WO2009136718A2 - 반도체 소자 및 그 제조방법 - Google Patents
반도체 소자 및 그 제조방법 Download PDFInfo
- Publication number
- WO2009136718A2 WO2009136718A2 PCT/KR2009/002353 KR2009002353W WO2009136718A2 WO 2009136718 A2 WO2009136718 A2 WO 2009136718A2 KR 2009002353 W KR2009002353 W KR 2009002353W WO 2009136718 A2 WO2009136718 A2 WO 2009136718A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- buffer layer
- growth substrate
- silicon
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 150000004767 nitrides Chemical class 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 41
- 229910052710 silicon Inorganic materials 0.000 claims description 41
- 239000010703 silicon Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 30
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 22
- 229910002601 GaN Inorganic materials 0.000 claims description 16
- 229910052594 sapphire Inorganic materials 0.000 claims description 9
- 239000010980 sapphire Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 2
- 229910010093 LiAlO Inorganic materials 0.000 claims 2
- ZUSQJEHVTIBRNR-UHFFFAOYSA-N aluminum;lithium;oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[Al+3] ZUSQJEHVTIBRNR-UHFFFAOYSA-N 0.000 claims 2
- 229910052733 gallium Inorganic materials 0.000 claims 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims 2
- 229910001947 lithium oxide Inorganic materials 0.000 claims 2
- 239000010410 layer Substances 0.000 description 112
- 239000010409 thin film Substances 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 6
- 238000001451 molecular beam epitaxy Methods 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- WVMQHRSXNDKHPF-UHFFFAOYSA-N rhenium Chemical compound [Re].[Re] WVMQHRSXNDKHPF-UHFFFAOYSA-N 0.000 description 6
- 229910052702 rhenium Inorganic materials 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
Definitions
- the present invention relates to a semiconductor device and a method of manufacturing the same.
- the light emitting diode is attracting attention in the next generation lighting field because it has a high efficiency of converting electrical energy into light energy and a lifespan of more than 5 years on average, which can greatly reduce energy consumption and maintenance cost.
- the light emitting diode forms a buffer layer on a growth substrate such as sapphire, silicon carbide (SiC), or silicon (Si) having a hexagonal structure, and a semiconductor layer and an active layer of a first conductivity type on the buffer layer. And a light emitting semiconductor layer including a second conductive semiconductor layer.
- the light emitting diode may be formed of a group III nitride single crystal semiconductor, and light is generated in the active layer according to a current applied through the first conductive semiconductor layer and the second conductive semiconductor layer.
- the group III nitride single crystal semiconductor has a large lattice constant and a difference in thermal expansion coefficient between the silicon growth substrate and the group III nitride single crystal semiconductor.
- the problem is that crystallinity is lowered and cracks and dislocations occur.
- the coefficient of thermal expansion of gallium nitride (GaN), which is a typical Group 3 nitride single crystal semiconductor, is 5.59 ⁇ 10 6 / K, and the lattice constant is 3.189 GPa.
- the thermal expansion coefficient of the silicon (Si) growth substrate having a (111) crystal plane is 2.50 ⁇ 10 6 / K, and the lattice constant is 3.84 GPa.
- the silicon growth substrate has a thermal expansion coefficient difference of about 53.6% and a lattice constant difference of 16.9% compared to gallium nitride (GaN). Therefore, the gallium nitride layer grown on the silicon growth substrate generates a large amount of dislocation due to the lattice constant difference and cracks due to the difference in thermal expansion coefficient.
- cracks are caused by the tensile stress due to the difference in coefficient of thermal expansion during the cooling process after growing the gallium nitride layer at high temperature, which not only lowers the crystallinity of the gallium nitride layer, but also acts as an obstructive layer during electron or hole injection This reduces the performance of the light emitting diode.
- the embodiment provides a semiconductor device having a new structure and a method of manufacturing the same.
- the embodiment provides a semiconductor device having improved electrical characteristics and a method of manufacturing the same.
- a semiconductor device may include a growth substrate; A first buffer layer having a composition of Re x Si y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2) on the growth substrate; And a group III nitride-based single crystal semiconductor layer having a composition of In x Al y Ga 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) on the buffer layer.
- a semiconductor device may include a silicon growth substrate; A first buffer layer having a composition of Re x Si y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2) on the silicon growth substrate; A second buffer layer including GaN or AlN on the first buffer layer; And a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on the second buffer layer.
- a semiconductor device manufacturing method may include forming a buffer layer including a compound having a composition of Re x Si y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2) on a growth substrate; Forming a light emitting semiconductor layer including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on the buffer layer; Forming an ohmic contact reflection layer on the second conductivity type semiconductor layer; Forming a conductive wafer bonding layer and a conductive support substrate on the ohmic contact reflecting layer; Removing the growth substrate and the buffer layer; And forming a first electrode layer on the first conductive semiconductor layer.
- the embodiment can provide a semiconductor device having a new structure and a method of manufacturing the same.
- the embodiment can provide a semiconductor device having improved electrical characteristics and a method of manufacturing the same.
- FIG. 1 and 2 illustrate a method of manufacturing a semiconductor device in accordance with an embodiment.
- FIG. 3 is a diagram for explaining a semiconductor device according to the first embodiment
- FIG. 4 is a diagram for explaining a semiconductor device according to the second embodiment
- 5 to 9 illustrate a method of manufacturing a group III nitride-based light emitting device using a silicon growth substrate.
- each layer (film), region, pattern or structure is “on / on” or “bottom / on” of the substrate, each layer (film), region, pad or patterns
- “on” and “under” are “directly” or “indirectly” formed through another layer. It includes everything that is done.
- the criteria for the top or bottom of each layer will be described with reference to the drawings.
- each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
- the size of each component does not necessarily reflect the actual size.
- FIG. 1 and 2 illustrate a method of manufacturing a semiconductor device in accordance with an embodiment.
- a growth substrate 100 is prepared (P1).
- the growth substrate 100 may include sapphire, silicon carbide (SiC), zinc oxide (ZnO), gallium arsenide (GaAs), gallium nitride (GaN), silicon (Si), lithium aluminum oxide (LiAlO 2 ), or lithium gallium oxide. It may be formed of any one of (LiGaO 2 ).
- the growth substrate 100 may be selected from a sapphire growth substrate, a silicon carbide (SiC) growth substrate, or a silicon (Si) growth substrate.
- the first buffer layer 110 and the second buffer layer 120 are formed on the growth substrate 100 (P2) (P3).
- the first buffer layer 110 may be formed by In x Al y Ga 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) or Re x Si y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2).
- the second buffer layer 120 may be formed of any one of thin films having a composition of In x Al y Ga 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1) or Re x Si y ( And 0? X? 2 and 0? Y? 2.
- the first buffer layer 110 and the second buffer layer 120 may be formed to have a thickness of 10 nm to 1000 nm using chemical vapor deposition (CVD) or physical vapor deposition (PVD).
- CVD chemical vapor deposition
- PVD physical vapor deposition
- a single crystal semiconductor layer 130 is formed on the second buffer layer 120 (P4).
- the single crystal semiconductor layer 130 is a group III nitride-based single crystal semiconductor material represented by In x Al y Ga 1-xy N (0 ⁇ x, 0 ⁇ y, x + y ⁇ 1), and is an electronic device or a light emitting device. It can be a structure which is a single layer or a multilayer film for manufacture.
- the single crystal semiconductor layer 130 may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer.
- FIG 3 is a view for explaining the semiconductor device according to the first embodiment.
- Rhenium (rhenium) or rhenium silicide (rhenium silicide) material is deposited by using the deposition method at 10nm to 1000nm. Then, a heat treatment process is performed to form a compound having a chemical formula approaching ReSi 1.75 or ReSi 2 to form a first buffer layer 210.
- a second buffer layer 220 formed of GaN or AlN is formed on the first buffer layer 210 using MOCVD, HVPE, MBE, or the like during chemical vapor deposition (CVD).
- a gallium nitride (GaN: Si) thin film layer doped with silicon (Si) is used as a first conductive semiconductor layer on the second buffer layer 220 using MOCVD, HVPE, MBE, or the like. Form.
- a process of forming an active layer and a second conductive semiconductor layer on the gallium nitride thin film layer 230 may be further performed.
- FIG. 4 is a view for explaining the semiconductor device according to the second embodiment.
- GaN or AlN is formed on a (0001) sapphire growth substrate 300 by using a chemical vapor deposition (CVD) method, such as MOCVD, HVPE, MBE, and a heat treatment process. 310).
- CVD chemical vapor deposition
- rhenium or rhenium silicide is deposited to form a compound having a chemical formula approaching ReSi 1.75 or ReSi 2 to form a second buffer layer 320.
- a gallium nitride (GaN: Si) thin film layer 330 doped with silicon (Si) is used as the first conductive semiconductor layer on the second buffer layer 320 by using MOCVD, HVPE, MBE, and the like. Form.
- a process of forming an active layer and a second conductive semiconductor layer on the gallium nitride thin film layer 330 may be further performed.
- the silicon growth substrate 200 is the most widely used substrate in a general semiconductor process.
- the silicon growth substrate 200 is inexpensive and capable of manufacturing a large wafer and has excellent thermal conductivity.
- the surface orientation of the silicon growth substrate 200 may be 100 or 110 in addition to 111.
- the surface of the silicon growth substrate 200 having the surface orientation of (111) has a lattice constant of about 3.84 ⁇ .
- the surface of the silicon growth substrate 200 having a plane orientation of (100) has a lattice constant of about 5.40 ⁇ .
- the surface orientation of the silicon growth substrate 200 for directly growing a group III nitride based single crystal semiconductor material is preferably (111).
- Re x Si y (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ ) according to the embodiment. Since a buffer layer formed of at least one thin film having a composition of 2) is provided, not only the silicon growth substrate 200 having the surface orientation of (111) but also the surface orientation of (100) or (110) The silicon growth substrate 200 may also be used.
- the aforementioned ReSi 1.75 or ReSi 2 thin film layer may be triclinic, depending on the formation method. system, orthorhombic system, or tetragonal system crystals.
- the crystal lattice constant of the a-axis unit value of the crystal growth plane is 0.313, and the unit value of the b axis is 0.312 ⁇ .
- the above-mentioned heat dissipation coefficient of the ReSi 1.75 or ReSi 2 thin film layer is in the 300 ⁇ 1400K temperature range, the a-axis is 4.239 + 0.0044T, the b-axis 5.604 + 0.0039T, the c-axis 7.53 + 0.0012T (T: absolute temperature) value
- T absolute temperature
- the buffer layer according to the embodiment can be used to manufacture a group III nitride semiconductor device using a silicon growth substrate which is inexpensive and can be mass produced.
- cracks or warpage may be reduced and dislocations may be suppressed in the group III-nitride semiconductor device formed on the growth substrate through the buffer layer. Therefore, the quality of the group III nitride semiconductor device can be improved, and thus the electrical characteristics of the semiconductor device using the group III nitride semiconductor device can be improved.
- 5 to 9 illustrate a method of manufacturing a group III nitride-based light emitting device using a silicon growth substrate.
- the silicon growth substrate has a property of absorbing light very well and, unlike a conventional sapphire growth substrate, by a conventional wet etching method. It is characterized by being easily separated.
- the group III nitride-based light emitting device using the silicon growth substrate may be usefully used to manufacture a vertical type light emitting device.
- a first buffer layer 410 having a chemical formula approaching a ReSi 1.75 or ReSi 2 thin film layer and a second buffer layer 420 formed of GaN or AlN are formed on the silicon growth substrate 400.
- a light emitting semiconductor layer including a first conductive semiconductor layer 430, an active layer 440, and a second conductive semiconductor layer 450 is formed on the second buffer layer 420.
- the first conductive semiconductor layer 430 may be formed of an n-type nitride semiconductor layer doped with silicon (Si), and the active layer 440 may be a nitride based semiconductor layer having a quantum well structure.
- the second conductive semiconductor layer 450 may be formed of a p-type nitride semiconductor layer doped with magnesium (Mg).
- an ohmic contact reflective layer 460 is formed on the second conductive semiconductor layer 450 in order to improve electrical and optical characteristics of the light emitting device.
- the ohmic contact reflective layer 460 is formed of any one of Rh, Au, Pt, Ni, Ag, Pd, or Al, or an alloy including any one of Rh, Au, Pt, Ni, Ag, Pd, or Al. Can be formed.
- the ohmic contact reflection layer 460 may form an ohmic contact interface having a low contact resistance in the vertical direction with the second conductive semiconductor 450, and may smoothly inject current in the vertical direction.
- the ohmic contact reflective layer 460 may be formed using a conventional evaporator.
- the conductive support substrate 480 is bonded to the ohmic contact reflective layer 460 using the conductive wafer bonding layer 470.
- the present process is illustrated in a manner in which the conductive wafer bonding layer 470 is formed on the ohmic contact reflective layer 460 in advance, and then the conductive support substrate 480 is bonded, the conductive wafer bonding layer 470 is different. ) May be formed on the bottom surface of the conductive support substrate 480 and then bonded to the ohmic contact reflective layer 460.
- the material constituting the conductive wafer bonding layer 470 a material having a predetermined pressure and a melting point of 200 ° C. to 600 ° C. may be used.
- the conductive wafer bonding layer 470 may include at least one of Au, Sn, Pd, In, Ag, Ti, Ni, Cr, or Pt.
- the conductive support substrate 480 may use a support substrate including silicon (Si) that may be conductive by doping impurities.
- the silicon growth substrate 400 is separated and removed.
- the sapphire growth substrate can be removed using one of substrate separation removal techniques such as laser melting, mechanical polishing, and chemical etching.
- substrate separation removal techniques such as laser melting, mechanical polishing, and chemical etching.
- the sapphire growth substrate used in the prior art is very solid as a hexagonal crystal structure of alumina (Al 2 O 3 ), so when using a mechanical polishing or chemical etching process, there is a problem that the process cost or time increases, so the laser beam is mainly used. Separated using.
- the separation and removal method using the laser beam has a problem of lowering the reliability of the final light emitting diode by damaging the single crystal surface of the light emitting structure due to high heat generated in the separation process.
- the silicon growth substrate 400 since the silicon growth substrate 400 is used, it can be easily separated by a commonly known etching method, particularly a wet etching method, thereby solving the problems associated with laser beam separation.
- a first electrode layer 490 is formed on the first conductive semiconductor layer 430.
- a vertical type light emitting device can be manufactured.
- the embodiment can be applied to semiconductor devices of various uses including light emitting devices used as light sources.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Claims (15)
- 성장 기판;상기 성장 기판 상에 RexSiy(0≤x≤2, 0≤y≤2)의 조성을 갖는 제1 버퍼층; 및상기 버퍼층 상에 InxAlyGa1-x-yN(0≤x, 0≤y, x+y≤1)의 조성을 갖는 그룹 3족 질화물계 단결정 반도체층을 포함하는 반도체 소자.
- 제 1항에 있어서,상기 성장 기판과 제1 버퍼층 사이 또는 상기 제1 버퍼층과 상기 그룹 3족 질화물계 단결정 반도체층 사이에 InxAlyGa1-x-yN(0≤x, 0≤y, x+y≤1)의 조성을 갖는 제2 버퍼층을 포함하는 반도체 소자.
- 제 1항에 있어서,상기 성장 기판은 사파이어, 탄화실리콘(SiC), 산화아연(ZnO), 갈륨비소(GaAs), 질화갈륨(GaN), 실리콘(Si), 산화리튬알루미늄(LiAlO2), 또는 산화리튬갈륨(LiGaO2) 중 어느 하나로 형성되는 반도체 소자.
- 제 1항에 있어서,상기 성장 기판은 실리콘(Si) 성장 기판인 반도체 소자.
- 제 1항에 있어서,상기 제1 버퍼층은 ReSi1.75 또는 ReSi2를 포함하는 반도체 소자.
- 제 2항에 있어서,상기 제2 버퍼층은 GaN 또는 AlN을 포함하는 반도체 소자.
- 제 1항에 있어서,상기 그룹 3족 질화물계 단결정 반도체층은 제1 도전형의 반도체층, 활성층 및 제2 도전형의 반도체층을 포함하는 반도체 소자.
- 실리콘 성장 기판;상기 실리콘 성장 기판 상에 RexSiy(0≤x≤2, 0≤y≤2)의 조성을 갖는 제1 버퍼층;상기 제1 버퍼층 상에 GaN 또는 AlN을 포함하는 제2 버퍼층; 및상기 제2 버퍼층 상에 제1 도전형의 반도체층, 활성층, 및 제2 도전형의 반도체층을 포함하는 반도체 소자.
- 제 8항에 있어서,상기 제2 도전형의 반도체층 상에 오믹 접촉층을 포함하는 반도체 소자.
- 성장 기판 상에 RexSiy(0≤x≤2, 0≤y≤2)의 조성을 갖는 화합물을 포함하는 버퍼층을 형성하는 단계;상기 버퍼층 상에 제1 도전형의 반도체층, 활성층, 및 제2 도전형의 반도체층을 포함하는 발광 반도체층을 형성하는 단계;상기 제2 도전형의 반도체층 상에 오믹 접촉 반사층을 형성하는 단계;상기 오믹 접촉 반사층 상에 도전성 웨이퍼 결합층 및 도전성 지지 기판을 형성하는 단계;상기 성장 기판 및 버퍼층을 제거하는 단계; 및상기 제1 도전형의 반도체층 상에 제1 전극층을 형성하는 단계를 포함하는 반도체 소자 제조방법.
- 제 10항에 있어서,상기 버퍼층은 상기 RexSiy(0≤x≤2, 0≤y≤2)의 조성을 갖는 제1 버퍼층과, InxAlyGa1-x-yN(0≤x, 0≤y, x+y≤1)의 조성을 갖는 제2 버퍼층을 포함하는 반도체 소자 제조방법.
- 제 10항에 있어서,상기 성장 기판은 사파이어, 탄화실리콘(SiC), 산화아연(ZnO), 갈륨비소(GaAs), 질화갈륨(GaN), 실리콘(Si), 산화리튬알루미늄(LiAlO2), 또는 산화리튬갈륨(LiGaO2) 중 어느 하나로 형성되는 반도체 소자 제조방법.
- 제 10항에 있어서,상기 성장 기판은 실리콘 성장 기판인 반도체 소자 제조방법.
- 제 11항에 있어서,상기 제1 버퍼층은 ReSi1.75 또는 ReSi2를 포함하는 반도체 소자 제조방법.
- 제 11항에 있어서,상기 제2 버퍼층은 GaN 또는 AlN을 포함하는 반도체 소자 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/990,943 US8633508B2 (en) | 2008-05-04 | 2009-05-04 | Semiconductor element and a production method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0041605 | 2008-05-04 | ||
KR1020080041605A KR20090115826A (ko) | 2008-05-04 | 2008-05-04 | 그룹 3족 질화물계 반도체 소자용 버퍼층 및 그 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009136718A2 true WO2009136718A2 (ko) | 2009-11-12 |
WO2009136718A3 WO2009136718A3 (ko) | 2010-01-14 |
Family
ID=41265144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/002353 WO2009136718A2 (ko) | 2008-05-04 | 2009-05-04 | 반도체 소자 및 그 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8633508B2 (ko) |
KR (1) | KR20090115826A (ko) |
WO (1) | WO2009136718A2 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5966289B2 (ja) * | 2011-09-16 | 2016-08-10 | 富士通株式会社 | 半導体基板の製造方法及び半導体装置の製造方法 |
KR102002898B1 (ko) | 2012-09-04 | 2019-07-23 | 삼성전자 주식회사 | 반도체 버퍼 구조체 및 이를 포함하는 반도체 소자 |
KR102227213B1 (ko) * | 2019-04-19 | 2021-03-12 | 안상정 | 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막 및 이 박막을 이용하는 소자를 제조하는 방법 |
KR102301861B1 (ko) * | 2019-02-28 | 2021-09-14 | 안상정 | 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치 |
CN113491020B (zh) * | 2019-02-28 | 2024-08-16 | 波主有限公司 | 高纯度压电薄膜以及制造利用该薄膜的元件的方法 |
KR102315908B1 (ko) * | 2019-03-25 | 2021-10-21 | 안상정 | 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치 |
KR102480141B1 (ko) * | 2020-09-04 | 2022-12-22 | 웨이브로드 주식회사 | 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자 |
KR20210005989A (ko) * | 2021-01-08 | 2021-01-15 | 안상정 | 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막 및 이 박막을 이용하는 소자를 제조하는 방법 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3813740B2 (ja) * | 1997-07-11 | 2006-08-23 | Tdk株式会社 | 電子デバイス用基板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4978052A (en) * | 1986-11-07 | 1990-12-18 | Olin Corporation | Semiconductor die attach system |
JPH0746670B2 (ja) * | 1991-06-07 | 1995-05-17 | 日本電気株式会社 | 薄膜キャパシタ |
EP0514149B1 (en) | 1991-05-16 | 1995-09-27 | Nec Corporation | Thin film capacitor |
-
2008
- 2008-05-04 KR KR1020080041605A patent/KR20090115826A/ko not_active Application Discontinuation
-
2009
- 2009-05-04 US US12/990,943 patent/US8633508B2/en active Active
- 2009-05-04 WO PCT/KR2009/002353 patent/WO2009136718A2/ko active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3813740B2 (ja) * | 1997-07-11 | 2006-08-23 | Tdk株式会社 | 電子デバイス用基板 |
Non-Patent Citations (1)
Title |
---|
ALI, I ET AL.: 'Properties of semiconducting rhenium silicide thin film grown epitaxially on silicon (111)' APPLIED SURFACE SCIENCE vol. 102, August 1996, pages 147 - 150 * |
Also Published As
Publication number | Publication date |
---|---|
KR20090115826A (ko) | 2009-11-09 |
US20110140102A1 (en) | 2011-06-16 |
US8633508B2 (en) | 2014-01-21 |
WO2009136718A3 (ko) | 2010-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009136718A2 (ko) | 반도체 소자 및 그 제조방법 | |
RU2515205C2 (ru) | Полупроводниковые светоизлучающие устройства, выращенные на композитных подложках | |
JP4677065B2 (ja) | 発光ダイオードおよびその製造方法 | |
US5239188A (en) | Gallium nitride base semiconductor device | |
CN1933205B (zh) | 生长半导体衬底的方法、氮化物基发光器件及其制造方法 | |
KR101636032B1 (ko) | 고전위 밀도의 중간층을 갖는 발광 다이오드 및 그것을 제조하는 방법 | |
KR100770441B1 (ko) | 질화물 반도체 발광소자 | |
WO2011025290A2 (ko) | 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법 | |
JP2018087128A (ja) | 窒化物半導体層の成長方法 | |
JP2002284600A (ja) | 窒化ガリウム結晶基板の製造方法及び窒化ガリウム結晶基板 | |
JP3500281B2 (ja) | 窒化ガリウム系半導体素子およびその製造方法 | |
JP2006521984A (ja) | Iii族の窒化物装置を製作する方法およびそのように製作された装置 | |
WO2009116830A2 (ko) | 반도체 소자 및 그 제조방법 | |
WO2009131401A2 (ko) | 발광 소자 및 그 제조방법 | |
CN102696120A (zh) | 形成复合衬底以及在复合衬底上生长iii-v族发光器件的方法 | |
WO2011129548A2 (en) | Substrate assembly for crystal growth and fabricating method for light emitting device using the same | |
CN105591004A (zh) | 基于图形化Si衬底的LED外延片及其制备方法 | |
KR101020905B1 (ko) | Ⅲ족 질화물 반도체 발광 소자, ⅲ족 질화물 반도체 발광 소자의 제조 방법 및 램프 | |
CN102714256A (zh) | 具有用于补偿基底热膨胀的层的半导体发光器件 | |
KR101064068B1 (ko) | 발광소자의 제조방법 | |
US20050241571A1 (en) | Method of growing nitride single crystal on silicon substrate, nitride semiconductor light emitting device using the same, method of manufacturing the same | |
WO2024056041A1 (zh) | 一种外延芯片结构 | |
WO2009134109A2 (ko) | 발광 소자 및 그 제조방법 | |
WO2016159614A1 (en) | Uv light emitting device | |
CN101859839A (zh) | 发光二极管芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09742824 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12990943 Country of ref document: US |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/03/2011) |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/03/2011) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09742824 Country of ref document: EP Kind code of ref document: A2 |