WO2009136597A1 - 構造体、構造体形成方法及びレーザ光照射装置 - Google Patents

構造体、構造体形成方法及びレーザ光照射装置 Download PDF

Info

Publication number
WO2009136597A1
WO2009136597A1 PCT/JP2009/058543 JP2009058543W WO2009136597A1 WO 2009136597 A1 WO2009136597 A1 WO 2009136597A1 JP 2009058543 W JP2009058543 W JP 2009058543W WO 2009136597 A1 WO2009136597 A1 WO 2009136597A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
base material
irradiation apparatus
irradiation
Prior art date
Application number
PCT/JP2009/058543
Other languages
English (en)
French (fr)
Inventor
義之 湯淺
健 竹之内
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to JP2010511067A priority Critical patent/JP5434911B2/ja
Publication of WO2009136597A1 publication Critical patent/WO2009136597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Definitions

  • the present invention relates to a structure having a light control function using an optical phenomenon such as diffraction and interference, a method for forming the structure, and a laser beam irradiation apparatus for forming the structure, and more particularly, a laser beam irradiation apparatus.
  • the present invention relates to a structure in which a periodic structure formed inside by irradiation exhibits a structural color, a structure forming method, and a laser beam irradiation apparatus.
  • the techniques described in Patent Documents 2 and 3 described above have the following problems.
  • the object of the technique described in Patent Document 2 is a photoresist material (photo-curing resin)
  • the object of the technique described in Patent Document 3 is a photosensitive material (photothermal refractive index capable of multiphoton exposure). Glass that causes a change). For this reason, it could not be used for a material having no photosensitivity.
  • An object of the present invention is to provide a structure, a structure forming method, and a laser beam irradiation apparatus that can form the structure.
  • the structure of the present invention has a structure in which minute cavities are periodically and three-dimensionally arranged inside the substrate so as to cause light diffraction.
  • the structure forming method of the present invention is a method of forming a minute hollow portion in a three-dimensional periodic arrangement inside the substrate by irradiating the substrate with light.
  • the laser light irradiation apparatus of the present invention is a laser light irradiation apparatus that irradiates a substrate with light, and the number of irradiation pulses so that a cavity is formed in the substrate in a periodic array that causes light diffraction. And / or a laser oscillator having a function of adjusting the laser output.
  • the periodic structure since the periodic structure is formed inside the base material, it can have resistance to scratches and dirt, which cause weakening of color development. .
  • the periodic structure since the periodic structure is formed by light irradiation, it can be performed under atmospheric pressure.
  • the periodic structure can be formed without performing pre-processing or post-processing.
  • the base material since the base material is irradiated with light showing transparency to form a periodic structure, the base material may not have photosensitivity.
  • the number of irradiation pulses and the laser output need only be adjusted as the function of the laser device, a structure can be manufactured using a laser device that is inexpensive and easy to adjust the irradiation optical system. Furthermore, since a large number of cavities are formed in a three-dimensional periodic arrangement, the coloring efficiency can be improved by increasing the period in the depth direction.
  • 2 is a transmission microscopic observation image of the surface of the structure when the structure is viewed from above (A direction in FIG. 1). It is the transmission microscope observation image inside a structure in depth 5 micrometers when seeing a structure from upper direction (A direction of FIG. 1). It is a SEM observation image which expanded and showed the section of a structure. It is an arrangement
  • FIG. 1 is a cross-sectional view schematically showing the structure of the structure according to this embodiment.
  • FIG. 2 is a transmission microscope observation image when the structure is viewed from the top surface (direction A in FIG. 1).
  • FIG. 3 is a transmission microscope observation image at a depth of about 5 ⁇ m when the structure is viewed from above.
  • FIG. 4 is an SEM observation image when the cross section of the structure is enlarged.
  • One cavity portion 12 has a shape approximate to a spherical shape or a capsule shape, and has a long diameter of about 1 ⁇ m.
  • the cavity 12 is formed in a portion of the structure 10 that is irradiated with light. Within the irradiation range (in the same plane), a plurality of cavities 12 are formed as shown in FIGS.
  • the plurality of cavities 12 are formed at substantially equal intervals in the surface direction and the depth direction within the light irradiation range. That is, the plurality of hollow portions 12 are formed in a three-dimensional periodic array.
  • Each of the plurality of cavities 12 formed at a certain depth in the depth direction and each of the plurality of cavities 12 formed at the next depth are directly above the light irradiation range (A in FIG. 1). It is formed at a position that does not overlap when viewed from the direction.
  • the three-dimensional periodic structure is considered to be a multilayer structure in which the in-plane two-dimensional periodic structure and the two-dimensional periodic structure forming surface are periodically arranged in the depth direction (see FIG. 5).
  • a diffraction phenomenon occurs on the two-dimensional periodic structure forming surface (referred to as a diffraction surface), and colors are generated in different colors depending on the incident angle of light and the observation angle.
  • the diffraction phenomenon also occurs in each diffraction surface existing at a position having a different depth.
  • the phase of the diffracted light from each surface is not aligned, the color development becomes weak, but if the phases are aligned, the color development becomes strong. That is, an interference phenomenon derived from the multilayer structure occurs. Specifically, color development becomes stronger with light having a wavelength according to the Bragg reflection formula (Formula 1) below.
  • Equation 1 m is the diffraction order, ⁇ is the wavelength, D is the distance between the diffraction surfaces, n is the refractive index of the substance, and ⁇ is the observation angle with the normal angle of the sample surface being 0 °.
  • the structure in which the minute cavities 12 are periodically arranged in three dimensions is formed to match the three-dimensional periodic intensity distribution during light irradiation.
  • the three-dimensional periodic intensity distribution is generated by five-beam interference.
  • the period in the surface direction and the depth direction of the periodic intensity distribution is different depending on the intersection angle of the light beams. That is, a three-dimensional periodic structure with a different period can be formed by varying the crossing angle at the time of five-beam interference.
  • the wavelength of the light at which the diffraction phenomenon caused by the three-dimensional periodic structure and the interference phenomenon are established that is, the color development can be controlled.
  • the “regular arrangement expressing a structural color” means that the grating period is close to the visible light wavelength (about 400 nm to 700 nm), and is about 2.0 ⁇ m or less. At this time, since visible light is strongly diffracted, structural colors are observed.
  • the structure 10 is not limited to this, and may be a substance in which the cavity 12 is formed inside by light irradiation.
  • the base material 11 refers to a member that serves as a base of the structure 10.
  • a polymer compound such as polystyrene, polyethylene, polypropylene, polycarbonate, nylon resin, acrylic resin, vinyl chloride resin, phenol resin, BK7, optical glass such as quartz, soda glass, or the like is used as a material.
  • polyester compounds such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and polytrimethylene terephthalate (PTT) can be used as suitable materials.
  • the base material 11 for example, a polymer compound obtained by kneading a plurality of types, a copolymerized polymer compound, or a polymer compound to which an appropriate additive is added can be used.
  • the base material 11 is not restricted to the above-mentioned material, A conventionally well-known arbitrary suitable material can be used. However, it is necessary to form the cavity 12 by light irradiation.
  • FIG. 2 is a schematic perspective view showing the configuration of the laser beam irradiation apparatus.
  • the laser beam irradiation device 20 is a device for forming the cavity 12 in the structure 10 (base material 11). As shown in the figure, a laser oscillator 21, a beam splitter 22, a collimator element 23, , A light beam selecting element 24 and a light collecting element 25 are provided.
  • the laser oscillator 21 is a device that outputs laser light.
  • a nanosecond laser or a picosecond laser such as a YAG laser, a YVO 4 laser, or a YLF laser can be used.
  • These pulse lasers have a repetition frequency of several Hz to several tens of MHz, and emit energy stored during this repetition period in a very short time width of several ps to several tens ns. Therefore, a high peak power can be efficiently obtained from a small input energy. It is difficult to adjust the irradiation optical system and the apparatus is expensive, but a femtosecond laser such as a Ti: sapphire laser can also be used.
  • a nanosecond pulse laser is particularly desirable because irradiation can be performed for a time width suitable for forming a cavity in laser light irradiation.
  • the laser oscillator 21 has a function of adjusting the number of irradiation pulses.
  • the laser oscillator 21 can also control the energy density (fluence: energy per irradiation area of one pulse) by adjusting the output of the laser.
  • the energy density can be controlled not only by adjusting the laser output in the laser oscillator 21, but also by changing the irradiation beam diameter with the same laser output.
  • the beam splitter 22 is a transmissive optical element that diffracts because fine concave portions or convex portions are periodically carved on the surface, and divides the laser light into a plurality of light beams.
  • the beam splitter 22 divides laser light into at least 5 light fluxes including at least a central light beam (zero-order light) and a peripheral light beam (primary light) of four light beams. Divide into
  • the collimator element 23 for example, a synthetic quartz plano-convex lens having a focal length of 200 mm can be used.
  • the collimator element 23 is placed at a position 200 mm from the beam splitter 22.
  • the collimator element 23 passes a plurality of light beams divided by the beam splitter 22.
  • the light beam selection element 24 can be a mask that is placed at a position where the light beam that has passed through the collimator element 23 is focused, blocks a light beam that is unnecessary for interference among a plurality of light beams, and allows only the necessary light beam to pass.
  • the necessary light beams are five light beams of a central light beam (0th order light) and a peripheral light beam (primary light).
  • the condensing element 25 for example, a synthetic quartz plano-convex lens having a focal length of 100 mm can be used, and the five light beams that have passed through the light beam selecting element 24 are condensed, and the five light beams intersect and interfere with each other.
  • the interfering region has a high intensity region distribution, and the substrate 11 is irradiated with light in this region.
  • the substrate 11 is irradiated with light having a three-dimensional periodic intensity distribution. This is realized by irradiating with the five-beam interference of the central light beam (zero-order light) and the peripheral light beam (primary light).
  • the intensity of the central light beam (zero-order light) and the intensity of the surrounding light beam (primary light) are close to each other. However, they need not be equal. For example, if the intensity of the zero-order light is too strong, it is equivalent to laser irradiation of a single light beam, and if the intensity of the primary light is too strong, it becomes equal to interference of four light beams, and the required three-dimensional periodic intensity is required. This is because no distribution can occur.
  • the distribution of the intensity of each light beam varies depending on the combination of the fine pattern of the transmission type diffraction grating and the laser wavelength used.
  • a beam splitter is not limited to a transmissive diffraction grating.
  • an optical element such as a Fresnel lens or a GRIN (Graded-Index) lens can be used in addition to a convex lens.
  • the light transmittance of the base material 11 is “transmittance” of 70% or more, the transmissivity is 10% or more and less than 70% “semi-transparent”, and the transmittance is less than 10% Impermeability ".
  • the base material 11 shows transparency with respect to a certain wavelength, the light enters the base material.
  • impermeability light only enters the vicinity of the surface of the substrate 11.
  • the substrate 11 when the substrate 11 is a PET sheet, light having a wavelength of about 330 nm or more (for example, a YAG laser) is included as light included in the wavelength region where the substrate 11 exhibits transparency.
  • the third harmonic (355 nm) is irradiated to form the cavity 12.
  • the cavity 12 is formed inside the substrate 11.
  • the light is light having a wavelength included in a wavelength region in which the substrate 11 exhibits transparency.
  • the five light beams that have passed through the light beam selecting element 24 are collected by the light collecting element 25, and the base material 11 is irradiated with light in a region where these five light beams intersect and interfere with each other. .
  • the interference region since five light beams including the central light beam interfere with each other in the optical system of the laser light irradiation apparatus 20, light having a three-dimensional periodic intensity distribution can be irradiated.
  • the cavity part 12 can be formed in the base material 11 by a periodic arrangement. At this time, it is necessary to irradiate the substrate 11 with a sufficiently high irradiation energy density to form the cavity 12.
  • the irradiation energy density When the irradiation energy density is low, light is simply transmitted and the cavity 12 is not formed. Moreover, it is not preferable that the irradiation energy density is too high. If the irradiation energy density is too high, the periodic structure to be formed is destroyed or the base material 11 is burnt. The irradiation energy density required for forming the cavity 12 varies depending on the base material 11. Moreover, even if it is the light contained in the wavelength range which shows transparency, if the wavelength to be used differs, the irradiation energy density required for formation of the cavity part 12 will differ according to the difference in the transmittance
  • the irradiation energy density in normal processing using light having a wavelength of 266 nm showing impermeability is 20 mJ / cm 2 .
  • the cavity 12 is not formed even if irradiation is performed with the same irradiation energy density of 20 mJ / cm 2 .
  • the irradiation energy density needs to be 300 mJ / cm 2 or more and 1000 mJ / cm 2 or less.
  • 500 mJ / cm 2 or more 850mJ / cm 2 or less is preferable.
  • the substrate 11 irradiates light with a wavelength of 355 nm showing transparency with PET
  • irradiation is performed with an irradiation energy density of about 15 to 50 times that when using light with a wavelength of 266 nm showing ordinary impermeability.
  • the inventor's experiment revealed that the cavity 12 can be formed.
  • the light beam of the Q-switch pulse YAG laser third harmonic (wavelength 355 nm) was split into a plurality of light beams by passing through the beam splitter 22. At this time, when the intensity of the 0th order light is 1, the intensity of the 1st order light is 3.6.
  • Each light beam was passed through the collimator element 23, and the light beam selection element 24 placed at the focal point blocked the light beam unnecessary for interference, and only the necessary light beam (5 light beams) was allowed to pass.
  • the light beam that passed through was condensed using the condensing element 25, and the light beams crossed and caused interference.
  • the crossing angle of the 0th order light and the 1st order light was 12.6 °.
  • the specifications of the pulse YAG laser were a pulse width of 5 ns and a repetition frequency of 10 Hz.
  • a structure in which minute cavities 12 were three-dimensionally arranged inside the stretched PET sheet was observed.
  • the structure observed at this time had a period in the plane direction of about 1.5 ⁇ m and a period in the depth direction of about 3.7 ⁇ m.
  • the cavity 12 can be formed in a three-dimensional periodic arrangement. Since the hollow portion 12 is formed inside the base material 11, it can have resistance to scratches and dirt that cause weakening of color development.
  • the periodic structure is formed by light irradiation, it can be performed under atmospheric pressure. Moreover, the periodic structure can be formed without performing pre-processing or post-processing. Furthermore, since the base material 11 is irradiated with light having transparency to form a periodic structure, the base material 11 may not have photosensitivity.
  • the function of the laser beam irradiation apparatus 20 it is only necessary to be able to adjust the number of irradiation pulses and the laser output. Therefore, a structure can be manufactured using the laser beam irradiation apparatus 20 that is inexpensive and easy to adjust the irradiation optical system. Furthermore, since a large number of cavities 12 are formed in a three-dimensional periodic arrangement, the coloring efficiency can be improved by increasing the period in the depth direction.
  • the preferred embodiments of the structure, the structure forming method, and the laser beam irradiation apparatus of the present invention have been described above.
  • the structure, the structure forming method, and the laser beam irradiation apparatus according to the present invention are limited to the above-described embodiments. It goes without saying that various modifications can be made within the scope of the present invention.
  • the stretched PET sheet is given as a specific example of the base material, but the base material is not limited to the stretched PET sheet, and base materials formed of various materials and shapes may be adopted. it can.
  • the present invention is an invention relating to a structure having a periodic structure inside the substrate, it can be used for a product formed of a material capable of forming the periodic structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 感光性を有しない材料であっても、基材内部に周期構造を形成可能とするとともに、より低廉なレーザ装置でその周期構造を形成可能とする。  微小な空洞部12が、光回折を起こすように基材11の内部に三次元的に周期配列して形成された。

Description

構造体、構造体形成方法及びレーザ光照射装置
 本発明は、回折や干渉などの光学現象を用いた光制御機能を有する構造体、この構造体の形成方法、及び、その構造体を形成するためのレーザ光照射装置に関し、特に、レーザ光の照射により内部に形成された周期構造が構造色を発現する構造体、構造体形成方法及びレーザ光照射装置に関する。
 近年、リサイクル性や環境適性の観点から、顔料物質を用いる化学的発色が受け入れられなくなりつつある。微細周期構造形成により光の回折・干渉などの現象を用いて発色する構造色が、それに替わる技術として重要となる。
 ところが、物質表面に形成された二次元周期構造は、発色を弱める原因となる傷つきや汚れへの耐性が無い。
 これら傷つきや汚れへの耐性を持たせるためには、微細周期構造を物質内部に形成する必要がある。
 また、物質内部に三次元微細周期構造を形成することで、発色効率の向上や発色選択性を付与することができる。
 この三次元微細周期構造を形成する方法として、次の技術が提案されている。
 例えば、屈折率周期構造を含む複数の層を周期的に積層した3次元フォトニック結晶であって、長方格子,所定の媒質により成る孔,柱状構造などにより形成された複数の層を順に周期的に積層したものが提案されている(例えば、特許文献1参照。)。
 ところが、この提案技術は、蒸着やエッチング処理により形成するため、工程が複雑であるうえに時間がかかっていた。
 そこで、レーザ照射により三次元微細周期構造を形成する技術が提案されている(例えば、特許文献2、3参照)。
 この提案技術によれば、工程を簡易にでき、加工時間を短くできる。
 しかしながら、上述した特許文献2、3に記載の技術においては、次のような問題があった。
 たとえば、特許文献2に記載の技術の対象物は、光レジスト材料(光硬化樹脂)であり、特許文献3に記載の技術の対象物は、多光子露光が可能な感光性材料(光熱屈折率変化を生じるガラス)であった。このため、感光性を有しない材料に用いることができなかった。
 また、レーザ装置に超短パルス(フェムト秒)レーザを用いているので、照射光学系の調整が難しいうえに、レーザ装置が高価であるなど問題があった。
 本発明は、上記の問題を解決すべくなされたものであり、感光性を有しない材料であっても、基材内部に周期構造を形成可能とするとともに、より低廉なレーザ装置でその周期構造を形成可能とする構造体、構造体形成方法及びレーザ光照射装置の提供を目的とする。
特開2007-148365号公報 特開2003-84158号公報 特開2004-126312号公報
 この目的を達成するため、本発明の構造体は、微小な空洞部が、光回折を起こすように基材の内部に三次元的に周期配列して形成された構成としてある。
 また、本発明の構造体形成方法は、基材に光を照射して、微小な空洞部を基材の内部に三次元的に周期配列して形成する方法としてある。
 また、本発明のレーザ光照射装置は、基材に光を照射するレーザ光照射装置であって、基材の内部に、光回折を起こす周期配列で空洞部を形成するように、照射パルス数及び/又はレーザ出力を調整する機能を有するレーザ発振器を備えた構成としてある。
 本発明の構造体、構造体形成方法及びレーザ光照射装置によれば、基材の内部に周期構造が形成されるため、発色を弱める原因となる、傷つきや汚れへの耐性を持つことができる。
 また、周期構造の形成が光の照射によってなされるため、大気圧下で行うことができる。しかも、前処理や後処理を行うことなく、その周期構造を形成できる。
 さらに、基材が透過性を示す光を照射して周期構造を形成するため、基材が感光性を有していなくてもよい。
 また、レーザ装置の機能として、照射パルス数やレーザ出力の調整ができればよいことから、低廉で照射光学系の調整が簡易であるレーザ装置を用いて構造体を作製できる。
 さらに、三次元的な周期配列で多数の空洞部が形成されるため、奥行き方向の周期を増やすことで、発色効率を向上させることができる。
本実施形態の構造体の構造を模式的に表した断面図である。 構造体を上方(図1のA方向)から見たときの構造体表面の透過顕微観察像である。 構造体を上方(図1のA方向)から見たときの奥行き5μmにおける構造体内部の透過顕微観察像である。 構造体の断面を拡大して示したSEM観察像である。 ブラッグの法則を説明するための周期構造(あるいは回折面)の配列図である。 レーザ光照射装置の構成を示す概略斜視図である。 ビームスプリッタにおける5光束への分割の様子を示す模式図である。 基材に照射される光の干渉領域(三次元周期的な光強度分布)を示す模式図である。 基材である延伸PETシートの透過スペクトルを示すグラフである。
 以下、本発明に係る構造体、構造体形成方法及びレーザ光照射装置の好ましい実施形態について、図面を参照して説明する。
[構造体]
 まず、本発明の構造体の実施形態について、図1~図4を参照して説明する。
 図1は、本実施形態の構造体の構造を模式的に表した断面図である。図2は、構造体を上面(図1のA方向)から見たときの透過顕微観察像である。図3は、構造体を上面から見たときの奥行き約5μmにおける透過顕微観察像である。図4は、構造体の断面を拡大して見たときのSEM観察像である。
 図1~図4に示すように、構造体10の基材11の内部には、微小な空洞部12が多数形成してある。
 一つの空洞部12は、球形又はカプセル型に近似した形状をなし、直径は長いもので1μm程度となっている。
 この空洞部12は、構造体10のうち光が照射された部分に形成される。
 その照射範囲内(同一の面内)では、図1~図4に示すように、空洞部12が複数形成される。
 それら複数の空洞部12は、光の照射範囲内で、面方向と奥行き方向のそれぞれにほぼ等間隔で形成される。つまり、複数の空洞部12は、三次元的な周期配列で形成される。
 また、奥行き方向におけるある深さに形成された複数の空洞部12のそれぞれと、次の深さに形成された複数の空洞部12のそれぞれとは、光の照射範囲の直上(図1のA方向)から見たときに、重ならない位置に形成される。
 ここで、三次元周期構造は、面内の二次元周期構造とその二次元周期構造形成面が奥行き方向に周期的に配列した多層構造と考えられる(図5参照)。二次元周期構造形成面(回折面という)では回折現象が起こり、光の入射角度や観察する角度によって異なる色で発色する。ここで、奥行きの異なる位置に存在するそれぞれの回折面でも回折現象が起きている。このとき、各面からの回折光の位相が揃わないと発色は弱くなるが、位相が揃うと発色は強くなる。つまり、多層構造に由来する干渉現象が起きる。具体的には、下記のブラッグ反射式(式1)に則った波長の光で発色が強くなる。
  mλ=2D(n-sinθ)1/2   ・・・(式1)
 この式1において、mは回折次数、λは波長、Dは回折面の間隔、nは物質の屈折率、θは試料面の法線角度を0°とする観察角度を表す。
 微小な空洞部12が三次元に周期配列した構造は、光照射時の三次元周期的強度分布に一致するように形成される。その三次元周期強度分布は、5光束干渉によって生成される。このとき、光束の交差角度によって、周期的強度分布の面方向と奥行き方向の周期が異なる。
 つまり、5光束干渉時の交差角を異ならせることで、周期の異なる三次元周期構造を形成することができる。これにより、三次元周期構造によって起こる回折現象と干渉現象が成立する光の波長を異ならせること、つまりは発色を制御することができる。
 なお、本発明でいう「構造色を発現する規則的配列」とは、格子周期が可視光波長(約400nm~700nm)に近いときのことであり、およそ2.0μm以下のことである。このとき、可視光が強く回折するので、構造色が観察される。
 また、図2及び図3の透過顕微観察像や図4の断面SEM観察像は、構造体10としてPET延伸シートを用いたものである。ただし、構造体10は、これに限るものではなく、光の照射により内部に空洞部12が形成される物質であればよい。
(基材)
 基材11とは、構造体10のベースとなる部材をいう。
 基材11には、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリカーボネート、ナイロン樹脂、アクリル樹脂、塩化ビニル樹脂、フェノール樹脂などの高分子化合物、BK7、石英などの光学ガラスやソーダガラスなどを材料として用いることができる。特には、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)などのポリエステル化合物等を好適な材料として用いることもできる。また、基材11には、例えば、複数種類を混練した高分子化合物や共重合させた高分子化合物、適切な添加剤を加えた高分子化合物を用いることができる。
 なお、基材11は、上述の材料に限るものではなく、従来公知の任意好適な材料を用いることができる。ただし、光の照射により空洞部12が形成されることを要する。
[レーザ光照射装置]
 次に、レーザ光照射装置について、図6を参照して説明する。
 同図は、該レーザ光照射装置の構成を示す概略斜視図である。
 レーザ光照射装置20は、構造体10(基材11)に空洞部12を形成するための装置であって、同図に示すように、レーザ発振器21と、ビームスプリッタ22と、コリメータ素子23と、光束選択素子24と、集光素子25とを備えている。
 ここで、レーザ発振器21は、レーザ光を出力する装置であって、例えば、YAGレーザ、YVOレーザ、YLFレーザなどのナノ秒レーザ又はピコ秒レーザを用いることができる。これらパルスレーザは、数Hz~数十MHzの繰り返し周波数を有するが、この繰り返し周期の間蓄えられたエネルギーを数ps~数十nsという極めて短い時間幅で放出する。そのため、少ない入力エネルギーから高いピークパワーを効率的に得ることができる。なお、照射光学系の調整が難しいうえに、装置が高価という問題点があるが、Ti:サファイアレーザなどのフェムト秒レーザを用いることもできる。また、レーザ光照射にあたって空洞部が形成されるのに好適な時間幅だけ照射することができることから、特には、ナノ秒パルスレーザが望ましい。
 このレーザ発振器21は、照射パルス数を調整する機能を有している。また、レーザ発振器21は、レーザの出力を調整することで、エネルギー密度(フルエンス:1パルスの照射面積あたりのエネルギー)をコントロールすることもできる。
 なお、エネルギー密度のコントロールは、レーザ発振器21におけるレーザ出力の調整の他、例えば、レーザ出力が同じで照射ビーム径を変化させることによっても実現できる。
 また、被照射材内部への周期構造の形成のためには、照射する光が材料内部へ進入する必要がある。照射光が極表面で吸収されないよう、被照射材において適度な透過率を有する波長の光を用いることが望ましい。
 ビームスプリッタ22は、表面に微細な凹部又は凸部が周期的に刻まれているために回折を起こす、透過型の光学素子であって、レーザ光を複数の光束に分割する。
 特に、ビームスプリッタ22は、図6及び図7に示すように、レーザ光を、少なくとも、中心光束(0次光)が1光束と、周辺光束(1次光)が4光束の計5光束以上に分割する。
 コリメータ素子23は、例えば、焦点距離が200mmの合成石英平凸レンズを用いることができ、この場合はビームスプリッタ22から200mmの位置に置かれる。そして、コリメータ素子23は、ビームスプリッタ22で分割された複数の光束を通す。
 光束選択素子24は、コリメータ素子23を通過した光束が焦点を結ぶ位置に置かれ、複数の光束のうち干渉に不必要な光束を遮り、必要な光束のみを通過させるマスクを用いることができる。この必要な光束は、中心光束(0次光)と周辺光束(1次光)の5光束である。
 集光素子25は、例えば、焦点距離が100mmの合成石英平凸レンズを用いることができ、光束選択素子24を通過した5光束を集光し、それら5光束を交差させ干渉させる。この干渉した領域は、図8に示すように高強度域の分布となり、この領域で基材11に光照射する。
 また、その干渉領域では、三次元的な周期強度分布を有する光が基材11に照射される。これは、中心光束(0次光)と周辺光束(1次光)の5光束干渉で照射することにより実現される。
 このとき、中心の光束(0次光)の強度と周囲の光束(1次光)の強度とを近づけておくことが重要である。ただし、等しくする必要はない。これは、例えば0次光の強度が強すぎると単光束のレーザ照射に等しくなり、また、1次光の強度が強すぎると4光束の干渉に等しくなり、必要とする3次元的な周期強度分布が発生できないからである。
 なお、ビームスプリッタに透過型回折格子を用いた場合、各光束の強度の配分は、透過型回折格子の微細パターンと用いるレーザ波長の組み合わせによって異なる。このようにして、各光束の強度を調節することができる。ただし、ビームスプリッタとして用いられるのは、透過型回折格子に限らない。
 また、コリメータ素子23や集光素子25としては、凸レンズの他、フレネルレンズやGRIN(Graded-Index)レンズなどの光学素子を用いることができる。
 また、基材11の内部に周期構造を形成するためには、照射する光が材料内部へ進入する必要がある。照射光が極表面で吸収されないよう、基材11において適度な透過率を有する波長の光を用いる。
 ここで、波長に対して基材11が透過性の性質を有しているか否かは、次のように判断される。
 特定の波長に対して、その基材11における光の透過率が70%以上を「透過性」、透過率が10%以上70%未満を「半透過性」、透過率が10%未満を「不透過性」とする。
 ある波長に対して基材11が透過性を示す場合、光は基材内部まで進入する。一方、不透過性を示す場合、光は基材11の表面近傍にしか進入しない。
 具体的には、図9に示すように、基材11がPETシートの場合、この基材11が透過性を示す波長領域に含まれる光として、およそ330nm以上の波長の光(例えば、YAGレーザ第3高調波:355nm)を照射して空洞部12を形成する。
[構造体の形成方法]
 次に、本実施形態の構造体の形成方法について説明する。
 三次元的な周期的強度分布を有した光を照射することで、基材11の内部に空洞部12を形成する。
 その光は、基材11が透過性を示す波長領域に含まれる波長の光である。
 また、図6及び図8に示すように、光束選択素子24を通過した5光束を集光素子25で集光し、それら5光束を交差させ干渉させた領域で、基材11に光照射する。
 その干渉領域では、レーザ光照射装置20の光学系において中心の光束を加えた5光束が干渉しているため、三次元的な周期強度分布を有する光を照射できる。これにより、基材11の内部に周期配列で空洞部12を形成できる。
 このとき、空洞部12を形成するには基材11に対して十分に高い照射エネルギー密度でもって照射する必要がある。照射エネルギー密度が低い場合、光は単に透過するのみで空洞部12は形成されない。また、照射エネルギー密度は高すぎても好ましくない。照射エネルギー密度が高すぎる場合、形成される周期構造が崩れたり基材11に焦げが発生したりしてしまう。なお、基材11によって、空洞部12の形成に要する照射エネルギー密度は異なる。また、透過性を示す波長領域に含まれる光であっても、用いる波長が異なると、その透過率の差異に応じて、空洞部12の形成に要する照射エネルギー密度が異なる。
 ここで、基材11にPETを用いたときを例にして説明する。
 不透過性を示す波長266nmの光を用いる通常の加工での照射エネルギー密度は20mJ/cmである。透過性を示す波長355nmの光を用いたときに、同じ照射エネルギー密度20mJ/cmで照射しても空洞部12は形成されない。空洞部12を形成するには、照射エネルギー密度は300mJ/cm以上1000mJ/cm以下が必要である。空洞部12をより良好に形成するには、特には、500mJ/cm以上850mJ/cm以下が好適である。
 このように、基材11がPETで透過性を示す波長355nmの光を照射する場合、通常の不透過性を示す波長266nmの光を用いるときのおよそ15~50倍の照射エネルギー密度でもって照射すると空洞部12を形成できることが発明者の実験でわかった。
[構造体形成の実施例]
 次に、構造体形成の実施例について説明する。
 Q-スイッチパルスYAGレーザ第3高調波(波長355nm)の光束を、ビームスプリッタ22を通過させることで、複数の光束に分割した。このとき、0次光の強度を1とすると、1次光の強度は3.6であった。
 各々の光束をコリメータ素子23に通過させ、焦点を結ぶ位置においた光束選択素子24により干渉に不必要な光束を遮り、必要な光束のみ(5光束)を通過させた。通過した光束を集光素子25を用いて集光し、光束を交差させ干渉させた。このとき、0次光と1次光の交差角は12.6°であった。干渉した領域で2軸延伸したPETシート(透過率82.3%@355nm)に照射する。
 パルスYAGレーザの仕様は、パルス幅5ns、繰り返し周波数10Hzであった。
 照射エネルギー密度が500mJ/cmでパルス1発を照射した結果、延伸PETシート内部に微小な空洞部12が三次元周期配列した構造が観察された。このとき観察された構造は、面方向の周期は約1.5μm、奥行き方向の周期は約3.7μmであった。
 以上説明したように、本実施形態の構造体、構造体形成方法及びレーザ光照射装置によれば、三次元的な周期的強度分布を有した光を照射することで、基材11の内部に三次元的周期配列で空洞部12を形成することができる。
 この空洞部12は、基材11の内部に形成されるため、発色を弱める原因となる、傷つきや汚れへの耐性を有することができる。
 また、周期構造の形成が光の照射によってなされるため、大気圧下で行うことができる。しかも、前処理や後処理を行うことなく、その周期構造を形成できる。
 さらに、基材11が透過性を示す光を照射して周期構造を形成するため、基材11が感光性を有していなくてもよい。
 また、レーザ光照射装置20の機能として、照射パルス数やレーザ出力の調整ができればよいことから、低廉で照射光学系の調整が簡易であるレーザ光照射装置20を用いて構造体を作製できる。
 さらに、三次元的な周期配列で多数の空洞部12が形成されるため、奥行き方向の周期を増やすことで、発色効率を向上させることができる。
 以上、本発明の構造体、構造体形成方法及びレーザ光照射装置の好ましい実施形態について説明したが、本発明に係る構造体、構造体形成方法及びレーザ光照射装置は上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。
 例えば、上述した実施形態では、基材の具体例として延伸PETシートを挙げたが、基材は延伸PETシートに限るものではなく、様々な材質や形状で形成された基材を採用することができる。
 本発明は、基材内部に周期構造を有する構造体に関する発明であるため、その周期構造を形成可能な材料で形成された製品などに利用可能である。
 10 構造体
 11 基材
 12 空洞部
 20 レーザ光照射装置
 21 レーザ発振器
 22 ビームスプリッタ

Claims (19)

  1.  微小な空洞部が、光回折を起こすように基材の内部に三次元的に周期配列して形成された
     ことを特徴とする構造体。
  2.  前記空洞部の周期配列が、構造色を発現する規則的配列を有する
     ことを特徴とする請求項1記載の構造体。
  3.  前記基材が、ポリエステル化合物である
     ことを特徴とする請求項1又は2記載の構造体。
  4.  前記空洞部の周期配列が、光照射により形成された
     ことを特徴と請求項1~3のいずれかに記載の構造体。
  5.  前記光が、前記基材が透過性を示す波長領域に含まれる光である
     ことを特徴とする請求項4記載の構造体。
  6.  三次元的な周期的強度分布を発生させるように、前記光が照射された
     ことを特徴とする請求項4又は5記載の構造体。
  7.  前記光が、ナノ秒パルスレーザ光である
     ことを特徴とする請求項4~6のいずれかに記載の構造体。
  8.  基材に光を照射して、微小な空洞部を前記基材の内部に三次元的に周期配列して形成する
     ことを特徴とする構造体形成方法。
  9.  前記基材が、ポリエステル化合物である
     ことを特徴とする請求項8記載の構造体形成方法。
  10.  前記光が、前記基材が透過性を示す波長領域に含まれる光である
     ことを特徴とする請求項8又は9記載の構造体形成方法。
  11.  三次元的な周期的強度分布を発生させるように、前記光を照射する
     ことを特徴とする請求項8~10のいずれかに記載の構造体形成方法。
  12.  前記光が、ナノ秒パルスレーザ光である
     ことを特徴とする請求項11記載の構造体形成方法。
  13.  基材に光を照射するレーザ光照射装置であって、
     前記基材の内部に、光回折を起こす周期配列で空洞部を形成するように、照射パルス数及び/又はレーザ出力を調整する機能を有するレーザ発振器を備えた
     ことを特徴とするレーザ光照射装置。
  14.  前記レーザ発振器が、ナノ秒パルスレーザである
     ことを特徴とする請求項13記載のレーザ光照射装置。
  15.  三次元的な周期的強度分布を有する光を発生させて前記基材に照射する光学系を備えた
     ことを特徴とする請求項13又は14記載のレーザ光照射装置。
  16.  前記光学系が、前記レーザ発振器から出力された光を五つの光束に分割し、この五つの光束が干渉した領域が前記基材となるように光照射する構成である
     ことを特徴とする請求項15記載のレーザ光照射装置。
  17.  前記光学系が、ビームスプリッタとコリメータ素子と光束選択素子と集光素子とで構成される
     ことを特徴とする請求項15又は16記載のレーザ光照射装置。
  18.  前記光学系が、分割された各光束の強度を調節する機構を有する
     ことを特徴とする請求項16又は17記載のレーザ光照射装置。
  19.  前記ビームスプリッタを替えることで分割される各光束の強度を調節できる
     ことを特徴とする請求項17又は18記載のレーザ光照射装置。
PCT/JP2009/058543 2008-05-07 2009-05-01 構造体、構造体形成方法及びレーザ光照射装置 WO2009136597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511067A JP5434911B2 (ja) 2008-05-07 2009-05-01 構造体、構造体形成方法及びレーザ光照射装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-121562 2008-05-07
JP2008121562 2008-05-07

Publications (1)

Publication Number Publication Date
WO2009136597A1 true WO2009136597A1 (ja) 2009-11-12

Family

ID=41264653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058543 WO2009136597A1 (ja) 2008-05-07 2009-05-01 構造体、構造体形成方法及びレーザ光照射装置

Country Status (2)

Country Link
JP (1) JP5434911B2 (ja)
WO (1) WO2009136597A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031476A (zh) * 2018-08-30 2018-12-18 浙江理工大学 兼具结构稳定和颜色鲜艳的图案化光子晶体结构生色材料的制备方法
CN110540171A (zh) * 2019-09-06 2019-12-06 国家纳米科学中心 一种结构色材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084158A (ja) * 2001-09-10 2003-03-19 Techno Network Shikoku Co Ltd レーザービームの干渉によるダイヤモンド構造のフォトニック結晶の製造方法
JP2005266636A (ja) * 2004-03-22 2005-09-29 Nitto Denko Corp コア層中に回折格子を有するポリイミド光導波路の製造方法
JP2007286113A (ja) * 2006-04-12 2007-11-01 Toyo Seikan Kaisha Ltd 構造体、構造体の形成方法及び構造体形成装置
JP2008004694A (ja) * 2006-06-21 2008-01-10 Sony Corp 表面改質方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084158A (ja) * 2001-09-10 2003-03-19 Techno Network Shikoku Co Ltd レーザービームの干渉によるダイヤモンド構造のフォトニック結晶の製造方法
JP2005266636A (ja) * 2004-03-22 2005-09-29 Nitto Denko Corp コア層中に回折格子を有するポリイミド光導波路の製造方法
JP2007286113A (ja) * 2006-04-12 2007-11-01 Toyo Seikan Kaisha Ltd 構造体、構造体の形成方法及び構造体形成装置
JP2008004694A (ja) * 2006-06-21 2008-01-10 Sony Corp 表面改質方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031476A (zh) * 2018-08-30 2018-12-18 浙江理工大学 兼具结构稳定和颜色鲜艳的图案化光子晶体结构生色材料的制备方法
CN110540171A (zh) * 2019-09-06 2019-12-06 国家纳米科学中心 一种结构色材料及其制备方法

Also Published As

Publication number Publication date
JPWO2009136597A1 (ja) 2011-09-08
JP5434911B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
US20140104686A1 (en) Structure, structure-forming method, and structure-forming device
JP4716663B2 (ja) レーザ加工装置、レーザ加工方法、及び該加工装置又は加工方法により作製された構造体
JP5040152B2 (ja) 構造体、構造体の形成方法及び構造体形成装置
US20130300008A1 (en) Method for forming a structural body and an apparatus for forming a structural body
TWI653200B (zh) 玻璃的三維形成
KR102334911B1 (ko) 간섭 측정 레이저 가공
US20180105451A1 (en) Creation of holes and slots in glass substrates
JP2013007842A (ja) 構造体形成装置、構造体形成方法及び構造体
WO2009136598A1 (ja) 構造体、構造体形成方法、レーザ加工方法及び真贋判定方法
JP2006068762A (ja) レーザー加工方法およびレーザー加工装置
JP2011000631A (ja) レーザー加工方法およびレーザー加工装置
JP5434911B2 (ja) 構造体、構造体形成方法及びレーザ光照射装置
JP4456881B2 (ja) レーザ加工装置
KR20140005796A (ko) 편광 위상차판 및 레이저 가공기
JP2010030279A (ja) 構造体、構造体形成方法及び真贋判定方法
CN114258352B (zh) 聚合物基底内的衍射结构、其制作和用途
JP4477893B2 (ja) レーザ加工方法及び装置、並びに、レーザ加工方法を使用した構造体の製造方法
JP2005262230A (ja) レーザ加工方法及びその装置、並びに構造体及びその製造方法
JP2017076068A (ja) 光学機能素子の製造方法
JP2008257223A (ja) 構造体、構造体の形成方法、構造体形成装置、構造色及び/又は回折光読み取り方法、及び、真贋判定方法
JP2013097335A (ja) 光学部品、回折格子、光学的ローパスフィルタ、およびその製造方法
US20240168202A1 (en) Optical Devices Comprising Microlenses and Laser-Fabricated Patterns or Structures, Their Manufacture and Use
US20210265798A1 (en) Method of optical pulse delivery to multiple locations on a substrate
Moebius et al. Direct laser writing of 3D gratings and diffraction optics
Monin et al. Diffraction of the focused pulsed laser beam on a binary phase plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511067

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09742721

Country of ref document: EP

Kind code of ref document: A1