WO2009141566A2 - Procédé de traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique - Google Patents

Procédé de traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique Download PDF

Info

Publication number
WO2009141566A2
WO2009141566A2 PCT/FR2009/050838 FR2009050838W WO2009141566A2 WO 2009141566 A2 WO2009141566 A2 WO 2009141566A2 FR 2009050838 W FR2009050838 W FR 2009050838W WO 2009141566 A2 WO2009141566 A2 WO 2009141566A2
Authority
WO
WIPO (PCT)
Prior art keywords
asbestos
solution
treatment
hydrochloric acid
industrial waste
Prior art date
Application number
PCT/FR2009/050838
Other languages
English (en)
Other versions
WO2009141566A3 (fr
Inventor
Ghislain Denis
Michel Delmas
Original Assignee
Institut National Polytechnique De Toulouse (Inpt)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Polytechnique De Toulouse (Inpt) filed Critical Institut National Polytechnique De Toulouse (Inpt)
Publication of WO2009141566A2 publication Critical patent/WO2009141566A2/fr
Publication of WO2009141566A3 publication Critical patent/WO2009141566A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/41Inorganic fibres, e.g. asbestos
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method of treating an industrial waste formed of asbestos and a hydraulic binder adapted to achieve total recycling into separate chemical species directly usable as raw materials in industrial applications.
  • Asbestos-containing industrial waste and a hydraulic binder consist, on a worldwide level, of unsold stocks of the construction and trading industry and of waste from dismantling and removal. sheet, plate and fiber cement pipes in the building and network sector.
  • Asbestos refers to rocks of metamorphic origin, which are naturally fibrous and have been used in industry, especially in the construction industry, because of their high melting point, their tensile strength, their chemical stability and their ability to spin.
  • asbestos fibers which can be transported by air and reach, by inhalation, the alveoli lungs and migrate to 'to the pleura by inducing benign or malignant pathologies.
  • a second type of known solution consists of chemically attacking a superficial thickness of asbestos waste to modify the surface of the asbestos fiber morphology to make them less toxic by isolating the solid particles of asbestos waste by coating.
  • WO97 / 27902 discloses treating an asbestos-containing waste with an acid and potassium ions for neutralizing said waste containing asbestos. This process makes it possible to form a complex mixture to be treated and does not make it possible to separate the elementary constituents of an industrial waste containing asbestos and a hydraulic binder, in particular the iron chemical species, the magnesium chemical species and the chemical species. aluminum, calcium chemical species and silica, into high value-added products for recycling as separate chemical species in a variety of industrial applications.
  • the aim of the invention is to overcome these disadvantages by proposing a process for treating an industrial waste containing asbestos with a view to decomposing it into raw materials that do not exhibit the toxicity of asbestos, and which are suitable for being recycled for industrial uses.
  • the invention also aims at providing such a method in which the industrial waste containing asbestos and a hydraulic binder serves as a raw material for the production of basic materials for the industry, without leaving any ultimate solid waste.
  • the invention also aims at providing such a treatment method for the recycling of an industrial waste containing asbestos and a hydraulic binder in which the oxidized chemical elements of asbestos and hydraulic binder are dissociated and isolated in the form of chemical species of high purity directly usable in industry, especially in heavy industry and fine chemical industry.
  • the invention also aims to propose such a method of treating an industrial waste formed of asbestos and a hydraulic binder by chemical decomposition of industrial waste comprising asbestos and a hydraulic binder in chemical species not having the toxicity of asbestos fibers, especially on the respiratory tract.
  • the invention also aims at providing such a treatment method in which the reagents not consumed during the treatment are recycled and are likely to be used in various industrial applications, and in particular but not exclusively in the same treatment of a waste.
  • industrial comprising asbestos and a hydraulic binder.
  • Another object of the invention is to provide such a method of treating an industrial waste producing no ultimate solid waste not recycled or requiring secure storage.
  • the invention also aims to provide such a treatment method which is simple, economical to installation and use and does not require the construction of complex processing facilities.
  • the invention also aims to provide a treatment method that is economically viable and allows the production of high value-added compounds for industry.
  • the invention aims in particular to provide such a treatment method which induces only a moderate energy expenditure.
  • the invention also aims to achieve all these objectives at lower cost, by proposing a low cost process, made from conventional chemical reagents and inexpensive.
  • the invention also aims at proposing such a treatment method favoring the preservation of the environment and sustainable development.
  • the invention further aims to provide such a method that preserves the work habits of staff is easy to use, and imply for its implementation that little manipulation.
  • the term "industrial waste containing asbestos and a hydraulic binder” refers to solid waste mainly formed of asbestos fibers and a hydraulic binder, including cement. These are, in particular, sheets, plates, slates, asbestos-cement pipes and pipes, also known generally as fiber cement, containing a minority mass proportion of pure asbestos, often between 10% and 15%.
  • Asbestos flocking formed of asbestos fibers and, as a hydraulic binder, plaster in a minority mass proportion, in particular between 5% and
  • the invention therefore relates to a method of treating an industrial waste comprising asbestos and a hydraulic binder, characterized in that it comprises at least one treatment stage, said cold acid treatment, of said industrial waste by a solution.
  • aqueous hydrochloric acid at room temperature adapted to form:
  • non-asbestos solution of at least one non-silicic component of the hydraulic binder in the aqueous solution of hydrochloric acid
  • solid asbestos including asbestos industrial waste.
  • the inventors have observed that the treatment of an industrial waste comprising asbestos and a hydraulic binder in an aqueous solution of hydrochloric acid at room temperature, that is to say without requiring the implementation of heating means or cooling the cold acid treatment medium, makes it possible to form an asbestos solid comprising all of the industrial waste asbestos and all the silica contained in the clay constituting the hydraulic binder of the industrial waste. That being so, it is possible that in a process according to the invention, the temperature of the cold acid treatment increases during said treatment due to heating of the non-asbestos solution during the acid etching of the constituents of the hydraulic binder.
  • the asbestos solid obtained by such a cold acid treatment of industrial waste is a composition formed of solid asbestos industrial waste and solid silica initially contained in the clay constitutive of the hydraulic binder of industrial waste.
  • non-asbestos solution completely free of asbestos, but comprising at least one non-silicic component of the hydraulic binder of industrial waste, especially in the form of chloride.
  • the non-asbestos solution comprises at least one of the compounds selected from the group consisting of calcium chloride, aluminum chloride and iron chloride.
  • the inventors have observed that such a cold acid treatment of an industrial waste comprising asbestos and a hydraulic binder at ambient temperature makes it possible to separate an asbestos solid containing all the asbestos from said industrial waste and a non-asbestos solution. containing about 75% of the mass of industrial waste.
  • the industrial waste comprises a mass proportion of asbestos less than 20%, particularly between 10% and 15%.
  • the industrial waste is formed mainly of asbestos cement, also called fiber cement, comprising between 10% and 15% of asbestos and 85% to 90% of a hydraulic binder mainly comprising calcium carbonate (CaCO 3 ) and alumina (Al 2 O 3 ) as well as silica (SiO 2 ) and iron compounds.
  • the industrial waste comprises a mass proportion of asbestos greater than 80%, particularly between 85% and 90%.
  • the industrial waste is formed in particular asbestos flocking comprising between 85% and 90% of asbestos and 10% to 15% of plaster, as a hydraulic binder, mainly comprising calcium sulfate (CaSO 4 ).
  • the hydraulic binder comprises at least one chemical species selected from the group consisting of oxides and hydroxides of aluminum, iron oxides and hydroxides, silicon oxides, calcium carbonate, magnesium oxides and hydroxides.
  • the concentration of hydrochloric acid in the aqueous hydrochloric acid solution of the cold acid treatment is greater than 200 g / l, in particular of the order of 250 g / l.
  • a cold acid treatment of the industrial waste comprising asbestos and a hydraulic binder is carried out so as to form a non-asbestos solution containing at least one constituent, especially in the form of chloride, of the hydraulic binder of the industrial waste, and an asbestos solid formed of asbestos and the constituent silica of the hydraulic binder.
  • Such a concentration of hydrochloric acid in the aqueous solution of cold acid treatment is adapted to allow acid attack of the non-silicic constituents of hydraulic binder industrial waste, without allowing a quantifiable acid attack or asbestos industrial waste, which remains in the form of solid asbestos, nor of the silica of the hydraulic binder of industrial waste. It is also possible that the concentration of hydrochloric acid in the aqueous hydrochloric acid solution of the cold acid treatment is lower, especially greater than 100 g / l.
  • Such a concentration of hydrochloric acid is suitable for the treatment of an industrial waste known as asbestos flocking and comprising asbestos and plaster as a hydraulic binder and for which the hydraulic binder, in particular calcium sulphate, is dissolved in the aqueous solution of hydrochloric acid.
  • the duration of cold acid treatment of an industrial waste comprising asbestos and plaster as a hydraulic binder is a few minutes, in particular of the order of 10 minutes.
  • the inventors have observed that in the case of cold acid treatment of such an industrial waste, it is possible to dissolve the entire hydraulic binder without, however, significantly attacking the asbestos fibers freed of said hydraulic binder.
  • the industrial waste is immersed in the aqueous hydrochloric acid solution for a duration greater than 1 h, in particular between 2 h and 3 h.
  • the cold acid treatment of an industrial waste in hydrochloric acid is carried out during sufficient time to allow the acid attack and substantially complete dissolution of the fragments forming the industrial waste, including the larger fragments.
  • agitation of the industrial waste is maintained in the aqueous solution of hydrochloric acid.
  • the cold acid treatment is carried out at atmospheric pressure, in particular without using any particular means for increasing or reducing the pressure.
  • the cold acid treatment is carried out at atmospheric pressure, in particular at a pressure substantially of the order of 1000 hPa.
  • the cold acid treatment is carried out from an industrial waste comprising asbestos and a hydraulic binder having a particle size of less than 20 mm, especially between 1 mm and 10 mm.
  • a particle size is obtained by means known per se, in particular by fragmentation of said industrial waste.
  • Such a particle size favors the destructuring of said industrial waste during cold acid attack of the industrial waste by increasing the area of the surface of the industrial waste likely to undergo this acid attack.
  • a granulate formed of an industrial waste is prepared by fragmenting the industrial waste dry or, preferably, in the presence of a quantity of water so to avoid the production of dust from industrial waste.
  • the cold acid treatment is adapted so that the non-asbestos solution is free of asbestos.
  • a cold acid treatment of an industrial waste comprising asbestos and a hydraulic binder in an aqueous solution of hydrochloric acid makes it possible to dissociate, during the cold acid attack of the industrial waste, an asbestos solid, comprising all the asbestos of the industrial waste, and a non-asbestos solution comprising at least one chemical species constituting the hydraulic binder of said industrial waste.
  • the non-asbestos solution comprises all the chemical species constituting the hydraulic binder which are soluble in the hydrochloric acid solution.
  • the silica used in the composition of the clay constituent of the hydraulic binder of industrial waste which is insensitive to cold acid attack remains in solid form in the asbestos solid.
  • a cold acid attack of the hydraulic binder of the industrial waste capable of causing a dissolution of a part of the non-asbestos compounds of the industrial waste, is carried out, and the components of the fibers of the acid are preserved from this acid attack and this dissolution.
  • asbestos and silica naturally present in the hydraulic binder which remain in solid form. It should be noted that the cold acid treatment of industrial waste does not substantially attack asbestos and causes very little dissolution of asbestos components which remains in solid form in the asbestos solid. In addition, the cold acid treatment of industrial waste does not attack the silica contained in the hydraulic binder of the industrial waste which remains in solid form in the asbestos solid.
  • said non-asbestos solution obtained is subjected to a treatment, called a precipitation treatment, in which a precipitation of the cationic species of iron and cationic species of aluminum is carried out.
  • the inventors have found that it is possible to carry out a selective precipitation treatment of the cationic species of iron and of the cationic species of aluminum, making it possible to separate the cationic species from the iron and the cationic species from the aluminum precipitating in solid form in the non-asbestos solution, cationic species of calcium that remain in solution in the non-asbestos solution.
  • the precipitation treatment is carried out by adjusting the pH of the non-asbestos solution to a value between pH 5 and pH 7, in particular of the order of pH 6.
  • the precipitation treatment is carried out by adjusting the pH of the non-asbestos solution is substantially neutral, but slightly acidic.
  • the inventors have observed that the adjustment of the pH of the non-asbestos solution to a value between pH 5 and pH 7, in particular of the order of pH 6, makes it possible to precipitate selectively the cationic species of iron and the Cationic species of aluminum from the non-asbestos solution, without significantly causing the precipitation of cationic species of calcium which remain in solution in the non-asbestos solution.
  • this precipitation treatment is carried out at ambient temperature and at atmospheric pressure.
  • chloride ions by the hydroxide ions, said ionic substitution of the chloride ions of the cationic species of iron and of the cationic species of aluminum by the hydroxide ions being specifically assisted by the pH, in particular between pH 5 and pH 7, in particular at a pH of value of the order of pH 6 and specifically precipitating the cationic species of iron and cationic species of aluminum in the form of iron hydroxides and aluminum hydroxides in almost all, without causing the precipitation of cationic species of calcium.
  • the pH of the non-asbestos solution is adjusted to a value between pH 5 and pH 7, in particular at a value of the order of pH 6, so that the concentration of ions free hydroxides in the non-asbestos solution is sufficiently low and does not allow the precipitation of cationic species of calcium.
  • a quantity of at least one compound, said basic compound capable of increasing the concentration of hydroxide ions in the non-asbestos solution.
  • an amount of at least one basic compound capable of generating hydroxide ions in the non-asbestos solution in the form of an amount of an aqueous solution of said basic compound, or in the form of a basic solution, is added to the non-asbestos solution.
  • the basic compound is selected from the group consisting of alkaline earth metal oxides, alkali metal hydroxides and alkaline earth metal hydroxides.
  • the inventors have observed that the oxides and hydroxides of the alkaline earth metals and the hydroxides of the alkali metals, which are compounds capable of producing hydroxide ions, are especially suitable for ionic substitution at a pH value of between pH 5 and pH 7, in particular of the order of pH 6.
  • the basic compound is chosen from the group consisting of calcium oxide and calcium hydroxide.
  • the addition of a quantity of calcium oxide or calcium hydroxide, also called lime milk, to the asbestos solution makes it possible to neutralize at least a part of the amount of hydrochloric acid which is not consumed during the cold acid treatment of industrial waste comprising asbestos and a hydraulic binder.
  • This neutralization is also accompanied by the transformation of the dry or hydrated calcium oxide added, as the basic compound, to calcium chloride.
  • the addition of an additional quantity of dry or hydrated calcium oxide to the asbestos solution makes it possible to neutralize the residual amount of hydrochloric acid that is not consumed during the cold acid treatment phase of the industrial waste, as well as neutralization of the acidic character of the cationic compounds of iron and the cationic compounds of aluminum.
  • the quantity of added dry or hydrated calcium oxide is chosen so that, at the end of this additional addition, the pH of the non-asbestos solution is between pH 5 and pH 7, in particular of the order of pH 6, and that all of the cationic species of iron and the cationic species of aluminum of the non-asbestos solution precipitate in the form of iron hydroxides and aluminum hydroxides.
  • the dry or hydrated calcium oxide which is adapted to release, in the non-asbestos solution, in addition to hydroxide ions, calcium ions belonging to the elementary atomic composition of at least one of the non-silicic components of the hydraulic binder.
  • the addition of dry or hydrated calcium oxide to the non-asbestos solution does not provide a significant amount of a new atomic element with respect to the atomic composition of the hydraulic binder.
  • the dry or hydrated calcium oxide is converted into a chemical species, especially calcium chloride, which is itself soluble in the non-asbestos solution, and which is also already present in the non-asbestos solution before the precipitation step.
  • the treatment of the non-asbestos solution with a quantity of dry or hydrated calcium oxide leading to the precipitation of all the cationic species of iron and the cationic species of aluminum, does not lead to the appearance in the non-asbestos solution of new compounds other than the cationic species of iron and aluminum that precipitate.
  • the treatment of the non-asbestos solution with a quantity of calcium oxide does not affect the purity level of the cationic species of iron, the cationic species of aluminum and the cationic species of calcium present in the non-asbestos solution. .
  • a precipitate containing the cationic species of iron and the cationic species of aluminum of the hydraulic binder of an industrial waste in which the cationic species of iron and the cationic species of aluminum are under the form of iron hydroxides and aluminum hydroxides is suitable for later use, after acidification with a solution of hydrochloric acid, especially as a flocculant in a treatment process for the purification of water.
  • a so-called hot acid treatment of the asbestos solid at atmospheric pressure is then carried out with an aqueous solution of hydrochloric acid, called a hot treatment solution, at a temperature of the order of boiling temperature of said hot treatment solution, so as to obtain:
  • non-silicic solution of at least one non-silicic component of asbestos in the heat treatment solution
  • a solid called a silicic solid, formed of amorphous silica derived from asbestos and the hydraulic binder of industrial waste.
  • the boiling point of the hot treatment solution allows the formation, on the one hand, of an aqueous solution containing non-silicic components of asbestos and, on the other hand, of a silicic solid constituted for the first time. essential by the silicic constituents of asbestos and by the silicic constituents of the hydraulic binder of industrial waste.
  • the hot acid treatment of an asbestos solid with a heat treatment solution makes it possible to preserve the silicic components of the asbestos and the hydraulic binder in solid form and to extract the non-silicic components of the asbestos solid in soluble form in the heat treatment solution.
  • the treatment of the asbestos solid with a heat treatment solution makes it possible to break down the asbestos fibers which are themselves toxic by inhalation, into components which do not exhibit the toxicity of the starting asbestos fibers.
  • the divided porous amorphous silica obtained by hot acid treatment of the asbestos of the asbestos solid does not show substantially toxicity.
  • the non-silicic solution containing at least a portion of the non-silicic components of asbestos of the solid asbestos contains not only cationic species of magnesium, but also contains cationic species of iron from the acid attack of asbestos by hydrochloric acid and from the solubilization, in the non-silicic solution, non-silicic constituents of the asbestos solid resulting from this acid attack.
  • the hot acid treatment according to the invention makes it possible to extract asbestos from the asbestos solid substantially all of the cationic species of magnesium and substantially all the cationic species of iron which pass into solution in the non-silicic solution.
  • the cationic species of magnesium and the cationic species of iron of the acidic non-silicic solution are in the form of magnesium chloride and iron chloride which are perfectly soluble in the non-silicic solution.
  • the hydrochloric acid concentration of the heat treatment solution is greater than 100 g / l, in particular between 100 g / l and 150 g / l.
  • concentration is adapted so that the solution remains acid at the end of the acid attack of the non-silicic components of the asbestos solid asbestos and so that the non-silicic constituents of the non-silicic solution remain in solution in the heat treatment solution.
  • a suspension of the silicic solid is prepared in the acid treatment solution and the suspension of the silicic solid is heated in the heat treatment solution at a temperature of between 70 ° C. and 110 ° C., especially at a temperature of the order of 95 ° C.
  • said suspension of the silicic solid is heated in the acid treatment solution, in particular at a temperature suitable for causing reflux of the heat treatment solution, so as to allow an acid attack of the non-silicic constituents of the asbestos of the solid. asbestos and a dissolution of the products of this acid attack in the aqueous solution of hydrochloric acid.
  • the concentration of the hydrochloric acid of the hot treatment solution decreases during the hot acid treatment by consuming a portion of said hydrochloric acid during the acid attack and that, consequently, the temperature boiling point of the heat treatment solution increases during said acid attack.
  • the hot acid treatment of the asbestos solid is carried out using a reactor comprising a receptacle, for example a glass receptacle, for carrying out said hot acid treatment. , at atmospheric pressure, this container being adapted to allow the suspension of the asbestos solid to be heated in the heat treatment solution at a temperature suitable to allow the boiling and refluxing of the heat treatment solution.
  • the reactor further comprises a condenser adapted to allow the condensation of all the vapors formed by heating the suspension of the asbestos solid in the hot treatment solution, and a circuit for recycling these vapors condensed in said suspension so that the vapors of the heat treatment solution remain confined within the reactor.
  • the suspension of the asbestos solid is heated in the hot treatment solution to a temperature of the order of the boiling temperature of the heat treatment solution.
  • said asbestos suspension is heated for a period of between 30 min and 300 min, in particular of the order of 150 min.
  • the hot acid treatment is adapted so that the non-silicic solution remains free of silicic compound.
  • the operating conditions of the hot acid treatment are adjusted, in particular the concentration of hydrochloric acid in the heat treatment solution, the duration and the temperature of the hot acid treatment, so that the non-silicic solution is free from silicic component in solution and that the silicic solid obtained at the end of the hot acid treatment is free of iron oxide, magnesium oxide and cationic species of magnesium and / or unsolubilized iron.
  • the operating conditions are adjusted so as to obtain silica of high quality, high purity and which is industrially recoverable, and so as to obtain a non-silicic solution that is free of silica.
  • the non-silicic solution is subjected to a treatment, called a neutralization treatment, of adjusting the pH of the non-silicic solution to a value between pH 5 and pH 7, in particular of the pH order. 6.
  • a neutralization treatment of adjusting the pH of the non-silicic solution to a value between pH 5 and pH 7, in particular of the pH order. 6.
  • the inventors have found that it is possible to perform a neutralization treatment adapted to cause the selective precipitation of the cationic species of iron of the non-silicic solution and advantageously to separate the cationic species from iron, which precipitate in solid form in the non-silicic solution, and the cationic species of magnesium which remain in solution in the non-silicic solution.
  • chlorides of the cationic species of iron by hydroxide ions being specifically aided by pH and precipitating all the cationic species of iron in the form of iron hydroxides, without precipitating the cationic species of magnesium.
  • a separation of the silicic compounds, in particular silica, iron compounds and magnesium compounds contained in the asbestos of the asbestos solid without using grinding steps, attrition, chemical treatment to reduce the cationic iron compounds to metallic iron and magnetic separation of the formed metallic iron.
  • a process according to the invention makes it possible to convert all of an industrial waste comprising asbestos and a hydraulic binder into a plurality of raw materials all usable in industry, in particular silica, cationic species of iron cationic species of magnesium, cationic species of calcium and cationic species of aluminum.
  • the neutralization treatment comprises adding, in the non-silicic solution, an amount of a compound, said neutralization compound, adapted to increase the concentration of hydroxide ions in the non-silicic solution.
  • the neutralization compound is selected from the group consisting of magnesium oxide and magnesium hydroxide.
  • the neutralization treatment comprises an addition, in the non-silicic solution, of a quantity of dry or hydrated magnesium oxide, especially in the form of milk of magnesia.
  • a solid / liquid separation of the asbestos solid and the non-asbestos solution is carried out prior to the precipitation treatment of cationic species of iron and cationic species of aluminum of the non-asbestos solution.
  • the asbestos-containing solid asbestos is separated from the industrial waste and the hydraulic binder silica from the industrial waste and the non-asbestos solution containing all the non-silicic constituents of the hydraulic binder from the industrial waste is separated.
  • This solid / liquid separation can be carried out using any device known per se.
  • the asbestos solid and the non-asbestos solution are separated by filtration with a filter adapted to retain the asbestos solid and to allow the non-asbestos solution to flow.
  • the asbestos solid obtained is filtered off with a quantity of water, the said quantity of water being adapted so that the pH of the washing solution at the output of the porous filter is close to the pH of the water before washing.
  • the asbestos solid and the non-asbestos solution are separated by filtration under reduced pressure, with a filtration device comprising a filter adapted to retain the asbestos solid and a receptacle, under reduced pressure, wherein the non-asbestos solution flowing through the filtration device is aspirated.
  • a draining filter residue is obtained on the porous filter containing the asbestos of the industrial waste and the silica of the hydraulic binder of said industrial waste.
  • the asbestos solid is washed with a quantity of water adapted so that the pH of the solution flowing from the filtration device is close to the pH of the water used to washing.
  • at least a portion of the non-consumed hydrochloric acid is extracted from the non-asbestos solution during cold acid treatment.
  • extraction is carried out by evaporation / condensation under reduced pressure, an amount of unconsumed hydrochloric acid remaining in the non-asbestos solution.
  • the hydrochloric acid extracted by this evaporation / condensation which is not waste is a raw material that can be reused during subsequent treatments.
  • the hydrochloric acid is extracted during this evaporation / condensation step in the form of an aqueous solution of hydrochloric acid containing a quantity of hydrochloric acid.
  • said portion of unconsumed hydrochloric acid, extracted from the non-asbestos solution is used in the acid solution of a subsequent cold acid treatment.
  • the residual hydrochloric acid is used during a cold acid treatment of an industrial waste comprising asbestos and a hydraulic binder.
  • the residual hydrochloric acid is recycled to the heat treatment solution of the hot acid treatment of a silicic solid comprising asbestos and the silica of the hydraulic binder of an industrial waste.
  • a solid / liquid separation of the precipitate formed from cationic species of iron and cationic species of aluminum and the residual solution, called calcium solution, containing a quantity at least one ionic species of calcium is carried out by filtration of the cationic species of iron and aluminum by means of a filtration device, in particular a filtration device at atmospheric pressure or at a pressure greater than atmospheric pressure, or under reduced pressure, or by accelerated sedimentation of the cationic species of iron and aluminum, in particular by centrifugation, and removal of the calcium solution.
  • the water is extracted from the calcium solution so as to form a crystallized calcium salt composition.
  • This extraction of water from the calcium solution is carried out by means known per se, in particular by evaporation of the water by heating, by distillation of the water, in particular by distillation under reduced pressure.
  • this composition of crystallized calcium salts in the textile industry is used as a mordant for fixing colors.
  • This composition is furthermore used for its hygroscopic properties, especially as a desiccant or as an additive for clearing roads.
  • the cationic species of precipitated iron and the cationic species of aluminum precipitated are separated.
  • a process according to the invention makes it possible to separate and recycle not only all the asbestos chemical constituents, in particular silica, cationic aluminum species, cationic magnesium species, cationic calcium species and the species. cationic iron, but also the reagents used but not consumed, including hydrochloric acid in excess.
  • a process according to the invention makes it possible to recycle the chemical constituents of asbestos into reagents of high purity directly usable as raw materials in the industry. It should be noted that the raw materials resulting from the decomposition of industrial waste including asbestos and a hydraulic binder are no longer waste with asbestos toxicity and that they can be legally transported to their site of use. .
  • the industrial waste comprising asbestos and a hydraulic binder, in particular sheets and pipes made of fiber cement, containing a mass proportion of 10% to 15% pure asbestos
  • a solution of cold hydrochloric acid is first treated. with a solution of cold hydrochloric acid, and then separating the solution thus obtained containing the products of cold acid attack constituents of hydraulic binder industrial waste and an asbestos solid containing industrial waste asbestos and silica constitutive of the hydraulic binder of said industrial waste, and is subsequently dissociated, by acid treatment hot asbestos solid, silica constitutive industrial waste and non-silicic compounds of asbestos.
  • aqueous solution of hydrochloric acid at room temperature called cold acid treatment
  • cold acid treatment under conditions adapted to allow the dissolution of the non-silicic compounds of the hydraulic binder without allowing the dissolution of asbestos industrial waste and then a decomposition of asbestos is carried out obtained during the cold acid treatment beforehand, by a hot acid treatment.
  • the invention also relates to a process characterized in combination by all or some of the characteristics mentioned above or below.
  • an industrial waste 1 consisting of asbestos and a hydraulic binder is converted by fragmentation 2, in particular asbestos-cement plates or sheets, also called fiber cement, to form a granulate 3 said industrial waste 1 whose average particle size is less than 20 mm, especially between 1 mm and 10 mm.
  • This fragmentation 2 of the industrial waste 1 is carried out by dry grinding or, preferably, in the presence of water using mechanical grinding devices known per se.
  • wet and fragmented granulate 3 of industrial waste 1 is brought into contact with an aqueous solution of hydrochloric acid in a receptacle, in particular a glass receptacle, adapted to allow the cold acid treatment 4 of the industrial waste 1, and wherein the granulate 3 of the industrial waste 1 and the acid solution are mixed by mechanical stirring or by magnetic stirring.
  • the concentration of hydrochloric acid in the aqueous solution is of the order of 250 g / l.
  • This cold acid treatment 4 is carried out at room temperature without using a means of heating or cooling the mixture of granulate 3 and the acid solution, and the cold acid treatment 4 of the asbestos granulate is maintained.
  • the cold acid treatment 4 in a mixing device, also known as a kneader, adapted to homogenize the mixture of granulate 3 of said industrial waste 1 in the acid solution while avoiding the emission of acid vapors into the atmosphere.
  • a suspension 6 of an asbestos solid 8 is obtained in an aqueous solution of hydrochloric acid, free from asbestos, and containing the non-silicic components of the hydraulic binder.
  • a solid / liquid separation of the asbestos solid 8 and the non-asbestos solution 9 is carried out, in particular by filtration on an inert filter adapted so that the non-asbestos solution 9 flows from the filter and the asbestos solid 8 is completely retained on the filter.
  • This solid / liquid separation is carried out by filtration using known filtration means per se, at atmospheric pressure, or at a pressure greater than atmospheric pressure, or under reduced pressure.
  • an asbestos solid 8 formed of asbestos and silica of the hydraulic binder is obtained separately and a non-asbestosed solution 9 of the non-silicic components of the hydraulic binder of the industrial waste 1 and containing a quantity of hydrochloric acid not consumed during cold acid treatment 4.
  • a reduced-pressure distillation device hermetically closed to the vapors, comprising a container equipped with a heating system adapted to raising the temperature of the non-asbestos solution 9 in said container and to allow the evaporation of almost all of the non-consumed hydrochloric acid during the cold acid treatment 4 as well as water, a condenser adapted to allow the condensation of the vapors of said hydrochloric acid portion and the water in a receptacle, separate from the heating container, wherein the acid solution hydrochloric acid flows, and a pumping device connected to the device hermetically sealed and adapted to establish, within the hermetically sealed device, a pressure whose value is between 100 and 150 hPa, including a vacuum pump, especially a water pump.
  • This amount of unreacted hydrochloric acid, distilled off 10, is recycled to an aqueous solution of hydrochloric acid for subsequent cold acid treatment.
  • This amount of hydrochloric acid is recycled for a cold acid treatment of a granulate 3 of an industrial waste 1 comprising asbestos and a hydraulic binder or in an aqueous hydrochloric acid solution of a treatment.
  • an amount of residue 11 substantially free of hydrochloric acid and containing non-silicic constituents of the hydraulic binder of industrial waste in particular the cationic species of calcium, aluminum and iron in the form of chlorides.
  • This non-silicic residue is subjected to a precipitation treatment 12 in which is added to the residue 11, an amount of an aqueous suspension 13 containing at least one basic compound capable of increasing the concentration of hydroxide ions in the residue 11.
  • a precipitation treatment 12 in which is added to the residue 11, an amount of an aqueous suspension 13 containing at least one basic compound capable of increasing the concentration of hydroxide ions in the residue 11.
  • the residual hydrochloric acid not extracted from the non-asbestos solution 9 during the distillation is neutralized and the cationic species of iron and the cationic species of the aluminum form a precipitate. of iron hydroxides and aluminum hydroxides in an aqueous solution 16 of the cationic species of calcium. This precipitation is carried out at room temperature and at atmospheric pressure.
  • Solid / liquid separation of precipitate 19 from cationic species and cationic species of aluminum and the solution 16 cationic species of calcium by filtration on an inert filter adapted so that the solution 16 cationic species of calcium flows from the filter and that the precipitate 19 consisting of Cationic species of iron and cationic species of aluminum is retained on the filter.
  • the precipitate 19 formed of iron hydroxides and precipitated aluminum hydroxides is collected on the filter.
  • This solid / liquid separation can furthermore be carried out by any other separation means known per se, adapted to allow separation at atmospheric pressure, or at a pressure lower than atmospheric pressure, or at a pressure greater than atmospheric pressure.
  • the precipitate 19 of the iron hydroxides and aluminum hydroxides is washed with a quantity of water and an acid attack of the precipitate 19 is carried out with an amount of one hour.
  • aqueous hydrochloric acid solution 21 adapted to solubilize the iron hydroxides and aluminum hydroxides of the precipitate 19 and to form an aqueous solution 22 of iron chloride and aluminum chloride, especially in the form of FeCl 3 and AlCl 3 .
  • the water of solution 16 of cationic calcium species is removed by evaporation and drying under hot and reduced pressure.
  • the cationic calcium species of the solution 16 form a hydrated or anhydrous precipitate of calcium chloride CaCl 2 , depending on the temperature and drying time conditions.
  • the asbestos solid 8 obtained in the solid / liquid separation step 7, after cold acid treatment 4 of the industrial waste 1, is subjected to a hot acid treatment 23 of this asbestos solid 8 with a quantity of one aqueous solution 36 of hydrochloric acid, adapted to perform a hot acid attack and the dissolution of the cationic species of iron and cationic magnesium species of the asbestos solid 8.
  • a suspension 24 of a silicic solid 26 containing the amorphous silica is obtained porous split of asbestos and silica from the clay of the hydraulic binder in a non-silica, silica-free solution.
  • a hot acid treatment of the asbestos solid 8 is carried out at reflux of the solution.
  • the suspension 24 of the silica 26 in the non-silicic solution 27 is subjected to a treatment of solid / liquid separation adapted to separate the silica 26 from the non-silicic solution 27 containing unconsumed hydrochloric acid in solution in water and the cationic species of iron and magnesium.
  • a distillate containing a quantity of hydrochloric acid separated from a distillation residue 29 containing the cationic magnesium species is obtained.
  • the distillation residue 29 containing the cationic species of iron and the cationic magnesium species are subjected to a pH neutralizing treatment of the distillation residue 29 to a value between pH 5 and pH 7.
  • a pH neutralizing treatment of the distillation residue 29 to a value between pH 5 and pH 7.
  • an aqueous suspension comprising at least one basic compound capable of increasing the concentration of hydroxide ions in the distillation residue 29 so that the pH is between pH 5 and pH 7.
  • the neutralization treatment 31 the Cationic species of iron form a precipitate of iron hydroxides in an aqueous acidic solution containing the cationic species of magnesium in chloride form.
  • the precipitate of the cationic species of iron and the acid solution 34 of the cationic magnesium species of the suspension 32 are separated by means known per se, in particular by a solid / liquid separation step, in particular by filtration on a porous support.
  • the quantity of unconsumed hydrochloric acid extracted by distillation in an aqueous solution of hydrochloric acid is recycled from an additional cold acid treatment.
  • a solid asbestos a solid asbestos
  • the amount of residual hydrochloric acid formed during the distillation step 28 in the aqueous hydrochloric acid solution is recycled from an acid treatment to hot from a solid asbestos.
  • the asbestos solid 8 retained on the porous filter of a solid / liquid separation treatment 7 is washed with a quantity of water which flows into the Asbestos-free solution 9.
  • the precipitate 19 is subjected to iron hydroxides and aluminum hydroxides to solid / liquid separation treatment of cationic species of aluminum and cationic species of iron by specific dissolution of cationic species aluminum from caustic soda, separation of cationic species from dissolved aluminum and non-dissolved and solid cationic iron species.
  • the precipitation step 12 of the cationic species of iron and of the cationic species of aluminum of the non-asbestos solution 9 is carried out directly, without producing any extraction by distillation of hydrochloric acid.
  • the amount of basic compound 12 capable of increasing the concentration of hydroxide ions in the non-asbestos solution 9 is adjusted so that this quantity is sufficient to neutralize the hydrochloric acid which has not been consumed and is not extracted from the non-asbestos solution 9 and to effect the precipitation of the cationic species 22 of iron and aluminum.
  • the mixture thus obtained is filtered so as to separate an asbestos-containing solid and silica from the cement from an unconsumed hydrochloric acid solution containing the cationic species resulting from the decomposition of the cement in the form of chlorides. .
  • the acid solution containing the products resulting from the decomposition of the cement is distilled off under reduced pressure and contains 45 g of hydrogen chloride which has not been consumed in aqueous solution.
  • the pH of the residual distillation solution is adjusted to a value of the order of pH 6 by the addition of 1.3 g of calcium hydroxide (Ca (OH) 2 ) suspended in water.
  • the iron hydroxides and aluminum hydroxides formed precipitate in the aqueous solution of calcium chloride (CaCl 2 ).
  • the precipitate and the calcium chloride solution are filtered off. After drying, 7 g of iron hydroxide and aluminum hydroxide are weighed. The water of the calcium chloride solution is evaporated under reduced pressure from a water pump. 92 g of calcium chloride CaCl 2 , 2H 2 O are obtained which crystallize.
  • the solid containing asbestos and the silica resulting from the decomposition of the cement is placed in a reactor into which 200 ml of water and then 80 ml of a 37% aqueous solution of hydrochloric acid are introduced.
  • the initial concentration of hydrochloric acid in the suspension is about 107 g / L.
  • the suspension obtained is stirred under atmospheric pressure and the reactor is heated to a temperature capable of maintaining the reflux of the aqueous hydrochloric acid solution for 150 min.
  • the mixture obtained is filtered so as to separate a silicic solid retained on the filter from an acidic solution containing the cationic species.
  • magnesium in the form of magnesium chloride (MgCl 2 ) and the silicic solid retained on the filter is washed with 250 ml of water.
  • the dry silicic solid weighs 23 g.
  • EXAMPLE 2 Treatment of Asbestos Insulating Plates
  • An asbestos granulate whose particle size is substantially between 1 and 10 mm is prepared by fragmentation of used insulating plates.
  • 100 g of the asbestos granulate obtained are placed in a reactor in which 1 L of an aqueous solution containing hydrochloric acid is added at a concentration of 105 g / l.
  • the suspension obtained is stirred and the reactor is heated to a temperature capable of provoking and maintaining the reflux of the aqueous hydrochloric solution for 150 min at atmospheric pressure.
  • the mixture obtained is filtered so as to separate a silicic solid retained on the filter and an acidic liquid filtrate.
  • the silicic solid retained on the filter is washed with 0.250 L of water.
  • the wash water is collected with the acidic liquid filtrate which contains the non-consumed hydrochloric acid, the water as well as the iron and magnesium salts in the form of chlorides.
  • a distillate containing about 40 grams of hydrogen chloride not consumed in the solubilization phase and water is extracted from the acidic liquid filtrate by distillation under reduced pressure by means of a water pump.
  • a syrupy distillation residue containing the iron and magnesium salts in the form of chlorides is recovered.
  • a suspension containing about 2 g of magnesia (MgO) in water is added to the distillation residue to adjust the pH of the residue of distillation at a value of the order of 6 pH units.
  • the iron hydroxides formed by ionic substitution at pH of the order of 6 precipitate It is filtered, washed with water and the precipitate thus formed is dried. 1.4 g of these iron compounds are weighed.
  • the solid retained on the filter is taken up and washed with water.
  • This solid is placed in a reactor in which 1 L of an aqueous solution of hydrochloric acid at 105 g / L is added. The resulting mixture is placed under stirring and the reactor is heated to a temperature capable of maintaining the reflux of the aqueous hydrochloric solution for 150 min.
  • the mixture obtained is filtered and a solid, consisting exclusively of amorphous silica, retained on the filter and an acid solution eluted from the filter is obtained.
  • the silica solid retained on the filter is washed with 250 ml of water. After drying in an oven, 42 g of porous amorphous silica are weighed out.
  • the silica produced is characterized by X-ray diffraction using a SEIFERT XRD 3000TT diffractometer model and has an amorphous silica character.
  • the specific surface area of the silica produced is measured by the 5-point BET method using an ASAP2010 porosimeter of the MICROMETRICS brand. It is measured that the specific surface area of the silica produced is 186 m 2 / g of silica.
  • the wash water is collected with the acid solution which contains the unused hydrochloric acid, the water as well as magnesium salts in the form of chlorides.
  • 104 g of unconsumed hydrogen chloride and 0.6 g of MgCl 2 , 6H 2 O are obtained by evaporation of the acid solution under reduced pressure by means of a water pump and condensation, which crystallizes.
  • hydrochloric acid in water leads to the production of 171.6 g of magnesium chloride, 1.4 g of iron hydroxide and 42 g of porous amorphous silica.
  • 66 g of hydrochloric acid were consumed and 144 g of hydrochloric acid were recycled at the end of this treatment of insulating plates.
  • the mixture thus obtained is filtered so as to separate an asbestos-containing solid from an unconsumed hydrochloric acid solution containing the cationic species obtained by dissolving the asbestos flocking plaster.
  • the hydrochloric acid solution containing all (196 g) of the initially introduced hydrochloric acid and distilling residue is distilled off under reduced pressure.
  • This distillation residue mainly formed of calcium sulphate, is washed with 80 ml of water, dried in an oven and then weighed.
  • the mass of calcium sulphate obtained is 12 g.
  • the calcium sulphate thus obtained can be recycled, in particular in plaster by methods known per se.
  • the wash solution of the distillation residue containing water-soluble species of asbestos waste is collected.
  • the solid containing filtered asbestos is placed at the end of the acid treatment at ambient temperature in a stirred reactor in the presence of the solution recycled at the end of the acid treatment at room temperature and containing 196 g of hydrochloric acid. .
  • the suspension obtained is stirred under atmospheric pressure and the reactor is heated to a temperature capable of maintaining the reflux of the aqueous hydrochloric acid solution for 30 min.
  • the mixture obtained is filtered so as to separate a solid formed of amorphous silica retained on the filter of an acidic solution containing the cationic species of magnesium in the form of magnesium chloride (MgCl 2 ), the cationic species of iron in the form of iron chloride (FeCl 2 ) and hydrochloric acid not consumed in aqueous solution.
  • the amorphous silica solid is washed with 250 mL of water, dried and weighed. A silica mass of 35 g is obtained.
  • 140 g of hydrogen chloride are obtained in aqueous solution and a concentrate of iron and magnesium in the form of chlorides is formed in an aqueous solution of residual hydrochloric acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Procédé de traitement d'un déchet industriel (1) comprenant de l'amiante et un liant hydraulique, caractérisé en ce qu'il comprend au moins une étape de traitement, dit traitement acide à froid (4), dudit déchet industriel (1) par une solution aqueuse (5) d'acide chlorhydrique à température ambiante, adapté pour former une solution, dite solution non amiantée (9), d'au moins un constituant non silicique du liant hydraulique (1) dans la solution aqueuse (5) d'acide chlorhydrique et un solide, dit solide amiante (8), comprenant l'amiante du déchet industriel (1).

Description

PROCÉDÉ DE TRAITEMENT D'UN DÉCHET INDUSTRIEL COMPRENANT DE L'AMIANTE ET UN LIANT HYDRAULIQUE
L'invention concerne un procédé de traitement d'un déchet industriel formé d'amiante et d'un liant hydraulique adapté pour en réaliser le recyclage total en espèces chimiques séparées directement utilisables comme matières premières dans des applications industrielles.
Les déchets industriels contenant de l'amiante et un liant hydraulique sont constitués, au niveau mondial, d'une part de stocks invendus de l'industrie de la construction et du négoce et d'autre part de déchets issus du démontage et de la dépose de tôles, de plaques et de conduites en fibrociment dans le secteur du bâtiment et des réseaux.
L'amiante désigne des roches d'origine métamorphique, qui sont naturellement fibreuses et qui ont été utilisées dans l'industrie, notamment dans l'industrie de la construction, en raison de leur point de fusion élevé, de leur résistance à la traction, de leur stabilité chimique et de leur aptitude au filage.
Cependant, les pathologies respiratoires humaines dues à l'utilisation et à l'exposition à l'amiante ont été décrites. Ces pathologies sont liées à la nature de l'amiante et à son aptitude à libérer des particules microscopiques, dites fibres d'amiante, susceptibles d'être véhiculées par voie aérienne et d'atteindre, par inhalation, les alvéoles pulmonaires et de migrer jusqu'à la plèvre en induisant des pathologies bénignes ou malignes.
Bien que l'interdiction visant l'utilisation de l'amiante dans les matériaux de construction remonte à plus de dix ans, il reste des quantités importantes de ces matériaux de construction contenant de l'amiante, qui doivent être éliminées des constructions anciennes ou qui sont déjà stockées dans des centres d'enfouissements sécurisés, en attente d'être traitées pour en neutraliser la dangerosité et les risques pour la santé humaine.
On connaît différents procédés visant à traiter des déchets d'amiante adaptés pour modifier les propriétés physiques de l'amiante, notamment les caractéristiques agressives des fibres d'amiante, et pour transformer ces déchets industriels en matériaux ne présentant pas la toxicité de l'amiante.
Ainsi, on a proposé de réaliser une vitrification totale de déchets d'amiante par traitement thermique à une température supérieure à 10000C. On a aussi proposé un traitement de déchets d'amiante par vitrification superficielle de granulats adapté pour isoler un déchet contenant de l'amiante résiduel par une épaisseur de lave. De telles solutions sont coûteuses en énergie et ne permettent pas de recycler les composants chimiques de ces déchets d'amiante sous la forme de matériaux valorisables. Ces solutions posent également des problèmes de réalisation pratique. En particulier, elles exigent des installations de chauffage à haute température et une consommation d'énergie qui ne peut pas être compensée par la valeur du produit généré.
Un deuxième type de solution connue consiste à attaquer chimiquement une épaisseur superficielle des déchets d'amiante pour modifier en surface la morphologie des fibres d'amiante afin de les rendre moins toxiques en isolant par enrobage les particules solides de déchet d'amiante.
WO97/27902 décrit un traitement d'un déchet contenant de l'amiante par un acide et des ions potassium pour la neutralisation dudit déchet contenant de l'amiante. Ce procédé permet de former un mélange complexe à traiter et ne permet pas de séparer les constituants élémentaires d'un déchet industriel contenant de l'amiante et un liant hydraulique, notamment les espèces chimiques du fer, les espèces chimiques du magnésium, les espèces chimiques de l'aluminium, les espèces chimiques du calcium et la silice, en produits de haute valeur ajoutée en vue de les recycler sous la forme d'espèces chimiques séparées dans différentes applications industrielles. L'invention vise à pallier ces inconvénients en proposant un procédé de traitement d'un déchet industriel contenant de l'amiante en vue de le décomposer en matières premières ne présentant pas la toxicité de l'amiante, et qui soient aptes à être recyclées pour des utilisations industrielles.
L'invention vise également à proposer un tel procédé dans lequel le déchet industriel contenant de l'amiante et un liant hydraulique sert de matière première pour la production de matériaux de base pour l'industrie, sans laisser de déchet solide ultime.
L'invention vise également à proposer un tel procédé de traitement permettant le recyclage d'un déchet industriel contenant de l'amiante et un liant hydraulique dans lequel les éléments chimiques oxydés de l'amiante et du liant hydraulique sont dissociés et isolés sous la forme d'espèces chimiques de grande pureté directement utilisables dans l'industrie, notamment dans l'industrie lourde et dans l'industrie chimique fine.
L'invention vise en outre à proposer un tel procédé de traitement d'un déchet industriel formé d'amiante et d'un liant hydraulique par décomposition chimique du déchet industriel comprenant de l'amiante et un liant hydraulique en espèces chimiques ne présentant pas la toxicité des fibres d'amiante, notamment sur les voies respiratoires.
L'invention vise également à proposer un tel procédé de traitement dans lequel les réactifs non consommés lors du traitement sont recyclés et sont susceptibles d'être utilisés dans des applications industrielles variées, et en particulier mais non exclusivement dans un même traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique.
Un autre objectif de l'invention est de proposer un tel procédé de traitement d'un déchet industriel ne produisant aucun déchet solide ultime non recyclé ou nécessitant un stockage sécurisé.
L'invention vise également à proposer un tel procédé de traitement qui est simple, économique à l'installation et à l'utilisation et ne nécessite pas la construction d'installations complexes de traitement.
L'invention vise également à proposer un procédé de traitement qui soit économiquement rentable et permette la production de composés à haute valeur ajoutée pour l'industrie.
L'invention vise en particulier à proposer un tel procédé de traitement qui n'induise qu'une dépense énergétique modérée.
L'invention vise également à atteindre tous ces objectifs à moindre coût, en proposant un procédé de faible coût de revient, réalisé à partir de réactifs chimiques usuels et peu onéreux. L'invention vise également à proposer un tel procédé de traitement privilégiant la préservation de l'environnement et le développement durable.
L'invention vise de surcroît à proposer un tel procédé qui préserve les habitudes de travail des personnels, soit facile à utiliser, et n'implique pour sa mise en oeuvre que peu de manipulations.
Dans tout le texte, le terme « déchet industriel contenant de l'amiante et un liant hydraulique » désigne les déchets solides principalement formés de fibres d'amiante et d'un liant hydraulique, notamment de ciment. Il s'agit, en particulier, des tôles, des plaques, des ardoises, des tuyaux et conduites en amiante-ciment, aussi appelé généralement fibrociment, contenant une proportion massique minoritaire d'amiante pur, souvent comprise entre 10% et 15%.
Cependant, un tel déchet industriel désigne aussi les déchets solides, aussi appelés
« flocage d'amiante » formés de fibres d'amiante et, à titre de liant hydraulique, de plâtre dans une proportion massique minoritaire, notamment comprise entre 5% et
20%.
L'invention concerne donc un procédé de traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique, caractérisé en ce qu'il comprend au moins une étape de traitement, dit traitement acide à froid, dudit déchet industriel par une solution aqueuse d'acide chlorhydrique à température ambiante, adapté pour former :
- une solution, dite solution non amiantée, d'au moins un constituant non silicique du liant hydraulique dans la solution aqueuse d'acide chlorhydrique,
- un solide, dit solide amiante, comprenant l'amiante du déchet industriel. Les inventeurs ont observé que le traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique dans une solution aqueuse d'acide chlorhydrique à température ambiante, c'est-à-dire sans nécessiter la mise en œuvre de moyens de chauffage ou de refroidissement du milieu de traitement acide à froid, permet de former un solide amiante comprenant la totalité de l'amiante du déchet industriel et la totalité de la silice contenue dans l'argile constitutive du liant hydraulique du déchet industriel. Cela étant, il est possible que dans un procédé selon l'invention, la température du traitement acide à froid augmente au cours dudit traitement en raison de réchauffement de la solution non amiantée lors de l'attaque acide des constituants du liant hydraulique.
Le solide amiante obtenu par un tel traitement acide à froid d'un déchet industriel est une composition formée de l'amiante solide du déchet industriel et de la silice solide initialement contenue dans l'argile constitutive du liant hydraulique du déchet industriel.
Un tel traitement permet en outre de former une solution, dite solution non amiantée, totalement dépourvue d'amiante, mais comprenant au moins un constituant non silicique du liant hydraulique du déchet industriel, notamment sous la forme de chlorure. En particulier la solution non amiantée comprend au moins un des composés choisis dans le groupe formé du chlorure de calcium, du chlorure d'aluminium et du chlorure de fer.
Les inventeurs ont observé qu'un tel traitement acide à froid d'un déchet industriel comprenant de l'amiante et un liant hydraulique à température ambiante permet de séparer un solide amiante contenant la totalité de l'amiante dudit déchet industriel et une solution non amiantée contenant environ 75% de la masse du déchet industriel.
Avantageusement, le déchet industriel comprend une proportion massique d'amiante inférieure à 20%, particulièrement comprise entre 10% et 15%. Le déchet industriel est notamment formé d'amiante-ciment, aussi appelé fibrociment, comprenant entre 10% et 15% d'amiante et de 85% à 90% d'un liant hydraulique comprenant majoritairement du carbonate de calcium (CaCO3) et de l'alumine (Al2O3) ainsi que de la silice (SiO2) et des composés du fer. Avantageusement, le déchet industriel comprend une proportion massique d'amiante supérieure à 80%, particulièrement comprise entre 85% et 90%. Le déchet industriel est notamment formé de flocage d'amiante comprenant entre 85% et 90% d'amiante et de 10% à 15% de plâtre, à titre de liant hydraulique, comprenant majoritairement du sulfate de calcium (CaSO4). Avantageusement, le liant hydraulique comprend au moins une espèce chimique choisie dans le groupe formé des oxydes et des hydroxydes de l'aluminium, des oxydes et des hydroxydes du fer, des oxydes du silicium, du carbonate de calcium, des oxydes et des hydroxydes du magnésium.
Avantageusement et selon l'invention, la concentration d'acide chlorhydrique dans la solution aqueuse d'acide chlorhydrique du traitement acide à froid est supérieure à 200 g/L, notamment de l'ordre de 250 g/L. Ainsi, on réalise un traitement acide à froid du déchet industriel comprenant de l'amiante et un liant hydraulique de façon à former une solution non amiantée contenant au moins un constituant, notamment sous la forme de chlorure, du liant hydraulique du déchet industriel, et un solide amiante formé d'amiante et de la silice constitutive du liant hydraulique. Une telle concentration d'acide chlorhydrique dans la solution aqueuse du traitement acide à froid est adaptée pour permettre l'attaque acide des constituants non siliciques du liant hydraulique du déchet industriel, sans permettre une attaque acide quantifiable ni de l'amiante du déchet industriel, qui reste sous forme d'amiante solide, ni de la silice du liant hydraulique du déchet industriel. II est aussi possible que la concentration d'acide chlorhydrique dans la solution aqueuse d'acide chlorhydrique du traitement acide à froid soit plus faible, notamment supérieure à 100 g/L. Une telle concentration d'acide chlorhydrique est adaptée pour le traitement d'un déchet industriel appelé flocage d'amiante et comprenant de l'amiante et du plâtre à titre de liant hydraulique et pour laquelle le liant hydraulique, en particulier le sulfate de calcium, est dissout dans la solution aqueuse d'acide chlorhydrique.
La durée du traitement acide à froid d'un déchet industriel comprenant de l'amiante et du plâtre à titre de liant hydraulique est de quelques minutes notamment de l'ordre de 10 minutes. Les inventeurs ont observé que dans le cas du traitement acide à froid d'un tel déchet industriel, il est possible de dissoudre la totalité du liant hydraulique sans toutefois attaquer significativement les fibres d'amiante débarrassées dudit liant hydraulique.
Avantageusement et selon l'invention, pour le traitement acide à froid, on plonge le déchet industriel dans la solution aqueuse d'acide chlorhydrique pendant une durée supérieure à 1 h, notamment comprise entre 2 h et 3 h. On réalise le traitement acide à froid d'un déchet industriel dans l'acide chlorhydrique pendant une durée suffisante pour permettre l'attaque acide et la dissolution sensiblement complète des fragments formant le déchet industriel, notamment les fragments les plus gros. En outre, et avantageusement, pour le traitement acide à froid, on maintient une agitation du déchet industriel dans la solution aqueuse d'acide chlorhydrique. Par exemple, pour des applications industrielles d'un traitement acide à froid d'un déchet industriel, on utilise un malaxeur, ou tout autre type de mélangeur solide-liquide, dans lequel on introduit une quantité de déchet industriel comprenant de l'amiante et un liant hydraulique et une quantité d'une solution d'acide chlorhydrique, et on maintient le mélange sous agitation pendant une durée supérieure à 1 h, notamment comprise entre 2 h et 3 h. Avantageusement, on réalise le traitement acide à froid à la pression atmosphérique, notamment sans utiliser de moyen particulier permettant l'augmentation ou la diminution de la pression. En particulier, on réalise le traitement acide à froid à la pression atmosphérique, notamment à une pression sensiblement de l'ordre de 1000 hPa. Avantageusement et selon l'invention, on réalise le traitement acide à froid à partir d'un déchet industriel comprenant de l'amiante et un liant hydraulique présentant une granulométrie inférieure à 20 mm, notamment comprise entre 1 mm et 10 mm. On obtient une telle granulométrie par des moyens connus en soi, notamment par fragmentation dudit déchet industriel. Une telle granulométrie favorise la déstructuration dudit déchet industriel lors de l'attaque acide à froid du déchet industriel en augmentant l'aire de la surface du déchet industriel susceptible de subir cette attaque acide. Ainsi, dans un procédé selon l'invention, préalablement au traitement acide à froid, on prépare un granulat formé d'un déchet industriel par fragmentation du déchet industriel à sec ou, de préférence, en présence d'une quantité d'eau de façon à éviter la production de poussières du déchet industriel. On réalise cette fragmentation avec des dispositifs sécurisés de broyage mécanique connus en soi et notamment équipés de filtres adaptés pour retenir les éventuelles poussières d'amiantes toxiques à l'intérieur du dispositif ou encore selon la technique du moulin humide, plus connue sous le vocable « wetmild », c'est-à-dire en milieu humide ne produisant pas de poussière.
Avantageusement et selon l'invention, le traitement acide à froid est adapté pour que la solution non amiantée soit exempte d'amiante. Ainsi, un traitement acide à froid d'un déchet industriel comprenant de l'amiante et un liant hydraulique dans une solution aqueuse d'acide chlorhydrique permet de dissocier, lors de l'attaque acide à froid du déchet industriel, un solide amiante, comprenant la totalité de l'amiante du déchet industriel, et une solution non amiantée comprenant au moins une espèce chimique constitutive du liant hydraulique dudit déchet industriel. Avantageusement, la solution non amiantée comprend la totalité des espèces chimiques constitutives du liant hydraulique qui sont solubles dans la solution d'acide chlorhydrique. Ainsi, la silice entrant dans la composition de l'argile constitutive du liant hydraulique du déchet industriel qui est insensible à l'attaque acide à froid reste sous forme solide dans le solide amiante.
Ainsi, on réalise une attaque acide à froid du liant hydraulique du déchet industriel, apte à entraîner une dissolution d'une partie des composés non amiantes du déchet industriel, et on préserve de cette attaque acide et de cette dissolution les composants des fibres d'amiante et la silice naturellement présente dans le liant hydraulique qui restent sous forme solide. Il est à noter que le traitement acide à froid du déchet industriel n'attaque pas sensiblement l'amiante et n'entraîne que très peu la dissolution des composants de l'amiante qui reste sous forme solide dans le solide amiante. En outre, le traitement acide à froid du déchet industriel n'attaque pas la silice contenue dans le liant hydraulique du déchet industriel qui reste sous forme solide dans le solide amiante.
Avantageusement et selon l'invention, on soumet ladite solution non amiantée obtenue à un traitement, dit traitement de précipitation, dans lequel on réalise une précipitation des espèces cationiques du fer et des espèces cationiques de l'aluminium.
De façon surprenante, les inventeurs ont constaté qu'il est possible d'effectuer un traitement de précipitation sélective des espèces cationiques du fer et des espèces cationiques de l'aluminium, permettant de séparer les espèces cationiques du fer et les espèces cationiques de l'aluminium qui précipitent sous forme solide dans la solution non amiantée, des espèces cationiques du calcium qui restent en solution dans la solution non amiantée. Avantageusement et selon l'invention, on réalise le traitement de précipitation en ajustant le pH de la solution non amiantée à une valeur comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6. On réalise le traitement de précipitation en ajustant le pH de la solution non amiantée à une valeur sensiblement neutre, mais cependant légèrement acide. En effet, les inventeurs ont observé que l'ajustement du pH de la solution non amiantée à une valeur comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6 permet de précipiter de façon sélective les espèces cationiques du fer et les espèces cationiques de l'aluminium de la solution non amiantée, sans entraîner significativement la précipitation des espèces cationiques du calcium qui restent en solution dans la solution non amiantée. En particulier, on réalise ce traitement de précipitation à température ambiante et à pression atmosphérique.
Les inventeurs pensent que les espèces cationiques du fer et les espèces cationiques de l'aluminium présentes dans la solution non amiantée sous la forme de chlorures sont spécifiquement transformées respectivement en hydroxydes de fer et en hydroxydes d'aluminium par un mécanisme réactionnel impliquant une substitution ionique des ions chlorures par les ions hydroxydes, ladite substitution ionique des ions chlorures des espèces cationiques du fer et des espèces cationiques de l'aluminium par les ions hydroxydes étant spécifiquement assistée par le pH, notamment compris entre pH 5 et pH 7, notamment à une valeur de l'ordre de pH 6 et entraînant spécifiquement la précipitation des espèces cationiques du fer et des espèces cationiques de l'aluminium sous la forme d'hydroxydes de fer et d'hydroxydes d'aluminium dans leur quasi-totalité, sans entraîner la précipitation des espèces cationiques du calcium. En particulier, lors d'un traitement de précipitation, on ajuste le pH de la solution non amiantée à une valeur comprise entre pH 5 et pH 7, notamment à une valeur de l'ordre de pH 6, de façon que la concentration en ions hydroxydes libres dans la solution non amiantée soit suffisamment faible et ne permette pas la précipitation des espèces cationiques du calcium. Avantageusement et selon l'invention, pour le traitement de précipitation, on ajoute, dans la solution non amiantée, une quantité d'au moins un composé, dit composé basique, susceptible d'augmenter la concentration des ions hydroxydes dans la solution non amiantée.
En particulier, on ajoute dans la solution non amiantée une quantité d'au moins un composé basique susceptible de générer des ions hydroxydes dans la solution non amiantée, sous la forme d'une quantité d'une solution aqueuse dudit composé basique, ou sous la forme d'une quantité d'une suspension dudit composé basique dans l'eau, ou encore sous la forme d'une quantité dudit composé basique sous la forme solide, que l'on ajoute directement dans la solution non amiantée. Avantageusement et selon l'invention, on choisit le composé basique dans le groupe formé des oxydes des métaux alcalino-terreux, des hydroxydes des métaux alcalins et des hydroxydes des métaux alcalino-terreux. En effet, les inventeurs ont observé que les oxydes et les hydroxydes des métaux alcalino-terreux et les hydroxydes des métaux alcalins, qui sont des composés susceptibles de produire des ions hydroxydes, sont notamment adaptés pour réaliser une substitution ionique à une valeur de pH comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6.
En outre, il est d'un intérêt particulier de choisir le composé basique de façon qu'il soit adapté pour libérer dans la solution non amiantée, outre des ions hydroxydes, des cations métalliques appartenant à la composition atomique élémentaire d'au moins un des composants du liant hydraulique. Ainsi, l'addition du (des) composé(s) basique(s) à la solution non amiantée n'apporte pas une quantité significative d'un élément atomique nouveau en regard de la composition atomique du liant hydraulique. Avantageusement et selon l'invention, le composé basique est choisit dans le groupe formé de l'oxyde de calcium et de l'hydroxyde de calcium. En particulier, l'addition d'une quantité d'oxyde de calcium ou d'hydroxyde de calcium, aussi appelé lait de chaux, à la solution amiantée permet de neutraliser au moins une partie de la quantité d'acide chlorhydrique non consommé lors du traitement acide à froid du déchet industriel comprenant de l'amiante et un liant hydraulique. Cette neutralisation s'accompagne en outre de la transformation de l'oxyde de calcium sec ou hydraté ajouté, à titre de composé basique, en chlorure de calcium. En particulier, l'addition d'une quantité supplémentaire d'oxyde de calcium sec ou hydraté à la solution amiantée permet la neutralisation de la quantité résiduelle d'acide chlorhydrique non consommé lors de la phase de traitement acide à froid du déchet industriel, ainsi que la neutralisation du caractère acide des composés cationiques du fer et des composés cationiques de l'aluminium. La quantité d'oxyde de calcium sec ou hydraté ajoutée est choisie pour que, à l'issue de cette addition supplémentaire, le pH de la solution non amiantée soit compris entre pH 5 et pH 7, notamment de l'ordre de pH 6, et que la totalité des espèces cationiques du fer et des espèces cationiques de l'aluminium de la solution non amiantée précipitent sous la forme d'hydroxydes de fer et d'hydroxydes d'aluminium.
En outre, il est d'un intérêt particulier de choisir l'oxyde de calcium sec ou hydraté qui est adapté pour libérer, dans la solution non amiantée, outre des ions hydroxydes, des ions calcium appartenant à la composition atomique élémentaire d'au moins un des composants non siliciques du liant hydraulique. Ainsi, l'addition de l'oxyde de calcium sec ou hydraté à la solution non amiantée n'apporte pas une quantité significative d'un élément atomique nouveau en regard de la composition atomique du liant hydraulique. La transformation de l'oxyde de calcium (CaO) ou de l'hydroxyde de calcium (Ca(OH)2) hydraté (lait de chaux) en chlorure de calcium dans la solution non amiantée dont la valeur du pH est comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6, permet la conversion sélective des espèces cationiques du fer sous forme de chlorure de fer et des espèces cationiques de l'aluminium sous forme de chlorure d'aluminium qui sont dissous dans la solution non silicique, en espèces cationiques du fer, sous forme d'hydroxydes, et en espèces cationiques de l'aluminium, sous forme d'hydroxydes qui sont insolubles dans cette solution et qui forment un précipité.
Ainsi, corrélativement à la transformation des espèces cationiques du fer initialement sous forme de chlorure de fer et des espèces cationiques de l'aluminium sous forme de chlorure d'aluminium dans la solution non amiantée en espèces cationiques du fer et en espèces cationiques de l' aluminium sous forme d'hydroxydes de fer et d'hydroxydes d'aluminium qui précipitent, on convertit l'oxyde de calcium sec ou hydraté en une espèce chimique, notamment en chlorure de calcium, qui est elle-même soluble dans la solution non amiantée, et qui est d'ailleurs déjà présente dans la solution non amiantée avant l'étape de précipitation. Ainsi le traitement de la solution non amiantée par une quantité d'oxyde de calcium sec ou hydraté, conduisant à la précipitation de la totalité des espèces cationiques du fer et des espèces cationiques de l'aluminium, ne conduit pas à l'apparition dans la solution non amiantée de composés nouveaux autres que les espèces cationiques du fer et d'aluminium qui précipitent. Ainsi, le traitement de la solution non amiantée avec une quantité d'oxyde de calcium n'affecte pas le niveau de pureté des espèces cationiques du fer, des espèces cationiques de l'aluminium et des espèces cationiques du calcium présentes dans la solution non amiantée.
Il est à noter en particulier qu'un précipité contenant les espèces cationiques du fer et les espèces cationiques de l'aluminium du liant hydraulique d'un déchet industriel dans lequel les espèces cationiques du fer et les espèces cationiques de l'aluminium sont sous la forme d'hydroxydes de fer et d'hydroxydes d'aluminium est adapté pour une utilisation ultérieure, après acidification par une solution d'acide chlorhydrique, notamment comme floculant dans un procédé de traitement visant à l'assainissement des eaux.
Avantageusement et selon l'invention, on réalise ensuite un traitement, dit traitement acide à chaud, du solide amiante à pression atmosphérique par une solution aqueuse d'acide chlorhydrique, dite solution de traitement à chaud, à une température de l'ordre de la température d'ébullition de ladite solution de traitement à chaud, de façon à obtenir :
- une solution, dite solution non silicique, d'au moins un constituant non silicique de l'amiante dans la solution de traitement à chaud et,
- un solide, dit solide silicique, formé de silice amorphe issue de l'amiante et du liant hydraulique du déchet industriel. Le traitement du solide amiante par une solution de traitement à chaud, à la pression atmosphérique et à une température de l'ordre de la température d'ébullition de la solution de traitement à chaud permet la formation, d'une part, d'une solution aqueuse contenant des composants de nature non silicique de l'amiante et, d'autre part, d'un solide silicique constitué pour l'essentiel par les constituants silicique de l'amiante et par les constituants siliciques du liant hydraulique du déchet industriel. Ainsi, le traitement acide à chaud d'un solide amiante par une solution de traitement à chaud permet de conserver les composants siliciques de l'amiante et du liant hydraulique sous forme solide et d'extraire les composants non siliciques du solide amiante sous forme soluble dans la solution de traitement à chaud. Ainsi, le traitement du solide amiante par une solution de traitement à chaud permet de décomposer les fibres d'amiante qui sont elles-mêmes toxiques par inhalation, en composants ne présentant pas la toxicité des fibres d'amiante de départ. En particulier, la silice amorphe poreuse divisée obtenue par traitement acide à chaud de l'amiante du solide amiante ne présente pas sensiblement de toxicité.
En outre, les inventeurs ont constaté que la solution non silicique contenant au moins une partie des composants non siliciques de l'amiante du solide amiante, contient non seulement des espèces cationiques du magnésium, mais qu'elle contient en outre des espèces cationiques du fer issues de l'attaque acide de l'amiante par l'acide chlorhydrique et de la solubilisation, dans la solution non silicique, des constituants non siliciques du solide amiante résultant de cette attaque acide. En outre, le traitement acide à chaud selon l'invention permet d'extraire de l'amiante du solide amiante sensiblement la totalité des espèces cationiques du magnésium ainsi que sensiblement la totalité des espèces cationiques du fer qui passent en solution dans la solution non silicique. Les espèces cationiques du magnésium et les espèces cationiques du fer de la solution non silicique acide sont sous la forme de chlorure de magnésium et de chlorure de fer qui sont parfaitement solubles dans la solution non silicique.
Avantageusement, la concentration d'acide chlorhydrique de la solution de traitement à chaud est supérieure à 100 g/L, notamment comprise entre 100 g/L et 150 g/L. Une telle concentration est adaptée pour que la solution reste acide à la fin de l'attaque acide des constituants non siliciques de l'amiante du solide amiante et pour que les constituants non siliciques de la solution non silicique restent en solution dans la solution de traitement à chaud.
Avantageusement, lors du traitement acide à chaud, on prépare une suspension du solide silicique dans la solution de traitement acide et on chauffe la suspension du solide silicique dans la solution de traitement à chaud à une température comprise entre 700C et 1100C, notamment à une température de l'ordre de 95°C. Avantageusement, on chauffe ladite suspension du solide silicique dans la solution de traitement acide, notamment à une température adaptée pour provoquer le reflux de la solution de traitement à chaud, de façon à permettre une attaque acide des constituants non siliciques de l'amiante du solide amiante et une dissolution des produits de cette attaque acide dans la solution aqueuse d'acide chlorhydrique. Il est à noter que la concentration de l'acide chlorhydrique de la solution de traitement à chaud diminue au cours du traitement acide à chaud par consommation d'une partie dudit acide chlorhydrique lors de l'attaque acide et que, par conséquence, la température d'ébullition de la solution de traitement à chaud augmente lors de ladite attaque acide.
Dans un mode de mise en œuvre particulier d'un procédé selon l'invention, on réalise le traitement acide à chaud du solide amiante en utilisant un réacteur comprenant un récipient, par exemple un récipient en verre, permettant la réalisation dudit traitement acide à chaud, à la pression atmosphérique, ce récipient étant adapté pour permettre le chauffage de la suspension du solide amiante dans la solution de traitement à chaud à une température adaptée pour permettre l'ébullition et le reflux de la solution de traitement à chaud. Le réacteur comprend en outre un condenseur adapté pour permettre la condensation de la totalité des vapeurs formées par le chauffage de la suspension du solide amiante dans la solution de traitement à chaud, et un circuit de recyclage de ces vapeurs condensées dans ladite suspension de façon que les vapeurs de la solution de traitement à chaud restent confinées à l'intérieur du réacteur. Avantageusement, lors du traitement acide à chaud, on chauffe la suspension du solide amiante dans la solution de traitement à chaud à une température de l'ordre de la température d'ébullition de la solution de traitement à chaud.
Avantageusement, on chauffe ladite suspension amiantée pendant une durée comprise entre 30 min et 300 min, notamment de l'ordre de 150 min. Avantageusement, le traitement acide à chaud est adapté pour que la solution non silicique reste exempte de composé silicique. En particulier, on ajuste les conditions opératoires du traitement acide à chaud, notamment la concentration d'acide chlorhydrique dans la solution de traitement à chaud, la durée et la température du traitement acide à chaud, de façon que la solution non silicique soit exempte de constituant silicique en solution et que le solide silicique obtenu à l'issue du traitement acide à chaud soit exempt d'oxyde de fer, d'oxyde de magnésium et d'espèces cationiques du magnésium et/ou du fer non solubilisés.
En particulier, on ajuste les conditions opératoires de façon à obtenir de la silice de grande qualité, de grande pureté et qui soit industriellement valorisable, et de façon à obtenir une solution non silicique qui soit exempte de silice.
Avantageusement et selon l'invention, on soumet la solution non silicique à un traitement, dit traitement de neutralisation, d'ajustement du pH de la solution non silicique à une valeur comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6.
Les inventeurs ont constaté qu'il est possible d'effectuer un traitement de neutralisation adapté pour entraîner la précipitation sélective des espèces cationiques du fer de la solution non silicique et permettant avantageusement de séparer les espèces cationiques du fer, qui précipitent sous forme solide dans la solution non silicique, et les espèces cationiques du magnésium qui demeurent en solution dans la solution non silicique.
Les inventeurs pensent que les espèces cationiques du fer présentes dans la solution non silicique sous la forme de chlorures de fer sont spécifiquement transformées en hydroxydes de fer par un mécanisme réactionnel impliquant une substitution ionique des ions chlorures par les ions hydroxydes, ladite substitution ionique des ions chlorures des espèces cationiques du fer par les ions hydroxydes étant spécifiquement assistée par le pH et entraînant la précipitation de la totalité des espèces cationiques du fer sous la forme d'hydroxydes de fer, sans entraîner la précipitation des espèces cationiques du magnésium. Ainsi, dans un procédé selon l'invention, on réalise une séparation des composés siliciques, notamment de la silice, des composés du fer et des composés du magnésium contenus dans l'amiante du solide amiante, sans avoir recours à des étapes de broyage, d'attrition, de traitement chimique visant à réduire les composés cationiques du fer en fer métallique et de séparation magnétique du fer métallique formé.
En outre, un procédé selon l'invention permet de transformer la totalité d'un déchet industriel comprenant de l'amiante et un liant hydraulique en une pluralité de matières premières toutes utilisables dans l'industrie, notamment en silice, en espèces cationiques du fer, en espèces cationiques du magnésium, en espèces cationiques du calcium et en espèces cationiques de l'aluminium.
Avantageusement et selon l'invention, le traitement de neutralisation comprend un ajout, dans la solution non silicique, d'une quantité d'un composé, dit composé de neutralisation, adapté pour augmenter la concentration des ions hydroxydes dans la solution non silicique. Avantageusement, on choisit le composé de neutralisation dans le groupe formé de l'oxyde de magnésium et de l'hydroxyde de magnésium. En particulier, le traitement de neutralisation comprend un ajout, dans la solution non silicique, d'une quantité d'oxyde de magnésium sec ou hydraté, notamment sous la forme de lait de magnésie.
Avantageusement, préalablement au traitement de précipitation des espèces cationiques du fer et des espèces cationiques de l'aluminium de la solution non amiantée, on réalise une séparation solide/liquide du solide amiante et de la solution non amiantée. On sépare d'une part le solide amiante contenant l'amiante du déchet industriel et la silice du liant hydraulique du déchet industriel et d'autre part la solution non amiantée contenant la totalité des constituants non siliciques du liant hydraulique du déchet industriel. On peut réaliser cette séparation solide/liquide en utilisant tout dispositif connu en soi. A titre d'exemple, dans un premier mode particulier de réalisation de l'invention, on sépare le solide amiante et la solution non amiantée par filtration avec un filtre adapté pour retenir le solide amiante et pour laisser s'écouler la solution non amiantée. On obtient sur le filtre un résidu de filtration contenant l'amiante du déchet industriel et la silice du liant hydraulique du déchet industriel. Pour éliminer les traces résiduelles d'acide provenant de la solution aqueuse d'acide chlorhydrique, on lave le solide amiante obtenu par filtration avec une quantité d'eau, ladite quantité d'eau étant adaptée pour que le pH de la solution de lavage à la sortie du filtre poreux soit proche du pH de l'eau avant le lavage. Dans un autre mode particulier de réalisation de l'invention, on sépare le solide amiante et la solution non amiantée par filtration sous pression réduite, avec un dispositif de filtration comprenant un filtre adapté pour retenir le solide amiante et un réceptacle, sous pression réduite, dans lequel la solution non amiantée s'écoulant par le dispositif de filtration est aspirée. On obtient un résidu de filtration égoutté sur le filtre poreux contenant l'amiante du déchet industriel et la silice du liant hydraulique dudit déchet industriel. Pour éliminer les traces résiduelles d'acide dans le solide amiante, on lave le solide amiante, avec une quantité d'eau adaptée pour que le pH de la solution s'écoulant du dispositif de filtration soit proche du pH de l'eau utilisée pour le lavage. Avantageusement et selon l'invention, préalablement au traitement de précipitation, on extrait de la solution non amiantée au moins une partie de l'acide chlorhydrique non consommé lors du traitement acide à froid. En particulier, préalablement au traitement de précipitation, on réalise une extraction par évaporation/condensation sous pression réduite, d'une quantité d'acide chlorhydrique non consommé restant dans la solution non amiantée. Dans ce mode particulier de réalisation de l'invention, l'acide chlorhydrique extrait par cette évaporation/condensation qui n'est pas un déchet, est une matière première susceptible d'être réutilisée lors de traitements ultérieurs. En outre, l'acide chlorhydrique est extrait lors de cette étape d' évaporation/condensation sous la forme d'une solution aqueuse d'acide chlorhydrique contenant une quantité d'acide chlorhydrique. Avantageusement et selon l'invention, on utilise ladite partie d'acide chlorhydrique non consommé, extrait de la solution non amiantée, dans la solution acide d'un traitement acide à froid ultérieur. En particulier, on utilise l'acide chlorhydrique résiduel lors d'un traitement acide à froid d'un déchet industriel comprenant de l'amiante et un liant hydraulique. Avantageusement, l'acide chlorhydrique résiduel est recyclé dans la solution de traitement à chaud du traitement acide à chaud d'un solide silicique comprenant de l'amiante et la silice du liant hydraulique d'un déchet industriel.
Avantageusement et selon l'invention, après l'étape de précipitation, on réalise une séparation solide/liquide du précipité formé des espèces cationiques du fer et des espèces cationiques de l'aluminium et de la solution résiduelle, dite solution calcique, contenant une quantité d'au moins une espèce ionique du calcium. En particulier, on réalise l'étape de séparation solide/liquide des espèces cationiques du fer et de l'aluminium précipitées et de la solution calcique par filtration des espèces cationiques du fer et de l'aluminium au moyen d'un dispositif de filtration, notamment un dispositif de filtration à pression atmosphérique ou à pression supérieure à la pression atmosphérique, ou sous pression réduite, ou encore par sédimentation accélérée des espèces cationiques du fer et de l'aluminium, notamment par centrifugation, et prélèvement de la solution calcique.
Avantageusement, on extrait l'eau de la solution calcique de façon à former une composition de sels de calcium cristallisés. On réalise cette extraction de l'eau de la solution calcique par des moyens connus en soi, notamment par évaporation de l'eau par chauffage, par distillation de l'eau, en particulier par distillation sous pression réduite. En particulier, on utilise cette composition de sels de calcium cristallisés dans l'industrie textile comme mordant pour la fixation des couleurs. On utilise en outre cette composition pour ses propriétés hygroscopiques notamment comme desséchant ou encore comme additif pour le déneigement des routes. Avantageusement, on réalise une séparation des espèces cationiques du fer précipitées et des espèces cationiques de l'aluminium précipitées au moyen d'un procédé connu en soi adapté pour solubiliser spécifiquement les espèces cationiques de l'aluminium et pour conserver les espèces cationiques du fer sous forme solide. Par exemple on utilise la méthode connue en soi d'extraction des espèces cationiques de l'aluminium contenues dans la bauxite par dissolution spécifique de ces espèces cationiques de l'aluminium par la soude caustique, séparation des espèces cationiques de l'aluminium dissoutes et des espèces cationiques du fer non dissoutes et solides.
Un procédé selon l'invention permet de séparer et de recycler non seulement la totalité des constituants chimiques de l'amiante, notamment la silice, les espèces cationiques de l'aluminium, les espèces cationiques du magnésium, les espèces cationiques du calcium et les espèces cationiques du fer, mais aussi les réactifs utilisés mais non consommés, notamment l'acide chlorhydrique en excès. En particulier, un procédé selon l'invention permet de recycler les constituants chimiques de l'amiante en réactifs de grande pureté directement utilisables comme matières premières dans l'industrie. Il est à noter que les matières premières issues de la décomposition du déchet industriel comprenant de l'amiante et un liant hydraulique ne sont plus des déchets présentant la toxicité de l'amiante et qu'ils peuvent être réglementairement transportés sur leur site d'utilisation. Ainsi, dans un procédé selon l'invention, on traite d'abord le déchet industriel comprenant de l'amiante et un liant hydraulique, notamment des tôles et conduites en fibrociment, contenant une proportion massique de 10% à 15% d'amiante pur, par une solution d'acide chlorhydrique à froid, puis on sépare la solution ainsi obtenue contenant les produits de l'attaque acide à froid des constituants du liant hydraulique du déchet industriel et un solide amiante contenant l'amiante du déchet industriel et la silice constitutive du liant hydraulique dudit déchet industriel, et on dissocie ultérieurement, par un traitement acide à chaud du solide amiante, la silice constitutive du déchet industriel et les composés non siliciques de l'amiante. Ainsi, on réalise d'abord une séparation de l'amiante d'un déchet amiante comprenant un traitement du déchet amiante dans une solution aqueuse d'acide chlorhydrique à température ambiante, appelé traitement acide à froid, dans des conditions adaptées pour permettre la dissolution des composés non siliciques du liant hydraulique sans permettre la dissolution de l'amiante du déchet industriel puis on réalise une décomposition de l'amiante, obtenue lors du traitement acide à froid préalable, par un traitement acide à chaud.
L'invention concerne également un procédé caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci- après.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfère à la figure unique annexée, qui est un schéma synoptique illustrant un mode de réalisation d'un procédé selon l'invention, et de ses exemples de mise en œuvre donnés à titre non limitatif.
Dans une première variante représentée sur la figure d'un procédé selon l'invention, on transforme par fragmentation 2 un déchet industriel 1 constitué d'amiante et d'un liant hydraulique, notamment des plaques ou des tôles en amiante-ciment, aussi appelé fibrociment, pour former un granulat 3 dudit déchet industriel 1 dont la granulométrie moyenne est inférieure à 20 mm, notamment comprise entre 1 mm et 10 mm. On réalise cette fragmentation 2 du déchet industriel 1 par broyage à sec ou, de préférence, en présence d'eau en utilisant des dispositifs mécaniques de broyage connus en soi.
Pour le traitement d'un déchet industriel à l'échelle expérimentale, on met en contact le granulat 3 humide et fragmenté du déchet industriel 1 avec une solution aqueuse 5 d'acide chlorhydrique dans un récipient, notamment un récipient en verre, adapté pour permettre le traitement acide à froid 4 du déchet industriel 1, et dans lequel le granulat 3 du déchet industriel 1 et la solution 5 acide sont mélangés par agitation mécanique ou par agitation magnétique. La concentration d'acide chlorhydrique dans la solution aqueuse 5 est de l'ordre de 250 g/L. On réalise ce traitement acide à froid 4 à température ambiante sans utiliser de moyen de chauffage ou de refroidissement du mélange du granulat 3 et de la solution 5 acide et on maintient le traitement acide à froid 4 du granulat d'amiante dans la solution aqueuse 5 d'acide chlorhydrique pendant une durée, notamment de l'ordre de 150 min, adaptée pour former une suspension 6 d'un solide amiante 8 dans une solution non amiantée 9. A l'échelle industrielle, on réalise, de préférence, le traitement acide à froid 4 dans un dispositif mélangeur, aussi appelé malaxeur, adapté pour homogénéiser le mélange du granulat 3 dudit déchet industriel 1 dans la solution 5 acide en évitant de rejeter les vapeurs d'acide dans l'atmosphère. A l'issue du traitement acide à froid 4, par attaque acide à froid et dissolution des espèces chimiques non siliciques constitutives du liant hydraulique, on obtient une suspension 6 d'un solide amiante 8 dans une solution aqueuse d'acide chlorhydrique, exempte d'amiante, et contenant les composants non siliciques du liant hydraulique.
On réalise une séparation 7 solide/liquide du solide amiante 8 et de la solution non amiantée 9, notamment par filtration sur un filtre inerte adapté pour que la solution non amiantée 9 s'écoule du filtre et que le solide amiante 8 soit totalement retenu sur le filtre. On réalise cette séparation 7 solide/liquide par filtration en utilisant des moyens de filtration connus en soi, sous pression atmosphérique, ou sous pression supérieure à la pression atmosphérique, ou sous pression réduite. A l'issue de cette séparation 7 solide/liquide, on obtient, séparément un solide amiante 8 formé d'amiante et de silice du liant hydraulique, et une solution non amiantée 9 des constituants non siliciques du liant hydraulique du déchet industriel 1 et contenant une quantité d'acide chlorhydrique non consommé au cours du traitement acide à froid 4.
Dans cette première variante représentée d'un procédé selon l'invention, on extrait de la solution non amiantée 9, exempte d'amiante et de silice, par évaporation/condensation 10 sous pression réduite, tout ou partie de l'acide chlorhydrique non consommé lors du traitement acide à froid 4 et restant dans la solution non amiantée 9. Pour réaliser cette évaporation/condensation 10, on utilise un dispositif de distillation sous pression réduite, hermétiquement clos aux vapeurs comprenant un récipient muni d'un système de chauffage adapté pour élever la température de la solution non amiantée 9 dans ledit récipient et pour permettre l'évaporation de la quasi-totalité de l'acide chlorhydrique non consommé lors du traitement acide à froid 4 ainsi que de l'eau, un condenseur adapté pour permettre la condensation des vapeurs de ladite partie d'acide chlorhydrique et de l'eau dans un réceptacle, séparé du récipient de chauffage, dans lequel la solution d'acide chlorhydrique s'écoule, et d'un dispositif de pompage raccordé au dispositif hermétiquement clos et adapté pour établir, à l'intérieur du dispositif hermétiquement clos, une pression dont la valeur est comprise entre 100 et 150 hPa, notamment une pompe à vide, en particulier une trompe à eau.
On recycle cette quantité d'acide chlorhydrique non consommé, extrait par distillation 10, dans une solution aqueuse 5 d'acide chlorhydrique d'un traitement acide à froid 4 ultérieur. On recycle cette quantité d'acide chlorhydrique pour un traitement acide à froid 4 d'un granulat 3 d'un déchet industriel 1 comprenant de l'amiante et un liant hydraulique ou dans une solution aqueuse 36 d'acide chlorhydrique d'un traitement 23 acide à chaud d'un solide amiante 8. En outre, par évaporation/condensation 10 d'une quantité d'acide chlorhydrique d'une solution non amiantée 9, on obtient, outre cette quantité d'acide chlorhydrique, une quantité d'un résidu 11 sensiblement dépourvu d'acide chlorhydrique et contenant des constituants non siliciques du liant hydraulique du déchet industriel 1, notamment les espèces cationiques du calcium, de l'aluminium et du fer sous forme de chlorures.
On soumet ce résidu 11 non silicique à un traitement de précipitation 12 dans lequel on ajoute au résidu 11, une quantité d'une suspension aqueuse 13 contenant au moins un composé basique susceptible d'augmenter la concentration en ions hydroxydes dans le résidu 11. Au cours du traitement de précipitation 12 par le composé basique 13, l'acide chlorhydrique résiduel non extrait de la solution non amiantée 9 lors de la distillation 10 est neutralisé et les espèces cationiques du fer et les espèces cationiques de l'aluminium forment un précipité 19 d'hydroxydes de fer et d'hydroxydes d'aluminium dans une solution aqueuse 16 des espèces cationiques du calcium. On réalise cette précipitation 12 à température ambiante et à pression atmosphérique.
On réalise une séparation 15 solide/liquide du précipité 19 des espèces cationiques et des espèces cationiques de l'aluminium et de la solution 16 des espèces cationiques du calcium, par filtration sur un filtre inerte adapté pour que la solution 16 des espèces cationiques du calcium s'écoule du filtre et que le précipité 19 constitué des espèces cationiques du fer et des espèces cationiques de l'aluminium soit retenu sur le filtre. Ainsi, on collecte le précipité 19 formé des hydroxydes de fer et des hydroxydes d'aluminium précipités sur le filtre. On peut en outre réaliser cette séparation 15 solide/liquide par tout autre moyen de séparation connu en soi, adapté pour permettre une séparation à pression atmosphérique, ou à une pression inférieure à la pression atmosphérique, ou à une pression supérieure à la pression atmosphérique.
Dans cette première variante représentée d'un procédé selon l'invention, on lave le précipité 19 des hydroxydes de fer et des hydroxydes d'aluminium avec une quantité d'eau et on réalise une attaque acide du précipité 19 avec une quantité d'une solution aqueuse 21 d'acide chlorhydrique adaptée pour réaliser une solubilisation 20 des hydroxydes de fer et des hydroxydes d'aluminium du précipité 19 et pour former une solution aqueuse 22 de chlorure de fer et de chlorure d'aluminium, notamment sous la forme de FeCl3 et de AlCl3.
D'autre part, on élimine l'eau de la solution 16 des espèces cationiques du calcium par évaporation 17 et séchage à chaud et sous pression réduite. A l'issue de cette évaporation 17, les espèces cationiques du calcium de la solution 16 forment un précipité 18 de chlorure de calcium CaCl2 hydraté ou anhydre, selon les conditions de température et de durée de séchage.
En outre, on soumet le solide amiante 8 obtenu à l'étape de séparation 7 solide/liquide, après traitement acide à froid 4 du déchet industriel 1 , à un traitement acide à chaud 23 de ce solide amiante 8 avec une quantité d'une solution aqueuse 36 d'acide chlorhydrique, adapté pour réaliser une attaque acide à chaud et la dissolution des espèces cationiques du fer et des espèces cationiques du magnésium du solide amiante 8. On obtient une suspension 24 d'un solide silicique 26 contenant la silice amorphe poreuse divisée de l'amiante et de la silice de l'argile du liant hydraulique dans une solution 27 non silicique, exempte de silice. Ainsi on réalise un traitement 23 acide à chaud du solide amiante 8 à reflux de la solution d'acide chlorhydrique 36 pendant une durée suffisante pour permettre l'attaque acide de la totalité des espèces cationiques du fer et du magnésium du solide amiante 8. On soumet la suspension 24 de la silice 26 dans la solution non silicique 27 à un traitement de séparation solide/liquide 25 adapté pour séparer la silice 26 de la solution non silicique 27 contenant de l'acide chlorhydrique non consommé en solution dans l'eau et les espèces cationiques du fer et du magnésium. Par distillation 28 sous pression réduite, au moyen d'une trompe à eau, de la solution non silicique 27, on obtient un distillât contenant une quantité d'acide chlorhydrique, séparé d'un résidu de distillation 29 contenant les espèces cationiques du magnésium et du fer.
On soumet le résidu de distillation 29 contenant les espèces cationiques du fer et les espèces cationiques du magnésium à un traitement 31 de neutralisation du pH du résidu de distillation 29 à une valeur comprise entre pH 5 et pH 7. On ajoute au résidu 29, une quantité d'une suspension aqueuse 30 comprenant au moins un composé basique susceptible d'augmenter la concentration en ions hydroxydes dans le résidu de distillation 29 de façon que le pH soit compris entre pH 5 et pH 7. Lors du traitement 31 de neutralisation, les espèces cationiques du fer forment un précipité 35 d'hydroxydes de fer dans une solution aqueuse 34 acide contenant les espèces cationiques du magnésium sous forme de chlorure. On sépare le précipité 35 des espèces cationiques du fer et la solution acide 34 des espèces cationiques du magnésium de la suspension 32 par un moyen connu en soi, notamment par une étape de séparation solide/liquide, en particulier par filtration sur support poreux.
Dans une deuxième variante, non représentée, d'un procédé selon l'invention, on recycle la quantité d'acide chlorhydrique non consommé extrait par distillation 10 dans une solution aqueuse 5 d'acide chlorhydrique d'un traitement acide à froid 4 additionnel d'un solide amiante.
Dans une troisième variante, non représentée, d'un procédé selon l'invention, on recycle la quantité d'acide chlorhydrique résiduel formée lors de l'étape de distillation 28 dans la solution 36 aqueuse d'acide chlorhydrique d'un traitement acide à chaud d'un solide amiante. Dans une quatrième variante, non représentée, d'un procédé selon l'invention, on lave le solide amiante 8 retenu sur le filtre poreux d'un traitement 7 de séparation solide/liquide avec une quantité d'eau qui s'écoule dans la solution non amiantée 9. Ainsi on élimine du solide amiante sensiblement la totalité de l'acide chlorhydrique non consommé lors du traitement acide à froid 4 et on récupère cet acide chlorhydrique non consommé dans la solution non amiantée 9. On obtient ainsi un solide amiante 8, constitué d'amiante et de silice, sensiblement exempt de trace d'acide chlorhydrique et de constituant non amiante du déchet industriel 1. Dans une cinquième variante, non représentée, d'un procédé selon l'invention, on soumet le précipité 19 des hydroxydes de fer et des hydroxydes d'aluminium à un traitement de séparation solide/liquide des espèces cationiques de l'aluminium et des espèces cationiques du fer par dissolution spécifique des espèces cationiques de l'aluminium par la soude caustique, séparation des espèces cationiques de l'aluminium dissoutes et des espèces cationiques du fer non dissoutes et solides.
Dans une sixième variante, non représentée, d'un procédé selon l'invention, on réalise directement l'étape de précipitation 12 des espèces cationiques du fer et des espèces cationiques de l'aluminium de la solution non amiantée 9, sans réaliser d'extraction 10 par distillation de l'acide chlorhydrique. Ainsi, on adapte la quantité de composé basique 12 susceptible d'augmenter la concentration en ions hydroxydes dans la solution 9 non amiantée de façon que cette quantité soit suffisante pour neutraliser l'acide chlorhydrique non consommé et non extrait de la solution non amiantée 9 et pour réaliser la précipitation des espèces cationiques 22 du fer et de l'aluminium. Ainsi, on ne recycle pas la quantité d'acide chlorhydrique non consommé dans la solution non amiantée 9 sous la forme d'une solution aqueuse 5 d'acide chlorhydrique, mais on transforme cette quantité d'acide chlorhydrique non consommé en chlorure et en eau par addition d'une quantité d'un composé basique 13 lors de la précipitation 12. EXEMPLE 1 - Traitement de déchet industriel formé d'amiante-ciment 100 g de fibrociment provenant de tôles et de conduites sont humidifiés à l'eau, fragmentés en granulat de fibrociment dont la granulométrie moyenne est comprise entre 1 mm et 10 mm, puis placés dans un réacteur agité dans lequel on ajoute 200 mL d'eau puis 300 mL d'une solution commerciale d'acide chlorhydrique à 37%. La concentration initiale d'acide chlorhydrique dans la solution aqueuse est de 25% environ. On maintient l'agitation pendant 150 min à température ambiante et sous pression atmosphérique.
On filtre le mélange ainsi obtenu de façon à séparer un solide contenant de l'amiante et de la silice provenant du ciment d'une solution d'acide chlorhydrique non consommé et contenant les espèces cationiques issues de la décomposition du ciment sous la forme de chlorures. On extrait de la solution acide contenant les produits issus de la décomposition du ciment, par distillation sous pression réduite, un distillât contenant 45 g de chlorure d'hydrogène non consommé en solution aqueuse. On ajuste le pH de la solution résiduelle de distillation à une valeur de l'ordre de pH 6 par addition de 1,3 g d'hydroxyde de calcium (Ca(OH)2) en suspension dans l'eau. Les hydroxydes de fer et les hydroxydes d'aluminium formés précipitent dans la solution aqueuse de chlorure de calcium (CaCl2). On sépare par filtration le précipité et la solution de chlorure de calcium. Après séchage, on pèse 7 g d'hydroxyde de fer et d'hydroxyde d'aluminium. On évapore, sous pression réduite d'une trompe à eau, l'eau de la solution de chlorure de calcium. On obtient 92 g de chlorure de calcium CaCl2, 2H2O qui cristallisent.
On place le solide contenant l'amiante et la silice provenant de la décomposition du ciment dans un réacteur dans lequel on introduit 200 mL d'eau puis 80 mL d'une solution aqueuse d'acide chlorhydrique à 37%. La concentration initiale d'acide chlorhydrique dans la suspension est d'environ 107 g/L. On place la suspension obtenue sous agitation à pression atmosphérique et on chauffe le réacteur à une température apte à entretenir le reflux de la solution aqueuse d'acide chlorhydrique pendant 150 min. On filtre le mélange obtenu de façon à séparer un solide silicique retenu sur le filtre d'une solution acide contenant les espèces cationiques du magnésium sous forme de chlorure de magnésium (MgCl2) et on lave avec 250 mL d'eau le solide silicique retenu sur le filtre. Le solide silicique sec pèse 23 g.
Par distillation sous pression réduite, on récupère 28 g de chlorure d'hydrogène en solution aqueuse, alors que 2 g de MgCl2, 6H2O cristallisent.
Le traitement de 100 g de fibrociment avec 166 g d'acide chlorhydrique et 1,3 g de Ca(OH)2 produit 2 g de chlorure de magnésium, 7 g d'hydroxyde de fer et d'aluminium que l'on peut séparer selon la méthode appliquée au traitement de la bauxite, 92 g de CaCl2, 2H2O et 23 g de silice amorphe poreuse. En outre, 93 g d'acide chlorhydrique ont été consommés et 73 g d'acide chlorhydrique ont été recyclés à l'issue de ce traitement de fibrociment.
EXEMPLE 2 - Traitement de plaques isolantes d'amiante On prépare, par fragmentation de plaques isolantes usagées, un granulat d'amiante dont la granulométrie est sensiblement comprise entre 1 et 10 mm. On place 100 g du granulat d'amiante obtenu dans un réacteur dans lequel on ajoute 1 L d'une solution aqueuse contenant de l'acide chlorhydrique à une concentration de 105 g/L. On place la suspension obtenue sous agitation et on chauffe le réacteur à une température apte à provoquer et entretenir le reflux de la solution chlorhydrique aqueuse pendant 150 min à pression atmosphérique. On filtre le mélange obtenu de façon à séparer un solide silicique retenu sur le filtre et un filtrat liquide acide. On lave le solide silicique retenu sur le filtre avec 0,250 L d'eau. On collecte l'eau de lavage avec le filtrat liquide acide qui contient l'acide chlorhydrique non consommé, l'eau ainsi que les sels de fer et de magnésium sous la forme de chlorures. On extrait du filtrat liquide acide, par distillation sous une pression réduite au moyen d'une trompe à eau, un distillât contenant environ 40 grammes de chlorure d'hydrogène non consommés lors de la phase de solubilisation ainsi que de l'eau. On récupère, en outre, un résidu sirupeux de distillation contenant les sels de fer et de magnésium sous la forme de chlorures. On ajoute au résidu de distillation, une suspension contenant environ 2 g de magnésie (MgO) dans l'eau de façon à ajuster le pH du résidu de distillation à une valeur de l'ordre de 6 unités de pH. Les hydroxydes de fer formés par substitution ionique à pH de l'ordre de 6 précipitent. On filtre, on lave à l'eau, et on sèche le précipité ainsi formé. On pèse 1,4 g de ces composés de fer.
On élimine l'eau du filtrat par évaporation sous pression réduite au moyen d'une trompe à eau. Le sel de magnésium MgCl2, 6H2O ainsi cristallisé, est séché puis pesé. On récupère ainsi 171 g de chlorure de magnésium hydraté.
Par ailleurs, dans le but d'accroître la pureté de la silice contenue dans le solide de filtration, on reprend le solide retenu sur le filtre et lavé à l'eau. On place ce solide dans un réacteur dans lequel on ajoute 1 L d'une solution aqueuse d'acide chlorhydrique à 105 g/L. On place le mélange obtenu sous agitation et on chauffe le réacteur à une température apte à entretenir le reflux de la solution chlorhydrique aqueuse pendant 150 min.
On filtre le mélange obtenu et on obtient un solide, constitué exclusivement de silice amorphe, retenu sur le filtre et une solution acide éluée du filtre. On lave le solide de silice retenu sur le filtre avec 250 mL d'eau. Après séchage à l'étuve, on pèse 42 g de silice amorphe poreuse divisée. La silice produite est caractérisée par diffraction des rayons X au moyen d'un modèle de diffractomètre XRD 3000TT de marque SEIFERT et présente un caractère de silice amorphe. La surface spécifique de la silice produite est mesurée par la méthode BET à 5 points au moyen d'un porosimètre ASAP2010 de marque MICROMETRICS. On mesure que la surface spécifique de la silice produite est de 186 m2/g de silice.
L'eau de lavage est collectée avec la solution acide qui contient l'acide chlorhydrique non consommé, l'eau ainsi que des sels de magnésium sous la forme de chlorures. On obtient, par évaporation de la solution acide sous une pression réduite au moyen d'une trompe à eau et condensation 104 g de chlorure d'hydrogène non consommé, ainsi que 0,6 g de MgCl2, 6H2O qui cristallise. Le traitement de 100 g de plaques isolantes d'amiante avec
210 g d'acide chlorhydrique dans l'eau conduit à la production de 171,6 g de chlorure de magnésium, 1,4 g d'hydroxyde de fer et 42 g de silice amorphe poreuse. En outre, 66 g d'acide chlorhydrique ont été consommés et 144 g d'acide chlorhydrique ont été recyclés à l'issue de ce traitement de plaques isolantes.
EXEMPLE 3 - Traitement d'un déchet industriel du type flocage d'amiante
100 g de flocage d'amiante utilisé dans le bâtiment à titre d'isolant thermique sont malaxés avec 100 mL d'eau de façon à former une pâte ne générant pas de poussières. La pâte formée est placée dans un réacteur agité dans lequel on ajoute 1,5 L d'une solution aqueuse d'acide chlorhydrique à 13,1%. On maintient l'agitation pendant 10 min à température ambiante et sous pression atmosphérique.
On filtre le mélange ainsi obtenu de façon à séparer un solide contenant de l'amiante d'une solution d'acide chlorhydrique non consommé et contenant les espèces cationiques obtenues par dissolution du plâtre du flocage d'amiante. On évapore par distillation sous pression réduite ladite solution d'acide chlorhydrique contenant la totalité (196 g) de l'acide chlorhydrique initialement introduit et en formant un résidu de distillation. Ce résidu de distillation, majoritairement formé de sulfate de calcium, est lavé avec 80 mL d'eau, séché à l'étuve puis pesé. La masse de sulfate de calcium obtenue est de 12 g. Le sulfate de calcium ainsi obtenu peut être recyclé, en particulier dans du plâtre selon des procédés connus en soi. La solution de lavage du résidu de distillation, contenant des espèces solubles dans l'eau du déchet d'amiante est collectée.
On place le solide contenant de l'amiante obtenu par filtration à l'issue du traitement acide à température ambiante dans un réacteur agité en présence de la solution recyclée à l'issue du traitement acide à température ambiante et contenant 196 g d'acide chlorhydrique. On place la suspension obtenue sous agitation à pression atmosphérique et on chauffe le réacteur à une température apte à entretenir le reflux de la solution aqueuse d'acide chlorhydrique pendant 30 min.
On filtre le mélange obtenu de façon à séparer un solide formé de silice amorphe retenu sur le filtre d'une solution acide contenant les espèces cationiques du magnésium sous forme de chlorure de magnésium (MgCl2), les espèces cationiques du fer sous forme de chlorure de fer (FeCl2) et l'acide chlorhydrique non consommé en solution aqueuse. Le solide formé de silice amorphe est lavé avec 250 mL d'eau, séché puis pesé. On obtient une masse de silice de 35 g. Par distillation sous pression réduite de la solution acide, on obtient 140 g de chlorure d'hydrogène en solution aqueuse et on forme un concentré du fer et du magnésium sous la forme de chlorures dans une solution aqueuse d'acide chlorhydrique résiduel. On ajoute à ce concentré de chlorure de fer et de chlorure de magnésium, la solution de lavage du résidu de distillation, préalablement collectée, puis 3 g de MgO sous la forme d'une suspension aqueuse de façon que le pH de la solution atteigne une valeur de l'ordre de 6 et que les espèces cationiques du fer précipitent sous la forme d'hydroxydes de fer.
Par filtration, séchage du résidu retenu sur le filtre puis pesée on obtient 1 ,2 g d'hydroxyde de fer. On traite par évaporation sous pression réduite la solution obtenue à l'issue de la filtration. 155 g de MgCl2, 6H2O cristallisent avec une pureté de l'ordre de 95%.
Le traitement de 100 g de flocage d'amiante avec 196 g d'acide chlorhydrique en solution dans l'eau fournit 155 g de chlorure de magnésium hydraté, 1 ,2 g d'hydroxyde de fer, 35 g de silice amorphe et 12 g de sulfate de calcium du liant hydraulique. En outre, 56 g d'acide chlorhydrique ont été consommés et 140 g d'acide chlorhydrique ont été recyclés à l'issue de ce traitement de flocage d'amiante.

Claims

REVENDICATIONS
1/ Procédé de traitement d'un déchet industriel (1) comprenant de l'amiante et un liant hydraulique, caractérisé en ce qu'il comprend au moins une étape de traitement, dit traitement acide à froid (4), dudit déchet industriel (1) par une solution aqueuse (5) d'acide chlorhydrique à température ambiante, adapté pour former :
- une solution, dite solution non amiantée (9), d'au moins un constituant non silicique du liant hydraulique (1) dans la solution aqueuse (5) d'acide chlorhydrique et,
- un solide, dit solide amiante (8), comprenant l'amiante du déchet industriel (1).
2/ Procédé selon la revendication 1 , caractérisé en ce que la concentration d'acide chlorhydrique dans la solution aqueuse (5) d'acide chlorhydrique du traitement acide à froid (4) est supérieure à 200 g/L, notamment de l'ordre de 250 g/L.
3/ Procédé selon l'une des revendications 1 et 2, caractérisé en ce que, pour le traitement acide à froid (4), on plonge le déchet industriel (1) dans la solution aqueuse (5) d'acide chlorhydrique pendant une durée supérieure à 1 h, notamment comprise entre 2 h et 3 h.
4/ Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on réalise le traitement acide à froid (4) à partir d'un déchet industriel (1) présentant une granulométrie inférieure à 20 mm, notamment comprise entre 1 mm et 10 mm. 5/ Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le traitement acide à froid (4) est adapté pour que la solution non amiantée (9) soit exempte d'amiante.
6/ Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on soumet ladite solution non amiantée (9) obtenue à un traitement, dit traitement de précipitation (12), dans lequel on réalise une précipitation des espèces cationiques du fer et des espèces cationiques de l'aluminium. 11 Procédé selon la revendication 6, caractérisé en ce qu'on réalise le traitement de précipitation (12) en ajustant le pH de la solution non amiantée (9) à une valeur comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6. 8/ Procédé selon l'une des revendications 6 et 7, caractérisé en ce que pour le traitement de précipitation (12) on ajoute, dans la solution non amiantée (9), une quantité d'au moins un composé, dit composé basique (13), susceptible d'augmenter la concentration en ions hydroxydes dans la solution non amiantée (9). 9/ Procédé selon la revendication 8, caractérisé en ce qu'on choisit le composé basique (13) dans le groupe formé des oxydes des métaux alcalino-terreux, des hydroxydes des métaux alcalins et des hydroxydes des métaux alcalino-terreux.
10/ Procédé selon l'une des revendications 8 et 9, caractérisé en ce que le composé basique (12) est choisit dans le groupe formé de l'oxyde de calcium et de l'hydroxyde de calcium.
11/ Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'on réalise ensuite un traitement, dit traitement acide à chaud (23), du solide amiante (8) à pression atmosphérique par une solution aqueuse d'acide chlorhydrique, dite solution de traitement à chaud (36), à une température de l'ordre de la température d'ébullition de ladite solution de traitement à chaud (36), de façon à obtenir :
- une solution, dite solution non silicique (27), d'au moins un constituant non silicique de l'amiante dans la solution de traitement à chaud (36) et, - un solide, dit solide silicique (26), formé de silice amorphe issue de l'amiante et du liant hydraulique du déchet industriel (1).
12/ Procédé selon la revendication 11, caractérisé en ce qu'on soumet la solution non silicique (27), à un traitement, dit traitement de neutralisation (31), d'ajustement du pH de la solution non silicique (27) à une valeur comprise entre pH 5 et pH 7, notamment de l'ordre de pH 6.
13/ Procédé selon la revendication 12, caractérisé en ce que le traitement de neutralisation (31) comprend un ajout, dans la solution non silicique (27), d'une quantité d'un composé, dit composé de neutralisation (30), adapté pour augmenter la concentration des ions hydroxydes dans la solution non silicique (27).
14/ Procédé selon l'une des revendications 6 à 13, caractérisé en ce que, préalablement au traitement de précipitation (12), on extrait de la solution non amiantée (9) au moins une partie de l'acide chlorhydrique non consommé lors du traitement acide à froid (4).
15/ Procédé selon la revendication 14, caractérisé en ce qu'on utilise ladite partie de l'acide chlorhydrique non consommé, extrait de la solution non amiantée (9), dans la solution aqueuse (5) d'acide chlorhydrique d'un traitement acide à froid (4) ultérieur.
16/ Procédé selon l'une des revendications 6 à 15, caractérisé en ce que après l'étape de précipitation (12), on réalise une séparation solide/liquide (15) du précipité (19) formé des espèces cationiques du fer et de l'aluminium et de la solution résiduelle, dite solution calcique (16), contenant une quantité d'au moins une espèce ionique du calcium.
PCT/FR2009/050838 2008-05-07 2009-05-06 Procédé de traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique WO2009141566A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/02545 2008-05-07
FR0802545A FR2930892B1 (fr) 2008-05-07 2008-05-07 Procede de traitement d'un dechet indutriel comprenant de l'amiante et un liant hydraulique

Publications (2)

Publication Number Publication Date
WO2009141566A2 true WO2009141566A2 (fr) 2009-11-26
WO2009141566A3 WO2009141566A3 (fr) 2010-03-25

Family

ID=40292546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050838 WO2009141566A2 (fr) 2008-05-07 2009-05-06 Procédé de traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique

Country Status (2)

Country Link
FR (1) FR2930892B1 (fr)
WO (1) WO2009141566A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051117A1 (fr) * 2015-09-22 2017-03-30 Paul Poggi Procédé et dispositif fixe ou mobile de neutralisation et valorisation de déchets d'amiante
WO2021254626A1 (fr) * 2020-06-18 2021-12-23 Asbeter Holding B.V. Procédés de destruction de fibres contenant de la silice dangereuses

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG111763A (bg) * 2014-05-21 2016-02-29 "Евро Инвайрънментъл Сървисис" Еоод Метод и състав на разтвори за селективно отстраняване на азбеста от азбестоциментни изделия и пълна детоксикация на продуктите от разграждането им
FR3125722B1 (fr) 2021-07-30 2023-07-07 Valame Procede de traitement d’une matiere solide contenant de l’amiante
FR3129604B1 (fr) 2021-11-30 2023-11-17 Valame Dispositif pour le tri manuel de matières dangereuses en vrac

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708014A (en) * 1971-06-23 1973-01-02 Phillips Petroleum Co Hydrochloric acid/hydrofluoric acid treatment to remove asbestos fibers from a well bore
CA2235424A1 (fr) * 1998-05-15 1999-11-15 Cerminco Inc. Procede pour la preparation d'une solution de chlorure de magnesium par lixiviation rapide de residus d'amiante
US20010051121A1 (en) * 2000-02-04 2001-12-13 Barnett Robert J. Process for treating alumina-bearing ores to recover metal values therefrom
CA2610918A1 (fr) * 2006-12-28 2008-02-22 Groupe Conseil Procd Inc. Processus de traitement des residus d'ecume de l'aluminium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708014A (en) * 1971-06-23 1973-01-02 Phillips Petroleum Co Hydrochloric acid/hydrofluoric acid treatment to remove asbestos fibers from a well bore
CA2235424A1 (fr) * 1998-05-15 1999-11-15 Cerminco Inc. Procede pour la preparation d'une solution de chlorure de magnesium par lixiviation rapide de residus d'amiante
US20010051121A1 (en) * 2000-02-04 2001-12-13 Barnett Robert J. Process for treating alumina-bearing ores to recover metal values therefrom
CA2610918A1 (fr) * 2006-12-28 2008-02-22 Groupe Conseil Procd Inc. Processus de traitement des residus d'ecume de l'aluminium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEAO VERSIANE A ET AL: "Recovering magnesium from soapstone and asbestos tailings" LIGHT METALS 1997. PROCEEDINGS OF THE TECHNICAL SESSIONS PRESENTED BY THE TMS ALUMINIUM COMMITTEE AT THE 126TH. TMS ANNUAL MEETING, ORLANDO, FEB. 9 - 13, 1997; [PROCEEDINGS OF THE TMS ANNUAL MEETING], WARRENDALE, TMS, US, 13 février 1997 (1997-02-13), pages 511-521, XP008102009 ISBN: 978-0-87339-362-1 [extrait le 1997-02-13] *
PATERMARAKIS G ET AL: "THE LEACHING OF IRON OXIDES IN BOEHMITIC BAUXITE BY HYDROCHLORIC ACID" HYDROMETALLURGY, ELSEVIER SCIENTIFIC PUBLISHING CY. AMSTERDAM, NL, vol. 23, no. 1, 1 octobre 1989 (1989-10-01), pages 77-90, XP000084133 ISSN: 0304-386X *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016325507B2 (en) * 2014-09-22 2021-09-30 Black Asbestos Ltd Method and stationary or movable device for neutralizing and recycling asbestos waste
WO2017051117A1 (fr) * 2015-09-22 2017-03-30 Paul Poggi Procédé et dispositif fixe ou mobile de neutralisation et valorisation de déchets d'amiante
CN108290186A (zh) * 2015-09-22 2018-07-17 P·颇纪 中和与再利用石棉废料的移动或固定方法与设备
CN108290186B (zh) * 2015-09-22 2021-07-30 P·颇纪 中和与再利用石棉废料的移动或固定方法与设备
US11331526B2 (en) 2015-09-22 2022-05-17 Paul Poggi Method and stationary or movable device for neutralizing and recycling asbestos waste
IL258221B (en) * 2015-09-22 2022-12-01 Paul Poggi Stationary or mobile method and device for neutralizing and recycling asbestos waste
IL258221B2 (en) * 2015-09-22 2023-04-01 Paul Poggi Stationary or mobile method and device for neutralizing and recycling asbestos waste
WO2021254626A1 (fr) * 2020-06-18 2021-12-23 Asbeter Holding B.V. Procédés de destruction de fibres contenant de la silice dangereuses

Also Published As

Publication number Publication date
FR2930892A1 (fr) 2009-11-13
WO2009141566A3 (fr) 2010-03-25
FR2930892B1 (fr) 2010-08-20

Similar Documents

Publication Publication Date Title
EP2285455B1 (fr) Procede de traitement d'un solide amiante
RU2389687C2 (ru) СПОСОБ ПОЛУЧЕНИЯ CaCO3 ИЛИ MgCO3
CA2852131C (fr) Procede de traitement de roches phosphatees
WO2009141566A2 (fr) Procédé de traitement d'un déchet industriel comprenant de l'amiante et un liant hydraulique
JP5179095B2 (ja) 高純度水酸化アルミニウムの製造方法及びその方法により得られる高純度水酸化アルミニウム
Huang et al. Internal coordination of vanadium industrial waste—Preparation of hydroxyapatite and fluorine wastewater purification
EP3704061A1 (fr) Procédé de traitement de bauxite
CN106745609B (zh) 增强型氯化铝钙晶体的制备方法
CN111132932A (zh) 碱式碳酸铜的制备方法
JP2006335578A (ja) 葉片状二水石膏及びその製造方法
JP5060607B2 (ja) 混酸廃液の処理方法
Song et al. Synthesis of High-Purity and Stable Vaterite Via Leaching–Carbonation of Basic Oxygen Furnace Slag
WO2018002540A1 (fr) Procédé d'immobilisation d'un déchet comprenant du mercure
CN1827736A (zh) 一种多元复合型无机阻燃剂及其制备方法
FR3070282B1 (fr) Procede de destruction et de valorisation de dechets amiantes
FR3056930A1 (fr) Procede de traitement de sol pollue par un liant hydraulique a phase mayenite
FR2917983A1 (fr) Nouveaux materiaux composites, leur procede de preparation et leurs utilisations.
JP2006192346A (ja) フッ素除去剤
RU2198842C2 (ru) Способ получения оксида магния
TWI398408B (zh) 鐵鋁氧石溶解殘渣的中和方法及氫氧化鋁之製造方法
CH699440B1 (fr) Procédé de fabrication du sulfate d'aluminium.
Zengeya et al. Porous carbon endows mayenite with high activity to achieve closed-loop removal of chloride ions from desulfurization wastewater
FR2739793A1 (fr) Procede de traitement des poussieres ou de residus d'epuration de fumees d'incineration par sol-gel phosphocalcique
EP4124397A1 (fr) Procédé de traitement d'une matière solide contenant de l'amiante
JPH01115814A (ja) ゼオライトの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750047

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750047

Country of ref document: EP

Kind code of ref document: A2