WO2009141481A1 - Procedimiento para la fabricación de un artículo de piedra aglomerada con resistencia térmica - Google Patents

Procedimiento para la fabricación de un artículo de piedra aglomerada con resistencia térmica Download PDF

Info

Publication number
WO2009141481A1
WO2009141481A1 PCT/ES2009/070169 ES2009070169W WO2009141481A1 WO 2009141481 A1 WO2009141481 A1 WO 2009141481A1 ES 2009070169 W ES2009070169 W ES 2009070169W WO 2009141481 A1 WO2009141481 A1 WO 2009141481A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
article
refractory material
manufacturing mass
inorganic filler
Prior art date
Application number
PCT/ES2009/070169
Other languages
English (en)
French (fr)
Inventor
Jose Luis Ramon Moreno
Salvador Cristobal Rodriguez Garcia
Raul Pozas Bravo
Francisco Gracia Torres
Adrian MEDINA JIMÉNEZ
Original Assignee
Cosentino, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosentino, S.A. filed Critical Cosentino, S.A.
Publication of WO2009141481A1 publication Critical patent/WO2009141481A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • C04B22/04Metals, e.g. aluminium used as blowing agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Definitions

  • the present invention relates to a new method for obtaining an agglomerated stone article with improved thermal properties comprising a vacuum vibro-compression stage and subsequently a heating stage.
  • the invention also relates to the agglomerated stone article obtainable by said method and its use in construction and decoration, for example in floors, interior stairs, and work surfaces in general.
  • agglomerated stone articles which use orthophthalic polyester resins do not have good temperature resistance.
  • This disadvantage is evident when they come into contact with a heat source, through the appearance of surface marks and a yellowing of the surface, which leads to a worsening of the mechanical properties of the article.
  • said article is used, for example, as a kitchen countertop, it is especially important to reduce or eliminate this disadvantage, since when it comes into contact with objects fresh from the fire they can produce irreversible marks on the work surface or even its fracture.
  • the use of alternative resins to orthophthalic polyester resins, which have a higher temperature resistance, has been proposed in the state of the art.
  • this alternative has the disadvantage that, in general, they are resins that have a high price, which has an impact on the final price of the article, and hinders its commercialization.
  • the use in general of these alternative resins implies, on the other hand, the worsening of other properties of these articles of agglomerated stone.
  • the inventors have surprisingly discovered that the incorporation of a certain inorganic refractory material in powder form, with a particle size of less than 1 meter, together with the inorganic filler used in the process of obtaining an article of agglomerated stone, It allows obtaining an article of agglomerated stone with good thermal conductivity, which facilitates the dispersion of heat and, thus, its resistance to thermal degradation.
  • An object, therefore, of the present invention relates to a new process for manufacturing an article of agglomerated stone comprising adding inorganic powder-refractory material with an average particle size not exceeding 1 meter together with the inorganic filler used in the procedure of obtaining a stone article.
  • Another object of the present invention relates to an agglomerated stone article obtainable by the process of the invention.
  • An additional object refers to the use of said article in construction and decoration.
  • the present invention provides in one aspect a process for obtaining an article of agglomerated stone with good thermal conductivity at from a manufacturing mass comprising a binder, an inorganic filler and a nanoparticulate refractory inorganic material that has a high thermal conductivity.
  • a manufacturing mass comprising a binder, an inorganic filler and a nanoparticulate refractory inorganic material that has a high thermal conductivity.
  • the inorganic filler together with the inorganic powder refractory material is called the total inorganic filler.
  • the process hereinafter referred to as the method of the invention, comprises a step of pressing by vacuum vibro-compression of the manufacturing mass and its subsequent hardening by heat with a shape and dimensions determined in the process.
  • the article of agglomerated stone obtained is suitable for use in construction and decoration, such as floors, interior stairs, and work surfaces in general, such as kitchen countertops.
  • the process of the invention comprises adding an inorganic powder refractory material with an average particle size not exceeding 1 meter to the inorganic filler.
  • the present invention hereafter refers to inorganic powder refractory material with an average particle size not exceeding 1 millimeter as nanoparticulate material or nanoparticulate refractory material.
  • the average particle size is between 1 nm and 1000 nm.
  • the nanoparticulate material is added to the inorganic filler in an amount comprised between 0.2% and 35% by weight with respect to the total weight of the manufacturing mass.
  • the nanoparticulate refractory material can in principle be any refractory material that has a coefficient of thermal conductivity higher than the materials used in the inorganic filler, such as crystalline quartz (5-7 W / (m K)) and silica amorphous (0.8-2 W / (m K)).
  • materials with a thermal conductivity greater than 10 W / (m K) can be used to put into practice the present invention, enhancing the desired effect the higher this value.
  • said material is selected from the group consisting of alumina (AI 2 O 3 ), magnesia (MgO), beryllium (BeO), zirconia (ZrO 2 ), zinc oxide (ZnO), titanium oxide (TiO 2 ) , aluminum nitride (AIN), boron nitride (BN), silicon carbide (SiC), Al, Si, Ag, Wo, Pt, Pd, Ni, In, Cu, Si-Ge, Ag-Pd alloys, Ag-Pt, Cu-Mb and their mixtures.
  • the component is alumina whose coefficient of thermal conductivity is 36-40 W / (m K).
  • the inorganic filler used is conventional and can comprise, for example, a mixture of crushes of conventional and variable granulometry of one or more materials conventionally used in the manufacture of articles of agglomerated stone. Examples include marble, dolomite, silica, glass, mirror, cristobalite, granite, opaque quartz, crystalline quartz, feldspar, basalt, and ferrosiliceous material, among others.
  • the inorganic filler is selected so that it is compatible with the adhesion promoter used in the binder.
  • the inorganic filler is obtained either commercially or by selecting and crushing the inorganic starting materials to the desired particle size and mixing them in the appropriate proportions to obtain the desired final appearance of the agglomerated stone article.
  • one of the following total inorganic fillers is used, in one of the following preferred percentages:
  • micronized cristobalite • 30-35% micronized cristobalite; • 20-60% micronized silica;
  • the binder is prepared in a conventional manner, generally following the instructions of the commercial product purchased in each case.
  • Said binder constitutes between 6% and 15% by weight with respect to the weight of the entire manufacturing mass and generally comprises:
  • An installed polyester resin commercially obtainable, preferably an orthophthalic unsaturated polyester resin, a catalyst, a accelerator, an adhesion promoter and optionally an additive such as a dye and / or a biocidal agent and / or an ultraviolet filter. All components are conventional.
  • the installation for the implementation of the procedure is a conventional installation.
  • the binder and the total mineral load are mixed in the planetary mixers until correct homogenization, and subsequently the whole is mixed in the homogenization ring. Thus, the so-called manufacturing mass is obtained.
  • the process of the invention also comprises the following conventional steps:
  • the homogeneous manufacturing mass is carried by means of a conveyor belt to a distributor that places on a support a part of mass in a desired form, such as in the form of a board.
  • the size of the mold used will be the one that determines the size of the board, while the thickness will determine the amount of mass that is available in the mold.
  • the mold is protected with a polymeric paper or film and then led to a vacuum vibro-compression press, where the material is compacted for a few minutes.
  • the board is driven to an oven, whose setpoint temperature is placed between 30 and 150 Q C, the cross-linking of the polyester resin being triggered, which provides the board with hardness.
  • the residence time in the oven ranges between 20 and 120 minutes.
  • the hardened article obtained can be subjected to a series of subsequent and conventional operations typical of the elaboration of any natural stone, for its final finishing; These steps include cooling the product obtained and mechanical treatments such as calibrating, polishing and cutting according to the desired final dimensions.
  • the article of agglomerated stone manufactured is in the form of a table since it is usually used for the construction of work surfaces, such as kitchen countertops, in which an effective heat dissipation, stairs, floors, bathrooms, tables etc. are of interest.
  • the article obtained by the process of the invention can be manufactured with any shape and size and thickness that are desired.
  • the article obtained is a table, more preferably a quartz agglomerate table.
  • the agglomerated stone articles obtainable by the process of the invention constitute an additional aspect of the invention.
  • the different appearance of the boards is controlled by the variation of the composition and the granulometry of the different materials of the inorganic filler, in addition to the use of different types of pigments. It is important that the refractory material be completely homogenized throughout the agglomerated stone article. Due to their nanometric size, these particles have a very high specific surface, which allows to significantly increase the thermal conductivity of the agglomerate, and thus the heat dissipation. It should be noted that the article of agglomerated stone obtained by the process of the invention, withstands higher temperatures than those supported by a conventional article, without changes in the appearance of the surface or breaking. This follows from the experimental results presented in the Examples.
  • the invention refers to the use of an agglomerated article obtained by means of the process of the invention in construction and decoration, as for example in the construction of work surfaces, such as kitchen countertops, in which an Effective heat dissipation, stairs, floors, bathrooms, tables etc.
  • work surfaces such as kitchen countertops, in which an Effective heat dissipation, stairs, floors, bathrooms, tables etc.
  • Example 1 Obtaining boards with thermal resistance
  • Example 1 10 tables 3 m long and 1.40 m wide and 2 cm thick were obtained.
  • the samples made according to Example 1 and Example 2 were subjected to normal calibration and polishing procedures, and were subjected to subsequent thermal studies aimed at comparing their properties with conventional tables.
  • Conventional tables were prepared in the same way as those of the present invention but without incorporating into the mass of manufacture of inorganic refractory material in powder form. The tests performed and the results obtained are shown below.
  • Table 1 shows, on the one hand, for an exposure time of 10 minutes on a hot spot, the maximum temperature that supports the exposed sample without any changes in the appearance of the surface being noticed, keeping this temperature constant throughout the test .
  • the results of tests in which the material has been exposed to a hot spot that cools on the surface for 10 minutes are also shown.
  • Table 2 shows the number of breaks produced in samples with the conventional formulation and in samples obtained in examples 1 and 2.
  • 30 x 30 cm specimens of 1.2 cm thick were used, which were they were subjected to thermal shock by contact with a hot source at 220 Q C that is allowed to cool to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La presente invención describe un procedimiento para fabricar un artículo de piedra aglomerada con elevada resistencia térmica, como un tablero para construcción o decoración. El procedimiento comprende las etapas de: poner en contacto (i) la carga inorgánica con un material refractario nanoparticulado con elevada conductividad térmica; (ii) añadir un ligante a base de una resina de poliéster; (iii) mezclar hasta obtener una masa de fabricación homogénea; (iv) distribuir una parte de dicha masa sobre un soporte; (v) prensado de la parte de masa distribuida en una prensa de vibro-compactación en condiciones de vacío; y (vi) endurecimiento de la masa por polimerización de la resina de poliéster.

Description

PROCEDIMIENTO PARA LA FABRICACIÓN DE UN ARTÍCULO DE PIEDRA AGLOMERADA CON RESISTENCIA TÉRMICA
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un nuevo procedimiento para Ia obtención de un artículo de piedra aglomerado con propiedades térmicas mejoradas que comprende una etapa de vibro-compresión al vacío y posteriormente una etapa de calentamiento. La invención se refiere asimismo al artículo de piedra aglomerado obtenible mediante dicho procedimiento y a su empleo en construcción y decoración, por ejemplo en suelos, escaleras interiores, y superficies de trabajo en general.
ANTECEDENTES DE LA INVENCIÓN
En Ia patente ES 2187313 B1 se describe un procedimiento para Ia fabricación de tablones de piedra artificial especialmente aplicables en construcción y/o decoración que comprenden: (i) una carga inorgánica constituida por una mezcla de triturados de distinta granulometría de materiales tales como sílices, cristales, granitos, cuarzo, ferrosilíceo, entre otros, y (ii) una resina de poliéster. La resina se encuentra inicialmente en forma de polímeros (antes de su entrecruzamiento), en estado líquido, y se mezcla con Ia carga inorgánica homogéneamente. La masa homogénea resultante se somete a prensado mediante vibro-compresión al vacío y posteriormente se endurece por calentamiento.
En particular los artículos de piedra aglomerada, que utilizan resinas de poliéster ortoftálico no presentan buena resistencia a Ia temperatura. Esta desventaja se pone de manifiesto cuando se ponen en contacto con un foco de calor, mediante Ia aparición de marcas en superficie y un amarilleamiento de Ia superficie, que conlleva a un empeoramiento de las propiedades mecánicas del artículo. Cuando dicho artículo se utiliza por ejemplo como encimera de cocina, resulta de especial importancia reducir o eliminar esta desventaja, ya que cuando se pone en contacto con objetos recién sacados del fuego pueden producir marcas irreversibles sobre Ia superficie de trabajo o incluso su fractura. Se ha planteado en el estado de Ia técnica el uso de resinas alternativas a las resinas de poliéster ortoftálico, que presentan una resistencia a Ia temperatura más elevada. Sin embargo, esta alternativa presenta el inconveniente de que, en general, son resinas que tienen un precio elevado, Io cual repercute en el precio final del artículo, y dificulta su comercialización. Asimismo, el empleo en general de estas resinas alternativas implica, por otro lado, el empeoramiento de otras propiedades de estos artículos de piedra aglomerada.
A Ia vista de Io expuesto sigue por tanto existiendo Ia necesidad en el estado de Ia técnica de proporcionar un procedimiento alternativo para obtener artículos de piedra artificial con buena resistencia térmica.
En este sentido los inventores han descubierto sorprendentemente que Ia incorporación de un determinado material inorgánico refractario en forma de polvo, con un tamaño de partícula inferior a 1 miera, junto con Ia carga inorgánica utilizada en el procedimiento de obtención de un artículo de piedra aglomerada, permite obtener un artículo de piedra aglomerada con buena conductividad térmica, Io que facilita Ia dispersión del calor y, de este modo, su resistencia a Ia degradación térmica.
OBJETO DE LA INVENCIÓN
Un objeto, por tanto, de Ia presente invención se refiere a un nuevo procedimiento para fabricar un artículo de piedra aglomerada que comprende añadir material inorgánico refractario en forma de polvo con un tamaño de partícula medio no superior a 1 miera junto con Ia carga inorgánica utilizada en el procedimiento de obtención de un artículo de piedra.
Otro objeto de Ia presente invención se refiere a un artículo de piedra aglomerada obtenible mediante el procedimiento de Ia invención.
Un objeto adicional se refiere al empleo de dicho artículo en construcción y decoración.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona en un aspecto un procedimiento para Ia obtención de un artículo de piedra aglomerada con buena conductividad térmica a partir de una masa de fabricación que comprende un ligante, una carga inorgánica y un material inorgánico refractario nanoparticulado que presenta una elevada conductividad térmica. En adelante a Ia carga inorgánica junto con el material inorgánico refractario en polvo, se Ie denomina Ia carga inorgánica total. El procedimiento, en adelante procedimiento de Ia invención, comprende una etapa de prensado por vibro-compresión al vacío de Ia masa de fabricación y su posterior endurecimiento por calor con una forma y dimensiones determinadas en el procedimiento. El artículo de piedra aglomerada obtenido es adecuado para su utilización en construcción y decoración, como por ejemplo, suelos, escaleras interiores, y superficies de trabajo en general, como encimeras de cocina.
El procedimiento de Ia invención, comprende añadir un material inorgánico refractario en polvo con un tamaño de partícula medio no superior a 1 miera a Ia carga inorgánica. La presente invención en adelante se refiere al material inorgánico refractario en polvo con un tamaño de partícula medio no superior a 1 miera como material nanoparticulado o material refractario nanoparticulado. En una realización preferente, el tamaño medio de partícula está comprendido entre 1 nm y 1000 nm. El material nanoparticulado se añade a Ia carga inorgánica en una cantidad comprendida entre 0,2% y 35% en peso respecto al peso total de Ia masa de fabricación.
En general el material refractario nanoparticulado puede ser en principio cualquier material refractario que presente un coeficiente de conductividad térmica superior al de los materiales usados en Ia carga inorgánica , como son el cuarzo cristalino (5-7 W/(m K)) y Ia sílice amorfa (0.8-2 W/(m K)). En general, los materiales con una conductividad térmica superior a 10 W/(m K), pueden ser utilizados para poner en práctica Ia presente invención, potenciándose el efecto que se busca cuanto mayor sea este valor.
En una realización particular dicho material se selecciona del grupo formado por alúmina (AI2O3), magnesia (MgO), berilia (BeO), circonia (ZrO2), óxido de cinc (ZnO), óxido de titanio (TiO2), nitruro de aluminio (AIN), nitruro de boro (BN), carburo de silicio (SiC), Al, Si, Ag, Wo, Pt, Pd, Ni, In, Cu, las aleaciones Si-Ge, Ag- Pd, Ag-Pt, Cu-Mb y sus mezclas. En una realización particular el componente es alúmina cuyo coeficiente de conductividad térmica es 36-40 W/(m K). En otra realización particular es nitruro de aluminio cuyo coeficiente es 140-180 W/(m K). La carga inorgánica utilizada es convencional y puede comprender, por ejemplo, una mezcla de triturados de granulometría convencional y variable de uno o más materiales convencionalmente utilizados en Ia fabricación de artículos de piedra aglomerada. Entre los materiales se pueden citar a modo de ejemplo, mármol, dolomita, sílice, cristal, espejo, cristobalita, granito, cuarzo opaco, cuarzo cristalino, feldespato, basalto, y material ferrosilíceo, entre otros. La carga inorgánica se selecciona de modo que sea compatible con el promotor de adherencia utilizado en el ligante. La carga inorgánica se obtiene bien de forma comercial o bien seleccionando y triturando los materiales inorgánicos de partida hasta Ia granulometría deseada y mezclándolos en las proporciones adecuadas para obtener el aspecto final deseado del artículo de piedra aglomerado.
En una realización particular se utilizan una de las siguientes cargas inorgánicas totales, en uno de los siguientes porcentajes preferidos:
• 30-35% de cristobalita micronizada; • 20-60% de sílice micronizada;
• 4-8% de cuarzo triturado;
• 0,2-35% de material refractario (alúmina),
de modo que Ia suma de los porcentajes seleccionados sea obviamente el 100% de Ia carga inorgánica total de Ia masa de fabricación.
Los porcentajes señalados arriba se expresan en peso con respecto al peso total de Ia masa de fabricación. El porcentaje exacto de cada material y de cada granulometría dependerá de las características estéticas del artículo a obtener y del efecto visual que se quiera conseguir.
El ligante se prepara de forma convencional, generalmente siguiendo las instrucciones del producto comercial adquirido en cada caso. Dicho ligante constituye entre el 6% y el 15% en peso respecto al peso de Ia totalidad de Ia masa de fabricación y comprende generalmente: Una resina de poliéster instaurado obtenible de forma comercial, preferentemente una resina de poliéster insaturado ortoftálico, un catalizador, un acelerador, un promotor de adherencia y opcionalmente un aditivo tal como un colorante y/o un agente biocida y/o un filtro ultravioleta. Todos los componentes son convencionales.
La instalación para Ia puesta en práctica del procedimiento es una instalación convencional. El ligante y Ia carga mineral total, se mezclan en las mezcladoras planetarias hasta a correcta homogeneización, y posteriormente el conjunto se mezcla en el anillo de homogeneización. Se obtiene así Ia denominada masa de fabricación.
El procedimiento de Ia invención comprende además las siguientes etapas convencionales:
• distribuir una parte de Ia masa de fabricación sobre un soporte;
• moldeo y prensado de Ia masa en una prensa de vibro-compactación en condiciones de vacío;
• endurecimiento de Ia masa por aplicación de calor.
En este sentido, Ia masa de fabricación homogénea se lleva mediante una cinta trasportadora hasta un distribuidor que coloca sobre un soporte una parte de masa en forma deseada como por ejemplo en forma de tablero. El tamaño del molde utilizado será el que determine el tamaño del tablero, mientras que el grosor Io fijará Ia cantidad de masa que se disponga en el molde. El molde se protege con un papel o film polimérico y se conduce a continuación a una prensa de vibro- compresión al vacío, donde el material se compacta durante unos minutos.
Una vez prensado, el tablero se conduce a un horno, cuya temperatura de consigna se coloca entre los 30 y 150 QC, desencadenándose el entrecruzamiento de Ia resina de poliéster, Io que proporciona Ia dureza al tablero. El tiempo de residencia en el horno oscila entre los 20 y 120 minutos.
Una vez endurecida Ia masa mediante Ia aplicación de calor, el artículo endurecido obtenido se puede someter a una serie de operaciones posteriores y convencionales propias de Ia elaboración de cualquier piedra natural, para su acabado final; dichas etapas comprenden enfriar el producto obtenido y tratamientos mecánicos como calibrar, pulir y cortar según las dimensiones finales deseadas.
Generalmente el artículo de piedra aglomerado fabricado presenta forma de tabla ya que se suele destinar a Ia construcción de superficies de trabajo, como encimeras de cocina, en las que interesa una eficaz disipación de calor, escaleras, suelos, baños, mesas etc. No obstante el artículo obtenido mediante el procedimiento de Ia invención puede fabricarse con cualquier forma y dimensiones y espesores que se deseen. En una realización preferida el artículo obtenido es una tabla, más preferiblemente una tabla de aglomerado de cuarzo. Los artículos de piedra aglomerada obtenibles por el procedimiento de Ia invención constituyen un aspecto adicional de Ia invención.
De acuerdo con el procedimiento de Ia presente invención, Ia diferente apariencia de los tableros se controla mediante Ia variación de Ia composición y Ia granulometría de los distintos materiales de Ia carga inorgánica, además del empleo de diferentes tipos de pigmentos. Es importante que el material refractario se homogeneice por completo en todo el artículo de piedra aglomerada. Debido a su tamaño nanométrico, estas partículas presentan una superficie específica muy elevada, que permite aumentar significativamente Ia conductividad térmica del aglomerado, y así Ia disipación del calor. Cabe destacar que el artículo de piedra aglomerada obtenido por el procedimiento de Ia invención, soporta temperaturas más elevadas que las que soporta un artículo convencional, sin que se noten cambios en el aspecto de Ia superficie ni se produzcan roturas. Esto se deduce de los resultados experimentales presentados en los Ejemplos. Por último en un aspecto adicional, Ia invención se refiere al empleo de un artículo aglomerado obtenido mediante el procedimiento de Ia invención en construcción y decoración, como por ejemplo en Ia construcción de superficies de trabajo, como encimeras de cocina, en las que interese una eficaz disipación de calor, escaleras, suelos, baños, mesas etc. A continuación se presentan ejemplos ilustrativos de Ia invención que se exponen para una mejor comprensión de Ia misma y en ningún caso deben considerarse una limitación del alcance de Ia misma.
EJEMPLOS
Ejemplo 1 : Obtención de tablas con resistencia térmica
Se ha realizado Ia fabricación de varias tablas con propiedades de resistencia térmica mejoradas a partir de una masa de 1800 Kg, con Ia siguiente composición: Ligante de resina de poliéster insaturada: 10% Sílice micronizada: 28%.
- Cuarzo triturado: 61 %
- AI2O3 (tamaño medio de partícula = 13 nm): 1% Ejemplo 2: Obtención de tablas con resistencia térmica
Se ha realizado Ia fabricación de varias tablas con propiedades de resistencia térmica mejoradas a partir de una masa de 1800 Kg, con Ia siguiente composición: Ligante de resina de poliéster insaturada: 10.5%
- Sílice micronizada: 28%. - Cuarzo triturado: 61 %
- AIN (tamaño medio de partícula = 100 nm): 0.5 %
En los ejemplos 1 y 2 se obtuvieron 10 tablas de 3 m de largo por 1.40 m de ancho por 2 cm de grosor. Las muestras realizadas según el ejemplo 1 y el ejemplo 2 se sometieron a los procedimientos normales de calibrado y pulido, y se sometieron a posteriores estudios térmicos dirigidos a comparar sus propiedades con las tablas convencionales. Las tablas convencionales se prepararon del mismo modo que las de Ia presente invención pero sin Ia incorporación a Ia masa de fabricación de material inorgánico refractario en forma de polvo. Los ensayos realizados y los resultados obtenidos se muestran a continuación. La Tabla 1 muestra, por un lado, para un tiempo de exposición de 10 minutos sobre un foco caliente, Ia temperatura máxima que soporta Ia muestra expuesta sin que se noten cambios en el aspecto de Ia superficie, manteniéndose constante esta temperatura durante todo el ensayo. Por otro lado, también se muestran los resultados de ensayos en los que se ha expuesto el material a un foco caliente que se enfría sobre Ia superficie durante 10 minutos
Figure imgf000009_0001
Tabla 1
En Ia Tabla 2 se muestra el número de roturas producidas en muestras con Ia formulación convencional y en muestras obtenidas en los ejemplos 1 y 2. Para los ensayos se utilizaron probetas de 30 x 30 cm de 1 .2 cm de espesor, las cuales se sometieron a choque térmico por contacto con una fuente caliente a 220 QC que se deja enfriar hasta temperatura ambiente.
Figure imgf000009_0002
Tabla 2

Claims

REIVINDICACIONES
1. Procedimiento para Ia fabricación de un artículo de piedra aglomerada que comprende añadir un material inorgánico refractario en polvo con un tamaño de partícula medio no superior a 1 miera a Ia carga inorgánica utilizada en el procedimiento.
2. Procedimiento según Ia reivindicación 1 , en el que el material inorgánico refractario se selecciona del grupo formado por alúmina, magnesia, berilia, circonia , óxido de cinc, óxido de titanio, nitruro de aluminio, nitruro de boro, carburo de silicio, Al, Si, Ag, Wo, Pt, Pd, Ni, In, Cu, las aleaciones Si-Ge, Ag-Pd, Ag-Pt, Cu-Mb y sus mezclas.
3. Procedimiento según Ia reivindicación 2, en el que el material refractario es alúmina o nitruro de aluminio.
4. Procedimiento según cualquiera de las reivindicaciones 1 a 3, en el que el material refractario presenta un tamaño medio de partícula comprendido entre 1 nm y 1000 nm.
5. Procedimiento según cualquiera de las reivindicaciones 1 a 4, en el que el material refractario se añade en una cantidad comprendida entre 0,2 y 35% en peso con respecto al peso total de Ia masa de fabricación.
6. Procedimiento según cualquiera de las reivindicaciones 1 a 5, en el que Ia carga inorgánica total presenta Ia siguiente composición:
• 30-35% de cristobalita micronizada;
• 20-60% de sílice micronizada;
• 4-8% de cuarzo triturado; • 0,2-35% de alúmina,
de modo que Ia suma de los porcentajes seleccionados de los materiales sea el 100% de Ia carga inorgánica total de Ia masa de fabricación.
7. Procedimiento según cualquiera de las reivindicaciones 1 -6, que comprende además las siguientes etapas:
(i) añadir el ligante a Ia carga inorgánica total; (ii) mezclar hasta obtener una masa de fabricación homogénea; (iii) distribuir una parte de Ia masa de fabricación sobre un soporte;
(iv) prensado de Ia masa en una prensa de vibro-compactación en condiciones de vacío;
(v) endurecimiento de Ia masa por aplicación de calor; (vi) enfriamiento del artículo de piedra aglomerada obtenido, y opcionalmente (vii) tratamiento mecánico del artículo.
8. Procedimiento según cualquiera de las reivindicaciones 1 -5, 7 en el que Ia masa de fabricación presenta Ia siguiente composición, donde los porcentajes se expresan en peso con respecto al peso total de Ia masa de fabricación: a) Sílice micronizada: 28%, b) Cuarzo triturado: 61 % c) Alúmina: 1 .0%, d) ligante de resina de poliéster insaturado 10%.
9. Procedimiento según cualquiera de las reivindicaciones 1 -5, 7 en el que Ia masa de fabricación presenta Ia siguiente composición, donde los porcentajes se expresan en peso con respecto al peso total de Ia masa de fabricación: a) Sílice micronizada: 28%, d) Cuarzo triturado: 61 % e) Nitruro de aluminio 0.5%, d) ligante de resina de poliéster insaturado 10.5%.
10. Artículo de piedra aglomerado obtenido según el procedimiento de cualquiera de las reivindicaciones 1 a 9.
1 1. Articulo según Ia reivindicación 10, de cuarzo aglomerado.
12. Artículo según cualquiera de las reivindicaciones 10 - 1 1 , en forma de tabla, solería o aplacado.
13. Empleo de un artículo según cualquiera de las reivindicaciones 10 a 12, en construcción o decoración.
PCT/ES2009/070169 2008-05-20 2009-05-20 Procedimiento para la fabricación de un artículo de piedra aglomerada con resistencia térmica WO2009141481A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200801470A ES2332441B1 (es) 2008-05-20 2008-05-20 Procedimiento para la fabricacion de un articulo de piedra aglomeradacon resistencia termica.
ESP200801470 2008-05-20

Publications (1)

Publication Number Publication Date
WO2009141481A1 true WO2009141481A1 (es) 2009-11-26

Family

ID=41339808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070169 WO2009141481A1 (es) 2008-05-20 2009-05-20 Procedimiento para la fabricación de un artículo de piedra aglomerada con resistencia térmica

Country Status (2)

Country Link
ES (1) ES2332441B1 (es)
WO (1) WO2009141481A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026154A2 (en) * 1998-10-30 2000-05-11 Kjeld Holbek Binder systems derived from amorphous silica and bases
WO2002008135A1 (en) * 2000-07-21 2002-01-31 Colorobbia Italia S.P.A. Glass-ceramics, process for their preparation and use
US6919289B1 (en) * 2003-03-26 2005-07-19 Carlisle Foodservice Products, Incorporated Methods and compositions for low thermal expansion ceramic
ES2320839A1 (es) * 2007-11-27 2009-05-28 Cosentino S.A. Procedimiento para la fabricacion de un articulo antiestatico de piedra aglomerada y articulo obtenido mediante dicho procedimiento.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026154A2 (en) * 1998-10-30 2000-05-11 Kjeld Holbek Binder systems derived from amorphous silica and bases
WO2002008135A1 (en) * 2000-07-21 2002-01-31 Colorobbia Italia S.P.A. Glass-ceramics, process for their preparation and use
US6919289B1 (en) * 2003-03-26 2005-07-19 Carlisle Foodservice Products, Incorporated Methods and compositions for low thermal expansion ceramic
ES2320839A1 (es) * 2007-11-27 2009-05-28 Cosentino S.A. Procedimiento para la fabricacion de un articulo antiestatico de piedra aglomerada y articulo obtenido mediante dicho procedimiento.

Also Published As

Publication number Publication date
ES2332441B1 (es) 2011-02-09
ES2332441A1 (es) 2010-02-04

Similar Documents

Publication Publication Date Title
ES2727303T3 (es) Material compuesto que tiene el aspecto de la piedra natural
JP2015525840A5 (es)
Tunali et al. Production and characterisation of granulated frit to achieve anorthite based glass–ceramic glaze
ES2320839B1 (es) Procedimiento para la fabricacion de un articulo antiestatico de piedra aglomerada y articulo obtenido mediante dicho procedimiento.
ES2899180T3 (es) Artículo de piedra aglomerada artificial que comprende granulado de silicato sintético
CN106966600B (zh) 一种牙科纳米级微晶玻璃及其生产方法
US20080296795A1 (en) Process to create decorative pattern in engineered stone
ES2716120T3 (es) Reducción de las tensiones internas en materiales cerámicos
ES2332441B1 (es) Procedimiento para la fabricacion de un articulo de piedra aglomeradacon resistencia termica.
CN101209930A (zh) 发光陶瓷及其制备方法
CN105026327A (zh) 复合材料
KR101098243B1 (ko) 고강도 도자기용 소지 조성물 및 이를 이용한 고강도 도자기의 제조방법
KR100821973B1 (ko) 콘크리트 폭열 방지 혼화재 및 그 혼화재가 포함된콘크리트 조성물
KR100761617B1 (ko) 항균성 및 원적외선 방사율이 높은 현무암 바이오 세라믹조성물의 제조방법
JP6905043B2 (ja) 食器用の低比重pet複合材
ES2402984T3 (es) Mezcla madre retardante de llama para polímeros termoplásticos y proceso para su producción
ES2291693T3 (es) Material aglomerado que contiene silicio reciclado.
JP3324157B2 (ja) 不燃複合材料とその製法
KR20010110819A (ko) 건축 구조물 성형을 위한 몰딩재
KR101635984B1 (ko) 건축용 보드 제조용 무기질 바인더 조성물 및 이의 제조방법
KR101683669B1 (ko) 결정화 실리케이트 합성 분말 및 이를 포함하는 고내열 도자 소지
US20240067556A1 (en) Glass/quartz composite surface
KR100919954B1 (ko) 천연재료를 이용한 건축물 내장재용 조성물 및 이를 이용한내장재의 제조방법
KR102440272B1 (ko) 용융금속의 부착방지용 이형제
US20230002284A1 (en) Glass/quartz composite surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749965

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09749965

Country of ref document: EP

Kind code of ref document: A1