WO2009141553A1 - Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique - Google Patents

Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique Download PDF

Info

Publication number
WO2009141553A1
WO2009141553A1 PCT/FR2009/050815 FR2009050815W WO2009141553A1 WO 2009141553 A1 WO2009141553 A1 WO 2009141553A1 FR 2009050815 W FR2009050815 W FR 2009050815W WO 2009141553 A1 WO2009141553 A1 WO 2009141553A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
internal combustion
mode
speed
torque
Prior art date
Application number
PCT/FR2009/050815
Other languages
English (en)
Inventor
Ahmed Ketfi-Cherif
Gareth Pugsley
Philippe Pognant-Gros
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to EP09750034A priority Critical patent/EP2274189A1/fr
Priority to US12/936,487 priority patent/US20110125355A1/en
Priority to JP2011507971A priority patent/JP2011519780A/ja
Publication of WO2009141553A1 publication Critical patent/WO2009141553A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/105Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing
    • F16H2037/106Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing with switching means to provide two variator modes or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the field of the present invention is the control of transmissions and more particularly the control of infinitely variable transmissions.
  • Infinitely variable transmissions have found particular momentum with hybrid-powered motor vehicles.
  • the infinitely variable transmissions offer the possibility of modulating or increasing the torque delivered by a main motor source by varying the pairs delivered by two secondary motor sources.
  • the main driving source is an internal combustion engine, or internal combustion engine
  • the secondary drive sources are generally electric machines that can operate as an electric motor or a regenerative braking system. .
  • a hybrid vehicle is capable of simulating a gearbox by modulating the torque provided by the internal combustion engine while maintaining an optimum operating speed, generally a low speed to limit pollutant emissions and fuel consumption. fuel.
  • the present invention relates to a control system for changing mode while driving.
  • the present invention also relates to a control system for limiting the use of the internal combustion engine.
  • Another object of the present invention is a control method for changing mode while driving.
  • a mode change control system of an infinitely variable transmission comprising a first mode of operation with high torque at high speed and a second mode of operation with high torque at low speed, equipping a motor vehicle also equipped with at least two electric machines, at least one internal combustion engine, the infinitely variable transmission being mechanically connected to the electric machines and to the internal combustion engine, characterized in that it comprises a means for determining the rotation speed setpoint of the internal combustion engine, an adder capable of realizing the difference between the rotational speed reference of the internal combustion engine and the measurement of the rotational speed of the internal combustion engine, a means for determining the torque of the first electrical machine capable of determining a torque setpoint of the first emière electric machine according to the difference between the rotational speed reference of the internal combustion engine and the measured rotation speed of the internal combustion engine, and a compensation means able to determine a torque setpoint of the second electrical machine in function the torque setpoint of the first electric machine and the torque request of the driver.
  • the control system is able to control the second electric machine so that the change of mode can be achieved while the vehicle is propelled, before and after the change of mode, under the action of at least one electric machine.
  • the control system may comprise means for determining the rotational speed setpoint of the internal combustion engine capable of determining a rotational speed reference of the internal combustion engine as a function of the speed of the vehicle.
  • the control system may comprise a means for determining the torque of the first electrical machine, of the Proportional Integral Derivative type, able to determine a torque setpoint of the first electrical machine as a function of the difference between the motor rotation speed reference. internal combustion engine and the measured rotational speed of the internal combustion engine.
  • the control system may comprise a compensation means capable of determining a torque setpoint of the second electrical machine as a function of the torque setpoint of the first electrical machine and the torque request of the driver.
  • a mode change control command of an infinitely variable transmission comprising a first mode of operation with high torque at high speed and a second mode of operation with high torque at low speed
  • a mode change control command of an infinitely variable transmission comprising a first mode of operation with high torque at high speed and a second mode of operation with high torque at low speed
  • the control method comprises steps in which: the speed of the vehicle traveling under the action of at least one electric machine is determined, an infinitely variable transmission mode of operation is initiated when the speed of the vehicle exceeds a speed of change of operating mode, the vehicle speed is maintained by driving the vehicle with the internal combustion engine, it acts on the couplers to change the mode, it brakes the internal combustion engine to the stop of its operation. It is possible to determine a rotational speed reference of the internal combustion engine as a function of the speed of the vehicle.
  • a torque setpoint of the first electric machine can be determined by a calculation of the Proportional Integral Derivative type as a function of the difference between the rotational speed reference of the internal combustion engine and the measured rotational speed of the internal combustion engine.
  • a torque setpoint of the second electric machine can be determined as a function of the torque setpoint of the first electric machine and the torque request of the driver.
  • FIG. 1 illustrates the main elements included in a two-mode infinitely variable transmission
  • FIG. 2 illustrates the main steps included in a mode change method
  • FIG. 3 illustrates the evolution of the torque at the wheel as a function of the speed of the vehicle for each of the modes of a two-mode infinitely variable transmission
  • FIG. 4 illustrates the main elements included in a mode change system.
  • a hybrid powertrain for a motor vehicle comprises an internal combustion engine 1, a first electric machine 2 a, a second electric machine 2 b, an electrical storage element 3 and a transmission infinitely variable 4 comprising four epicyclic gears 6, 7, 8 and 9, a first coupler 10, a second coupler January 1, and two brakes 20 and 32.
  • the first epicyclic gear train 6 is connected by its ring gear R to the internal combustion engine 1 by the link 15, by its sun gear S to the first electric machine 2a via the link 16, by its planet carrier SC to the sun gear S of the second epicyclic gear train. 8 by the link 17.
  • the planet carrier SC of the second epicyclic gear train 8 is connected to the first coupler 10 via the connection 18 and to the ring gear of the third epicyclic gear train 7 via the link 27, the gear reducer 28, and the link 29.
  • the first coupler 10 is connected by its other terminal to the brake 20 via the link 19.
  • a link 22, connected between the first coupler 10 and the second epicyclic gear train 8, is connected to the second coupler 1 1 via of a gearbox 23 and a link 27.
  • the other terminal of the second coupler January 1 is connected to the ring gear R of the second epicyclic gear train 8 via a link 24 of a gearbox 25 and a gearbox. l 26.
  • the link 26 is stitched between the second epicyclic gear train 8 and the gearbox 28.
  • the sun gear S of the third epicyclic gear train 7 is connected to the internal combustion engine 1 via the link 14, the gearbox 13 and the gearbox.
  • the crown R of the third epicyclic gear train 7 is also connected to the planet carrier SC of the fourth epicyclic gear train 9 via the link 30.
  • the ring gear R of the fourth epicyclic gear train 9 is connected to the brake 32 via the link 33, and its sun gear. S is connected to the second electric machine 2b by the link 3 1.
  • the planet carrier SC of the third epicyclic gear train 7 is connected to a link 34, followed by a gearbox 35 itself connected to a gearbox 37 via a link 36, the gearbox 37 being connected to a gearbox link 38 connected to the drive wheels 53.
  • the first electrical machine 2a and the second electrical machine 2b are connected to the electrical storage element 3 by the connections 3a and 3b.
  • the infinitely variable transmission 4 illustrated in FIG. 1 comprises two modes of operation.
  • the change of mode is therefore ensured by the first coupler 10 and the second coupler 11.
  • a coupler is a mechanical element comprising two terminals. In general, when closing a coupler, the rotational speeds at its terminals must be equal.
  • the first coupler 10 is connected by one of its terminals to the brake 20.
  • its terminal connected to the second epicyclic gear 8 and the second coupler January 1 must have a rotational speed equal to that of the terminal connected to the brake 20.
  • the rotational speeds across the first coupler 10 must be zero when of its closure.
  • the second coupler January 1 is connected by one of its terminals to the second electrical machine 2b and the other terminal to the first coupler 10.
  • the speeds at its terminals before to be equal, the rotational speeds of the second electrical machine 2b and a terminal of the first coupler 10 must be equal.
  • the first mode of operation is performed when the first coupler 10 is closed and the second coupler 11 open.
  • the second mode of operation is performed when the first coupler 10 is open and the second coupler January 1 is closed. In order to have a switching between the two modes smoothly, it is preferable to realize it with speeds at the terminals of the two couplers close to zero, which amounts to canceling the speed of the electric machine 2b.
  • the couplers can be of different types.
  • the main types are multi-disc couplers or jaw couplers.
  • Multi-disc couplers require a hydraulic system that maintains pressure.
  • Jaw couplers use a complementary form and do not require an active system to keep them in place. They make it possible to achieve a gain in energy consumption. In an energy-saving hybrid vehicle, the jaw coupler solution is therefore preferentially retained.
  • the operation of the jaw couplers requires a zero torque at their terminals during an engagement or disengagement. By integrating this condition, it follows that in the case of switching between the two modes of operation, the torque of the machine 2a must be zero.
  • FIG. 2 illustrates the case in which the control method is applied to a change from the first operating mode to the second operating mode.
  • control method For a change of operating mode, from mode 1 to mode 2, the control method comprises the following steps.
  • step 39 the vehicle speed is compared with a limit speed of passage from mode 1 to mode 2, V 1 ⁇ 2 . Once this speed has been reached or exceeded, the method continues in step 40 during which the vehicle is driven by the internal combustion engine according to a set point.
  • the electrical machines simultaneously drive the engine and the vehicle.
  • the drive of the vehicle is made by following a setpoint of torque to the wheel To ref.
  • step 41 the couplers 10 and 11 are activated in order to activate the second mode of operation of the infinitely variable transmission.
  • step 42 the internal combustion engine 1 is progressively braked while ensuring the driving of the vehicle.
  • the infinitely variable transmission 4 is configured in the second mode of operation, as symbolized by the step 43 of the method.
  • the control method can be applied to a mode change from the second mode of operation to the first mode of operation, considering in particular the limit speed of passage from mode 2 to mode 1, V2 ⁇ i.
  • Figure 3 shows the evolution of the torque at the wheel as a function of the vehicle speed for each of the two modes of operation of the infinitely variable transmission.
  • the first mode makes it possible to obtain a decreasing torque T l and canceling at the speed V l.
  • the second mode makes it possible to obtain a torque T2, smaller than T l, decreasing, and having a cutoff at the speed V2, greater than V l.
  • a lower torque is available at a lower speed than the pair in the second mode.
  • the second mode makes it possible to obtain a torque where the first mode is no longer able to provide a torque to the wheel.
  • the values V 2 ⁇ i and Vi ⁇ 2 show the limiting speeds from which a mode change can be advantageous.
  • the control method can be generalized to control the change between several modes of operation of an infinitely variable transmission.
  • a means 44 for determining the speed of rotation of the internal combustion engine is connected at the input by a connection 55 to the sensors 54 and at the output to the positive input of an adder 47 via a connection 45.
  • the adder 47 is connected by a connection 46 to the sensors 54 by a negative input and at the output, by a connection 48, to a means 49 for determining the torque of the first electrical machine.
  • a compensation means 52 is connected at input to the sensors 54 via a connection 51 and to the means 49 for determining the torque of the first electrical machine via a connection 50.
  • the compensation means 52 is connected at the output to the second electrical machine 2b by a connection 53.
  • the determination means 44 of the rotational speed reference of the internal combustion engine 1 receives a value of the vehicle speed of the sensors 54.
  • the determination means 44 generates an output value Wice_ref of the engine speed reference. internal combustion 1.
  • the means 49 for determining the torque of the first electric machine 2a determines, by a derivative integral proportional type method, a torque setpoint value Te 1 of the first electric machine 2a as a function of the difference between the reference value Wice ref and the Wice measurement of the rotational speed of the internal combustion engine from the sensors 54.
  • the compensation means 52 determines a target torque value Te2 of the second electrical machine as a function of the torque setpoint value Te 1 of the first electrical machine and the torque request value To ref received from the sensors 54. This setpoint Te2 is then transmitted to the second electrical machine 2b.
  • the system and the control method make it possible to change the mode of an infinitely variable transmission comprising at least two modes of operation and equipping a hybrid vehicle.
  • This mode change is made while the vehicle is moving under the action of its powertrain, especially only under the action of electric machines.
  • the control system and method enables said mode change to be made without slowing down the vehicle and maintaining a degree of control over the speed of the vehicle.

Abstract

Système de commande de changement de mode d'une transmission infiniment variable comprenant un premier mode de fonctionnement à fort couple à haute vitesse et un deuxième mode de fonctionnement à fort couple à basse vitesse, équipant un véhicule automobile par ailleurs muni d' au moins deux machines électriques (2a, 2b), d' au moins un moteur à combustion interne (1), la transmission infiniment variable étant reliée mécaniquement aux machines électriques (2a, 2b) et au moteur à combustion interne (1), comprenant un moyen de détermination (44) de la consigne de vitesse de rotation du moteur à combustion interne; un additionneur (47) apte à réaliser la différence entre la consigne de vitesse de rotation du moteur à combustion interne et la mesure de la vitesse de rotation du moteur à combustion interne; un moyen de détermination (49) du couple de la première machine électrique apte à déterminer une consigne de couple de la première machine électrique (2a) en fonction de la différence entre la consigne de vitesse de rotation du moteur à combustion interne (1) et la vitesse de rotation mesurée du moteur à combustion interne (1); un moyen de compensation (52) apte à déterminer une consigne de couple de la deuxième machine électrique (2b) en fonction de la consigne de couple de la première machine électrique (2a) et de la requête de couple du conducteur; le système de commande étant apte à commander la deuxième machine électrique (2b) de façon que le changement de mode puisse se réaliser alors que le véhicule est propulsé, avant et après le changement de mode, sous la seule action d'au moins une machine électrique.

Description

Système et procédé de commande de changement de mode d'une transmission infiniment variable en mode purement électrique
Le domaine de la présente invention est le contrôle des transmissions et plus particulièrement le contrôle des transmissions infiniment variables. Les transmissions infiniment variables ont trouvé un essor particulier avec les véhicules automobiles à propulsion hybride. En effet, les transmissions infiniment variables offrent la possibilité de moduler ou d' augmenter le couple délivré par une source motrice principale en variant les couples délivrés par deux sources motrices secondaires. Dans le cas d'un véhicule automobile à propulsion hybride, la source motrice principale est un moteur à combustion interne, ou moteur à combustion interne, et les sources motrices secondaires sont généralement des machines électriques pouvant fonctionner en moteur électrique ou en système de freinage récupératif.
Ainsi équipé, un véhicule hybride est capable de simuler une boîte de vitesses en modulant le couple fourni par le moteur à combustion interne tout à le maintenant à un régime de fonctionnement optimum, généralement un bas régime permettant de limiter les émissions polluantes et la consommation de carburant.
Cependant, les machines électriques sont connues pour présenter des couples faibles comparés à ceux des moteurs thermiques. Pour remédier à ces défauts sans augmenter la contribution du moteur à combustion interne, des transmissions infiniment variables ont été mises au point. Ces transmissions présentent deux modes de fonctionnement, un mode de fonctionnement présentant des couples élevés pour une vitesse élevée du véhicule, et un mode de fonctionnement présentant des couples élevés pour une vitesse faible du véhicule. Les deux modes présentent un recouvrement partiel de leurs domaines de vitesses. Ainsi, selon le domaine de vitesse requis par le conducteur, il est nécessaire d'activer l'un ou l'autre des modes de la transmission infiniment variable. Une transmission infiniment variable à deux modes est illustrée par les demandes de brevets Renault FR2845514, FR2845515 , FR2847321 et FR2844519.
Une fois un mode activé, il est nécessaire d'utiliser le moteur à combustion interne afin d' apporter un couple complémentaire dans les domaines de vitesse dans lesquels le mode de fonctionnement activé ne permet pas de fournir un couple suffisant. Un tel fonctionnement éloigne une propulsion hybride d'un fonctionnement purement électrique.
La présente invention a pour objet un système de commande permettant de changer de mode en roulant.
La présente invention a également pour objet un système de commande permettant de limiter l'utilisation du moteur à combustion interne.
Un autre objet de la présente invention est un procédé de commande permettant de changer de mode en roulant.
Selon un aspect de l'invention, on définit un système de commande de changement de mode d'une transmission infiniment variable comprenant un premier mode de fonctionnement à fort couple à haute vitesse et un deuxième mode de fonctionnement à fort couple à basse vitesse, équipant un véhicule automobile par ailleurs muni d' au moins deux machines électriques, d' au moins un moteur à combustion interne, la transmission infiniment variable étant reliée mécaniquement aux machines électriques et au moteur à combustion interne, caractérisé par le fait qu'il comprend un moyen de détermination de la consigne de vitesse de rotation du moteur à combustion interne, un additionneur apte à réaliser la différence entre la consigne de vitesse de rotation du moteur à combustion interne et la mesure de la vitesse de rotation du moteur à combustion interne, un moyen de détermination du couple de la première machine électrique apte à déterminer une consigne de couple de la première machine électrique en fonction de la différence entre la consigne de vitesse de rotation du moteur à combustion interne et la vitesse de rotation mesurée du moteur à combustion interne, et un moyen de compensation apte à déterminer une consigne de couple de la deuxième machine électrique en fonction de la consigne de couple de la première machine électrique et de la requête de couple du conducteur.
Le système de commande est apte à commander la deuxième machine électrique de façon que le changement de mode puisse se réaliser alors que le véhicule est propulsé, avant et après le changement de mode, sous la seule action d'au moins une machine électrique.
Le système de commande peut comprendre un moyen de détermination de la consigne de vitesse de rotation du moteur à combustion interne apte à déterminer une consigne de vitesse de rotation du moteur à combustion interne en fonction de la vitesse du véhicule.
Le système de commande peut comprendre un moyen de détermination du couple de la première machine électrique, de type Proportionnel Intégral Dérivé, apte à déterminer une consigne de couple de la première machine électrique en fonction de la différence entre la consigne de vitesse de rotation du moteur à combustion interne et la vitesse de rotation mesurée du moteur à combustion interne. Le système de commande peut comprendre un moyen de compensation apte à déterminer une consigne de couple de la deuxième machine électrique en fonction de la consigne de couple de la première machine électrique et de la requête de couple du conducteur.
Selon un autre aspect de l'invention, on définit un de commande de commande de changement de mode d'une transmission infiniment variable comprenant un premier mode de fonctionnement à fort couple à haute vitesse et un deuxième mode de fonctionnement à fort couple à basse vitesse, équipant un véhicule automobile par ailleurs muni d' au moins deux machines électriques, d' au moins un moteur à combustion interne, la transmission infiniment variable étant reliée mécaniquement aux machines électriques et au moteur à combustion interne. Le procédé de commande comprend des étapes au cours desquelles : on détermine la vitesse du véhicule se déplaçant sous la seule action d'au moins une machine électrique, on déclenche un changement de mode de fonctionnement de la transmission infiniment variable lorsque la vitesse du véhicule dépasse une vitesse de changement de mode de fonctionnement, on maintient la vitesse du véhicule en entraînant ledit véhicule avec le moteur à combustion interne, on agit sur les coupleurs afin de changer de mode, on freine le moteur à combustion interne jusqu'à l'arrêt de son fonctionnement. On peut déterminer une consigne de vitesse de rotation du moteur à combustion interne en fonction de la vitesse du véhicule.
On peut déterminer une consigne de couple de la première machine électrique par un calcul de type Proportionnel Intégral Dérivé en fonction de la différence entre la consigne de vitesse de rotation du moteur à combustion interne et la vitesse de rotation mesurée du moteur à combustion interne.
On peut déterminer une consigne de couple de la deuxième machine électrique en fonction de la consigne de couple de la première machine électrique et de la requête de couple du conducteur. D ' autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
-la figure 1 illustre les principaux éléments compris dans une transmission infiniment variable bi-mode ;
-la figure 2 illustre les principales étapes comprises dans un procédé de changement de mode ; -la figure 3 illustre l'évolution du couple à la roue en fonction de la vitesse du véhicule pour chacun des modes d'une transmission infiniment variable bi-mode ; et
-la figure 4 illustre les principaux éléments compris dans un système de changement de mode.
Tel qu'illustré à titre d' exemple sur la figure 1 , un groupe motopropulseur hybride pour véhicule automobile comprend un moteur à combustion interne 1 , une première machine électrique 2a, une deuxième machine électrique 2b, un élément de stockage électrique 3 et une transmission infiniment variable 4 comprenant quatre trains épicycloïdaux 6, 7, 8 et 9, un premier coupleur 10, un deuxième coupleur 1 1 , et deux freins 20 et 32.
Le premier train épicycloïdal 6 est relié par sa couronne R au moteur à combustion interne 1 par la liaison 15 , par son planétaire S à la première machine électrique 2a par la liaison 16, par son porte- satellite SC au planétaire S du deuxième train épicycloïdal 8 par la liaison 17. Le porte-satellite SC du deuxième train épicycloïdal 8 est relié au premier coupleur 10 par la connexion 18 et à la couronne du troisième train épicycloïdal 7 par l'intermédiaire de la liaison 27, du réducteur 28, et de la liaison 29. Le premier coupleur 10 est relié par son autre borne au frein 20 par la liaison 19. Une liaison 22, connectée entre le premier coupleur 10 et le deuxième train épicycloïdal 8, est reliée au deuxième coupleur 1 1 par l'intermédiaire d'un réducteur 23 et d'une liaison 27. L ' autre borne du deuxième coupleur 1 1 est connectée à la couronne R du deuxième train épicycloïdal 8 par l' intermédiaire d'une liaison 24 d'un réducteur 25 et d'une liaison 26. La liaison 26 est piquée entre le deuxième train épicycloïdal 8 et le réducteur 28. Le planétaire S du troisième train épicycloïdal 7 est connecté au moteur à combustion interne 1 par l'intermédiaire de la liaison 14, du réducteur 13 et de la liaison 12. La couronne R du troisième train épicycloïdal 7 est également relié au porte-satellite SC du quatrième train épicycloïdal 9 par la liaison 30. La couronne R du quatrième train épicycloïdal 9 est relié au frein 32 par la liaison 33 , et son planétaire S est connecté à la deuxième machine électrique 2b par la liaison 3 1. Le porte-satellite SC du troisième train épicycloïdal 7 est relié à une liaison 34, suivie d'un réducteur 35 relié lui-même à un réducteur 37 par une liaison 36, le réducteur 37 étant relié à un système de liaison 38 relié aux roues motrices 53. La première machine électrique 2a et la deuxième machine électrique 2b sont connectées à l' élément de stockage électrique 3 par les connexions 3 a et 3b.
La transmission infiniment variable 4 illustrée par la figure 1 comprend deux modes de fonctionnement. Le changement de mode est donc assuré par le premier coupleur 10 et le deuxième coupleur 1 1 . Un coupleur est un élément mécanique comprenant deux bornes. D 'une manière générale, lors de la fermeture d'un coupleur, les vitesses de rotation à ses bornes doivent être égales.
Si on applique cette restriction au cas de la transmission infiniment variable à deux modes, on doit tenir compte du fait que le premier coupleur 10 est relié par une de ses bornes au frein 20. Lorsque l'on veut fermer le premier coupleur 10, sa borne reliée au deuxième train épicycloïdal 8 et au deuxième coupleur 1 1 doit présenter une vitesse de rotation égale à celle de la borne reliée au frein 20. Ainsi, on en déduit que les vitesses de rotation aux bornes du premier coupleur 10 doivent être nulles lors de sa fermeture.
De même, le deuxième coupleur 1 1 est relié par une de ses bornes à la deuxième machine électrique 2b et par l'autre borne au premier coupleur 10. Lorsque l'on souhaite fermer le deuxième coupleur 1 1 , les vitesses à ses bornes devant être égales, les vitesses de rotation de la deuxième machine électrique 2b et d'une borne du premier coupleur 10 doivent être égale.
Le premier mode de fonctionnement est réalisé lorsque le premier coupleur 10 est fermé et le deuxième coupleur 1 1 ouvert. Le deuxième mode de fonctionnement est réalisé lorsque le premier coupleur 10 est ouvert et le deuxième coupleur 1 1 est fermé. Afin d' avoir un basculement entre les deux modes sans à-coups, il est préférable de le réaliser avec des vitesses aux bornes des deux coupleurs proches de zéro, ce qui revient à annuler la vitesse de la machine électrique 2b.
Par ailleurs, les coupleurs peuvent être de différents types. Les principaux types sont les coupleurs multi-disques ou les coupleurs à crabots. Les coupleurs multi-disques requièrent un système hydraulique maintenant une pression. Les coupleurs à crabots utilisent une complémentarité de forme et ne nécessitent pas de système actif pour les maintenir en place. Ils permettent de réaliser ainsi un gain de consommation d' énergie. Dans un véhicule hybride énergétiquement économe, la solution de coupleurs à crabots est donc préférentiellement retenue. Le fonctionnement des coupleurs à crabots requiert un couple nul à leurs bornes lors d'un engagement ou désengagement. En intégrant cette condition, il résulte que dans le cas de basculement entre les deux modes de fonctionnement, le couple de la machine 2a doit être nul.
Si on considère la vitesse de rotation du moteur à combustion interne Wlce, la vitesse de rotation de la première machine électrique Wei , la vitesse de rotation de la deuxième machine électrique We2, la vitesse de rotation de l' arbre de sortie Wwh, les équations suivantes relient ces paramètres dans le cadre d'une transmission infiniment variable.
Pour le premier mode, on a :
Figure imgf000009_0001
avec A1 , B1 , Ci et Di des paramètres constants.
Pour le deuxième mode, on a :
Figure imgf000009_0002
avec A2, B2, C2 et D2 des paramètres constants.
De plus, on a Ai=A2 et Ci=C2. Comme énoncé précédemment, le changement de mode doit s 'effectuer à vitesse de rotation nulle de la deuxième machine électrique. On en déduit de l' équation 1 ou 2 que (Eq .3)
Figure imgf000010_0001
En remplaçant l' expression de We I issu de l'une des équations du système d'équations Eq.3 , on obtient : Wwh = — Wlce (Eq. 4)
Ainsi, lors d'un changement de mode de fonctionnement de la transmission infiniment variable, la vitesse de rotation des roues est proportionnelle au régime de rotation du moteur à combustion interne. Pour pouvoir changer de mode de fonctionnement alors que le véhicule est en mouvement, et en respectant la consigne d'une vitesse de rotation nulle de la deuxième machine électrique, on utilise le moteur à combustion interne pour maintenir la vitesse de rotation de roues. Sur la base de ce constat, un procédé de commande est défini. La figure 2 illustre le cas dans lequel le procédé de commande est appliqué à un changement du premier mode de fonctionnement vers le deuxième mode de fonctionnement.
Pour un changement de mode de fonctionnement, du mode 1 vers le mode 2, le procédé de commande comprend les étapes suivantes.
Au cours d'une étape 39, on compare la vitesse du véhicule avec une vitesse limite de passage de mode 1 vers le mode 2, V1 →2. Une fois cette vitesse atteinte ou franchie, le procédé se poursuit à l' étape 40 au cours de laquelle on déclenche l' entraînement du véhicule par le moteur à combustion interne en suivant une consigne
Wice ref dépendant de la vitesse V du véhicule. La formule suivante est appliquée :
Wice ref =
Cl R
Lors de cette phase, les machines électriques assurent simultanément l' entraînement du moteur thermique et du véhicule. L 'entraînement du véhicule est fait en suivant une consigne de couple à la roue To ref.
Lors de l' étape 41 , on actionne les coupleurs 10 et 1 1 afin d' activer le deuxième mode de fonctionnement de la transmission infiniment variable.
Le procédé se poursuit, à l' étape 42 au cours de laquelle on freine progressivement le moteur à combustion interne 1 tout en assurant l'entraînement du véhicule.
A l' issue du procédé de commande, la transmission infiniment variable 4, initialement dans le premier mode de fonctionnement, se trouve configurée dans le deuxième mode de fonctionnement, tel que symbolisé par l' étape 43 du procédé.
Le procédé de commande peut être appliqué à un changement de mode du deuxième mode de fonctionnement au premier mode de fonctionnement, en considérant notamment la vitesse limite de passage de mode 2 vers le mode 1 , V2→i .
La figure 3 montre l' évolution du couple à la roue en fonction de la vitesse du véhicule pour chacun des deux modes de fonctionnement de la transmission infiniment variable. Le premier mode permet d'obtenir un couple T l décroissant, et s ' annulant à la vitesse V l . Le deuxième mode permet d'obtenir un couple T2, inférieur à T l , décroissant, et présentant une coupure à la vitesse V2, supérieure à V l . Ainsi, pour le premier mode, on voit que l'on dispose à faible vitesse d'un couple plus important que le couple dans le deuxième mode. Par ailleurs, à plus haute vitesse, le deuxième mode permet d'obtenir un couple là où le premier mode n' est plus en mesure de fournir un couple à la roue. Les valeurs V2→i et Vi→2 montrent les vitesses limites à partir desquelles un changement de mode peut être avantageux. De même, le procédé de commande peut être généralisé afin de commander le changement entre plusieurs modes de fonctionnement d'une transmission infiniment variable.
Par ailleurs, le changement de mode de fonctionnement d'une transmission infiniment variable peut être commandé par un système de commande. Un tel système, illustré par la figure 4, comprend les principaux éléments suivants. Un moyen de détermination 44 de la consigne de vitesse de rotation du moteur à combustion interne est relié en entrée par une connexion 55 à des capteurs 54 et en sortie à l' entrée positive d'un additionneur 47 par une connexion 45.
L 'additionneur 47 est connecté par une connexion 46 aux capteurs 54 par une entrée négative et en sortie, par une connexion 48, à un moyen de détermination 49 du couple de la première machine électrique. Un moyen de compensation 52 est connecté en entrée aux capteurs 54 par une connexion 51 et au moyen de détermination 49 du couple de la première machine électrique par une connexion 50. Le moyen de compensation 52 est relié en sortie à la deuxième machine électrique 2b par une connexion 53.
Le moyen de détermination 44 de la consigne de vitesse de rotation du moteur à combustion interne 1 reçoit une valeur de la vitesse du véhicule des capteurs 54. Le moyen de détermination 44 génère en sortie une valeur Wice_ref de consigne de vitesse de rotation du moteur à combustion interne 1 . Le moyen de détermination 49 du couple de la première machine électrique 2a détermine par une méthode de type proportionnel intégral dérivé une valeur Te l de consigne de couple de la première machine électrique 2a en fonction de la différence entre la valeur Wice ref de consigne et la mesure Wice du régime de rotation du moteur à combustion interne provenant des capteurs 54. Le moyen de compensation 52 détermine une valeur Te2 de consigne de couple de la deuxième machine électrique en fonction de la valeur Te l de consigne de couple de la première machine électrique et de la valeur de requête de couple To ref reçue des capteurs 54. Cette consigne Te2 est ensuite transmise à la deuxième machine électrique 2b.
Alternativement, il est possible d'utiliser un démarreur afin d' entraîner le moteur à la place des machines électriques.
Le système et le procédé de commande permettent de réaliser un changement de mode d'une transmission infiniment variable comprenant au moins deux modes de fonctionnement et équipant un véhicule hybride. Ce changement de mode s ' effectue alors que le véhicule est en mouvement sous l' action de son groupe motopropulseur, notamment uniquement sous l' action des machines électriques. Le système et le procédé de commande permettent de réaliser ledit changement de mode sans ralentir le véhicule et en maintenant un degré de contrôle de la vitesse du véhicule.

Claims

REVENDICATIONS
1. Système de commande de changement de mode d'une transmission infiniment variable (4) comprenant un premier mode de fonctionnement à fort couple à haute vitesse et un deuxième mode de fonctionnement à fort couple à basse vitesse, équipant un véhicule automobile par ailleurs muni d' au moins deux machines électriques (2a, 2b), d' au moins un moteur à combustion interne ( 1 ), la transmission infiniment variable étant reliée mécaniquement aux machines électriques (2a, 2b) et au moteur à combustion interne ( 1 ), caractérisé par le fait qu'il comprend un moyen de détermination (44) de la consigne de vitesse de rotation du moteur à combustion interne, un additionneur (47) apte à réaliser la différence entre la consigne de vitesse de rotation du moteur à combustion interne et la mesure de la vitesse de rotation du moteur à combustion interne, un moyen de détermination (49) du couple de la première machine électrique apte à déterminer une consigne de couple de la première machine électrique (2a) en fonction de la différence entre la consigne de vitesse de rotation du moteur à combustion interne ( 1 ) et la vitesse de rotation mesurée du moteur à combustion interne ( 1 ), un moyen de compensation (52) apte à déterminer une consigne de couple de la deuxième machine électrique (2b) en fonction de la consigne de couple de la première machine électrique (2a) et de la requête de couple du conducteur, le système de commande étant apte à commander la deuxième machine électrique (2b) de façon que le changement de mode puisse se réaliser alors que le véhicule est propulsé, avant et après le changement de mode, sous la seule action d'au moins une machine électrique.
2. Système de commande selon la revendication 1 dans lequel un moyen de détermination (44) de la consigne de vitesse de rotation du moteur à combustion interne apte à déterminer une consigne de vitesse de rotation du moteur à combustion interne ( 1 ) en fonction de la vitesse du véhicule.
3. Système de commande selon la revendication 2 dans lequel le moyen de détermination (49) du couple de la première machine électrique de type Proportionnel Intégral Dérivé.
4. Procédé de commande de commande de changement de mode d'une transmission infiniment variable (4) comprenant un premier mode de fonctionnement à fort couple à haute vitesse et un deuxième mode de fonctionnement à fort couple à basse vitesse, équipant un véhicule automobile par ailleurs muni d' au moins deux machines électriques (2a, 2b), d' au moins un moteur à combustion interne ( 1 ), la transmission infiniment variable étant reliée mécaniquement aux machines électriques (2a, 2b) et au moteur à combustion interne ( 1 ) caractérisé par le fait qu'il comprend des étapes au cours desquelles : on détermine la vitesse du véhicule se déplaçant sous la seule action d'au moins une machine électrique, on déclenche un changement de mode de fonctionnement de la transmission infiniment variable (4) lorsque la vitesse du véhicule dépasse une vitesse de changement de mode de fonctionnement, on maintient la vitesse du véhicule en entraînant ledit véhicule avec le moteur à combustion interne ( 1 ), on agit sur les coupleurs ( 10) et ( 1 1 ) afin de changer de mode, on freine le moteur à combustion interne ( 1 ) jusqu'à l 'arrêt de son fonctionnement.
5. Procédé de commande selon la revendication 4 dans lequel on détermine une consigne de vitesse de rotation du moteur à combustion interne ( 1 ) en fonction de la vitesse du véhicule.
6. Procédé de commande selon l'une des revendications 4 ou 5 dans lequel on détermine une consigne de couple de la première machine électrique (2a) par un calcul de type Proportionnel Intégral
Dérivé en fonction de la différence entre la consigne de vitesse de rotation du moteur à combustion interne ( 1 ) et la vitesse de rotation mesurée du moteur à combustion interne ( 1 ).
7. Procédé de commande selon l'une des revendications 4 à 6 dans lequel on détermine une consigne de couple de la deuxième machine électrique (2b) en fonction de la consigne de couple de la première machine électrique (2a) et de la requête de couple du conducteur.
PCT/FR2009/050815 2008-05-05 2009-05-04 Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique WO2009141553A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09750034A EP2274189A1 (fr) 2008-05-05 2009-05-04 Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique
US12/936,487 US20110125355A1 (en) 2008-05-05 2009-05-04 System and method for controlling the change in mode of an infinitely variable transmission in purely electric mode
JP2011507971A JP2011519780A (ja) 2008-05-05 2009-05-04 純電動モードの無段変速機のモード切り替えを制御するシステム及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852975A FR2930749B1 (fr) 2008-05-05 2008-05-05 Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique
FR0852975 2008-05-05

Publications (1)

Publication Number Publication Date
WO2009141553A1 true WO2009141553A1 (fr) 2009-11-26

Family

ID=40257069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050815 WO2009141553A1 (fr) 2008-05-05 2009-05-04 Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique

Country Status (5)

Country Link
US (1) US20110125355A1 (fr)
EP (1) EP2274189A1 (fr)
JP (1) JP2011519780A (fr)
FR (1) FR2930749B1 (fr)
WO (1) WO2009141553A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035720A1 (de) * 2007-07-30 2009-02-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839683A2 (fr) * 1996-10-29 1998-05-06 Toyota Jidosha Kabushiki Kaisha Système d'entrainement, commande de moteur et méthode pour contrÔler le système d'entraînement et le moteur
US20050102082A1 (en) * 2003-11-12 2005-05-12 Nissan Motor Co., Ltd. Shift control system of hybrid transmission
DE112005003292T5 (de) * 2004-12-28 2008-04-17 Aisin Aw Co., Ltd. Leistungsabgabegerät, Motorfahrzeug, das mit einem Leistungsabgabegerät ausgestattet ist, Steuersystem für ein Leistungsabgabegerät, und Steuerverfahren eines Leistungsabgabegeräts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155230B2 (ja) * 2004-06-03 2008-09-24 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4055812B1 (ja) * 2006-08-28 2008-03-05 トヨタ自動車株式会社 車両
WO2008132893A1 (fr) * 2007-04-20 2008-11-06 Toyota Jidosha Kabushiki Kaisha Contrôleur pour un dispositif de transmission de puissance destiné à être utilisé dans un véhicule
JP4600421B2 (ja) * 2007-04-25 2010-12-15 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP4998098B2 (ja) * 2007-06-07 2012-08-15 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
JP4998164B2 (ja) * 2007-09-14 2012-08-15 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP4447039B2 (ja) * 2008-02-12 2010-04-07 トヨタ自動車株式会社 動力出力装置および車両
JP5060371B2 (ja) * 2008-04-07 2012-10-31 トヨタ自動車株式会社 動力出力装置および車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839683A2 (fr) * 1996-10-29 1998-05-06 Toyota Jidosha Kabushiki Kaisha Système d'entrainement, commande de moteur et méthode pour contrÔler le système d'entraînement et le moteur
US20050102082A1 (en) * 2003-11-12 2005-05-12 Nissan Motor Co., Ltd. Shift control system of hybrid transmission
DE112005003292T5 (de) * 2004-12-28 2008-04-17 Aisin Aw Co., Ltd. Leistungsabgabegerät, Motorfahrzeug, das mit einem Leistungsabgabegerät ausgestattet ist, Steuersystem für ein Leistungsabgabegerät, und Steuerverfahren eines Leistungsabgabegeräts

Also Published As

Publication number Publication date
FR2930749B1 (fr) 2010-04-30
EP2274189A1 (fr) 2011-01-19
US20110125355A1 (en) 2011-05-26
FR2930749A1 (fr) 2009-11-06
JP2011519780A (ja) 2011-07-14

Similar Documents

Publication Publication Date Title
EP2512898B1 (fr) Procede et systeme de desaccouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hydride
FR2847638A1 (fr) Systeme de commande de changement de rapport pour vehicule hybrides
FR2870483A1 (fr) Unite de propulsion hybride pour vehicules
FR2822758A1 (fr) Chaine motrice
FR2962378A1 (fr) Systeme d'entrainement pour un vehicule automobile et vehicule automobile comprenant un tel systeme d'entrainement
FR2909625A1 (fr) Dispositif de commande de source de propulsion pour vehicule
US11267456B2 (en) Hybrid vehicle
FR2956637A1 (fr) Procede de gestion d'un systeme d'entrainement pour vehicule automobile
KR100923014B1 (ko) 하이브리드 구동 장치와 그의 제어방법 및 제어장치, 및 컴퓨터 프로그램 리코더
KR20150023863A (ko) 하이브리드 차량을 기동시키기 위한 방법
CN105346538A (zh) 一种混合动力汽车的起步控制方法和装置
US11541865B2 (en) Hybrid vehicle
WO2009141553A1 (fr) Systeme et procede de commande de changement de mode d'une transmission infiniment variable en mode purement electrique
FR2934526A1 (fr) Systeme et procede de commande d'un groupe motopropulseur hybride
FR3106552A1 (fr) Contrôle du couple moteur lors de changement de vitesse sur une boîte de vitesses automatique avec machine electrique intégrée
FR3068942A1 (fr) Procede de demarrage d’un vehicule hybride avec une puissance de batterie augmentee
CN104057945B (zh) 用于电动车辆的功率分流变速器的控制方法
FR2929574A1 (fr) Systeme et procede de commande d'une transmission infiniment variable a modes multiples pour vehicule hybride.
FR3054189B1 (fr) Controle du couple fourni par une machine motrice d'un vehicule hybride paralelle a boite de vitesses manuelle, en fonction de l'embrayage
FR3018227A1 (fr) Transmission hybride avec volant d'inertie
KR102659244B1 (ko) 배터리 방전 제한 제어 시스템 및 방법
FR2967619A1 (fr) Vehicule hybride a deux trains d'engrenages epicycloidaux a efficacite energetique amelioree
EP4153439A1 (fr) Procédé de commande d'un groupe motopropulseur pour véhicule automobile à transmission électrique hybride
FR3058698A1 (fr) Dispositif de pilotage d'une boite de vitesses robotisee pour vehicule automobile a propulsion hybride
WO2021038151A1 (fr) Procede de protection d'un embrayage d'un vehicule hybride contre une surchauffe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009750034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011507971

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12936487

Country of ref document: US