WO2012171219A1 - 一种交流电压相位识别方法、电源模块及电源系统 - Google Patents

一种交流电压相位识别方法、电源模块及电源系统 Download PDF

Info

Publication number
WO2012171219A1
WO2012171219A1 PCT/CN2011/075873 CN2011075873W WO2012171219A1 WO 2012171219 A1 WO2012171219 A1 WO 2012171219A1 CN 2011075873 W CN2011075873 W CN 2011075873W WO 2012171219 A1 WO2012171219 A1 WO 2012171219A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
module
pin
power supply
power
Prior art date
Application number
PCT/CN2011/075873
Other languages
English (en)
French (fr)
Inventor
林伟鸿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001527.0A priority Critical patent/CN102301247B/zh
Priority to PCT/CN2011/075873 priority patent/WO2012171219A1/zh
Publication of WO2012171219A1 publication Critical patent/WO2012171219A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Definitions

  • the present invention relates to the field of voltage detection technologies, and in particular, to an AC voltage phase identification method, a power module, and a power system.
  • AC voltage detection and phase loss detection of the power module are generally required.
  • the common practice of the prior art is to add an AC voltage detection board on the input side of the system, convert the AC voltage signal into a DC low voltage signal, and then directly send it to the IMU port detection of the PMU (Power Monitoring Unit) to implement .
  • PMU Power Monitoring Unit
  • the power system can generally include several PSUs (Power Supply Units).
  • PSUs Power Supply Units
  • seven PSU modules are used as an example.
  • the power system is provided with an AC voltage detecting board on the input side, and the AC voltage detecting board can be connected between any phase input voltage and the PMU module for collecting the input voltage of the phase. As shown in FIG. 1, the AC voltage detecting board is connected between the A phase input voltage and the PMU, and is taken as an example for description.
  • Fig. 2 it is a schematic diagram of the detection of the AC voltage detecting board shown in Fig. 1.
  • the phase A input voltage is collected by the AC voltage detection board and processed into a low voltage signal and sent to the PMU module.
  • the PMU module reports the phase A voltage value and determines whether phase A is out of phase according to the voltage value.
  • the phase B input voltage is determined by the PSU2 module or PSU6. Whether the module is working properly reports whether there is a phase loss; whether the phase C is reported by the PSU3 module or the PSU7 module is normal.
  • the embodiment of the invention provides an AC voltage phase identification method, a power supply module and a power supply system, which can realize phase identification of the AC voltage of the power supply system without adding an independent AC voltage detection board, thereby saving system cost and saving system. Installation space.
  • An embodiment of the present invention provides an AC voltage phase identification method, where the method includes: The power module detects a pin state of a phase detection signal pin on the connector, wherein the input and output connector of the power module is provided with a phase detection signal pin;
  • the power module searches the status map according to the status of the pin to identify the phase in which it is located; the power module reports the phase of the power module to the monitoring module.
  • the embodiment of the invention further provides a power module, where the power module includes:
  • a detecting unit configured to detect a pin state of a phase detecting signal pin on the connector; an identifying unit, configured to search a state mapping table according to the pin state, and identify a phase where the pin is located;
  • the phase reporting unit is configured to report the phase of the phase to the monitoring module.
  • An embodiment of the present invention further provides a power supply system, where the power system includes: a plurality of power modules and a monitoring module;
  • phase detection signal pin is disposed on the input and output connector of the power module
  • the power module is configured to detect a pin state of a phase detection signal pin on the connector, and according to the pin state, find a state mapping table, identify a phase where the user is located, and report the phase of the phase to the monitoring module. .
  • the present invention discloses the following technical effects:
  • a phase detection signal pin is disposed on the input/output connector of each PSU module.
  • each PSU module detects the pin state of the signal by the phase detection signal of the PSU module.
  • the phase of the phase is automatically recognized, and the identified phase signal is reported to the PMU through the communication bus.
  • an independent AC voltage detecting board is not needed, which can save system cost and save installation space of the system, and is advantageous for miniaturization and cleaning of the embedded system.
  • FIG. 1 is a block diagram of a prior art power supply system
  • FIG. 2 is a schematic diagram of the detection of the AC voltage detecting board shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a power supply system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of an AC voltage phase identification method of a power supply system according to an embodiment of the present invention
  • FIG. 5 is a structural diagram of a power module according to an embodiment of the present invention. The present invention will be further described in detail with reference to the drawings and specific embodiments.
  • the embodiment of the invention provides an AC voltage phase identification method, a power supply module and a power supply system, which can realize phase identification of the AC voltage of the power supply system without adding an independent AC voltage detection board, thereby saving system cost and saving system. Installation space.
  • FIG. 3 it is a structural diagram of a power supply system according to an embodiment of the present invention.
  • the power system includes: a plurality of PSU modules and a PMU module.
  • each PSU module are respectively connected to one phase of the AC input voltage, and the output terminals of each PSU module are connected to the PMU through the communication bus.
  • the PSU module is typically mounted on a backplane of a power system. Specifically, the PSU module is provided with an input and output connector for implementing electrical connection between the PSU module and the power system.
  • the input and output connector of the PSU module is provided with a phase detection signal pin, and by setting the pin state of the phase detection signal pin, the phase connected to the PSU module can be indicated.
  • the PSU module When the PSU module is inserted into the power system, the PSU module can automatically identify the phase of its own by detecting the pin state of the phase detection signal pin and combining the preset mapping rules between the pin state and the phase. The identified phase signal is reported to the PMU via the communication bus.
  • phase detection signal pin when the phase detection signal pin is grounded, its pin state is "0"; when the phase detection signal pin is left floating, its pin state is "1".
  • the number of phase detection signal pins provided on the input/output connector of the PSU module can be determined according to the number of phases of the AC input voltage.
  • phase detection signal pin When the AC input voltage is only two phases, such as Phase A and Phase B, only one phase detection signal pin can be set on the input and output connectors of each PSU module, assuming PIN0.
  • the mapping rule between the pin state and the phase of the phase detection signal pin can be set as follows: when the pin state of the phase detection signal pin PINO is "0", the PSU module is in the A phase, and the phase detection signal pin When the pin status of PINO is "1", the PSU module is in phase B.
  • the phase detection signal pin PINO of the PSU module can be grounded to have its pin state "1" to indicate that the PSU module is connected to the A phase.
  • the PSU module detects that the pin status of its own phase detection signal pin PINO is "1", and by combining the mapping rules between the pin state and the phase, it can quickly identify that it is located.
  • the phase is phase A, and the phase information is reported to the PMU module.
  • the mapping rule between the pin state and the phase can be set as follows: When the pin state of the phase detecting signal pin PIN1 is "0" and the pin state of PIN2 is "1", the PSU module is in phase A; When the pin state of the phase detection signal pin PIN1 is "1” and the pin state of PIN2 is "0", the PSU module is in phase B.
  • the above mapping rules are merely examples, and are not limited thereto.
  • phase detection signal pin When the AC input voltage is three-phase, for example, A, B, and C three phases, only one phase detection signal pin is set, and the recognition of the three phases may not be realized. In this case, the input and output connections of the PSU modules are required. At least two phase detection signal pins, such as PIN1 and PIN2, are set.
  • the mapping rule between the pin state and the phase of the phase detection signal pin can be set as follows: When the pin state of the phase detection signal pin PIN1 is “0" and the pin state of PIN2 is “1” " When the PSU module is in phase A; when the pin status of the phase detection signal pin PIN1 is “1” and the pin status of PIN2 is “0”, the PSU module is in phase B; when the phase detection signal pin PIN1 is in the pin state When it is "1” and the pin status of PIN2 is "1", the PSU module is in phase C.
  • the above mapping rules are merely examples and are not limited thereto.
  • mapping rule between the pin state and the phase of the phase detection signal pin may be stored in the PSU module in the form of a state mapping table.
  • the PSU module detects the pin state of its own phase detection signal pin, The phase in which it is located can be identified by looking up the state map.
  • the PSU module is connected to the PMU through a communication bus, and the communication bus can be any currently used communication bus, such as a CAN (Controller Area Network) bus, or a 485 bus.
  • CAN Controller Area Network
  • 485 bus any currently used communication bus, such as a CAN (Controller Area Network) bus, or a 485 bus.
  • FIG. 4 is a flow chart of an AC voltage phase identification method of a power supply system according to an embodiment of the present invention. The method shown in Figure 4 is used to implement the phase identification function of the AC voltage of the power supply system shown in Figure 3.
  • the method includes the following steps:
  • Step S401 The PSU module detects the phase detection signal pin on its own input and output connector Pin status.
  • Step S402 The PSU module searches the state mapping table according to the state of the pin, and identifies the phase of its own.
  • the state mapping table includes a mapping relationship between a pin state of the phase detection signal pin and a phase of the PSU module set in advance.
  • Step S403 The PSU module reports the phase of its own to the PMU.
  • a phase detection signal pin is disposed on the input and output connector of the PSU module, and when the PSU module is inserted into the power system, the PSU module detects the pin state of the signal pin by detecting its own phase. Combined with the preset mapping rules between the pin state and the phase, the phase of the phase is automatically recognized, and the identified phase signal is reported to the PMU through the communication bus.
  • the method of the embodiment of the invention does not require an independent AC voltage detecting board, which can save system cost and save installation space of the system, and is advantageous for miniaturization and cleaning of the embedded system.
  • the method of the present invention may further include:
  • Step S404 The PSU module detects its own AC voltage value and reports it to the PMU.
  • the PSU module has the function of detecting the value of the AC voltage. Therefore, in the method of the embodiment of the present invention, the PSU module can detect the phase of its own and report it to the PMU, and can also detect the AC voltage value of the PSU to report to the PMU. .
  • step S404 and steps S401 to S403 are not limited, and step S404 may be performed while performing steps S401 to S403, or step S404 may be performed before or after steps S401 to S403.
  • the method of the present invention may further include: the PMU module performs overall analysis according to the received phase and AC voltage values of each PSU module to optimize system load.
  • the PMU module can determine the current system load status according to the received phase and AC voltage values of each PSU module, and selectively turn off or turn on some PSU modules, thereby improving system efficiency while maintaining system performance. Three-phase balance.
  • the method of the present invention may further include: the PMU module displays and outputs the received phase and AC voltage values of the PSU modules. Specifically, the PMU module displays the phase and AC voltage of each received PSU module to the operator through the display device, so that the operator can timely understand the current load condition of the system.
  • the embodiment of the present invention further provides a power supply system.
  • the power system includes: a plurality of PSU modules and a PMU module.
  • each PSU module are respectively connected to one phase of the AC input voltage, and the output terminals of each PSU module are connected to the PMU module through the communication bus.
  • a phase detection signal pin is disposed on the input and output connector of the PSU module.
  • FIG. 5 is a structural diagram of a power module according to an embodiment of the present invention.
  • the PSU module 5 may include: a detecting unit 10, an identifying unit 20, and a phase reporting unit 30.
  • the detecting unit 10 is configured to detect a pin state of a phase detecting signal pin on the self connector.
  • the identifying unit 20 is configured to search the status mapping table according to the status of the stitch detected by the detecting unit 10, and identify the phase where the self is located.
  • the phase reporting unit 30 is configured to report the phase of the PSU module itself identified by the identification unit 20 to the monitoring module.
  • a phase detection signal pin is disposed on an input/output connector of each PSU module.
  • each PSU module detects the pin of the signal by detecting its own phase.
  • the state combined with the pre-set mapping rules between the pin state and the phase, automatically identifies the phase in which it is located and routes the identified phase signal to the PMU via the communication bus.
  • an independent AC voltage detecting board is not needed, which can save system cost and save installation space of the system, and is advantageous for miniaturization and cleaning of the embedded system.
  • the power module may further include: a voltage detecting unit and a voltage upper unit.
  • the voltage detecting unit is configured to detect an AC voltage value of itself.
  • the voltage reporting unit is configured to report the detected AC voltage value to the monitoring module.
  • the monitoring module may include: an analyzing unit, configured to perform overall analysis according to the received phase and AC voltage values of each power module to optimize system load.
  • the monitoring module may include: a display unit, configured to receive each power mode The phase and AC voltage values of the block display the output.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种交流电压相位识别方法,电源模块和电源系统。电源模块的输入输出连接器上设置有相位检测信号针。该方法包括电源模块检测针脚状态,根据针脚状态查找状态映射表以识别相位,并将该相位上报至监控模块。该方法、电源模块和电源系统不需要设置独立的交流电压检测板就能够识别电源系统交流电压的相位,从而既节约了系统成本,又节省了系统的安装空间。

Description

一种交流电压相位识别方法、 电源模块及电源系统
技术领域 本发明涉及电压检测技术领域, 特别是涉及一种交流电压相位识别方法、 电源模块及电源系统。
背景技术
对于 AC/DC ( AC to DC, 交直流转换) 电源系统, 一般需要实现电源模 块的交流电压检测和缺相检测功能。现有技术通用的做法是,在系统的输入侧 增加交流电压检测板,将交流电压信号转换为直流低压信号后,直接送至 PMU ( Power Monitoring Unit , 监控模块 ) 的 I/O端口检测来实现。
参照图 1 , 为现有技术的电源系统框图。 如图 1所示, 该电源系统一般可 以包括若干个 PSU ( Power Supply Unit, 电源模块), 图 1中以 7个 PSU模块 为例进行说明。
该电源系统在输入侧加设交流电压检测板,所述交流电压检测板可以接在 任一相输入电压与 PMU模块之间, 用于采集该相的输入电压。 如图 1所示, 所述交流电压检测板接在 A相输入电压与 PMU之间, 以此为例进行说明。
参照图 2, 为图 1所示的交流电压检测板的检测原理图。 A相输入电压通 过交流电压检测板采集并处理成低压信号后发送至 PMU模块, 该 PMU模块 上报 A相电压值并根据该电压值判断 A相是否缺相; B相输入电压由 PSU2 模块或 PSU6模块是否正常工作上报是否缺相; C相由 PSU3模块或 PSU7模 块是否正常工作上报是否缺相。
但是, 现有的技术方案中, 需要独立的交流电压检测板, 增加系统成本且 占用系统的安装空间。
发明内容
本发明实施例提供一种交流电压相位识别方法、 电源模块及电源系统, 不 需要增加独立的交流电压检测板即可实现对电源系统交流电压的相位识别,既 能节约系统成本又能节省系统的安装空间。
本发明实施例提供一种交流电压相位识别方法, 所述方法包括: 电源模块检测自身连接器上的相位检测信号针的针脚状态,其中所述电源 模块的输入输出连接器上设置有相位检测信号针;
电源模块根据所述针脚状态, 查找状态映射表, 识别自身所在的相位; 电源模块将自身所在的相位上报至监控模块。
本发明实施例还提供一种电源模块, 所述电源模块包括:
检测单元, 用于检测自身连接器上的相位检测信号针的针脚状态; 识别单元, 用于根据所述针脚状态, 查找状态映射表, 识别自身所在的相 位;
相位上报单元, 用于自身所在的相位上报至所述监控模块。
本发明实施例还提供一种电源系统, 所述电源系统包括: 若干个电源模块 和一个监控模块;
所述电源模块的输入输出连接器上设置有相位检测信号针;
所述电源模块, 用于检测自身连接器上的相位检测信号针的针脚状态,根 据所述针脚状态, 查找状态映射表, 识别自身所在的相位, 并将自身所在的相 位上报至所述监控模块。
根据本发明提供的具体实施例, 本发明公开了以下技术效果:
本发明实施例中, 在每个 PSU模块的输入输出连接器上设置有相位检测 信号针, 将各 PSU模块插入电源系统时, 各 PSU模块通过检测自身的相位检 测信号针的针脚状态, 结合预先设定的针脚状态和相位之间的映射规则, 即可 自动识别自身所在的相位, 并将识别得到的相位信号通过通信总线上报至 PMU。
采用本发明实施例, 不需要独立的交流电压检测板, 能够节约系统成本且 节省系统的安装空间, 有利于嵌入式系统的插框向小型化、 筒洁化发展。
附图说明 图 1为现有技术的电源系统框图;
图 2为图 1所示的交流电压检测板的检测原理图;
图 3为本发明实施例的电源系统原理图;
图 4为本发明实施例的电源系统的交流电压相位识别方法流程图; 图 5为本发明实施例所述电源模块结构图。 具体实施方式 为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图和 具体实施方式对本发明作进一步详细的说明。
本发明实施例提供一种交流电压相位识别方法、 电源模块及电源系统, 不 需要增加独立的交流电压检测板即可实现对电源系统交流电压的相位识别,既 能节约系统成本又能节省系统的安装空间。
参照图 3, 为本发明实施例的电源系统结构图。 如图 3所示, 所述电源系 统包括: 若干个 PSU模块和一个 PMU模块。
各 PSU模块的输入端分别接交流输入电压中的一相, 各 PSU模块的输出 端均通过通信总线与 PMU相连。
所述 PSU模块一般安装在电源系统的背板上。 具体的, 所述 PSU模块上 设置有输入输出连接器, 用于实现 PSU模块与电源系统的电连接。
本发明实施例中, 所述 PSU模块的输入输出连接器上设置有相位检测信 号针, 通过设置该相位检测信号针的针脚状态, 可以表明该 PSU模块所接的 相位。
将所述 PSU模块插入电源系统时, 该 PSU模块通过检测自身的相位检测 信号针的针脚状态, 结合预先设定的针脚状态和相位之间的映射规则, 即可自 动识别自身所在的相位,并将识别得到的相位信号通过通信总线上报至 PMU。
一般可以设定, 当所述相位检测信号针接地时, 其针脚状态为 "0" ; 当所 述相位检测信号针悬空时, 其针脚状态为 "1"。
需要说明的是, 该 PSU模块的输入输出连接器上设置的相位检测信号针 的个数可以根据交流输入电压的相位数来决定。
当所述交流输入电压仅为两相, 例如 A相和 B相时, 可以在各 PSU模块 的输入输出连接器上仅设置一个相位检测信号针, 假设为 PIN0。 同时, 可以 设定相位检测信号针的针脚状态和相位之间的映射规则为:当所述相位检测信 号针 PINO的针脚状态为 "0"时,该 PSU模块在 A相,当相位检测信号针 PINO 的针脚状态为 "1" 时, 该 PSU模块在 B相。
基于此, 当需要将一 PSU模块接 A相时, 可以设置该 PSU模块的相位检 测信号针 PINO接地, 使其针脚状态为 "1" , 以表明该 PSU模块接在 A相。 当该 PSU模块插入电源系统时, 该 PSU模块检测到自身的相位检测信号 针 PINO的针脚状态为 "1" , 结合针脚状态和相位之间的映射规则, 可以很快 的识别得到自身所处的相位为 A相, 并将该相位信息上报至 PMU模块。
当然, 当所述交流输入电压为两相时, 也可以为连接器设置两个、 三个甚 至于更多个相位检测信号针, 以两个为例进行说明, 4 设为 PIN1和 PIN2。 此 时,可以设定针脚状态和相位之间的映射规则为: 当所述相位检测信号针 PIN1 的针脚状态为 "0" 且 PIN2的针脚状态为 "1" 时, 该 PSU模块在 A相; 当 相位检测信号针 PIN1的针脚状态为 "1" 且 PIN2的针脚状态为 "0" 时, 该 PSU模块在 B相。 当然, 上述映射规则仅仅是示例, 并不限于此。
当所述交流输入电压为三相时, 例如 A、 B、 C三相, 仅设置一个相位检 测信号针, 可能无法实现对三相的识别作用, 此时, 需要为各 PSU模块的输 入输出连接器设置至少两个相位检测信号针,如 PIN1和 PIN2。 以两个为例进 行说明, 可以设定相位检测信号针的针脚状态和相位之间的映射规则为: 当所 述相位检测信号针 PIN1的针脚状态为 "0" 且 PIN2的针脚状态为 "1" 时, 该 PSU模块在 A相; 当相位检测信号针 PIN1的针脚状态为 "1" 且 PIN2的 针脚状态为 "0" 时, 该 PSU模块在 B相; 当相位检测信号针 PIN1的针脚状 态为 "1" 且 PIN2的针脚状态为 "1" 时, 该 PSU模块在 C相。 当然, 上述映 射规则仅仅是示例, 并不限于此。
需要说明的是,所述相位检测信号针的针脚状态和相位之间的映射规则可 以以状态映射表的形式存储在 PSU模块上, 当 PSU模块检测得到自身的相位 检测信号针的针脚状态后, 可以通过查找所述状态映射表,识别自身所在的相 位。
所述 PSU模块通过通信总线与 PMU相连,所述通信总线可以为任意当前 常用的通信总线, 例如: CAN ( ControllerArea Network, 控制器局域网络)总 线、 或 485总线等。
参照图 4, 为本发明实施例的电源系统的交流电压相位识别方法流程图。 图 4所示方法用于实现对图 3所示的电源系统的交流电压的相位识别功能。
如图 4所示, 所述方法包括以下步骤:
步骤 S401: PSU模块检测自身的输入输出连接器上的相位检测信号针的 针脚状态。
步骤 S402: PSU模块根据该针脚状态, 查找状态映射表, 识别自身所在 的相位。
所述状态映射表包括预先设定的所述相位检测信号针的针脚状态与 PSU 模块所在相位之间的映射关系。
步骤 S403: PSU模块将自身所在的相位上报至 PMU。
本发明实施例所述方法中, 在 PSU模块的输入输出连接器上设置有相位 检测信号针, 将所述 PSU模块插入电源系统时, 该 PSU模块通过检测自身的 相位检测信号针的针脚状态, 结合预先设定的针脚状态和相位之间的映射规 则, 即可自动识别自身所在的相位, 并将识别得到的相位信号通过通信总线上 报至 PMU。
采用本发明实施例所述方法, 不需要独立的交流电压检测板, 能够节约系 统成本且节省系统的安装空间,有利于嵌入式系统的插框向小型化、 筒洁化发 展。
进一步的, 本发明所述方法还可以包括:
步骤 S404: PSU模块检测自身的交流电压值, 并上报至 PMU。
由于 PSU模块具有检测自身交流电压值的功能, 因此, 本发明实施例所 述方法中, PSU模块在识别得到自身所在相位并上报至 PMU的同时, 还可以 检测得到自身的交流电压值上报至 PMU。
需要说明的是, 步骤 S404和步骤 S401至 S403的执行步骤没有限定, 可 以在执行步骤 S401至 S403的同时执行步骤 S404,也可以在执行步骤 S401至 S403之前或之后执行步骤 S404。
进一步的, 本发明所述方法还可以包括: PMU模块根据接收到的各 PSU 模块所在相位和交流电压值进行统筹分析, 优化系统负载。
具体的,所述 PMU模块可以根据收到的各 PSU模块所在相位和交流电压 值, 确定当前系统的负载情况, 选择性的关闭或开启部分 PSU模块, 能够在 提高系统效率的同时, 保持系统的三相平衡。
进一步, 本发明所述方法还可以包括: PMU模块将接收到的各 PSU模块 所在相位和交流电压值显示输出。 具体的, PMU模块将接收到的各 PSU模块所在相位和交流电压通过显示 装置显示给操作人员, 使得操作人员能够及时了解系统当前的负载情况。 对应于本发明实施例提供的电源系统的交流电压相位识别方法,本发明实 施例还提供一种电源系统。 所述电源系统包括: 若干个 PSU模块和一个 PMU 模块。
各 PSU模块的输入端分别接交流输入电压的一相, 各 PSU模块的输出端 均通过通信总线接 PMU模块。
所述 PSU模块的输入输出连接器上设置有相位检测信号针。
参照图 5, 为本发明实施例所述电源模块结构图。所述 PSU模块 5可以包 括: 检测单元 10、 识别单元 20和相位上报单元 30。
所述检测单元 10, 用于检测自身连接器上的相位检测信号针的针脚状态。 所述识别单元 20, 用于根据所述检测单元 10检测得到的针脚状态, 查找 状态映射表, 识别自身所在的相位。
所述相位上报单元 30,用于将所述识别单元 20识别得到的 PSU模块自身 所在的相位上报至所述监控模块。
本发明实施例所述电源系统中, 在每个 PSU模块的输入输出连接器上设 置有相位检测信号针, 将各 PSU模块插入电源系统时, 各 PSU模块通过检测 自身的相位检测信号针的针脚状态,结合预先设定的针脚状态和相位之间的映 射规则, 即可自动识别自身所在的相位, 并将识别得到的相位信号通过通信总 线上艮至 PMU。
采用本发明实施例, 不需要独立的交流电压检测板, 能够节约系统成本且 节省系统的安装空间, 有利于嵌入式系统的插框向小型化、 筒洁化发展。
进一步的, 所述电源模块还可以包括: 电压检测单元和电压上4艮单元。 所述电压检测单元, 用于检测自身的交流电压值。
所述电压上报单元, 用于将检测到的交流电压值上报至监控模块。
进一步的, 所述监控模块可以包括: 分析单元, 用于根据接收到的各电源 模块所在相位和交流电压值进行统筹分析, 优化系统负载。
进一步的, 所述监控模块可以包括: 显示单元, 用于将接收到的各电源模 块所在相位和交流电压值显示输出。
以上对本发明所提供的一种电源系统的交流电压相位识别方法、装置及电 进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思 想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式 及应用范围上均会有改变之处。 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权 利 要 求
1、 一种交流电压相位识别方法, 其特征在于, 所述方法包括:
电源模块检测自身连接器上的相位检测信号针的针脚状态,其中所述电源 模块的输入输出连接器上设置有相位检测信号针;
电源模块根据所述针脚状态, 查找状态映射表, 识别自身所在的相位; 电源模块将自身所在的相位上报至监控模块。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 电源模块检测自身的交流电压值, 并上报至所述监控模块。
3、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述监控模块根据接收到的各电源模块所在相位和交流电压值进行统筹 分析, 优化系统负载。
4、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述监控模块将接收到的各电源模块所在相位和交流电压值显示输出。
5、 一种电源模块, 其特征在于, 所述电源模块包括:
检测单元, 用于检测自身连接器上的相位检测信号针的针脚状态; 识别单元, 用于根据所述针脚状态, 查找状态映射表, 识别自身所在的相 位;
相位上报单元, 用于自身所在的相位上报至所述监控模块。
6、 根据权利要求 5所述的电源模块, 其特征在于, 所述电源模块还包括: 电压检测单元, 用于检测自身的交流电压值;
电压上报单元, 用于将检测到的交流电压值上报至监控模块。
7、 一种电源系统, 其特征在于, 所述电源系统包括: 若干个电源模块和 一个监控模块;
所述电源模块的输入输出连接器上设置有相位检测信号针;
所述电源模块, 用于检测自身连接器上的相位检测信号针的针脚状态,根 据所述针脚状态, 查找状态映射表, 识别自身所在的相位, 并将自身所在的相 位上报至所述监控模块。
8、 根据权利要求 7所述的电源系统, 其特征在于, 所述电源模块还用于 检测自身的交流电压值, 并将检测到的交流电压值上报至监控模块。
9、 根据权利要求 7所述的电源系统, 其特征在于, 所述监控模块用于根 据接收到的各电源模块所在相位和交流电压值进行统筹分析, 优化系统负载。
10、 根据权利要求 7所述的电源系统, 其特征在于, 所述监控模块还用于 将接收到的各电源模块所在相位和交流电压值显示输出。
PCT/CN2011/075873 2011-06-17 2011-06-17 一种交流电压相位识别方法、电源模块及电源系统 WO2012171219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001527.0A CN102301247B (zh) 2011-06-17 2011-06-17 一种交流电压相位识别方法、电源模块及电源系统
PCT/CN2011/075873 WO2012171219A1 (zh) 2011-06-17 2011-06-17 一种交流电压相位识别方法、电源模块及电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075873 WO2012171219A1 (zh) 2011-06-17 2011-06-17 一种交流电压相位识别方法、电源模块及电源系统

Publications (1)

Publication Number Publication Date
WO2012171219A1 true WO2012171219A1 (zh) 2012-12-20

Family

ID=45360520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075873 WO2012171219A1 (zh) 2011-06-17 2011-06-17 一种交流电压相位识别方法、电源模块及电源系统

Country Status (2)

Country Link
CN (1) CN102301247B (zh)
WO (1) WO2012171219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372496B (zh) * 2015-11-10 2018-11-30 华为技术有限公司 供电网络中的相位识别装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135392A (ja) * 2002-10-08 2004-04-30 Tamagawa Seiki Co Ltd 三相電源欠相検出装置
CN2653521Y (zh) * 2003-09-23 2004-11-03 中国科学院光电技术研究所 供电电网缺相检测电路
CN1201156C (zh) * 2003-01-17 2005-05-11 艾默生网络能源有限公司 应用于三相四线输入设备的缺相检测方法和缺相检测电路
JP2006317435A (ja) * 2005-04-14 2006-11-24 Tokyo Electric Power Co Inc:The 位相・振幅検出装置および方法
CN100447574C (zh) * 2003-07-30 2008-12-31 株式会社安川电机 三相变换器的电源缺相检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7721122B2 (en) * 2007-01-09 2010-05-18 Dell Products, Lp Power distribution system including a control module and a method of using the system
JP5151571B2 (ja) * 2008-03-11 2013-02-27 日本電気株式会社 電子回路基板の電源雑音解析装置とプログラム
JP2009278511A (ja) * 2008-05-16 2009-11-26 Panasonic Corp 通信方式および電力線通信端末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004135392A (ja) * 2002-10-08 2004-04-30 Tamagawa Seiki Co Ltd 三相電源欠相検出装置
CN1201156C (zh) * 2003-01-17 2005-05-11 艾默生网络能源有限公司 应用于三相四线输入设备的缺相检测方法和缺相检测电路
CN100447574C (zh) * 2003-07-30 2008-12-31 株式会社安川电机 三相变换器的电源缺相检测方法
CN2653521Y (zh) * 2003-09-23 2004-11-03 中国科学院光电技术研究所 供电电网缺相检测电路
JP2006317435A (ja) * 2005-04-14 2006-11-24 Tokyo Electric Power Co Inc:The 位相・振幅検出装置および方法

Also Published As

Publication number Publication date
CN102301247A (zh) 2011-12-28
CN102301247B (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103995575B (zh) 一种服务器启动方法和服务器
US9825487B2 (en) Apparatus and electric power control method
CN104050061B (zh) 一种基于PCIe总线多主控板冗余备份系统
US9058156B2 (en) Determining redundancy in a power distribution system
CN103078393A (zh) Usb集线器和usb集线器的电力供应方法
CN103946768B (zh) 并联逆变器系统的故障检测
US10725519B1 (en) Power control based on power controller configuration records
CN102374613B (zh) 通过人体感应以控制空调上电的方法
CN103473166A (zh) 一种小型嵌入式系统板卡监控系统
CN102882267A (zh) 供电装置、电子设备和供电方法
CN103605596B (zh) 用于atca刀片上的fpga芯片与bmc芯片协同电源管理系统和方法
TWI422120B (zh) A backup power system that operates according to load regulation
CN104011956B (zh) 过载检测设备
CN106451404B (zh) 电源系统及其电源配置方法
CN103163409B (zh) 用于现场电力仪表电流接线接反的校正方法及装置
CN211402623U (zh) 一种空调内机、外机的便捷式测试装置
CN103176100A (zh) 一种ups中检测蓄电池是否连接正常的方法及装置
TW201413434A (zh) 電源供應系統
WO2012171219A1 (zh) 一种交流电压相位识别方法、电源模块及电源系统
US20140016259A1 (en) Multi-motherboard power data communication architecture for power supplies
CN201374570Y (zh) 具有开机自检功能的ups
CN115528676A (zh) 供电系统、监控方法、装置、电子设备及存储介质
TW201706773A (zh) 電源系統及其電源喚醒方法
CN102420706B (zh) 一种设置在交换机中的管理板以及交换机
CN112731825B (zh) 检测电路、装置及其检测方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001527.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867660

Country of ref document: EP

Kind code of ref document: A1