation between the pulse output from each stage of the shift register circuit and the timing signal OE.
  • the output of the logical operation circuit is given to the corresponding scanning line Gi and control wiring via the buffer.
  • the gate driver circuit 12 functions as a scanning signal output circuit that selects a pixel circuit to be written using the scanning line Gi.
  • the source driver circuit 13 includes an m-bit shift register 21, a register 22, a latch circuit 23, and m D / A converters 24.
  • the shift register 21 includes m 1-bit registers connected in cascade. The shift register 21 sequentially transfers the start pulse SP in synchronization with the clock CLK, and outputs a timing pulse DLP from each stage register. Display data DA is supplied to the register 22 in accordance with the output timing of the timing pulse DLP.
  • the register 22 stores display data DA according to the timing pulse DLP. When the display data DA for one row is stored in the register 22, the display control circuit 11 outputs a latch pulse LP to the latch circuit 23. When the latch circuit 23 receives the latch pulse LP, the latch circuit 23 holds the display data stored in the register 22.
  • One D / A converter 24 is provided for each data line Sj.
  • the D / A converter 24 converts the display data held in the latch circuit 23 into an analog signal voltage, and supplies it to the corresponding data line Sj.
  • the source driver circuit 13 functions as a display signal output circuit that applies a potential corresponding to display data to the data line Sj.
  • the source driver circuit 13 performs line-sequential scanning for simultaneously supplying a potential corresponding to display data for one row to a pixel circuit connected to one scanning line. Instead, dot sequential scanning may be performed in which a potential corresponding to display data is sequentially supplied to each pixel circuit. Since the configuration of the source driver circuit that performs dot sequential scanning is known, the description thereof is omitted here.
  • the driving TFT, the switching TFT, and the organic EL element included in the pixel circuit Aij function as a driving element, a switching element, and an electro-optical element, respectively.
  • the power supply wiring Vp corresponds to the first wiring
  • the common cathode Vcom corresponds to the second wiring.
  • FIG. 2 is a circuit diagram of a pixel circuit included in the display device according to the first embodiment of the present invention.
  • the pixel circuit 100 shown in FIG. 2 includes a driving TFT 110, switching TFTs 111 to 113, a capacitor 121, and an organic EL element 130. All of the TFTs included in the pixel circuit 100 are n-channel type.
  • the pixel circuit 100 is connected to the power supply wiring Vp, the common cathode Vcom, the scanning line Gi, the control wiring Ri, Ui, and the data line Sj.
  • constant potentials VDD and VSS are applied to the power supply wiring Vp and the common cathode Vcom, respectively.
  • the common cathode Vcom is a cathode common to all the organic EL elements 130 in the display device.
  • the terminals of the driving TFT 110 described as G, S, and D in FIG. 2 are called a gate terminal, a source terminal, and a drain terminal, respectively.
  • the lower one of the two current input / output terminals is called a source terminal, and the higher applied voltage is called a drain terminal.
  • the lower one of the two current input / output terminals is referred to as a drain terminal, and the higher applied voltage is referred to as a source terminal.
  • the terminal name is changed according to the magnitude relation of the voltage, the explanation becomes complicated, so the magnitude relation of the voltage is reversed, and even when the two current input / output terminals should be called with the opposite names,
  • the terminals are referred to by the names shown for convenience.
  • the n-channel type is used for all TFTs, but the p-channel type may be used for the switching TFTs.
  • the low level potential corresponds to the conductive state and the high level potential corresponds to the nonconductive state.
  • the conductive potential and the nonconductive state potential are opposite to those in the case where the n-channel type is used for the switching TFT. Become.
  • the above points are the same in the second embodiment.
  • a switching TFT 113 In the pixel circuit 100, a switching TFT 113, a driving TFT 110, and an organic EL element 130 are provided in series on the path connecting the power supply wiring Vp and the common cathode Vcom in this order from the power supply wiring Vp side.
  • a switching TFT 111 is provided between the source terminal of the driving TFT 110 and the data line Sj
  • a switching TFT 112 is provided between the gate terminal and the drain terminal of the driving TFT 110
  • the gate terminal of the driving TFT 110 A capacitor 121 is provided between the control wiring Ui.
  • the gate terminals of the switching TFTs 111 and 112 are both connected to the scanning line Gi, and the gate terminal of the switching TFT 113 is connected to the control wiring Ri.
  • the operation of the pixel circuit 100 is controlled by a gate driver circuit 12 and a source driver circuit 13 that operate based on a signal supplied from the display control circuit 11.
  • FIG. 3 is a timing chart of the pixel circuit 100.
  • FIG. 3 shows changes in potentials of the scanning line Gi, the control wirings Ri and Ui, and the data line Sj.
  • the reason why the organic EL element 130 is controlled to be in a non-light emitting state during the period when the voltage of the scanning line Gi is at a high level is that when the organic EL element 130 emits light during this period, a black display is performed. This is because the brightness increases by that amount and the contrast of the screen decreases.
  • the potential of the scanning line Gi is controlled to a low level
  • the potential of the control wiring Ri is controlled to a high level
  • the potential of the control wiring Ui is controlled to a relatively high potential V1. Therefore, the switching TFTs 111 and 112 are in a non-conductive state, and the switching TFT 113 is in a conductive state.
  • the driving TFT 110 is in a conductive state, a current flows from the power supply wiring Vp to the organic EL element 130 via the switching TFT 113 and the driving TFT 110, and the organic EL element 130 emits light with a predetermined luminance.
  • the potential of the scanning line Gi changes to a high level, and a new data potential Vda is applied to the data line Sj.
  • the switching TFTs 111 and 112 become conductive, and the data potential Vda is applied from the data line Sj to the source terminal of the driving TFT 110 via the switching TFT 111.
  • the data potential Vda applied at this time is determined so that the organic EL element 130 is in a non-light emitting state.
  • the data potential Vda is determined such that the difference from the potential VSS is equal to or less than the emission threshold voltage Vth_oled. .
  • Vth_oled ⁇ Vda ⁇ VSS (1)
  • the gate and drain of the driving TFT 110 are short-circuited, and the potential VDD is applied to the gate terminal and the drain terminal of the driving TFT 110 from the power supply wiring Vp. Therefore, the gate-source voltage Vgs of the driving TFT 110 is expressed by the following equation (2).
  • Vgs VDD ⁇ Vda (2)
  • the potential of the control wiring Ui changes to a relatively low potential V2.
  • the potential of the control wiring Ri changes to a low level.
  • the switching TFT 113 becomes non-conductive, current flows from the gate terminal of the driving TFT 110 (and the drain terminal short-circuited thereto) to the source terminal, and the gate potential of the driving TFT 110 gradually decreases.
  • the gate-source voltage of the driving TFT 110 becomes equal to the threshold voltage Vth of the driving TFT 110 (that is, when the gate potential becomes (Vda + Vth))
  • the driving TFT 110 becomes non-conductive and is driven. Thereafter, the gate potential of the TFT 110 does not decrease.
  • the driving TFT 110 is in a state in which the threshold voltage Vth is applied between the gate and the source regardless of the threshold voltage Vth.
  • the potential difference between the electrodes of the capacitor 121 is (Vda + Vth ⁇ V2). Thereafter, this potential difference is held in the capacitor 121.
  • the potential of the scanning line Gi changes to a low level. For this reason, the switching TFTs 111 and 112 become non-conductive.
  • the potential of the control wiring Ui changes from V2 to V1. Since the control wiring Ui and the gate terminal of the driving TFT 110 are connected via the capacitor 121, when the potential of the control wiring Ui changes, the gate potential of the driving TFT 110 changes by the same amount (V1-V2). For this reason, the gate potential Vg of the driving TFT 110 is expressed by the following equation (3).
  • Vg Vda + Vth + V1-V2 (3)
  • the potential of the control wiring Ri changes to a high level. For this reason, the switching TFT 113 becomes conductive, and the potential VDD is applied to the drain terminal of the driving TFT 110 from the power supply wiring Vp. Further, since the potential difference (Vda + Vth ⁇ V2) is held in the capacitor 121, the gate potential of the driving TFT 110 remains (Vda + Vth + V1 ⁇ V2) after time t6. Therefore, a current corresponding to a voltage (Vda + V1-V2) obtained by subtracting the threshold voltage Vth of the driving TFT 110 from the gate potential (Vda + Vth + V1-V2) of the driving TFT 110 flows from the power supply wiring Vp to the common cathode Vcom.
  • the element 130 emits light with a luminance corresponding to the current.
  • the EL element 130 can emit light with desired luminance.
  • the gate driver circuit 12 changes the potential of the control wiring Ui in two steps (V1 and V2).
  • the inverter circuit shown in FIG. 4 is provided as a buffer circuit at the final stage of the gate driver circuit 12.
  • the inverter circuit shown in FIG. 4 changes the potential of the control wiring Ui in two steps according to the input signal IN.
  • the display device includes a gate driver circuit 12 that changes the potential of the control wiring Ui in two stages. Such a gate driver circuit can be easily configured.
  • the display device includes the plurality of pixel circuits 100, the gate driver circuit 12, and the source driver circuit 13.
  • the pixel circuit 100 includes the driving TFT 110, the switching TFTs 111 to 113, and the capacitor 121. And an organic EL element 130.
  • the source driver circuit 13 gives a potential at which the voltage applied to the organic EL element 130 is equal to or lower than the light emission threshold voltage Vth_oled to the data line Sj, and the gate driver circuit 12 sets the potential of the control wiring Ui in two stages (V1). And V2).
  • the data line Sj is given a potential at which the voltage applied to the organic EL element 130 is equal to or lower than the light emission threshold voltage Vth_oled. Therefore, the organic EL element 130 emits light only by writing the potential of the data line Sj to the pixel circuit 100. Instead, the organic EL element 130 emits light after the potential of the control wiring Ui changes to V1. Further, the threshold voltage Vth can be applied between the gate and the source of the driving TFT 110 by controlling the switching TFT 112 to be conductive and the switching TFT 113 to be non-conductive.
  • the driving TFT 110 can emit light with a desired luminance regardless of the threshold voltage Vth of the driving TFT 110 by applying a potential at which the driving TFT 110 becomes conductive to the control wiring Ui.
  • the organic EL element 130 is brought into a non-light emitting state while the potential of the common cathode Vcom is fixed. be able to.
  • the organic EL elements 130 of the other pixel circuits 100 continue to emit light while writing to a certain pixel circuit 100. Therefore, while writing to a certain pixel circuit, the organic EL elements of other pixel circuits As compared with a display device that stops emitting light, the light emission duty ratio becomes higher and the display quality becomes higher. Further, since it is not necessary to divide and control the potential of the common cathode Vcom, it is not necessary to pattern the cathode of the organic EL element 130, and the cost of the display device is accordingly reduced. Further, the gate driver circuit 12 that changes the potential of the control wiring Ui in two steps can be easily configured. Therefore, it is possible to obtain a display device (organic EL display) with high display quality and low cost, which has a high light emission duty ratio and does not require patterning of the cathode of the organic EL element 130.
  • the display device can be manufactured easily and with high performance.
  • all the switching elements in the driving TFT 110 and the pixel circuit 100 with n-channel transistors, all the transistors can be manufactured by the same process using the same mask, and the cost of the display device can be reduced.
  • the same channel type transistor can be arranged closer to different channel type transistors, more transistors can be arranged in the same area.
  • the gate terminals of the switching TFTs 111 and 112 are connected to the same wiring (scanning line Gi), but the gate terminals of the switching TFTs 111 and 112 are connected to different control wirings,
  • the potential of the control wiring may be changed at substantially the same timing (first modification).
  • the current that flows to the source terminal of the driving TFT 110 from time t1 to time t4 is the resistance component of the organic EL element 130 and the resistance when the switching TFT 111 is conductive. Depending on the component, it flows to the organic EL element 130 and the switching TFT 111. In general, the lifetime of the organic EL element becomes shorter as a larger amount of current flows. Therefore, in order to prevent a current from flowing through the organic EL element 130, the data potential Vda may be set to be equal to or lower than the potential VSS of the common cathode Vcom (second modification). This is expressed by the following equation (5). Vda ⁇ VSS (5)
  • the anode and the cathode of the organic EL element 130 are either at the same potential, or a reverse bias voltage is applied to the organic EL element 130. Therefore, current can be prevented from flowing through the organic EL element 130 from time t1 to time t4 (while the switching TFT 111 is in a conductive state), and the life of the organic EL element 130 can be extended.
  • the potential of the control line Ui is lowered (changed from V1 to V2) after the potential of the scanning line Gi is changed to high level, but the potential of the scanning line Gi is changed to high level. Prior to the change, the potential of the control wiring Ui may be lowered (third modification). According to this method, even when the number of scanning lines Gi is large and the time during which the potential of the scanning line Gi is at a high level is short, variations in the threshold voltage Vth of the driving TFT 110 can be compensated. However, when this method is used, a forward bias voltage is applied to the organic EL element 130, the organic EL element 130 emits light unnecessarily, and the contrast of the screen may be lowered. Therefore, as shown in FIG. 3, it is more preferable to lower the potential of the control wiring Ui after changing the potential of the scanning line Gi to the high level.
  • the gate driver circuit 12 may be provided with a function of adjusting the timing (time t5 in FIG. 3) for increasing the potential of the control wiring Ui (fourth modification).
  • the timing time t5 in FIG. 3
  • the length of the light emission period of the organic EL element 130 can be adjusted, and the light emission duty ratio of the organic EL element 130 can be adjusted. Therefore, it is possible to eliminate moving image blur, which is a drawback of a display device that performs hold-type display, such as an organic EL display.
  • the gate driver circuit 12 may be provided with a function of adjusting the timing (time t6 in FIG. 3) at which the potential of the control wiring Ri is set to the high level (fifth modification).
  • the timing time t6 in FIG. 3
  • the length of the light emission period of the organic EL element 130 can be adjusted, and the light emission duty ratio of the organic EL element 130 can be adjusted. Therefore, the same effect as the display device according to the fourth modification can be obtained.
  • FIG. 5 is a circuit diagram of a pixel circuit included in a display device according to the second embodiment of the present invention.
  • a pixel circuit 200 shown in FIG. 5 includes a driving TFT 110, switching TFTs 111 to 113, 214, a capacitor 121, and an organic EL element 130. All of the TFTs included in the pixel circuit 200 are n-channel type.
  • the same elements as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the pixel circuit 200 adds a power supply wiring Vref and a control wiring Wi to the pixel circuit 100 according to the first embodiment, and a switching TFT 214 is provided between the power supply wiring Vref and the gate terminal of the driving TFT 110. A change is made to connect the gate terminal of the switching TFT 214 to the control wiring Wi. A constant initial potential Vini is applied to the power supply wiring Vref.
  • FIG. 6 is a timing chart of the pixel circuit 200.
  • FIG. 6 shows changes in potentials of the scanning line Gi, the control wirings Ri, Ui, Wi, and the data line Sj.
  • the potential of the control wiring Wi Prior to time t4, the potential of the control wiring Wi is controlled to a low level. For this reason, the switching TFT 214 is in a non-conductive state, and the pixel circuit 200 operates in the same manner as the pixel circuit 100.
  • the threshold voltage Vth needs to be applied between the gate and the source of the driving TFT 110 from time t3 to time t4. However, in the pixel circuit 200, this is not necessary.
  • the potential of the control wiring Wi changes to a high level.
  • the switching TFT 214 becomes conductive, and the initial potential Vini is applied from the power supply wiring Vref to the gate terminal and the drain terminal of the driving TFT 110 via the switching TFT 214.
  • the initial potential Vini is determined so that the driving TFT 110 becomes conductive.
  • the initial potential Vini is determined so that the difference from the source potential Vda of the driving TFT 110 is equal to or higher than the threshold voltage Vth of the driving TFT 110 in all the pixel circuits 200. This is expressed by the following equation (6).
  • the potential of the control wiring Wi changes to a low level. For this reason, the switching TFT 214 becomes non-conductive, current flows from the gate terminal of the driving TFT 110 (and the drain terminal short-circuited thereto) to the source terminal, and the gate potential of the driving TFT 110 gradually decreases.
  • the driving TFT 110 becomes equal to the threshold voltage Vth of the driving TFT 110
  • the driving TFT 110 becomes non-conductive, and the gate potential of the driving TFT 110 does not decrease thereafter.
  • the driving TFT 110 is in a state in which the threshold voltage Vth is applied between the gate and the source regardless of the threshold voltage Vth.
  • the potential difference between the electrodes of the capacitor 121 is (Vda + Vth ⁇ V2). Thereafter, this potential difference is held in the capacitor 121.
  • the pixel circuit 200 operates in the same manner as after the time t4 of the pixel circuit 100.
  • the pixel circuit 200 includes the switching TFT 214 between the gate terminal of the driving TFT 110 and the power supply wiring Vref, and the power supply wiring Vref is given a potential at which the driving TFT 110 becomes conductive. Therefore, by controlling the switching TFT 214 to be in a conductive state, the threshold voltage Vth between the gate and source of the driving TFT 110 can be applied without applying the potential VDD of the power supply wiring Vp to the gate terminal of the driving TFT 110. it can. Therefore, the display device according to the present embodiment can reduce power consumption.
  • the time until the threshold voltage Vth is applied between the gate and the source of the driving TFT 110 is shortened, and a display device with high resolution is configured. It becomes possible.
  • the display device according to the second embodiment may also be configured as the first to fifth modifications, as in the first embodiment.
  • the display device of the present invention may include a pixel circuit shown in FIG.
  • the pixel circuit 250 illustrated in FIG. 7 is obtained by changing the pixel circuit 200 so that one end of the switching TFT 214 is connected to the control wiring Wi and the power supply wiring Vref is deleted. In this manner, by connecting the gate terminal of the switching TFT 214 to the same wiring as the other terminals, one wiring can be reduced, and the aperture ratio and the yield of the display device can be increased.
  • the pixel circuit includes an organic EL element as an electro-optical element.
  • the pixel circuit is an electro-optical element other than an organic EL element such as a semiconductor LED (Light Emitting Diode) or a light emitting unit of an FED.
  • the current drive type electro-optical element may be included.
  • the pixel circuit is a MOS transistor (herein referred to as a MOS transistor including a silicon gate MOS structure) formed on an insulating substrate such as a glass substrate as a driving element for the electro-optical element. TFT was included.
  • the pixel circuit is not limited to this, and the pixel circuit has an arbitrary control voltage (threshold voltage) that changes the output current according to the control voltage applied to the current control terminal as the driving element of the electro-optical element and the output current becomes zero
  • a voltage-controlled element may be included.
  • a general insulated gate field effect transistor including, for example, a MOS transistor formed on a semiconductor substrate can be used as the drive element of the electro-optic element.
  • an insulated gate field effect transistor as the driving element, it is possible to prevent a current flowing through the driving element from flowing into the electro-optical element when compensating for variations in the threshold voltage of the driving element. Accordingly, unnecessary light emission of the electro-optical element can be prevented, the contrast of the screen can be increased, and deterioration of the electro-optical element can be suppressed.
  • the pixel circuit includes a TFT as a switching element.
  • the pixel circuit includes a general insulated gate field effect transistor including a MOS transistor formed on a semiconductor substrate as the switching element. May be included.
  • the display device of the present invention has a high light emission duty ratio, does not require patterning of one electrode of the electro-optic element, and has an effect of high display quality and low cost. Therefore, a current drive type such as an organic EL display or FED is provided. It can utilize for the various display apparatus provided with this display element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 第1の配線(Vp)と第2の配線(Vcom)とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、経路を流れる電流を制御する駆動素子(110)と、駆動素子(110)の第1の端子に接続して経路上に駆動素子(110)と直列に設けられ、経路を流れる電流に応じた輝度で発光する電気光学素子(130)と、駆動素子(110)の第1の端子とデータ線(Sj)との間に設けられた第1のスイッチング素子(111)と、駆動素子(110)の制御端子と第2の端子との間に設けられた第2のスイッチング素子(112)と、駆動素子(110)の第2の端子と第1の配線(Vp)との間に設けられた第3のスイッチング素子(113)と、駆動素子(110)の制御端子と第3の配線(Ui)との間に設けられたコンデンサ(121)とを含む画素回路(100)を備え、データ線(Sj)に対して、電気光学素子(130)への印加電圧が発光閾値電圧以下となる電位を与え、第3の配線(Ui)の電位を2段階に変化させる表示装置である。

Description

表示装置、画素回路およびその駆動方法
 本発明は、表示装置に関し、より特定的には、有機ELディスプレイやFEDなどの電流駆動型の表示装置、表示装置の画素回路、および、画素回路の駆動方法に関する。
 近年、薄型、軽量、高速応答可能な表示装置の需要が高まり、これに伴い、有機EL(Electro Luminescence)ディスプレイやFED(Field Emission Display)に関する研究開発が活発に行われている。
 有機ELディスプレイに含まれる有機EL素子は、印加される電圧が高く、流れる電流が多いほど、高い輝度で発光する。ところが、有機EL素子の輝度と電圧の関係は、駆動時間や周辺温度などの影響を受けて容易に変動する。このため、有機ELディスプレイに電圧制御型の駆動方式を適用すると、有機EL素子の輝度のばらつきを抑えることが非常に困難になる。これに対して、有機EL素子の輝度は電流にほぼ比例し、この比例関係は周辺温度などの外的要因の影響を受けにくい。したがって、有機ELディスプレイには電流制御型の駆動方式を適用することが好ましい。
 一方、表示装置の画素回路や駆動回路は、アモルファスシリコン、低温多結晶シリコン、CG(Continuous Grain)シリコンなどで構成されたTFT(Thin Film Transistor:薄膜トランジスタ)を用いて構成される。ところが、TFTの特性(例えば、閾値電圧や移動度)には、ばらつきが生じやすい。そこで、有機ELディスプレイの画素回路にはTFTの特性のばらつきを補償する回路が設けられ、この回路の作用により有機EL素子の輝度のばらつきが抑えられる。
 電流制御型の駆動方式においてTFTの特性のばらつきを補償する方式は、駆動用TFTに流れる電流の量を電流信号で制御する電流プログラム方式と、この電流の量を電圧信号で制御する電圧プログラム方式とに大別される。電流プログラム方式を用いれば閾値電圧と移動度のばらつきを補償することができ、電圧プログラム方式を用いれば閾値電圧のばらつきのみを補償することができる。
 ところが、電流プログラム方式には、第1に、非常に微少な量の電流を扱うので画素回路や駆動回路の設計が困難である、第2に、電流信号を設定する間に寄生容量の影響を受けやすいので大面積化が困難であるという問題がある。これに対して、電圧プログラム方式では、寄生容量などの影響は軽微であり、回路設計も比較的容易である。また、移動度のばらつきが電流量に与える影響は、閾値電圧のばらつきが電流量に与える影響よりも小さく、移動度のばらつきはTFT作製工程である程度抑えることができる。したがって、電圧プログラム方式を適用した表示装置でも、十分な表示品位が得ることができる。
 電流制御型の駆動方法を採用した有機ELディスプレイについては、従来から各種の画素回路が知られている(例えば、非特許文献1~4)。図8は、非特許文献4に記載された画素回路の回路図である。図8に示す画素回路900は、駆動用TFT910、スイッチ用TFT911~913、コンデンサ921、および、有機EL素子930を備えている。画素回路900に含まれるTFTは、いずれもnチャネル型である。
 画素回路900では、電位VDDを有する電源配線Vpと有機EL素子930の陰極CTDとの間に、スイッチ用TFT913、駆動用TFT910および有機EL素子930が直列に設けられている。駆動用TFT910のソース端子とデータ線Sjとの間にはスイッチ用TFT911が設けられ、駆動用TFT910のゲート端子とドレイン端子との間にはスイッチ用TFT912が設けられ、駆動用TFT910のゲート端子と電源配線Vpとの間にはコンデンサ921が設けられている。スイッチ用TFT911、912のゲート端子はいずれも制御配線SLTに接続され、スイッチ用TFT913のゲート端子は制御配線TNOに接続されている。
 図9は、画素回路900のタイミングチャートである。図9に示すように、まず時刻t1において、制御配線SLTの電位がハイレベルに変化する。このため、スイッチ用TFT911、912は導通状態になり、データ線Sjからスイッチ用TFT911を経由して駆動用TFT910のソース端子にデータ電位Vdaが印加される。また時刻t1では、有機EL素子930の陰極CTDの電位もハイレベルに変化する。このため、有機EL素子930の陽極と陰極の間には逆方向バイアス電圧が印加され、有機EL素子930は非発光状態となる。また時刻t1から時刻t2までの間、スイッチ用TFT912、913は共に導通状態にあるので、駆動用TFT910のゲート電位は電源配線Vpの電位VDDに等しくなる。
 次に時刻t2において、制御配線TNOの電位がローレベルに変化する。このため、スイッチ用TFT913は非導通状態になり、駆動用TFT910のゲート端子(および、これに短絡されたドレイン端子)から駆動用TFT910とスイッチ用TFT911を経由してデータ線Sjに電流が流れ、駆動用TFT910のゲート電位は徐々に下降する。駆動用TFT910のゲート・ソース間電圧が駆動用TFT910の閾値電圧Vthに等しくなったときに(すなわち、ゲート電位が(Vda+Vth)になったときに)、駆動用TFT910は非導通状態になる。この時点で、コンデンサ921の電極間の電位差は{Vp-(Vda+Vth)}になる。これ以降、コンデンサ921には、この電位差が保持される。
 次に時刻t3において、制御配線TNOの電位はハイレベルに変化し、制御配線SLTの電位はローレベルに変化する。このため、スイッチ用TFT911、912は非導通状態になり、スイッチ用TFT913は導通状態になる。コンデンサ921には電位差{Vp-(Vda+Vth)}が保持されているので、駆動用TFT910のゲート電位は時刻t3以降も(Vda+Vth)となる。また時刻t3では、有機EL素子930の陰極CTDの電位はローレベルに変化する。このため、駆動用TFT910から有機EL素子930には、駆動用TFT910のゲート電位(Vda+Vth)から駆動用TFT910の閾値電圧Vthを引いた電位Vda(データ電位に等しい)に応じた電流が流れ、有機EL素子930は当該電流に応じた輝度で発光する。
 このように画素回路900では、時刻t3以降に駆動用TFT910から有機EL素子930に流れる電流は、データ電位Vdaによって定まり、駆動用TFT910の閾値電圧Vthの影響を受けない。したがって、画素回路900を備えた表示装置によれば、駆動用TFT910の閾値電圧Vthにばらつきがある場合でも、データ電位Vdaと閾値電圧Vthに応じた電流を有機EL素子930に流し、有機EL素子930を所望の輝度で発光させることができる。
"4.0-in. TFT-OLED Displays and a Novel Digital Driving Method"、SID'00 Digest、pp. 924-927、半導体エネルギー研究所 "Continuous Grain Silicon Technology and Its Applications for Active Matrix Display"、AM-LCD 2000、pp. 25-28、半導体エネルギー研究所 "Polymer Light-Emitting Diodes for Use in Flat Panel Display"、AM-LCD' 01、pp. 211-214、半導体エネルギー研究所 "A new a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes" 、Electron Device Letters、IEEE、Volume 24、Issue 9、pp. 583-585、Korea Advanced Institute of Science and Technology
 上述したように、画素回路900を備えた表示装置では、駆動用TFT910のゲート・ソース間電圧を駆動用TFT910の閾値電圧Vthに一致させる期間(時刻t1からt3までの期間)に、有機EL素子930の陰極CTDの電位をハイレベルにする必要がある。また、一般的なアクティブマトリクス型の表示装置は、すべての表示素子に共通する陰極を1個だけ備えている。そこで、画素回路900を用いる場合にも、すべての有機EL素子930に共通する陰極を1個だけ備えた表示装置(以下、第1の表示装置という)を考えることができる。
 しかしながら、上記第1の表示装置では、ある画素回路900に対してデータ電位Vdaを書き込むときに、表示装置内のすべての有機EL素子930に逆方向バイアス電圧が印加されるので、すべての有機EL素子930がこの期間では発光しない。このため、第1の表示装置には、十分な発光デューティー比が得られず、表示品位が低くなるという問題がある。
 この問題を解決するために、有機EL素子930の陰極CTDを画素回路の行ごとに備えた表示装置(陰極CTDを制御配線SLTと同数だけ設けた表示装置。以下、第2の表示装置という)を考えることができる。しかしながら、第2の表示装置を製造するためには、有機EL素子930を形成するときに有機EL素子930の陰極CTDをパターニングする必要がある。このため、第2の表示装置には、有機EL素子930の作成工程が1つ余分に増え、製造コストが高くなるという問題がある。また、有機EL素子930の陰極CTDをパターニングするので、開口率が低下し画面が暗くなるという問題もある。
 それ故に、本発明は、発光デューティー比が高く、電気光学素子の一方の電極のパターニングが不要な、高表示品位かつ低コストの表示装置を提供することを目的とする。
 本発明の第1の局面は、電流駆動型の表示装置であって、
 複数の走査線と複数のデータ線の各交差点に対応して配置された複数の画素回路と、
 前記走査線を用いて、書き込み対象の画素回路を選択する走査信号出力回路と、
 前記データ線に対して、表示データに応じた電位を与える表示信号出力回路とを備え、
 前記画素回路は、
  第1の配線と第2の配線とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、前記経路を流れる電流を制御する駆動素子と、
  前記駆動素子の第1の端子に接続して前記経路上に前記駆動素子と直列に設けられ、前記経路を流れる電流に応じた輝度で発光する電気光学素子と、
  前記駆動素子の第1の端子と前記データ線との間に設けられた第1のスイッチング素子と、
  前記駆動素子の制御端子と第2の端子との間に設けられた第2のスイッチング素子と、
  前記駆動素子の第2の端子と前記第1の配線との間に設けられた第3のスイッチング素子と、
  前記駆動素子の制御端子と第3の配線との間に設けられたコンデンサとを含み、
 前記表示信号出力回路は、前記データ線に対して、前記電気光学素子への印加電圧が発光閾値電圧以下となる電位を与え、
 前記走査信号出力回路は、前記第3の配線の電位を2段階に変化させることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記画素回路は、前記駆動素子の制御端子と第4の配線との間に設けられた第4のスイッチング素子をさらに含む。
 本発明の第3の局面は、本発明の第2の局面において、
 前記第4のスイッチング素子の制御端子は、前記第4の配線に接続されていることを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記第4の配線には、前記駆動素子が導通状態となる電位が与えられることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記画素回路に対する書き込み時には、前記第1および第2のスイッチング素子は導通状態に、前記第3のスイッチング素子は非導通状態に制御されることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記走査信号出力回路は、前記第3の配線の電位の変化タイミングを調整する機能を有することを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記走査信号出力回路は、前記第3のスイッチング素子の制御端子に与える電位の変化タイミングを調整する機能を有することを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記電気光学素子は有機EL素子で構成されていることを特徴とする。
 本発明の第9の局面は、電流駆動型の表示装置に複数の走査線と複数のデータ線の各交差点に対応して複数個配置される画素回路であって、
 第1の配線と第2の配線とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、前記経路を流れる電流を制御する駆動素子と、
 前記駆動素子の第1の端子に接続して前記経路上に前記駆動素子と直列に設けられ、前記経路を流れる電流に応じた輝度で発光する電気光学素子と、
 前記駆動素子の第1の端子と前記データ線との間に設けられた第1のスイッチング素子と、
 前記駆動素子の制御端子と第2の端子との間に設けられた第2のスイッチング素子と、
 前記駆動素子の第2の端子と前記第1の配線との間に設けられた第3のスイッチング素子と、
 前記駆動素子の制御端子と第3の配線との間に設けられたコンデンサとを備える。
 本発明の第10の局面は、本発明の第9の局面において、
 前記駆動素子の制御端子と第4の配線との間に設けられた第4のスイッチング素子をさらに備える。
 本発明の第11の局面は、本発明の第10の局面において、
 前記第4のスイッチング素子の制御端子は、前記第4の配線に接続されていることを特徴とする。
 本発明の第12の局面は、電流駆動型の表示装置に複数の走査線と複数のデータ線の各交差点に対応して複数個配置される画素回路の駆動方法であって、
 前記画素回路が、第1の配線と第2の配線とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、前記経路を流れる電流を制御する駆動素子と、前記駆動素子の第1の端子に接続して前記経路上に前記駆動素子と直列に設けられ、前記経路を流れる電流に応じた輝度で発光する電気光学素子と、前記駆動素子の第1の端子と前記データ線との間に設けられた第1のスイッチング素子と、前記駆動素子の制御端子と第2の端子との間に設けられた第2のスイッチング素子と、前記駆動素子の第2の端子と前記第1の配線との間に設けられた第3のスイッチング素子と、前記駆動素子の制御端子と第3の配線との間に設けられたコンデンサとを含む場合に、
 前記第1および第2のスイッチング素子を導通状態に、前記第3のスイッチング素子を非導通状態に制御し、前記データ線に対して、表示データに応じて変化し、かつ、前記電気光学素子への印加電圧が発光閾値電圧以下となる電位を与えるステップと、
 前記第3の配線の電位を2段階に変化させるステップと、
 前記第1および第2のスイッチング素子を非導通状態に、前記第3のスイッチング素子を導通状態に制御するステップとを備える。
 本発明の第13の局面は、本発明の第12の局面において、
 前記画素回路が、前記駆動素子の制御端子と第4の配線との間に設けられた第4のスイッチング素子をさらに含む場合に、
 前記第4の配線に前記駆動素子が導通状態となる電位を与えておき、前記第1および第2のスイッチング素子が導通状態で、前記第3のスイッチング素子が非導通状態である間に、前記第4のスイッチング素子を導通状態に制御するステップをさらに備える。
 本発明の第1の局面によれば、データ線には電気光学素子への印加電圧が発光閾値電圧以下となる電位が与えられるので、データ線の電位を画素回路に書き込んだだけでは電気光学素子は発光せず、第3の配線の電位が変化した後に電気光学素子は発光する。また、第2のスイッチング素子を導通状態に、第3のスイッチング素子を非導通状態に制御すれば、駆動素子の制御端子と第1の端子との間に閾値電圧を印加することができ、その後に第3の配線の電位を変化させることにより、駆動素子の閾値電圧にかかわらず、電気光学素子を所望の輝度で発光させることができる。このように、駆動素子の閾値電圧のばらつきを補償しながら、表示データに応じた電位を画素回路に書き込むときに、第2の配線の電位を固定したままで電気光学素子を非発光状態にすることができる。このため、ある画素回路に書き込みを行っている間も他の画素回路の電気光学素子は発光し続けるので、ある画素回路に書き込みを行っている間は他の画素回路の電気光学素子が発光しなくなる場合よりも、発光デューティー比は高くなり、表示品位も高くなる。また、第2の配線の電位を分割して制御する必要はないので、電気光学素子の第2の配線側の電極をパターニングする必要もなく、その分だけ表示装置のコストは低くなる。また、第3の配線の電位を2段階に変化させる走査信号出力回路は簡単に構成することができる。したがって、発光デューティー比が高く、電気光学素子の一方の電極のパターニングが不要な、高表示品位かつ低コストの表示装置を得ることができる。
 本発明の第2の局面によれば、第4の配線に好適な電位を印加し、第4のスイッチング素子を導通状態に制御することにより、第1の配線の電位を駆動素子の制御端子に印加することなく、駆動素子の制御端子と第1の端子との間に閾値電圧を印加することができる。これにより、表示装置の消費電力を削減することができる。
 本発明の第3の局面によれば、第4のスイッチング素子の制御端子を他の端子と同じ配線に接続することにより、配線を1本削減し、表示装置の開口率や歩留りを高くすることができる。
 本発明の第4の局面によれば、第4の配線に駆動素子が導通状態となる電位を与えることにより、駆動素子の制御端子と第1の端子との間に閾値電圧を印加するまでの時間を短縮することができる。これにより、解像度の高い表示装置を構成することが可能となる。
 本発明の第5の局面によれば、第2のスイッチング素子を導通状態に、第3のスイッチング素子を非導通状態に制御することにより、駆動素子の制御端子と第1の端子との間に閾値電圧を印加することができる。その後に、駆動素子が導通状態となる電位を第3の配線に与えることにより、駆動素子の閾値電圧にかかわらず、電気光学素子を所望の輝度で発光させることができる。
 本発明の第6の局面によれば、走査信号出力回路において第3の配線の電位の変化タイミングを調整することにより、発光デューティー比を調整し、ホールド型表示を行う表示装置の欠点である動画ぼやけを解消することができる。
 本発明の第7の局面によれば、走査信号出力回路において第3のスイッチング素子の制御端子に与える電位の変化タイミングを調整することにより、発光デューティー比を調整し、ホールド型表示を行う表示装置の欠点である動画ぼやけを解消することができる。
 本発明の第8の局面によれば、発光デューティー比が高く、有機EL素子の陰極のパターニングが不要な、高表示品位かつ低コストの有機ELディスプレイを構成することができる。
 本発明の第9~第11の局面によれば、本発明の第1~第3の局面に係る表示装置に含まれる画素回路を構成し、これを用いて、発光デューティー比が高く、電気光学素子の一方の電極のパターニングが不要な、高表示品位かつ低コストの表示装置を得ることができる。
 本発明の第12の局面によれば、本発明の第1の局面と同様の理由により、電気光学素子の一方の電極のパターニングが行われていない低コストの表示装置において、発光デューティー比を高くし、表示品位を高くすることができる。
 本発明の第13の局面によれば、第4の配線に駆動素子が導通状態となる電位を与え、第4のスイッチング素子を導通状態に制御することにより、第1の配線の電位を駆動素子の制御端子に印加することなく、短時間で、駆動素子の制御端子と第1の端子との間に閾値電圧を印加することができる。これにより、表示装置の消費電力を削減すると共に、解像度の高い表示装置を構成することが可能となる。
本発明の第1および第2の実施形態に係る表示装置の構成を示すブロック図である。 本発明の第1の実施形態に係る表示装置に含まれる画素回路の回路図である。 図2に示す画素回路のタイミングチャートである。 インバータの回路図である。 本発明の第2の実施形態に係る表示装置に含まれる画素回路の回路図である。 図5に示す画素回路のタイミングチャートである。 本発明の変形例に係る表示装置に含まれる画素回路の回路図である。 従来の表示装置に含まれる画素回路の回路図である。 図8に示す画素回路のタイミングチャートである。
符号の説明
 10…表示装置
 11…表示制御回路
 12…ゲートドライバ回路
 13…ソースドライバ回路
 21…シフトレジスタ
 22…レジスタ
 23…ラッチ回路
 24…D/A変換器
 100、200、250…画素回路
 110…駆動用TFT
 111、112、113、214…スイッチ用TFT
 121…コンデンサ
 130…有機EL素子
 Gi…走査線
 Ri、Ui、Wi…制御配線
 Sj…データ線
 Vp、Vref…電源配線
 Vcom…共通陰極
 以下、図1~図7を参照して、本発明の第1および第2の実施形態に係る表示装置について説明する。各実施形態に係る表示装置は、電気光学素子、駆動素子、コンデンサおよび複数のスイッチング素子を含む画素回路を備えている。スイッチング素子は、低温ポリシリコンTFTやCGシリコンTFTやアモルファスシリコンTFTなどで構成することができる。これらTFTの構成や製造プロセスは公知であるので、ここではその説明を省略する。また、電気光学素子には有機EL素子が使用される。有機EL素子の構成も公知であるので、ここではその説明を省略する。
 図1は、本発明の第1および第2の実施形態に係る表示装置の構成を示すブロック図である。図1に示す表示装置10は、複数の画素回路Aij(iは1以上n以下の整数、jは1以上m以下の整数)、表示制御回路11、ゲートドライバ回路12、および、ソースドライバ回路13を備えている。表示装置10には、互いに平行に配置された複数の走査線Giと、走査線Giに直交するように互いに平行に配置された複数のデータ線Sjとが設けられる。画素回路Aijは、走査線Giとデータ線Sjの各交差点に対応してマトリクス状に配置されている。
 これに加えて表示装置10には、複数の制御配線(Ri、Ui、Wiなど;図示せず)が走査線Giと平行に配置されている。また、図1では省略されているが、画素回路Aijの配置領域には電源配線Vpと共通陰極Vcomが配置されており、実施形態によっては電源配線Vrefが配置されていることもある。走査線Giと制御配線はゲートドライバ回路12に接続され、データ線Sjはソースドライバ回路13に接続される。
 表示制御回路11は、ゲートドライバ回路12に対してタイミング信号OE、スタートパルスYIおよびクロックYCKを出力し、ソースドライバ回路13に対してスタートパルスSP、クロックCLK、表示データDAおよびラッチパルスLPを出力する。
 ゲートドライバ回路12は、シフトレジスタ回路、論理演算回路、および、バッファ(いずれも図示せず)を含んでいる。シフトレジスタ回路は、クロックYCKに同期してスタートパルスYIを順次転送する。論理演算回路は、シフトレジスタ回路の各段から出力されたパルスとタイミング信号OEとの間で論理演算を行う。論理演算回路の出力は、バッファを経由して、対応する走査線Giと制御配線に与えられる。このようにゲートドライバ回路12は、走査線Giを用いて書き込み対象の画素回路を選択する走査信号出力回路として機能する。
 ソースドライバ回路13は、mビットのシフトレジスタ21、レジスタ22、ラッチ回路23、および、m個のD/A変換器24を含んでいる。シフトレジスタ21は、縦続接続されたm個の1ビットレジスタを含んでいる。シフトレジスタ21は、クロックCLKに同期してスタートパルスSPを順次転送し、各段のレジスタからタイミングパルスDLPを出力する。タイミングパルスDLPの出力タイミングに合わせて、レジスタ22には表示データDAが供給される。レジスタ22は、タイミングパルスDLPに従い、表示データDAを記憶する。レジスタ22に1行分の表示データDAが記憶されると、表示制御回路11はラッチ回路23に対してラッチパルスLPを出力する。ラッチ回路23は、ラッチパルスLPを受け取ると、レジスタ22に記憶された表示データを保持する。D/A変換器24は、各データ線Sjに1つずつ設けられる。D/A変換器24は、ラッチ回路23に保持された表示データをアナログ信号電圧に変換し、対応するデータ線Sjに与える。このようにソースドライバ回路13は、データ線Sjに対して表示データに応じた電位を与える表示信号出力回路として機能する。
 なお、ここではソースドライバ回路13は、1本の走査線に接続された画素回路に対して1行分の表示データに応じた電位を同時に供給する線順次走査を行うこととしたが、これに代えて、各画素回路に対して表示データに応じた電位を順に供給する点順次走査を行ってもよい。点順次走査を行うソースドライバ回路の構成は公知であるので、ここでは説明を省略する。
 以下、各実施形態に係る表示装置に含まれる画素回路Aijの詳細を説明する。画素回路Aijに含まれる駆動用TFT、スイッチ用TFTおよび有機EL素子は、それぞれ、駆動素子、スイッチング素子および電気光学素子として機能する。電源配線Vpは第1の配線に相当し、共通陰極Vcomは第2の配線に相当する。
 (第1の実施形態)
 図2は、本発明の第1の実施形態に係る表示装置に含まれる画素回路の回路図である。図2に示す画素回路100は、駆動用TFT110、スイッチ用TFT111~113、コンデンサ121、および、有機EL素子130を備えている。画素回路100に含まれるTFTは、いずれもnチャネル型である。
 画素回路100は、電源配線Vp、共通陰極Vcom、走査線Gi、制御配線Ri、Uiおよびデータ線Sjに接続されている。このうち、電源配線Vpと共通陰極Vcomには、それぞれ、一定の電位VDD、VSS(ただし、VDD>VSS)が印加される。共通陰極Vcomは、表示装置内のすべての有機EL素子130に共通する陰極である。
 図2でG、SおよびDと記載した駆動用TFT110の端子を、それぞれ、ゲート端子、ソース端子およびドレイン端子という。一般にnチャネル型TFTでは、2個の電流入出力端子のうち、印加電圧の低いほうをソース端子といい、印加電圧の高いほうをドレイン端子という。また、pチャネル型TFTでは、2個の電流入出力端子のうち、印加電圧の低いほうをドレイン端子といい、印加電圧の高いほうをソース端子という。しかし、電圧の大小関係に応じて端子名を変更すると説明が複雑になるので、電圧の大小関係が逆になり、2個の電流入出力端子を逆の名称で呼ぶべき場合でも、2個の端子を便宜上図示した名称で呼ぶこととする。また、本実施形態では、すべてのTFTにnチャネル型を用いているが、スイッチ用TFTにpチャネル型を用いてもよい。この場合、ローレベル電位が導通状態に、ハイレベル電位が非導通状態に対応し、導通状態の電位と非導通状態の電位は、スイッチ用TFTにnチャネル型を用いた場合と比べて逆になる。以上の点は、第2の実施形態でも同様である。
 画素回路100では、電源配線Vpと共通陰極Vcomとを結ぶ経路上に電源配線Vp側から順に、スイッチ用TFT113、駆動用TFT110および有機EL素子130が直列に設けられている。駆動用TFT110のソース端子とデータ線Sjとの間にはスイッチ用TFT111が設けられ、駆動用TFT110のゲート端子とドレイン端子との間にはスイッチ用TFT112が設けられ、駆動用TFT110のゲート端子と制御配線Uiとの間にはコンデンサ121が設けられている。スイッチ用TFT111、112のゲート端子はいずれも走査線Giに接続され、スイッチ用TFT113のゲート端子は制御配線Riに接続されている。画素回路100の動作は、表示制御回路11から供給された信号に基づき動作するゲートドライバ回路12とソースドライバ回路13によって制御される。
 図3は、画素回路100のタイミングチャートである。図3には、走査線Gi、制御配線Ri、Uiおよびデータ線Sjの電位の変化が記載されている。なお、以下の説明において、走査線Giの電圧がハイレベルである期間では有機EL素子130を非発光状態に制御する理由は、この期間に有機EL素子130が発光すると、黒表示を行うときの輝度がその分だけ上昇し、画面のコントラストが低下するからである。
 時刻t1より前では、走査線Giの電位はローレベルに、制御配線Riの電位はハイレベルに、制御配線Uiの電位は相対的に高い電位V1に制御される。このため、スイッチ用TFT111、112は非導通状態、スイッチ用TFT113は導通状態にある。このとき駆動用TFT110は導通状態にあるので、電源配線Vpからスイッチ用TFT113と駆動用TFT110を経由して有機EL素子130に電流が流れ、有機EL素子130は所定の輝度で発光する。
 次に時刻t1において、走査線Giの電位がハイレベルに変化すると共に、データ線Sjに新たなデータ電位Vdaが印加される。このため、スイッチ用TFT111、112は導通状態になり、データ線Sjからスイッチ用TFT111を経由して駆動用TFT110のソース端子にデータ電位Vdaが印加される。
 ただし、このときに印加されるデータ電位Vdaは、有機EL素子130が非発光状態となるように決定される。具体的には、共通陰極Vcomの電位をVSS、有機EL素子130の発光閾値電圧をVth_oledとしたとき、データ電位Vdaは、電位VSSとの差が発光閾値電圧Vth_oled以下になるように決定される。これを式で表すと、次式(1)のようになる。
  Vth_oled≧Vda-VSS …(1)
 また、スイッチ用TFT112が導通状態にあるので、駆動用TFT110のゲート・ドレイン間は短絡され、駆動用TFT110のゲート端子とドレイン端子には電源配線Vpから電位VDDが印加される。したがって、駆動用TFT110のゲート・ソース間電圧Vgsは、次式(2)のようになる。
  Vgs=VDD-Vda …(2)
 次に時刻t2において、制御配線Uiの電位が相対的に低い電位V2に変化する。次に時刻t3において、制御配線Riの電位がローレベルに変化する。このため、スイッチ用TFT113は非導通状態になり、駆動用TFT110のゲート端子(および、これに短絡されたドレイン端子)からソース端子に電流が流れ、駆動用TFT110のゲート電位は徐々に下降する。駆動用TFT110のゲート・ソース間電圧が駆動用TFT110の閾値電圧Vthに等しくなったときに(すなわち、ゲート電位が(Vda+Vth)になったときに)、駆動用TFT110は非導通状態になり、駆動用TFT110のゲート電位はその後は下降しなくなる。この時点で、駆動用TFT110は、閾値電圧Vthにかかわらず、ゲート・ソース間に閾値電圧Vthが印加された状態になる。また、コンデンサ121の電極間の電位差は(Vda+Vth-V2)になる。これ以降、コンデンサ121にはこの電位差が保持される。
 次に時刻t4において、走査線Giの電位がローレベルに変化する。このため、スイッチ用TFT111、112は非導通状態になる。次に時刻t5において、制御配線Uiの電位がV2からV1に変化する。制御配線Uiと駆動用TFT110のゲート端子はコンデンサ121を介して接続されているので、制御配線Uiの電位が変化すると、駆動用TFT110のゲート電位は同じ量(V1-V2)だけ変化する。このため、駆動用TFT110のゲート電位Vgは、次式(3)のようになる。
  Vg=Vda+Vth+V1-V2 …(3)
 最後に時刻t6において、制御配線Riの電位がハイレベルに変化する。このため、スイッチ用TFT113が導通状態になり、駆動用TFT110のドレイン端子には電源配線Vpから電位VDDが印加される。また、コンデンサ121には電位差(Vda+Vth-V2)が保持されているので、駆動用TFT110のゲート電位は時刻t6以降も(Vda+Vth+V1-V2)となる。このため、電源配線Vpから共通陰極Vcomには、駆動用TFT110のゲート電位(Vda+Vth+V1-V2)から駆動用TFT110の閾値電圧Vthを引いた電圧(Vda+V1-V2)に応じた電流が流れ、有機EL素子130は当該電流に応じた輝度で発光する。
 そこで、走査線Giの電位がハイレベルである期間(時刻t1から時刻t4)にデータ線Sjに印加されるデータ電位Vdaは、有機EL素子130を所望の輝度で発光させるために本来印加すべきデータ電位Vda’から制御配線Uiの電位の振幅分(V1-V2)を引いた電位に設定される。これを式で表すと、次式(4)のようになる。
  Vda=Vda’-(V1-V2) …(4)
 式(4)で求めたデータ電位Vdaをデータ線Sjに印加し、制御配線Uiの電位を(V1-V2)だけ変化させることにより、駆動用TFT110の閾値電圧Vthのばらつきを補償しながら、有機EL素子130を所望の輝度で発光させることができる。
 図3に示すように、ゲートドライバ回路12は、制御配線Uiの電位を2段階(V1とV2)に変化させる。このため、ゲートドライバ回路12の最終段には、バッファ回路として、図4に示すインバータ回路が設けられる。図4に示すインバータ回路は、入力信号INに応じて、制御配線Uiの電位を2段階に変化させる。
 制御配線Uiの電位を3段階以上に変化させるためには、図4よりも複雑な回路が必要になり、ドライバ回路の面積が増大する。このため、ドライバ回路をガラス基板上に形成する場合には、額縁の拡大と歩留りの低下が問題になり、ドライバ回路をICに内蔵する場合には、チップ面積の増大に伴うコストの上昇と歩留りの低下、および、回路の複雑化に伴う消費電力の増大が問題となる。本実施形態に係る表示装置は、制御配線Uiの配線の電位を2段階に変化させるゲートドライバ回路12を備えている。このようなゲートドライバ回路は、簡単に構成することができる。
 以上に示すように、本実施形態に係る表示装置は、複数の画素回路100、ゲートドライバ回路12およびソースドライバ回路13を備え、画素回路100は、駆動用TFT110、スイッチ用TFT111~113、コンデンサ121および有機EL素子130を含んでいる。また、ソースドライバ回路13は、データ線Sjに対して有機EL素子130への印加電圧が発光閾値電圧Vth_oled以下となる電位を与え、ゲートドライバ回路12は、制御配線Uiの電位を2段階(V1とV2)に変化させる。
 このようにデータ線Sjには有機EL素子130への印加電圧が発光閾値電圧Vth_oled以下となる電位が与えられるので、データ線Sjの電位を画素回路100に書き込んだだけでは有機EL素子130は発光せず、制御配線Uiの電位がV1に変化した後に有機EL素子130は発光する。また、スイッチ用TFT112を導通状態に、スイッチ用TFT113を非導通状態に制御することにより、駆動用TFT110のゲート・ソース間に閾値電圧Vthを印加することができる。その状態で、駆動用TFT110が導通状態となる電位を制御配線Uiに印加することにより、駆動用TFT110の閾値電圧Vthにかかわらず、駆動用TFT110を所望の輝度で発光させることができる。このように、駆動用TFT110の閾値電圧Vthのばらつきを補償しながら、データ電位Vdaを画素回路100に書き込むときに、共通陰極Vcomの電位を固定したままで有機EL素子130を非発光状態にすることができる。
 このため、ある画素回路100に書き込みを行っている間も他の画素回路100の有機EL素子130は発光し続けるので、ある画素回路に書き込みを行っている間は他の画素回路の有機EL素子が発光しなくなる表示装置よりも、発光デューティー比は高くなり、表示品位も高くなる。また、共通陰極Vcomの電位を分割して制御する必要はないので、有機EL素子130の陰極をパターニングする必要もなく、その分だけ表示装置のコストは低くなる。また、制御配線Uiの電位を2段階に変化させるゲートドライバ回路12は簡単に構成することができる。したがって、発光デューティー比が高く、有機EL素子130の陰極のパターニングが不要な、高表示品位かつ低コストの表示装置(有機ELディスプレイ)を得ることができる。
 また、駆動用TFT110と画素回路100内のすべてのスイッチング素子(スイッチ用TFT111~113)をTFTで構成することにより、表示装置を容易かつ高性能に製造することができる。特に、駆動用TFT110と画素回路100内のすべてのスイッチング素子をnチャネル型トランジスタで構成することにより、すべてのトランジスタを同じマスクを用いて同じプロセスで製造し、表示装置のコストを下げることができる。また、同じチャネル型のトランジスタは異なるチャネル型のトランジスタよりも接近して配置できるので、同じ面積により多くのトランジスタを配置することができる。
 なお、本実施形態に係る表示装置については、各種の変形例を構成することができる。例えば、画素回路100ではスイッチ用TFT111、112のゲート端子を同じ配線(走査線Gi)に接続することとしたが、スイッチ用TFT111、112のゲート端子を別の制御配線に接続し、2本の制御配線の電位をほぼ同じタイミングで変化させてもよい(第1の変形例)。
 また、時刻t1から時刻t4までの間(スイッチ用TFT111が導通状態にある間)に駆動用TFT110のソース端子まで流れた電流は、有機EL素子130の抵抗成分とスイッチ用TFT111の導通時の抵抗成分とに応じて、有機EL素子130とスイッチ用TFT111に流れる。一般に、有機EL素子の寿命は、電流を多く流すほど短くなる。そこで、有機EL素子130に電流が流れることを防止するために、データ電位Vdaを共通陰極Vcomの電位VSS以下にしてもよい(第2の変形例)。これを式で表すと、次式(5)のようになる。
  Vda≦VSS …(5)
 式(5)を満たすデータ電位Vdaを使用すれば、有機EL素子130の陽極と陰極は同電位になるか、有機EL素子130に逆方向バイアス電圧が印加されるかのいずれかになる。したがって、時刻t1から時刻t4までの間(スイッチ用TFT111が導通状態にある間)に有機EL素子130に電流が流れることを防止し、有機EL素子130の寿命を延ばすことができる。
 また、図3では、走査線Giの電位をハイレベルに変化させた後に、制御配線Uiの電位を低くする(V1からV2に変化させる)こととしたが、走査線Giの電位をハイレベルに変化させるより前に、制御配線Uiの電位を低くしてもよい(第3の変形例)。この方法によれば、走査線Giの本数が多く、走査線Giの電位がハイレベルである時間が短い場合でも、駆動用TFT110の閾値電圧Vthのばらつきを補償することができる。ただし、この方法を用いると、有機EL素子130に順方向バイアス電圧が印加されて、有機EL素子130が不要に発光し、画面のコントラストが低下することがある。したがって、図3に示すように、走査線Giの電位をハイレベルに変化させた後に、制御配線Uiの電位を低くするほうがより好ましい。
 また、ゲートドライバ回路12に、制御配線Uiの電位を高くするタイミング(図3では時刻t5)を調整する機能を設けてもよい(第4の変形例)。このように制御配線Uiの電位の変化タイミングを調整することにより、有機EL素子130の発光期間の長さを調整し、有機EL素子130の発光デューティー比を調整することができる。したがって、有機ELディスプレイのように、ホールド型表示を行う表示装置の欠点である動画ぼやけを解消することができる。
 また、ゲートドライバ回路12に、制御配線Riの電位をハイレベルにするタイミング(図3では時刻t6)を調整する機能を設けてもよい(第5の変形例)。このように制御配線Riの電位の変化タイミングを調整することにより、有機EL素子130の発光期間の長さを調整し、有機EL素子130の発光デューティー比を調整することができる。したがって、第4の変形例に係る表示装置と同様の効果が得られる。
 (第2の実施形態)
 図5は、本発明の第2の実施形態に係る表示装置に含まれる画素回路の回路図である。図5に示す画素回路200は、駆動用TFT110、スイッチ用TFT111~113、214、コンデンサ121、および、有機EL素子130を備えている。画素回路200に含まれるTFTは、いずれもnチャネル型である。本実施形態の構成要素のうち、第1の実施形態と同一の要素については、同一の参照符号を付して説明を省略する。
 画素回路200は、第1の実施形態に係る画素回路100に対して、電源配線Vrefと制御配線Wiを追加し、電源配線Vrefと駆動用TFT110のゲート端子との間にスイッチ用TFT214を設け、スイッチ用TFT214のゲート端子を制御配線Wiに接続する変更を施したものである。電源配線Vrefには、一定の初期電位Viniが印加される。
 図6は、画素回路200のタイミングチャートである。図6には、走査線Gi、制御配線Ri、Ui、Wiおよびデータ線Sjの電位の変化が記載されている。時刻t4より前では、制御配線Wiの電位はローレベルに制御される。このため、スイッチ用TFT214は非導通状態にあり、画素回路200は画素回路100と同様に動作する。ただし、画素回路100では時刻t3から時刻t4までの間に駆動用TFT110のゲート・ソース間に閾値電圧Vthが印加される必要があるが、画素回路200ではその必要はない。
 次に時刻t4において、制御配線Wiの電位がハイレベルに変化する。このため、スイッチ用TFT214は導通状態になり、電源配線Vrefからスイッチ用TFT214を経由して駆動用TFT110のゲート端子とドレイン端子に初期電位Viniが印加される。ただし、初期電位Viniは、駆動用TFT110が導通状態となるように決定される。具体的には、初期電位Viniは、すべての画素回路200において、駆動用TFT110のソース電位Vdaとの差が駆動用TFT110の閾値電圧Vth以上となるように決定される。これを式で表すと、次式(6)のようになる。
  Vth≦Vini-(Vdaの最大値) …(6)
 次に時刻t5において、制御配線Wiの電位がローレベルに変化する。このため、スイッチ用TFT214は非導通状態になり、駆動用TFT110のゲート端子(および、これに短絡されたドレイン端子)からソース端子に電流が流れ、駆動用TFT110のゲート電位は徐々に下降する。駆動用TFT110のゲート・ソース間電圧が駆動用TFT110の閾値電圧Vthに等しくなったときに、駆動用TFT110は非導通状態になり、駆動用TFT110のゲート電位はその後は下降しなくなる。この時点で、駆動用TFT110は、閾値電圧Vthにかかわらず、ゲート・ソース間に閾値電圧Vthが印加された状態になる。また、コンデンサ121の電極間の電位差は(Vda+Vth-V2)になる。これ以降、コンデンサ121にはこの電位差が保持される。時刻t6以降、画素回路200は、画素回路100の時刻t4以降と同様に動作する。
 以上に示すように、画素回路200は駆動用TFT110のゲート端子と電源配線Vrefとの間にスイッチ用TFT214を備え、電源配線Vrefには駆動用TFT110が導通状態となる電位が与えられる。したがって、スイッチ用TFT214を導通状態に制御することにより、電源配線Vpの電位VDDを駆動用TFT110のゲート端子に印加することなく、駆動用TFT110のゲート・ソース間の閾値電圧Vthを印加することができる。したがって、本実施形態に係る表示装置によれば、消費電力を削減することができる。また、電源配線Vrefに駆動用TFT110が導通状態となる電位を与えることにより、駆動用TFT110のゲート・ソース間に閾値電圧Vthを印加するまでの時間を短縮し、解像度の高い表示装置を構成することが可能となる。
 なお、本発明の表示装置については、各種の変形例を構成することができる。例えば、第2の実施形態に係る表示装置についても、第1の実施形態と同様に、第1~第5の変形例を構成してもよい。
 また、本発明の表示装置は、図7に示す画素回路を備えていてもよい。図7に示す画素回路250は、画素回路200に対して、スイッチ用TFT214の一端を制御配線Wiに接続し、電源配線Vrefを削除する変更を施したものである。このようにスイッチ用TFT214のゲート端子を他の端子と同じ配線に接続することにより、配線を1本削減し、表示装置の開口率や歩留まりを高くすることができる。
 また、以上の説明では、画素回路は電気光学素子として有機EL素子を含むこととしたが、画素回路は電気光学素子として、半導体LED(Light Emitting Diode)やFEDの発光部など、有機EL素子以外の電流駆動型の電気光学素子を含んでいてもよい。
 また、以上の説明では、画素回路は、電気光学素子の駆動素子として、ガラス基板などの絶縁基板上に形成されるMOSトランジスタ(ここでは、シリコンゲートMOS構造を含めて、MOSトランジスタという)であるTFTを含むこととした。これに限らず、画素回路は、電気光学素子の駆動素子として、電流制御端子に印加する制御電圧に応じて出力電流が変化し、出力電流がゼロとなる制御電圧(閾値電圧)を有する任意の電圧制御型の素子を含んでいてもよい。このため、電気光学素子の駆動素子には、例えば、半導体基板上に形成されるMOSトランジスタなども含む、一般の絶縁ゲート型電界効果トランジスタを用いることができる。駆動素子として絶縁ゲート型電界効果トランジスタを用いることにより、駆動素子の閾値電圧のばらつきを補償するときに、駆動素子を流れる電流が電気光学素子に流れることを防止することができる。これにより、電気光学素子の不要な発光を防止し、画面のコントラストを高め、電気光学素子の劣化を抑制することができる。
 また、以上の説明では、画素回路はスイッチング素子としてTFTを含むこととしたが、画素回路はスイッチング素子として、半導体基板上に形成されるMOSトランジスタなども含む、一般の絶縁ゲート型電界効果トランジスタを含んでいてもよい。
 また、本発明は上述した各実施形態に限定されるものではなく、種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。
 本発明の表示装置は、発光デューティー比が高く、電気光学素子の一方の電極のパターニングが不要で、高表示品位かつ低コストであるという効果を奏するので、有機ELディスプレイやFEDなど、電流駆動型の表示素子を備えた各種の表示装置に利用することができる。

Claims (13)

  1.  電流駆動型の表示装置であって、
     複数の走査線と複数のデータ線の各交差点に対応して配置された複数の画素回路と、
     前記走査線を用いて、書き込み対象の画素回路を選択する走査信号出力回路と、
     前記データ線に対して、表示データに応じた電位を与える表示信号出力回路とを備え、
     前記画素回路は、
      第1の配線と第2の配線とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、前記経路を流れる電流を制御する駆動素子と、
      前記駆動素子の第1の端子に接続して前記経路上に前記駆動素子と直列に設けられ、前記経路を流れる電流に応じた輝度で発光する電気光学素子と、
      前記駆動素子の第1の端子と前記データ線との間に設けられた第1のスイッチング素子と、
      前記駆動素子の制御端子と第2の端子との間に設けられた第2のスイッチング素子と、
      前記駆動素子の第2の端子と前記第1の配線との間に設けられた第3のスイッチング素子と、
      前記駆動素子の制御端子と第3の配線との間に設けられたコンデンサとを含み、
     前記表示信号出力回路は、前記データ線に対して、前記電気光学素子への印加電圧が発光閾値電圧以下となる電位を与え、
     前記走査信号出力回路は、前記第3の配線の電位を2段階に変化させることを特徴とする、表示装置。
  2.  前記画素回路は、前記駆動素子の制御端子と第4の配線との間に設けられた第4のスイッチング素子をさらに含む、請求項1に記載の表示装置。
  3.  前記第4のスイッチング素子の制御端子は、前記第4の配線に接続されていることを特徴とする、請求項2に記載の表示装置。
  4.  前記第4の配線には、前記駆動素子が導通状態となる電位が与えられることを特徴とする、請求項2に記載の表示装置。
  5.  前記画素回路に対する書き込み時には、前記第1および第2のスイッチング素子は導通状態に、前記第3のスイッチング素子は非導通状態に制御されることを特徴とする、請求項1に記載の表示装置。
  6.  前記走査信号出力回路は、前記第3の配線の電位の変化タイミングを調整する機能を有することを特徴とする、請求項1に記載の表示装置。
  7.  前記走査信号出力回路は、前記第3のスイッチング素子の制御端子に与える電位の変化タイミングを調整する機能を有することを特徴とする、請求項1に記載の表示装置。
  8.  前記電気光学素子は有機EL素子で構成されていることを特徴とする、請求項1に記載の表示装置。
  9.  電流駆動型の表示装置に複数の走査線と複数のデータ線の各交差点に対応して複数個配置される画素回路であって、
     第1の配線と第2の配線とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、前記経路を流れる電流を制御する駆動素子と、
     前記駆動素子の第1の端子に接続して前記経路上に前記駆動素子と直列に設けられ、前記経路を流れる電流に応じた輝度で発光する電気光学素子と、
     前記駆動素子の第1の端子と前記データ線との間に設けられた第1のスイッチング素子と、
     前記駆動素子の制御端子と第2の端子との間に設けられた第2のスイッチング素子と、
     前記駆動素子の第2の端子と前記第1の配線との間に設けられた第3のスイッチング素子と、
     前記駆動素子の制御端子と第3の配線との間に設けられたコンデンサとを備えた、画素回路。
  10.  前記駆動素子の制御端子と第4の配線との間に設けられた第4のスイッチング素子をさらに備えた、請求項9に記載の画素回路。
  11.  前記第4のスイッチング素子の制御端子は、前記第4の配線に接続されていることを特徴とする、請求項10に記載の画素回路。
  12.  電流駆動型の表示装置に複数の走査線と複数のデータ線の各交差点に対応して複数個配置される画素回路の駆動方法であって、
     前記画素回路が、第1の配線と第2の配線とを結ぶ経路上に設けられ、制御端子、第1の端子および第2の端子を有し、前記経路を流れる電流を制御する駆動素子と、前記駆動素子の第1の端子に接続して前記経路上に前記駆動素子と直列に設けられ、前記経路を流れる電流に応じた輝度で発光する電気光学素子と、前記駆動素子の第1の端子と前記データ線との間に設けられた第1のスイッチング素子と、前記駆動素子の制御端子と第2の端子との間に設けられた第2のスイッチング素子と、前記駆動素子の第2の端子と前記第1の配線との間に設けられた第3のスイッチング素子と、前記駆動素子の制御端子と第3の配線との間に設けられたコンデンサとを含む場合に、
     前記第1および第2のスイッチング素子を導通状態に、前記第3のスイッチング素子を非導通状態に制御し、前記データ線に対して、表示データに応じて変化し、かつ、前記電気光学素子への印加電圧が発光閾値電圧以下となる電位を与えるステップと、
     前記第3の配線の電位を2段階に変化させるステップと、
     前記第1および第2のスイッチング素子を非導通状態に、前記第3のスイッチング素子を導通状態に制御するステップとを備えた、画素回路の駆動方法。
  13.  前記画素回路が、前記駆動素子の制御端子と第4の配線との間に設けられた第4のスイッチング素子をさらに含む場合に、
     前記第4の配線に前記駆動素子が導通状態となる電位を与えておき、前記第1および第2のスイッチング素子が導通状態で、前記第3のスイッチング素子が非導通状態である間に、前記第4のスイッチング素子を導通状態に制御するステップをさらに備えた、請求項12に記載の画素回路の駆動方法。
PCT/JP2009/052477 2008-05-20 2009-02-16 表示装置、画素回路およびその駆動方法 WO2009142033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/937,890 US8648776B2 (en) 2008-05-20 2009-02-16 Display device, pixel circuit, and method for driving same
JP2010512952A JP5121926B2 (ja) 2008-05-20 2009-02-16 表示装置、画素回路およびその駆動方法
CN2009801134212A CN102007527B (zh) 2008-05-20 2009-02-16 显示装置、像素电路及其驱动方法
BRPI0912837A BRPI0912837A2 (pt) 2008-05-20 2009-02-16 dispositivo de display, circuito de pixel, e método para acionar o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-131568 2008-05-20
JP2008131568 2008-05-20

Publications (1)

Publication Number Publication Date
WO2009142033A1 true WO2009142033A1 (ja) 2009-11-26

Family

ID=41339972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052477 WO2009142033A1 (ja) 2008-05-20 2009-02-16 表示装置、画素回路およびその駆動方法

Country Status (6)

Country Link
US (1) US8648776B2 (ja)
JP (1) JP5121926B2 (ja)
CN (1) CN102007527B (ja)
BR (1) BRPI0912837A2 (ja)
RU (1) RU2442230C1 (ja)
WO (1) WO2009142033A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523844A (ja) * 2015-08-07 2018-08-23 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 画素回路、その駆動方法、及び表示パネル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762225B (zh) * 2008-08-07 2015-11-18 夏普株式会社 显示装置及其驱动方法
JP2014013301A (ja) * 2012-07-04 2014-01-23 Seiko Epson Corp 電気光学装置、及び電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258436A (ja) * 2004-03-04 2005-09-22 Seiko Epson Corp 画素回路及び画素回路の駆動方法
JP2005331959A (ja) * 2004-05-20 2005-12-02 Samsung Electronics Co Ltd 表示装置及びその駆動方法
JP2006047787A (ja) * 2004-08-05 2006-02-16 Sharp Corp 表示装置およびその駆動方法
JP2007025192A (ja) * 2005-07-15 2007-02-01 Seiko Epson Corp 電子装置、その駆動方法、電気光学装置および電子機器
JP2007033599A (ja) * 2005-07-25 2007-02-08 Seiko Epson Corp 電子装置、その駆動方法、電気光学装置および電子機器
JP2008009080A (ja) * 2006-06-28 2008-01-17 Sharp Corp 表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986468B2 (ja) * 2005-03-11 2012-07-25 三洋電機株式会社 アクティブマトリクス型表示装置
US8188991B2 (en) * 2005-06-23 2012-05-29 Sharp Kabushiki Kaisha Display device and driving method thereof
US20070018917A1 (en) 2005-07-15 2007-01-25 Seiko Epson Corporation Electronic device, method of driving the same, electro-optical device, and electronic apparatus
US20070237281A1 (en) * 2005-08-30 2007-10-11 Scientific Drilling International Neutron generator tube having reduced internal voltage gradients and longer lifetime
KR100635511B1 (ko) * 2005-09-30 2006-10-17 삼성에스디아이 주식회사 유기 전계발광 표시장치
US8063858B2 (en) * 2005-12-06 2011-11-22 Pioneer Corporation Active matrix display apparatus and driving method therefor
JP5261900B2 (ja) * 2006-08-23 2013-08-14 ソニー株式会社 画素回路
JP4979772B2 (ja) * 2007-10-18 2012-07-18 シャープ株式会社 電流駆動型表示装置
CN103762225B (zh) * 2008-08-07 2015-11-18 夏普株式会社 显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258436A (ja) * 2004-03-04 2005-09-22 Seiko Epson Corp 画素回路及び画素回路の駆動方法
JP2005331959A (ja) * 2004-05-20 2005-12-02 Samsung Electronics Co Ltd 表示装置及びその駆動方法
JP2006047787A (ja) * 2004-08-05 2006-02-16 Sharp Corp 表示装置およびその駆動方法
JP2007025192A (ja) * 2005-07-15 2007-02-01 Seiko Epson Corp 電子装置、その駆動方法、電気光学装置および電子機器
JP2007033599A (ja) * 2005-07-25 2007-02-08 Seiko Epson Corp 電子装置、その駆動方法、電気光学装置および電子機器
JP2008009080A (ja) * 2006-06-28 2008-01-17 Sharp Corp 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523844A (ja) * 2015-08-07 2018-08-23 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 画素回路、その駆動方法、及び表示パネル
US10535298B2 (en) 2015-08-07 2020-01-14 Shenzhen Royole Technologies Co., Ltd. Pixel circuit and method for driving pixel circuit

Also Published As

Publication number Publication date
US8648776B2 (en) 2014-02-11
CN102007527A (zh) 2011-04-06
RU2442230C1 (ru) 2012-02-10
JP5121926B2 (ja) 2013-01-16
BRPI0912837A2 (pt) 2015-10-13
US20110037788A1 (en) 2011-02-17
JPWO2009142033A1 (ja) 2011-09-29
CN102007527B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5734403B2 (ja) 表示装置およびその駆動方法
JP5014338B2 (ja) 電流駆動型表示装置
US8289246B2 (en) Electric current driving type display device and pixel circuit
JP5214030B2 (ja) 表示装置
US20100073344A1 (en) Pixel circuit and display device
US20060132399A1 (en) Electronic circuit, method of driving electronic circuit, electro-optical device, method of driving electro-optical device, and electronic apparatus
EP2200010B1 (en) Current-driven display
JP4685100B2 (ja) 表示装置およびその駆動方法
JP4327042B2 (ja) 表示装置およびその駆動方法
WO2020062813A1 (zh) 像素电路、其驱动方法及显示装置
JP2007108380A (ja) 表示装置および表示装置の駆動方法
JP5121926B2 (ja) 表示装置、画素回路およびその駆動方法
JP5034208B2 (ja) 表示装置および表示装置の駆動方法
US11282442B2 (en) Pixel driving circuit and driving method thereof, and display panel
JP2007133043A (ja) 表示装置
WO2007108149A1 (ja) 表示装置及びその駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113421.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512952

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12937890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8211/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010151964

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09750395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0912837

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101119