WO2009139027A1 - 通信方式および電力線通信端末 - Google Patents

通信方式および電力線通信端末 Download PDF

Info

Publication number
WO2009139027A1
WO2009139027A1 PCT/JP2008/003741 JP2008003741W WO2009139027A1 WO 2009139027 A1 WO2009139027 A1 WO 2009139027A1 JP 2008003741 W JP2008003741 W JP 2008003741W WO 2009139027 A1 WO2009139027 A1 WO 2009139027A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
transmission
terminal
fluctuation amount
signal
Prior art date
Application number
PCT/JP2008/003741
Other languages
English (en)
French (fr)
Inventor
古山孝好
山本祐一
田原整
児玉宣貴
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2008801280568A priority Critical patent/CN101971535A/zh
Publication of WO2009139027A1 publication Critical patent/WO2009139027A1/ja
Priority to US12/879,580 priority patent/US20110058594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • H04L25/03885Line equalisers; line build-out devices adaptive
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2642Wavelet transform modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5408Methods of transmitting or receiving signals via power distribution lines using protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers

Definitions

  • the present invention relates to a communication method using a multicarrier transmission method, and more particularly to a communication method and a communication device using a multicarrier transmission method in power line communication using a power line as a communication medium.
  • a power line communication device using a power line as a communication medium high-speed data transfer is possible by adopting a multicarrier transmission method using OFDM (Orthogonal Frequency Division Multiplexing).
  • OFDM Orthogonal Frequency Division Multiplexing
  • FFT Fast Fourier Transform
  • wavelet-based OFDM are often used as conventional techniques.
  • Fig. 7 shows the conceptual configuration of a power line communication device using wavelet-based OFDM.
  • transmission apparatus 100 transmission data input from an upper layer is converted into symbol data by symbol mapper 110, and symbol mapping is performed according to each symbol data.
  • the phase rotator 120 performs different phase rotation for each subcarrier to reduce the PAPR (Peek-to-Average-Power-Ratio) of the transmission signal with respect to this symbol map.
  • the D / A converter 150 converts the sample value series into a temporally continuous baseband analog signal waveform and transmits it.
  • the received signal is converted into a digital signal by the A / D converter 210, wavelet converted by the wavelet converter 220 so that the phase information can be handled, and the parallel / serial converter (P / S converter) 230. Converted to serial data and returned to the original phase of the subcarrier phase rotated by the phase rotator 240 for PAPR reduction.
  • the carrier detector 250 detects the presence or absence of the received signal, and the synchronization circuit 260 synchronizes from the received signal.
  • the timing is extracted, the equalizer 270 corrects the received signal so as to cancel the influence of the transmission path, and the determiner 280 determines the received signal using a threshold value.
  • preamble symbol 510 is, for example, a pilot symbol in which all carriers are sinusoidal signals, and receiving apparatus 200 receives this signal, estimates the amplitude and phase characteristics of each carrier, and adjusts reception parameters. Thus, equalization of transmission path characteristics (such as compensation of transmission characteristics) is performed.
  • the change of the transmission path characteristics due to the impedance fluctuation becomes a very big problem in high speed communication.
  • the power line to which such devices are connected is connected to the transmission line.
  • the amplitude and phase characteristics of the transmission path change every few milliseconds, the error rate of the communication signal becomes very large.
  • VoIP Voice over Internet Protocol
  • HD High Definition
  • a circuit that detects the voltage phase of the AC power supply and the error rate is provided, and by acquiring data indicating the correlation between the voltage phase and the error rate, the voltage phase where the error rate is equal to or greater than the threshold value is obtained.
  • a communication device that stops communication is conceivable (see, for example, Patent Document 1).
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-124841 (Page 5, Fig. 2 etc.) JP 2006-186734 A
  • pilot symbols In the communication method in which pilot symbols are inserted into information symbols, the pilot symbols themselves do not contribute to actual data communication, so the band utilization efficiency decreases.
  • the impedance fluctuation location in the voltage phase is different from the pilot symbol insertion location, data communication from the impedance fluctuation location to the next pilot symbol insertion location results in an error.
  • the present invention has been made in view of the above circumstances, and in power line communication adopting a multicarrier transmission system, a communication system and a communication device capable of suppressing a decrease in communication speed even when there is impedance variation on a transmission line.
  • the purpose is to provide.
  • the phase parameter of the communication signal to be transmitted is determined according to the impedance fluctuation amount of the transmission line. It is characterized by transmitting while changing in.
  • the phase parameter of the communication signal is stably received without being fluctuated by the impedance fluctuation amount of the transmission line, so that high-speed data communication can be performed while suppressing communication errors.
  • the impedance fluctuation amount of the transmission path is estimated by the reception terminal receiving and analyzing the transmission path state estimation signal transmitted by the transmission terminal.
  • the impedance fluctuation amount of the transmission path is estimated by the receiving terminal receiving and analyzing the normal data communication signal transmitted by the transmitting terminal.
  • the transmission path state estimation signal or the normal data communication signal transmitted by the transmitting terminal is transmitted in a form that can be received by all terminals in the network.
  • the impedance fluctuation amount of the transmission line is generated by a fluctuation amount map in units of one cycle of the AC power source flowing through the power line.
  • the phase parameter of the transmission signal can be appropriately changed with respect to the impedance fluctuation generated every cycle of the AC power supply.
  • the impedance fluctuation amount of the transmission line is generated by a fluctuation amount map in units of 1 / N (N is an integer) of the period of the AC power supply flowing through the power line. .
  • the phase parameter of the transmission signal can be appropriately changed with a small data storage capacity with respect to the impedance fluctuation generated every 1 / N cycle of the AC power supply.
  • the impedance fluctuation amount of the transmission path is generated by a fluctuation amount map in units of N times (N is an integer) the period of the AC power supply flowing through the power line.
  • the phase parameter of the transmission signal can be appropriately changed with respect to the impedance fluctuation generated every N times the AC power source.
  • the impedance fluctuation amount of the transmission path is acquired prior to the transmission terminal performing normal data communication for the first time with the reception terminal.
  • communication can be started with an optimum phase parameter at the time of data communication.
  • the impedance fluctuation amount of the transmission path is changed every time the transmitting terminal performs normal data communication, that is, each time the transmitting terminal transmits a normal data communication signal and receives an Acknowledge signal from the receiving terminal. In addition, it is acquired and updated sequentially.
  • the above communication method eliminates the overhead at the start of data communication and can perform communication while gradually correcting the phase parameter to an appropriate value. Further, it is possible to perform communication that gradually follows the impedance fluctuation amount of the transmission path that dynamically changes.
  • the impedance fluctuation amount of the transmission line is periodically updated.
  • the impedance fluctuation amount of the transmission path estimated by the receiving terminal is transmitted to the transmitting terminal as a dedicated communication signal indicating a transmission path state estimation result.
  • the impedance fluctuation amount of the transmission path can be quickly transmitted to the transmission terminal regardless of the transmission status from the transmission terminal.
  • the impedance fluctuation amount of the transmission path estimated by the receiving terminal is a response transmitted from the receiving terminal to the transmitting terminal when the transmitting terminal communicates with the receiving terminal. It is transmitted together with the signal.
  • the impedance fluctuation amount of the transmission path can be transmitted to the transmission terminal without requiring a communication band for transmitting a special signal.
  • a communication signal other than the normal data communication is inserted during the fluctuation period of the impedance variation of the transmission path.
  • the communication signal other than the normal data communication is a pilot symbol for estimating the influence of the impedance variation of the communication signal in the receiving terminal, and the receiving terminal uses the pilot symbol of the receiving circuit.
  • the phase parameter is corrected.
  • high-speed communication can be performed while further suppressing communication errors during the impedance fluctuation period.
  • the transmission terminal changes the amplitude parameter of the communication signal in the process of changing the phase parameter of the communication signal to be transmitted.
  • the above communication method enables high-speed communication with reduced communication errors even when the amplitude changes greatly due to impedance fluctuations in the transmission path.
  • a power line communication terminal is a power line communication terminal using a power line as a transmission line, a means for obtaining information on impedance fluctuation amount in the transmission line, and a phase parameter or a phase parameter of a communication signal to be transmitted according to the information. And means for transmitting while changing the amplitude parameter within a continuous communication signal.
  • the power line communication terminal is a power line communication terminal using a power line as a transmission line, a means for receiving a transmission line state estimation signal or a normal data communication signal, and analyzing the signal to determine the impedance fluctuation amount of the transmission line. And a means for estimating.
  • the power line communication terminal further includes means for switching, by a user operation, whether the process for changing the phase parameter or the process for changing the phase parameter and the amplitude parameter together is performed by a user operation.
  • the power line communication terminal further includes means for displaying a valid / invalid state of the process of changing the phase parameter or the process of changing the phase parameter and the amplitude parameter together.
  • the present invention in power line communication adopting a multi-carrier transmission method, it is possible to perform communication capable of suppressing a decrease in communication speed even if there is impedance variation on the transmission line.
  • FIG. 1 is a block diagram showing a schematic configuration of the power line communication system according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating a transmission signal according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a schematic configuration of the transmission apparatus according to the second embodiment.
  • FIG. 4 is a diagram schematically illustrating a transmission signal in the second embodiment.
  • FIG. 5 is a diagram schematically illustrating a part of a communication frame according to the fourth embodiment.
  • FIG. 6 is a diagram schematically illustrating a transmission signal and a communication frame in the fourth embodiment.
  • FIG. 7 is a block diagram showing a conceptual configuration of a power line communication apparatus using wavelet-based OFDM in the multicarrier transmission scheme.
  • FIG. 8 is a diagram schematically illustrating a part of a communication frame in the multicarrier transmission scheme.
  • FIG. 1 is a block diagram showing a schematic configuration of the power line communication system according to the first embodiment.
  • communication is performed between a transmission apparatus 101 and a reception apparatus 201 by a multicarrier transmission method using a power line as a communication medium.
  • wavelet-based OFDM is used as a multicarrier transmission method will be described as an example.
  • a transmission apparatus 101 includes a symbol mapper 110 that performs symbol mapping of a bit string that is transmission data, a phase rotator 121 that performs phase rotation on the symbol mapped data, and serial-parallel conversion that performs serial-parallel conversion on the phase-rotated data.
  • Converter (S / P converter) 130 inverse wavelet transformer 140 that generates a sample value sequence of the time axis waveform by inverse wavelet transforming this real value on the time axis, and converting this sample value sequence into an analog signal waveform A D / A converter 150 for conversion.
  • the receiving apparatus 201 includes an A / D converter 210 that converts a received analog signal into a digital signal, a wavelet converter 220 that generates a common signal and a quadrature signal by wavelet transforming the digital signal, and wavelet transform.
  • a parallel / serial converter (P / S converter) 230 that performs parallel / serial conversion on the received data, a phase rotator 240 that rotates the phase of the data, and a transmission signal sent from the transmission device 101 are detected.
  • the synchronization circuit 260 for synchronizing with the received signal, the equalizer 270 for correcting the received signal distorted by the transmission path characteristics, and the signal output from the equalizer 270
  • the determination unit 280 that performs the determination and the impedance fluctuation amount estimator 290 that analyzes and estimates the impedance fluctuation amount on the transmission path are included.
  • the phase rotator 121 includes a PAPR-Vector 125 for rotating the phase of each subcarrier to reduce PAPR, a phase parameter change Vector 127 set based on the impedance fluctuation amount of the transmission path, and a signal A phase rotation circuit 126 is included for rotating the phase.
  • PAPR-Vector125 is one-dimensional information that holds phase rotation parameters for each subcarrier
  • phase parameter change Vector127 is two-dimensional information that holds phase rotation parameters for each subcarrier and for any unit time. It is.
  • phase parameter change vector 127 When the transmission apparatus 101 is initially started up or when there is no impedance variation on the transmission path between the transmission apparatus 101 and the reception apparatus 201, all zeros are set in the phase parameter change vector 127.
  • the data symbol-mapped by the symbol mapper 110 is phase-rotated by the phase rotation circuit 126 only by the PAPR-Vector 125, and the subsequent S / P conversion is performed. Data is passed to the device 130.
  • the transmission apparatus 101 transmits a transmission path state estimation signal to the reception apparatus 201.
  • the transmission path state estimation signal is, for example, a pilot symbol in which all carriers are sine waves, and the receiving apparatus 201 that has received the transmission path state estimation signal is receiving the impedance fluctuation amount of the transmission path with the impedance fluctuation amount estimator 290. It is estimated as the transition on the time axis.
  • the receiving device 201 transmits the estimated impedance fluctuation amount to the transmitting device 101 as a signal representing the transmission path state estimation result.
  • the transmitting apparatus 101 accumulates information related to the phase characteristics in the impedance fluctuation amount transmitted from the receiving apparatus 201 in the phase parameter change vector 127.
  • the data construction on the time axis of the phase parameter change vector 127 is performed as a change amount transition map within a cycle of N times or 1 / N (N is an integer) of the power cycle, for example, one cycle of the power cycle.
  • Examples of the accumulation method include sequential overwriting with new data and arithmetic averaging.
  • the data symbol-mapped by the symbol mapper 110 is the PAPR-Vector 125, and the phase The phase is rotated by the phase rotation circuit 126 by a value obtained by synthesizing the phase parameters acquired corresponding to the power cycle transmitted from the parameter change vector 127, and the data is passed to the S / P converter 130 at the subsequent stage.
  • the processing in the transmitter 101 after the S / P converter 130 and the processing in the receiver 201 are the same as those at the initial startup when all 0 are set in the phase parameter change vector 127.
  • FIG. 2 schematically shows a communication signal transmitted from the transmission apparatus 101.
  • the impedance fluctuation amount on the transmission line is only ⁇ as the phase characteristic in the interval from t0 to t1 and t2 to t3 as the offset time from the zero cross point of one cycle of the power source shown in Fig. 2 (a)
  • the phase parameter of the communication signal is changed by ⁇ in the period from t0 to t1 and from t2 to t3.
  • phase rotator 121 of the transmission device 101 by changing the phase parameter based on the impedance fluctuation amount of the transmission path between the transmission device 101 and the reception device 201 in advance in a transmission signal that is continuous in time, The phase parameter of the signal received by the receiving device 201 is kept constant. As a result, it is possible to reduce communication errors due to the impedance fluctuation amount of the transmission path and perform high-speed communication.
  • the wavelet-based OFDM is adopted as the multi-carrier transmission method
  • another modulation method for example, FFT-based OFDM
  • phase parameter change vector 127 and the phase rotation circuit 126 need be added.
  • the phase parameter change vector 127 may have information individually for each counterpart terminal and may be three-dimensional information.
  • the transmission path state estimation signal is transmitted in a form (broadcast) that can be received by all terminals, and transmission to and from the transmitting apparatus 101 is performed in all terminals that have received this signal.
  • the impedance fluctuation amount of the road may be estimated simultaneously.
  • the impedance fluctuation amount estimated by the impedance fluctuation amount estimator 290 may be only the fluctuation amount related to the phase characteristic.
  • the signal representing the transmission path state estimation result transmitted from the receiving apparatus 201 may be only the fluctuation amount related to the phase characteristic of the impedance fluctuation amount.
  • the transmission apparatus 101 may periodically perform transmission path state estimation signals to periodically estimate the impedance fluctuation amount on the transmission path and update the phase parameter change vector 127.
  • the transmission apparatus 101 may include an estimator 290 that estimates the impedance fluctuation amount of the transmission path.
  • the receiving device 200 shown in FIG. 7 of the existing technology can be used as it is.
  • a configuration unique to the transmission apparatus 102 according to the present embodiment is an amplitude controller 160.
  • the amplitude control of the transmission signal can be performed by the symbol mapper 110.
  • each subcarrier is usually according to a predetermined transmission level map. Only the amplitude value is determined.
  • the transmission apparatus 102 shown in FIG. 3 differs in that amplitude control is performed based on an amplitude parameter change vector 165 that holds amplitude change parameters for each subcarrier and for each arbitrary unit time.
  • the processing until the impedance fluctuation amount of the transmission path is acquired from the receiving apparatus 201 is the same as that in the first embodiment.
  • the transmitter 102 constructs the phase parameter change Vector 127 from the impedance variation information received from the receiver 201, and also constructs the amplitude parameter change Vector 165.
  • the amplitude parameter change Vector 165 is similarly constructed as a change amount transition map within a half cycle of the power cycle.
  • phase rotation circuit 126 controls the amplitude by the amplitude parameter acquired in correspondence with the power cycle transmitted from the amplitude parameter change vector 165.
  • phase rotation is performed by the phase rotation circuit 126 by a value obtained by synthesizing the PAPR-Vector 125 and the phase parameter acquired corresponding to the power cycle transmitted from the phase parameter change vector 127, and the data is transferred to the S / P converter 130 at the subsequent stage. Will be passed.
  • the processing in the transmission device 102 after the S / P converter 130 and the processing in the reception device 201 are the same as those described in the first embodiment.
  • FIG. 4 schematically shows a communication signal transmitted from the transmission device 102.
  • the impedance fluctuation amount on the transmission line varies by ⁇ as the phase characteristic in the interval from t0 to t1 as the offset time from the zero cross point of the half cycle of the power source shown in FIG. Assume that the characteristics vary from A to B.
  • the phase of the transmission signal is changed by ⁇ in the interval from t0 to t1, and the amplitude parameter is set to C ⁇ A / C with respect to the reference value C (C is an arbitrary value). Change only B.
  • the change of the amplitude parameter based on the impedance fluctuation amount of the transmission line between the transmission device 102 and the reception device 201 is changed in the temporally continuous transmission signal together with the change of the phase parameter.
  • the amplitude parameter and the phase parameter of the signal received by the receiving apparatus 201 are kept constant. Thereby, it is possible to further reduce communication errors due to the impedance fluctuation amount of the transmission path.
  • phase parameter change vector 127 and the amplitude parameter change vector 165 are both constructed in the half cycle of the power cycle, but may be constructed in individual cycles.
  • the difference between the first embodiment and the second embodiment in the third embodiment is that the transmission between the transmission device 101 (or the transmission device 102, which will be described only by the transmission device 101 hereinafter) and the reception device 201.
  • the transmission path state estimation signal is not transmitted in order to estimate the impedance fluctuation amount of the path.
  • the impedance fluctuation amount of the transmission path is estimated using communication of normal data transmitted from the transmission apparatus 101 to the reception apparatus 201. That is, as shown in FIG. 8, when performing normal data communication, reception apparatus 201 estimates the amount of impedance fluctuation during this symbol reception period using preamble symbol 510 added to the head portion of the communication signal.
  • the preamble symbol is, for example, a symbol in which all carriers are sine waves, and the receiving apparatus 201 estimates the impedance fluctuation amount of the transmission path as a transition on the time axis during signal reception by the impedance fluctuation amount estimator 290. This estimation result is transmitted to the transmitting apparatus 101 together with a signal (Acknowledge) indicating successful data reception, for example.
  • the transmission path impedance fluctuation amount estimated by the reception apparatus 201 is transmitted to the transmission apparatus 101 using an Acknowledge signal.
  • the transmission path state estimation result is transmitted to the transmission apparatus 101 as a signal. May be.
  • FIG. 5 is a diagram schematically illustrating a part of a communication frame when the communication method according to the fourth embodiment is employed.
  • a configuration unique to the present embodiment is a non-data symbol 540 inserted into the information symbol 530.
  • This non-data symbol 540 is a symbol that has nothing to do with transmission data given by the transmission apparatus from an upper layer. This symbol is inserted at a location where the impedance changes rapidly.
  • FIG. 6 schematically shows a communication signal when the configuration of this embodiment is added to the first embodiment.
  • the impedance fluctuation amount on the transmission line is only ⁇ as the phase characteristic as shown in Fig. 6 (b) in the interval from t0 to t1 and from t2 to t3 as the offset time from the zero cross point of one cycle of the power source.
  • the phase parameter of the transmission signal is changed by ⁇ in the period from t0 to t1 and from t2 to t3.
  • the non-data symbol 540 is inserted only during ⁇ t before and after that.
  • ⁇ t is set to include ⁇ t0 as a time equal to or longer than the period ⁇ t0 during which the impedance is changing.
  • the period ⁇ t0 in which the impedance varies indicates a time until either or both of the phase variation d ⁇ and the amplitude variation dA during a certain time unit dt period become equal to or less than an arbitrary threshold value.
  • the non-data symbol 540 may be a transmission path state estimation signal. In this case, it is possible to suppress a communication error during a period in which the impedance fluctuation amount on the transmission line is abrupt, and at the same time estimate the impedance fluctuation amount in this period more accurately.
  • the transmission apparatus of the power line communication system according to the present embodiment has a configuration in which means for switching between valid / invalid of functions is added to the transmission apparatus 102 shown in the second embodiment.
  • the switching means for example, a dip switch provided outside the transmission apparatus 102 or setting on software installed in the apparatus can be considered, but other means may be used.
  • the transmission apparatus 102 transmits the communication signal without performing the process of changing the phase parameter and the amplitude parameter of the communication signal to be transmitted.
  • the transmission apparatus may have a configuration that displays a valid / invalid state of the function set by the above-described means.
  • a means for displaying for example, an LED provided outside the transmission apparatus or an access via a tool to software installed in the apparatus can be considered, but other means may be used.
  • the power line communication system adopting the multi-carrier transmission system has an effect that it is possible to suppress a decrease in communication speed even if there is impedance fluctuation on the transmission line, and the multi-carrier transmission system is adopted. It is useful for a power line communication device for performing high-speed communication. It is particularly useful for power line communication systems and power line communication devices that are designed for applications where communication path latency is important, such as VoIP, and applications that require high-capacity and high-real-time communication, such as HD video stream distribution. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 電力線を伝送路とする電力線通信において、送信端末が通信信号を送信する場合、伝送路のインピーダンス変動量に応じて、送信する通信信号の位相パラメータを連続する通信信号内で変更させながら送信する。上記通信方式では、前記通信信号の位相パラメータが前記伝送路のインピーダンス変動量により変動することなく安定して受信されるため、通信エラーを抑えながら高速なデータ通信を行うことができる。

Description

通信方式および電力線通信端末
 本発明は、マルチキャリア伝送方式による通信方式、特に電力線を通信媒体とする電力線通信におけるマルチキャリア伝送方式による通信方式および通信装置に関する。
 電力線を通信媒体とする電力線通信装置において、OFDM(Orthogonal Frequency Division Multiplexing)を用いたマルチキャリア伝送方式を採用することにより、高速なデータ転送が可能となる。マルチキャリア伝送方式では、従来の技術として、FFT(Fast Fourier Transform)ベースのOFDMやウェーブレットベースのOFDMがよく用いられている。
 図7にウェーブレットベースのOFDMによる電力線通信装置の概念的構成を示す。まず、送信装置100において、上位層から入力される送信データをシンボルマッパ110によってシンボルデータに変換し、各シンボルデータに従ってシンボルマッピングを行う。このシンボルマップに対して、送信信号のPAPR(Peek to Average Power Ratio)を低減するためにサブキャリアごとに異なる位相回転を位相回転器120で行う。そして、直列並列変換器(S/P変換器)130でサブキャリアごとに実数値di(i=1~M)を与え、逆ウェーブレット変換器140で時間軸上へ逆ウェーブレット変換する。これにより、時間軸波形のサンプル値を発生させ、伝送シンボルを表すサンプル値系列を生成する。D/A変換器150で、このサンプル値系列から時間的に連続するベースバンド・アナログ信号波形に変換して送信する。受信装置200においては、受信信号をA/D変換器210でディジタル信号に変換し、ウェーブレット変換器220で位相情報が取り扱えるようにウェーブレット変換し、並列直列変換器(P/S変換器)230で直列データに変換し、位相回転器240でPAPR低減のために位相回転させたサブキャリアの位相を元に戻し、キャリア検出器250では受信信号の有無を検出し、同期回路260では受信信号から同期タイミングを抽出し、等化器270では伝送路の影響をキャンセルするように受信信号を補正し、判定器280ではしきい値を用いて受信信号を判定する。
 ところで、電力線を通信媒体とする電力線通信では、通信路に他の家電機器が多数接続されているため通信中のノイズ変動が激しい。そのため、例えば図8に示すように、通信信号の先頭部分に一般的に付加されているプリアンブルシンボル510と同期用シンボル520によって同期タイミングを抽出し伝送路特性の等化を行うだけでは、連続する通信信号を受信している間にノイズの影響により伝送路特性が変化した場合、情報用シンボル530のノイズ以降の部分の受信が困難になる。ここで、プリアンブルシンボル510は例えば全てのキャリアを正弦波の信号としたパイロットシンボルなどであり、受信装置200はこの信号を受信して各キャリアの振幅や位相の特性を推定し受信パラメータを調整することにより、伝送路特性の等化(伝送特性の補償など)を行うものである。
 とりわけ、インピーダンス変動による伝送路特性の変化は、高速通信を行う上で非常に大きな問題となる。交流電源の周期(1周期または半周期など)に同期して定期的に伝送路のインピーダンス特性を変化させる機器があることが知られているが、このような機器が接続された電力線を伝送路とする場合、数ミリ秒ごとに伝送路の振幅と位相の特性が変化するため、通信信号のエラー率が非常に大きくなる。従って、VoIP(Voice over Internet Protocol)のように通信路のレイテンシが重要となるアプリケーションや、HD(High Definition)映像のストリーム配信のように大容量かつリアルタイム性の高い通信が必要となるアプリケーションを電力線通信に適用した場合、通信信号のエラー率が大きくなると音飛びや映像の乱れなどの現象として現れる。
 この課題に対して、交流電源の電圧位相とエラー率を検出する回路を具備し、電圧位相とエラー率の相関を示すデータを取得することにより、エラー率がしきい値以上となる電圧位相では通信を停止する通信装置が考えられる(例えば、特許文献1参照)。
 また、パイロットシンボルを情報用シンボル内に複数回挿入、または交流電源の周期と同期して挿入することにより、伝送路特性の等化を定期的に行う通信装置が考えられる(例えば、特許文献2参照)。
特開2000-124841号公報(第5頁、第2図等) 特開2006-186734号公報
 しかしながら、エラー率がしきい値以上となる電圧位相で通信を停止する通信方式では、インピーダンス変動による通信エラーを抑えることはできるが、通信速度の低下は避けられない。
 パイロットシンボルを情報用シンボル内に挿入する通信方式では、パイロットシンボル自体は実際のデータ通信には寄与しないため、帯域の利用効率が低下する。また、電圧位相内のインピーダンス変動箇所とパイロットシンボル挿入箇所がずれていた場合、インピーダンス変動箇所から次のパイロットシンボル挿入箇所までのデータ通信がエラーになる。
 本発明は、上記事情に鑑みてなされたもので、マルチキャリア伝送方式を採用する電力線通信において、伝送路上のインピーダンス変動があっても通信速度の低下を抑えることが可能な通信方式および通信装置を提供することを目的とする。
 本発明による通信方式は、電力線を伝送路とする電力線通信において、送信端末が通信信号を送信する場合、伝送路のインピーダンス変動量に応じて、送信する通信信号の位相パラメータを連続する通信信号内で変更させながら送信することを特徴とする。
 上記通信方式では、前記通信信号の位相パラメータが前記伝送路のインピーダンス変動量により変動することなく安定して受信されるため、通信エラーを抑えながら高速なデータ通信を行うことができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記送信端末が送信する伝送路状態推定信号を、受信端末が受信し解析することにより推定されることを特徴とする。
 上記通信方式では、素性(レベル、位相等)が既知であり前記伝送路のインピーダンス変動量を推定するのに適した信号を利用できるため、前記伝送路のインピーダンス変動量を精度良く推定することができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記送信端末が送信する通常データ通信信号を、前記受信端末が受信し解析することにより推定されることを特徴とする。
 上記通信方式では、特別な信号を送信する通信帯域を必要とせずに、前記伝送路のインピーダンス変動量の推定ができる。
 また、上記通信方式において、前記送信端末が送信する前記伝送路状態推定信号または前記通常データ通信信号が、ネットワーク内の全ての端末が受信可能な形態で送信されることを特徴とする。
 上記通信方式では、多数の通信端末が存在するネットワークにおいて、前記送信端末とそれ以外の全端末との間の各々の前記伝送路のインピーダンス変動量を効率良く推定することができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記電力線を流れる交流電源の1周期を単位とした変動量マップで生成されることを特徴とする。
 上記通信方式では、前記交流電源の1周期ごとに発生するインピーダンス変動に対して、適切に前記送信信号の位相パラメータを変更することができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記電力線を流れる交流電源の周期のN分の1(Nは整数)を単位とした変動量マップで生成されることを特徴とする。
 上記通信方式では、前記交流電源のN分の1周期ごとに発生するインピーダンス変動に対して、少ないデータ記憶容量で適切に前記送信信号の位相パラメータを変更することができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記電力線を流れる交流電源の周期のN倍(Nは整数)を単位とした変動量マップで生成されることを特徴とする。
 上記通信方式では、前記交流電源のN倍周期ごとに発生するインピーダンス変動に対して、適切に前記送信信号の位相パラメータを変更することができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記送信端末が前記受信端末に最初に通常データ通信を行う際に、これに先立って取得されることを特徴とする。
 上記通信方式では、データ通信を行う時点での最適な位相パラメータをもって通信を開始することができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、前記送信端末が通常データ通信を行う毎、すなわち前記送信端末が通常データ通信信号を送信し前記受信端末からのAcknowledge信号を受信する毎に、逐次取得・更新されることを特徴とする。
 上記通信方式では、データ通信開始時のオーバーヘッドを無くし、位相パラメータを漸次適切な値に修正しながら通信を行うことができる。また、動的に変動する前記伝送路のインピーダンス変動量にも漸次追従した通信を行うことができる。
 また、上記通信方式において、前記伝送路のインピーダンス変動量が、定期的に更新されることを特徴とする。
 上記通信方式では、前記送信端末からの送信状況によらず、動的に変動する前記伝送路のインピーダンス変動量に定期的に追従した通信を行うことができる。
 また、上記通信方式において、前記受信端末で推定された前記伝送路のインピーダンス変動量が、伝送路状態推定結果を示す専用の通信信号として前記送信端末に伝送されることを特徴とする。
 上記通信方式では、前記送信端末からの送信状況によらず、迅速に前記伝送路のインピーダンス変動量を送信端末に伝達できる。
 また、上記通信方式において、前記受信端末で推定された前記伝送路のインピーダンス変動量が、前記送信端末が前記受信端末に通信を行った際に、前記受信端末から前記送信端末に伝送される応答信号に併せて伝送されることを特徴とする。
 上記通信方式では、特別な信号を送信する通信帯域を必要とせずに、前記伝送路のインピーダンス変動量を送信端末に伝達できる。
 また、上記通信方式において、前記送信端末が送信する通信信号の位相パラメータを変更する処理において、前記伝送路のインピーダンス変動の変動期間中は、前記通常データ通信以外の通信信号を挿入することを特徴とする。
 上記通信方式では、前記伝送路のインピーダンス変動量が安定するまでの急激なインピーダンス変動中に通常データ通信を行う場合に比べて、この期間中の通信エラーを抑えることができる。
 また、上記通信方式において、前記通常データ通信以外の通信信号が、前記受信端末において通信信号のインピーダンス変動の影響を推定するためのパイロットシンボルであり、受信端末はこのパイロットシンボルを基に受信回路の位相パラメータを補正することを特徴とする。
 上記通信方式では、インピーダンス変動期間中の通信エラーをさらに抑えた高速通信ができる。
 また、上記通信方式において、前記送信端末が、送信する通信信号の位相パラメータを変更する処理において、通信信号の振幅パラメータもあわせて変更することを特徴とする。
 上記通信方式では、伝送路のインピーダンス変動により振幅も大きく変化する場合でも、通信エラーを抑えた高速通信ができる。
 本発明による電力線通信端末は、電力線を伝送路とする電力線通信端末において、伝送路内のインピーダンス変動量に関する情報を取得する手段と、その情報に応じて、送信する通信信号の位相パラメータまたは位相パラメータと振幅パラメータを連続する通信信号内で変更させながら送信する手段とを備えることを特徴とする。
 また、本発明による電力線通信端末は、電力線を伝送路とする電力線通信端末において、伝送路状態推定信号あるいは通常データ通信信号を受信する手段と、その信号を解析して伝送路のインピーダンス変動量を推定する手段とを備えることを特徴とする。
 また、上記電力線通信端末において、前記位相パラメータを変更する処理または前記位相パラメータと前記振幅パラメータをあわせて変更する処理の有効/無効をユーザの操作により切替える手段をさらに備えることを特徴とする。
 また、上記電力線通信端末において、前記位相パラメータを変更する処理または前記位相パラメータと前記振幅パラメータをあわせて変更する処理の有効/無効状態を表示する手段をさらに備えることを特徴とする。
 本発明によれば、マルチキャリア伝送方式を採用する電力線通信において、伝送路上のインピーダンス変動があっても通信速度の低下を抑えることが可能な通信を行うことができる。
 また、実際のデータ通信に寄与しない信号を挿入する必要が無いため、帯域の利用効率を低下することなく通信を行うことができる。
図1は、第1の実施形態による電力線通信システムの概略構成を示すブロック図である。 図2は、第1の実施形態における送信信号を模擬的に示す図である。 図3は、第2の実施形態による送信装置の概略構成を示すブロック図である。 図4は、第2の実施形態における送信信号を模擬的に示す図である。 図5は、第4の実施形態における通信フレームの一部を模擬的に示す図である。 図6は、第4の実施形態における送信信号および通信フレームを模擬的に示す図である。 図7は、マルチキャリア伝送方式におけるウェーブレットベースのOFDMによる電力線通信装置の概念的構成を示すブロック図である。 図8は、マルチキャリア伝送方式における通信フレームの一部を模擬的に示す図である。
符号の説明
100,101,102…送信装置
110…シンボルマッパ
120,121…位相回転器
125…PAPR-Vector
126…位相回転回路
127…位相パラメータ変更Vector
130…S/P変換器
140…逆ウェーブレット変換器
150…D/A変換器
160…振幅制御器
165…振幅パラメータ変更Vector
166…振幅制御回路
200,201…受信装置
210…A/D変換器
220…ウェーブレット変換器
230…P/S変換器
240…位相回転器
250…キャリア検出器
260…同期回路
270…等化器
280…判定器
290…インピーダンス変動量推定器
510…プリアンブルシンボル
520…同期用シンボル
530…情報用シンボル
540…非データシンボル
 以下、本発明の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。
 (第1の実施形態)
 図1は、第1の実施形態による電力線通信システムの概略構成を示すブロック図である。この通信システムは、電力線を通信媒体として送信装置101と受信装置201との間でマルチキャリア伝送方式により通信を行う。ここでは、マルチキャリア伝送方式としてウェーブレットベースのOFDMを用いる場合を例にして説明する。
 図1において、送信装置101は、送信データであるビット列をシンボルマッピングするシンボルマッパ110と、シンボルマッピングされたデータを位相回転する位相回転器121と、位相回転されたデータを直列並列変換する直列並列変換器(S/P変換器)130と、この実数値を時間軸上へ逆ウェーブレット変換し時間軸波形のサンプル値系列を発生させる逆ウェーブレット変換器140と、このサンプル値系列をアナログ信号波形に変換するD/A変換器150と、からなる。受信装置201は、受信したアナログ信号をディジタル信号に変換するA/D変換器210と、ディジタル信号をウェーブレット変換して同相信号および直交信号を生成するためのウェーブレット変換器220と、ウェーブレット変換で得た受信データを並列直列変換する並列直列変換器(P/S変換器)230と、このデータを位相回転する位相回転器240と、送信装置101から送られてくる送信信号を検出するためのキャリア検出器250と、受信信号に同期するための同期回路260と、伝送路特性により歪んだ受信信号を補正するための等化器270と、等化器270から出力される信号を使用して判定を行う判定器280と、伝送路上のインピーダンス変動量を解析・推定するインピーダンス変動量推定器290と、からなる。
 ここで、位相回転器121には、PAPRを低減するために各サブキャリアの位相を回転させるためのPAPR-Vector125と、伝送路のインピーダンス変動量に基づいて設定される位相パラメータ変更Vector127と、信号の位相を回転させる位相回転回路126が含まれる。PAPR-Vector125がサブキャリア毎の位相回転パラメータを保持する1次元の情報であるのに対して、位相パラメータ変更Vector127はサブキャリア毎と任意の単位時間毎の位相回転パラメータを保持する2次元の情報である。
 このように構成された送信装置101と受信装置201の通信について、その動作を説明する。
 送信装置101の初期起動時や、送信装置101と受信装置201の間の伝送路上にインピーダンス変動が存在しない場合は、位相パラメータ変更Vector127には全て0が設定されている。この状態で送信装置101から受信装置201へ通常のデータ通信を行う場合、シンボルマッパ110によってシンボルマッピングされたデータは、PAPR-Vector125のみによって位相回転回路126で位相回転され、後段のS/P変換器130へデータが渡されることになる。
 前記の通常のデータ通信のほかに、送信装置101は伝送路状態推定信号を受信装置201に送信する。伝送路状態推定信号は、例えば全キャリアを正弦波としたパイロットシンボルなどであり、伝送路状態推定信号を受信した受信装置201はインピーダンス変動量推定器290で伝送路のインピーダンス変動量を信号受信中の時間軸上の推移として推定する。受信装置201は、推定したインピーダンス変動量を伝送路状態推定結果を表す信号として、送信装置101に伝送する。
 送信装置101は、受信装置201から伝送されたインピーダンス変動量のうちの位相特性に関する情報を位相パラメータ変更Vector127に蓄積していく。ここで、位相パラメータ変更Vector127の時間軸上のデータ構築は、電源周期のN倍あるいはN分の1の周期(Nは整数)、例えば電源周期の1周期内の変更量推移マップとして実施する。蓄積の方法としては、新しいデータによる逐次上書きや相加平均などがある。
 上記の処理により位相パラメータ変更Vector127にデータが構築されている状態で送信装置101から受信装置201へ通常のデータ通信を行う場合、シンボルマッパ110によってシンボルマッピングされたデータは、PAPR-Vector125と、位相パラメータ変更Vector127から送信する電源周期に対応して取得した位相パラメータを合成した値によって位相回転回路126で位相回転され、後段のS/P変換器130へデータが渡されることになる。
 S/P変換器130以降の送信装置101での処理および受信装置201での処理は、位相パラメータ変更Vector127に全て0が設定されている初期起動時と同じである。
 送信装置101から送信される通信信号を模擬的に示したものが図2である。図2(a)に示す電源1周期のゼロクロス点からのオフセット時間としてt0~t1およびt2~t3の区間で、図2(b)に示すように伝送路上のインピーダンス変動量が位相特性としてθだけ変動する場合を想定する。この場合、図2(c)に示すように通信信号はt0~t1およびt2~t3の区間では-θだけ位相パラメータを変更する。
 本実施の形態によれば、以下の効果が発揮される。
 送信装置101の位相回転器121において、送信装置101と受信装置201の間の伝送路のインピーダンス変動量に基づいた位相パラメータの変更を、時間的に連続する送信信号内であらかじめ実施することにより、受信装置201で受信する信号の位相パラメータが一定に保たれる。これにより、伝送路のインピーダンス変動量に起因する通信エラーを低減し、高速通信を行うことができる。
 なお、本実施の形態では、マルチキャリア伝送方式としてウェーブレットベースのOFDMを採用する場合を説明したが、他の変調方式(例えばFFTベースのOFDM)を採用する場合でもよい。
 また、送信装置101がPAPR-Vectorによる位相回転器を持たない場合、位相パラメータ変更Vector127と位相回転回路126のみを追加すればよい。
 また、送信装置101が通信を行う相手端末が多数存在する場合、位相パラメータ変更Vector127は、各相手端末ごとにもさらに個別に情報を持ち、3次元の情報としてもよい。
 また、複数の端末が存在するネットワークの場合、前記の伝送路状態推定信号は全端末が受信できる形態(ブロードキャスト)で送信し、この信号を受信した全ての端末において送信装置101との間の伝送路のインピーダンス変動量を同時に推定してもよい。
 また、インピーダンス変動量推定器290で推定されるインピーダンス変動量は、位相特性に関する変動量だけでもよい。
 また、受信装置201から伝送される伝送路状態推定結果を表す信号は、インピーダンス変動量の位相特性に関する変動量だけでもよい。
 また、送信装置101が伝送路状態推定信号を定期的に送信することにより、伝送路上のインピーダンス変動量の推定および位相パラメータ変更Vector127の更新を定期的に実施してもよい。
 また、伝送路のインピーダンス変動量を推定する推定器290を送信装置101に具備してもよい。この場合、受信装置201には特別な装置を必要としないため、既存技術の図7で示した受信装置200をそのまま使用することができる。
 (第2の実施形態)
 第2の実施形態による電力線通信システムでは、図3に示す送信装置102と図1に示した受信装置201との間で電力線を通信媒体としてマルチキャリア伝送方式による通信を行う。なお、図3において、第1の実施形態の図1におけるのと同じ符号は同一構成要素を指している。また、ここでは、マルチキャリア伝送方式としてウェーブレットベースのOFDMを用いる場合を例にして説明する。
 本実施形態による送信装置102に特有の構成は、振幅制御器160である。第1の実施形態の図1に示した送信装置101の構成においても、送信信号の振幅制御はシンボルマッパ110で実施することができるが、この場合、通常は所定の送信レベルマップに従って各サブキャリアの振幅値を決定するのみである。これに対して図3に示す送信装置102では、サブキャリア毎と任意の単位時間ごとの振幅変更パラメータを保持する振幅パラメータ変更Vector165に基づいて振幅制御を実施する点が異なる。
 このように構成された送信装置102と受信装置201の通信について、その動作を説明する。
 伝送路のインピーダンス変動量を受信装置201から取得するまでの処理は、第1の実施形態と同様である。送信装置102は、受信装置201から受信したインピーダンス変動量の情報から位相パラメータ変更Vector127を構築すると同時に、振幅パラメータ変更Vector165も構築する。この時、例えば位相パラメータ変更Vector127を電源周期の半周期内の変更量推移マップとして構築する場合、振幅パラメータ変更Vector165も同様に電源周期の半周期内の変更量推移マップとして構築する。
 上記の処理により位相パラメータ変更Vector127と振幅パラメータ変更Vector165にデータが構築されている状態で送信装置102から受信装置201へ通常のデータ通信を行う場合、シンボルマッパ110によってシンボルマッピングされたデータは、まず、振幅パラメータ変更Vector165から送信する電源周期に対応して取得した振幅パラメータによって振幅制御回路166で振幅制御される。次いで、PAPR-Vector125と、位相パラメータ変更Vector127から送信する電源周期に対応して取得した位相パラメータとを合成した値によって位相回転回路126で位相回転され、後段のS/P変換器130へデータが渡されることになる。
 S/P変換器130以降の送信装置102での処理および受信装置201での処理は、第1の実施形態に記載したものと同様である。
 送信装置102から送信される通信信号を模擬的に示したものが図4である。図4(a)に示す電源半周期のゼロクロス点からのオフセット時間としてt0~t1の区間で、伝送路上のインピーダンス変動量が図4(b)のように、位相特性としてθだけ変動し、振幅特性としてAからBへ変動する場合を想定する。この場合、図4(c)に示すように送信信号はt0~t1の区間では位相パラメータを-θだけ変更し、振幅パラメータを基準値C(Cは任意の値)に対してC・A/Bだけ変更する。
 第1の実施形態との比較において本実施形態の特有の効果は次の通りである。
 送信装置102の振幅制御器160において、送信装置102と受信装置201の間の伝送路のインピーダンス変動量に基づいた振幅パラメータの変更を、位相パラメータの変更とともに、時間的に連続する送信信号内であらかじめ実施することにより、受信装置201で受信する信号の振幅パラメータと位相パラメータが一定に保たれる。これにより、伝送路のインピーダンス変動量に起因する通信エラーをさらに低減することができる。
 なお、本実施形態では、位相パラメータ変更Vector127と振幅パラメータ変更Vector165は、ともに電源周期の半周期で構築する場合を説明したが、それぞれ個別の周期で構築を行ってもよい。
 (第3の実施形態)
 第3の実施形態における第1の実施形態および第2の実施形態との相違点は、送信装置101(または送信装置102、以降は送信装置101のみで記載する)と受信装置201の間の伝送路のインピーダンス変動量を推定するために、伝送路状態推定信号を送信しないことである。
 本実施形態では、送信装置101が受信装置201に送信する通常データの通信を利用して、伝送路のインピーダンス変動量の推定を実施する。すなわち、図8で示したとおり、通常のデータ通信を行う場合に通信信号の先頭部分に付加するプリアンブルシンボル510を用いて、受信装置201はこのシンボル受信期間のインピーダンス変動量を推定する。プリアンブルシンボルは例えば全キャリアを正弦波としたシンボルなどであり、受信装置201はインピーダンス変動量推定器290で伝送路のインピーダンス変動量を信号受信中の時間軸上の推移として推定する。この推定結果を、例えばデータ受信の成功を示す信号(Acknowledge)と併せて送信装置101に伝送する。
 第1実施形態および第2の実施形態との比較において本実施形態の特有の効果は次の通りである。
 送信装置101と受信装置201の間の伝送路のインピーダンス変動量を推定するための特別な信号を送信する通信帯域を必要としないため、通常のデータ通信のオーバーヘッドを無くすことができる。
 なお、本実施形態では、受信装置201で推定した伝送路のインピーダンス変動量をAcknowledge信号で送信装置101に伝送する場合を説明したが、伝送路状態推定結果を表す信号として送信装置101に伝送してもよい。
 (第4の実施形態)
 図5は、第4の実施形態における通信方式を採用した場合の通信フレームの一部を模擬的に示す図である。
 図5に示すように、本実施形態に特有の構成は、情報用シンボル530に挿入される非データシンボル540である。この非データシンボル540は、送信装置が上位レイヤから与えられる送信データとは関係のないシンボルである。このシンボルを、インピーダンスが急激に変動する箇所に挿入する。
 第1の実施形態に本実施形態の構成を加えた場合の通信信号を模擬的に示したものが図6である。図6(a)に示す電源1周期のゼロクロス点からのオフセット時間としてt0~t1およびt2~t3の区間で、伝送路上のインピーダンス変動量が図6(b)のように、位相特性としてθだけ変動する場合を想定する。この場合、図6(c)に示すように送信信号はt0~t1およびt2~t3の区間では-θだけ位相パラメータを変更する。さらに、インピーダンスが急激に変動する箇所をまたいで送信を行う場合(t0,t2,t3)には、その前後のΔtの間だけは非データシンボル540を挿入する。
 ここでΔtは、インピーダンスが変動している期間Δt0と同じかそれ以上の時間としΔt0を包含するように設定する。インピーダンスが変動している期間Δt0は、ある時間単位dt期間中の位相変動dθまたは振幅変動dAのいずれか、あるいは両方が、任意の閾値以下となるまでの時間を指す。
 第1~第3の実施形態との比較において本実施形態の特有の効果は次の通りである。
 伝送路上のインピーダンス変動量が急激に変動する期間は、送信データとは関係のない信号(非データシンボル540)をはさむことによって、シンボルごとに位相パラメータまたは位相パラメータと振幅パラメータを変更してもエラーを回避できない区間での通信エラー発生を抑えることができる。
 なお、非データシンボル540は、伝送路状態推定信号でもよい。この場合、伝送路上のインピーダンス変動量が急激な期間中の通信エラーを抑えると同時に、この期間内のインピーダンス変動量をさらに精度よく推定することができる。
 (第5の実施形態)
 第5の実施形態における電力線通信システムを説明する。本実施形態における電力線通信システムの送信装置は、第2の実施形態で示した送信装置102に、機能の有効/無効を切替える手段を追加した構成である。切替え手段は、例えば送信装置102の外部に具備されたディップスイッチや、装置内に実装されているソフトウェア上での設定などが考えられるが、それ以外の手段であっても良い。
 前記の切替え手段により、機能を無効に設定した場合、送信装置102は、送信する通信信号の位相パラメータと振幅パラメータをあわせて変更する処理を行わずに通信信号の送信を行う。
 本実施形態によれば以下の効果が発揮される。
 例えば通信信号に使用する振幅を一定に保つような制限があるような環境では機能を無効にし、それ以外の環境では機能を有効にすることにより、前記制限などに適宜対応した電力線通信システムを構築することが容易になる。
 なお、本実施形態における送信装置は、前記手段により設定された機能の有効/無効の状態を表示する手段を持つ構成でもよい。表示する手段は、例えば送信装置の外部に具備されたLEDや、装置内に実装されているソフトウェアへのツールを介したアクセスなどが考えられるが、それ以外の手段であっても良い。
 本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
 本発明は、マルチキャリア伝送方式を採用する電力線通信方式において、伝送路上にインピーダンス変動があっても通信速度の低下を抑えることが可能であるという効果を有し、マルチキャリア伝送方式を採用して高速通信を行うための電力線通信装置に有用である。特に、VoIPのように通信路のレイテンシが重要となるアプリケーションや、HD映像のストリーム配信のように大容量かつリアルタイム性の高い通信が必要となるアプリケーションを想定した電力線通信方式および電力線通信装置に有用である。

Claims (19)

  1.  電力線を伝送路とする電力線通信において、
     送信端末が通信信号を送信する場合、伝送路のインピーダンス変動量に応じて、送信する通信信号の位相パラメータを連続する通信信号内で変更させながら送信する、
    ことを特徴とする通信方式。
  2.  請求項1において、
     前記伝送路のインピーダンス変動量は、前記送信端末が送信する伝送路状態推定信号を受信端末が受信し解析することにより推定される、
    ことを特徴とする通信方式。
  3.  請求項1において、
     前記伝送路のインピーダンス変動量は、前記送信端末が送信する通常データ通信信号を前記受信端末が受信し解析することにより推定される、
    ことを特徴とする通信方式。
  4.  請求項2または3において、
     前記送信端末が送信する前記伝送路状態推定信号または前記通常データ通信信号は、ネットワーク内の全ての端末が受信可能な形態で送信される、
    ことを特徴とする通信方式。
  5.  請求項1から4のいずれか1つにおいて、
     前記伝送路のインピーダンス変動量は、前記電力線を流れる交流電源の1周期を単位とした変動量マップで生成される、
    ことを特徴とする通信方式。
  6.  請求項1から4のいずれか1つにおいて、
     前記伝送路のインピーダンス変動量は、前記電力線を流れる交流電源の周期のN分の1(Nは整数)を単位とした変動量マップで生成される、
    ことを特徴とする通信方式。
  7.  請求項1から4のいずれか1つにおいて、
     前記伝送路のインピーダンス変動量は、前記電力線を流れる交流電源の周期のN倍(Nは整数)を単位とした変動量マップで生成される、
    ことを特徴とする通信方式。
  8.  請求項1から7のいずれか1つにおいて、
     前記伝送路のインピーダンス変動量は、前記送信端末が前記受信端末に最初に通常データ通信を行う際に、これに先立って取得される、
    ことを特徴とする通信方式。
  9.  請求項1から7のいずれか1つにおいて、
     前記伝送路のインピーダンス変動量は、前記送信端末が通常データ通信を行う毎に、逐次取得・更新される、
    ことを特徴とする通信方式。
  10.  請求項1から7のいずれか1つにおいて、
     前記伝送路のインピーダンス変動量は、定期的に更新される、
    ことを特徴とする通信方式。
  11.  請求項1から10のいずれか1つにおいて、
     前記受信端末で推定された前記伝送路のインピーダンス変動量は、伝送路状態推定結果を示す専用の通信信号として前記送信端末に伝送される、
    ことを特徴とする通信方式。
  12.  請求項1から10のいずれか1つにおいて、
     前記受信端末で推定された前記伝送路のインピーダンス変動量は、前記送信端末が前記受信端末に通信を行った際に、前記受信端末から前記送信端末に伝送される応答信号に併せて伝送される、
    ことを特徴とする通信方式。
  13.  請求項1から12のいずれか1つにおいて、
     前記送信端末が、送信する通信信号の位相パラメータを変更する処理において、前記伝送路のインピーダンス変動の変動期間中は、前記通常データ通信以外の通信信号を挿入する、
    ことを特徴とする通信方式。
  14.  請求項13において、
     前記通常データ通信以外の通信信号が、前記受信端末において通信信号のインピーダンス変動の影響を推定するためのパイロットシンボルであり、
     前記受信端末はこのパイロットシンボルを基に受信回路の位相パラメータを補正する、
    ことを特徴とする通信方式。
  15.  請求項1から14のいずれか1つにおいて、
     前記送信端末が、送信する通信信号の位相パラメータを変更する処理において、前記通信信号の振幅パラメータもあわせて変更する、
    ことを特徴とする通信方式。
  16.  電力線を伝送路とする電力線通信端末において、
     伝送路内のインピーダンス変動量に関する情報を取得する手段と、
     その情報に応じて、送信する通信信号の位相パラメータまたは位相パラメータと振幅パラメータを連続する通信信号内で変更させながら送信する手段と、
    を備えることを特徴とする電力線通信端末。
  17.  電力線を伝送路とする電力線通信端末において、
     伝送路状態推定信号あるいは通常データ通信信号を受信する手段と、
     その信号を解析して伝送路のインピーダンス変動量を推定する手段と、
    を備えることを特徴とする電力線通信端末。
  18.  請求項16において、
     前記位相パラメータを変更する処理または前記位相パラメータと前記振幅パラメータをあわせて変更する処理の有効/無効をユーザの操作により切替える手段、
    をさらに備えることを特徴とする電力線通信端末。
  19.  請求項16または18において、
     前記位相パラメータを変更する処理または前記位相パラメータと前記振幅パラメータをあわせて変更する処理の有効/無効状態を表示する手段、
    をさらに備えることを特徴とする電力線通信端末。
PCT/JP2008/003741 2008-05-16 2008-12-12 通信方式および電力線通信端末 WO2009139027A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801280568A CN101971535A (zh) 2008-05-16 2008-12-12 通信方式及电力线通信终端
US12/879,580 US20110058594A1 (en) 2008-05-16 2010-09-10 Communication method and power line communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-129444 2008-05-16
JP2008129444A JP2009278511A (ja) 2008-05-16 2008-05-16 通信方式および電力線通信端末

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/879,580 Continuation US20110058594A1 (en) 2008-05-16 2010-09-10 Communication method and power line communication terminal

Publications (1)

Publication Number Publication Date
WO2009139027A1 true WO2009139027A1 (ja) 2009-11-19

Family

ID=41318411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003741 WO2009139027A1 (ja) 2008-05-16 2008-12-12 通信方式および電力線通信端末

Country Status (4)

Country Link
US (1) US20110058594A1 (ja)
JP (1) JP2009278511A (ja)
CN (1) CN101971535A (ja)
WO (1) WO2009139027A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511193A (zh) * 2020-11-18 2021-03-16 湖北省电力装备有限公司 一种基于误差反馈算法的宽带载波(hplc)模块

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718115B2 (en) 2010-10-08 2014-05-06 Texas Instruments Incorporated Building, transmitting, and receiving frame structures in power line communications
TW201225556A (en) * 2010-12-07 2012-06-16 Inst Information Industry Network communication node and data transmission method thereof for use in power line communication network
JP5793002B2 (ja) * 2011-05-31 2015-10-14 株式会社メガチップス 通信システム、通信装置および通信システムの動作方法
WO2012171219A1 (zh) * 2011-06-17 2012-12-20 华为技术有限公司 一种交流电压相位识别方法、电源模块及电源系统
US9100101B2 (en) 2013-04-15 2015-08-04 Mediatek Inc. Power line communication device and power control method thereof
JP6032247B2 (ja) * 2013-10-09 2016-11-24 株式会社デンソー 歪み補償システム及び通信装置
DE102014204673A1 (de) * 2014-03-13 2015-09-17 Hochschule Ruhr West Verfahren und System zur energieoptimierten Übertragung von Daten in einem leitungsgebundenen (multi carrier modulation - MCM) - Übertragungssystem
CN106603176A (zh) * 2016-12-09 2017-04-26 国网江苏省电力公司泰州供电公司 一种结合两种电力线信道模型的电力线信道建模方法
CN113765542A (zh) * 2020-06-02 2021-12-07 施耐德电气(澳大利亚)有限公司 电力线通信处理电路及其操作方法和通信系统
CN117524029A (zh) * 2024-01-05 2024-02-06 武汉精立电子技术有限公司 一种测试信号生成系统和面板检测设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124841A (ja) * 1998-10-19 2000-04-28 Fuji Electric Co Ltd 電力線通信装置
JP2006186734A (ja) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd 線路状態検出装置、通信装置、平衡伝送システム、及び通信方法
JP2007135180A (ja) * 2005-10-12 2007-05-31 Matsushita Electric Ind Co Ltd 電力線通信装置、集積回路、及び電力線通信方法
JP2007134971A (ja) * 2005-11-10 2007-05-31 Nippon Hoso Kyokai <Nhk> 電力線通信多重装置
JP2007529156A (ja) * 2003-07-25 2007-10-18 松下電器産業株式会社 伝送品質評価を備えたマルチキャリア送受信装置および方法
JP2008511184A (ja) * 2004-08-24 2008-04-10 松下電器産業株式会社 電力線通信システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369579B2 (en) * 2002-09-25 2008-05-06 Oleg Logvinov Method and system for timing controlled signal transmission in a point to multipoint power line communications system
JP2006295479A (ja) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd 電力線通信装置及び電力線通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124841A (ja) * 1998-10-19 2000-04-28 Fuji Electric Co Ltd 電力線通信装置
JP2007529156A (ja) * 2003-07-25 2007-10-18 松下電器産業株式会社 伝送品質評価を備えたマルチキャリア送受信装置および方法
JP2008511184A (ja) * 2004-08-24 2008-04-10 松下電器産業株式会社 電力線通信システム
JP2006186734A (ja) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd 線路状態検出装置、通信装置、平衡伝送システム、及び通信方法
JP2007135180A (ja) * 2005-10-12 2007-05-31 Matsushita Electric Ind Co Ltd 電力線通信装置、集積回路、及び電力線通信方法
JP2007134971A (ja) * 2005-11-10 2007-05-31 Nippon Hoso Kyokai <Nhk> 電力線通信多重装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511193A (zh) * 2020-11-18 2021-03-16 湖北省电力装备有限公司 一种基于误差反馈算法的宽带载波(hplc)模块
CN112511193B (zh) * 2020-11-18 2022-06-21 湖北省电力装备有限公司 一种基于误差反馈算法的宽带载波(hplc)模块

Also Published As

Publication number Publication date
JP2009278511A (ja) 2009-11-26
US20110058594A1 (en) 2011-03-10
CN101971535A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
WO2009139027A1 (ja) 通信方式および電力線通信端末
US7480235B2 (en) OFDM transmitter and OFDM receiver
CN108632189B (zh) 上行数据的发送方法、装置及用户设备
US8121206B2 (en) Apparatus and method for estimating delay spread of multi-path fading channel in OFDM system
JP6026006B2 (ja) 送信装置、受信装置および通信システム
JP6025987B2 (ja) 送信装置、受信装置および通信システム
JP2004134883A (ja) 受信装置
JP5486734B2 (ja) シングルキャリア通信システムにおける送信信号生成装置および方法
JP5896795B2 (ja) 等化装置、受信装置及び等化方法
KR20150064595A (ko) 가변 가능한 보호 구간을 이용한 데이터 송수신 방법 및 그 장치
US20170048094A1 (en) Channel equalization apparatus and method based on pilot signals for docsis down stream system
JP4157159B1 (ja) 受信装置及び受信方法
KR100213100B1 (ko) Ofdm 전송 신호의 주파수 오류 정정기와 그 방법
KR20180052003A (ko) Ofdm 시스템에서 단일 탭 등화기를 이용한 부반송파의 왜곡 보상 방법 및 그를 위한 장치
EP1564952A2 (en) Symbol timing synchronization method for OFDM based communication system
KR20020056986A (ko) 직교 주파수 분할 다중 통신 시스템의 프레임 구조 및분산 파일롯 부채널을 이용한 변조기 및 복조기
KR20140115049A (ko) 비동기 직교주파수 분할다중 시스템에서 순환확장부호를 이용한 가변적인 심볼 타이밍의 보상 방법 및 장치
EP2159981B1 (en) OFDM signal receiving apparatus and receiving method
CN101529840B (zh) 针对ofdm的鲁棒且低复杂度合并信号功率估计
US7302014B1 (en) Timing recovery in a transmission system
KR20170050175A (ko) 파일럿 신호 생성 장치 및 그 방법, 송신 장치
US7830990B2 (en) Method for estimating and compensating frequency offset and frequency offset estimation module
KR20140122382A (ko) 고차변조 ofdm 전송에서 오프셋 보상 장치 및 방법
US8446814B2 (en) Radio communication system, radio communication device, radio communication method, and program
JP2008141279A (ja) Ofdm受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128056.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08874277

Country of ref document: EP

Kind code of ref document: A1