WO2009136457A1 - 青銅合金及びその製造方法、青銅合金を用いた摺動部材 - Google Patents

青銅合金及びその製造方法、青銅合金を用いた摺動部材 Download PDF

Info

Publication number
WO2009136457A1
WO2009136457A1 PCT/JP2008/070755 JP2008070755W WO2009136457A1 WO 2009136457 A1 WO2009136457 A1 WO 2009136457A1 JP 2008070755 W JP2008070755 W JP 2008070755W WO 2009136457 A1 WO2009136457 A1 WO 2009136457A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
mass
bronze alloy
bronze
phase
Prior art date
Application number
PCT/JP2008/070755
Other languages
English (en)
French (fr)
Inventor
克之 舟木
小林 武
丸山 徹
利光 岡根
巖 明石
Original Assignee
石川県
株式会社明石合銅
株式会社カイバラ
中越合金鋳工株式会社
株式会社戸畑製作所
株式会社マツバヤシ
株式会社リコーキハラ
社団法人日本非鉄金属鋳物協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川県, 株式会社明石合銅, 株式会社カイバラ, 中越合金鋳工株式会社, 株式会社戸畑製作所, 株式会社マツバヤシ, 株式会社リコーキハラ, 社団法人日本非鉄金属鋳物協会 filed Critical 石川県
Priority to CN2008801290324A priority Critical patent/CN102099498A/zh
Priority to EP08874205.1A priority patent/EP2292805B1/en
Priority to KR1020107027602A priority patent/KR101306597B1/ko
Priority to DK08874205.1T priority patent/DK2292805T3/da
Priority to US12/736,484 priority patent/US8900721B2/en
Publication of WO2009136457A1 publication Critical patent/WO2009136457A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • Y10T428/12924Fe-base has 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a novel bronze alloy that exhibits excellent friction and wear characteristics while being low-lead or lead-free and a method for producing the same, and further relates to a sliding member using such a bronze alloy.
  • hydraulic pumps, motor cylinder blocks, suspensions, transmission bearings, etc. tend to be used under harsh conditions.
  • the volume occupied by the auxiliary equipment such as a catalyst in the power chamber is increasing in order to cope with exhaust gas regulations that are becoming stricter year by year. Therefore, the hydraulic pump must be reduced in size, but if it is desired to obtain a discharge amount equivalent to that of the conventional hydraulic pump, it is required to be used at a high pressure and high speed exceeding the pressure of 450 bar and the rotational speed of 3000 rpm. It is done.
  • a sliding member to which high surface pressure is applied such as a cylinder block of a hydraulic pump, is required to exhibit stable sliding characteristics even under the severe conditions described above.
  • a combination of a steel piston and a cylinder block using a copper alloy as a sliding material is indispensable.
  • a copper alloy layer is applied to steel. Strongly welded composite materials have also been developed.
  • lead bronze mainly containing about 10% by mass of lead is used as the copper alloy. in use.
  • Lead contained in the copper alloy has a small affinity for both steel and copper alloy and is an indispensable element that imparts high seizure resistance and wear resistance.
  • seizure resistance is lowered, and it is difficult to use it for a hydraulic device sliding member that is often used under severe conditions.
  • Japanese Patent Application Laid-Open No. 11-293305 discloses a sliding material that is a copper-based or iron-based sliding material in which one or more types of Bi-based intermetallic compounds are dispersed and deposited. In the sliding material, Pb-less is achieved, and the seizure property can be improved by the solid lubricating action of the Bi-based intermetallic compound.
  • JP-A-2002-285262 in a copper-based multilayer sliding material having a steel plate and a sintered copper alloy joined to the steel plate, the composition of the sintered copper alloy is Sn: 1.5. 15% by mass, Bi: 1.5-15% by mass, solid lubricant: 1.5-20% by volume, remaining Cu, and the volume ratio of Bi to solid lubricant is 0.5-2.0
  • a copper-based multilayer sliding material is disclosed.
  • the invention described in Japanese Patent Application Laid-Open No. 2002-285262 also provides a copper-based multilayer sliding material that does not contain Pb and has an excellent sliding performance equal to or higher than that of a lead bronze-based sintered alloy. Is.
  • WO 2007/126006 A1 contains 0.05 to 1.5 mass% S in a copper alloy that has been solid-solution strengthened or a copper alloy that has been strengthened by solid solution and compound formation, and contains Cu 2
  • a copper alloy for a sliding material in which an S compound or a Cu 2 S compound + ZnS compound is formed is disclosed. Further, 0.1 mass% or more and 11.0 mass% or less of Pb, 0.1 mass% As described above, it contains at least one of Bis of less than 5.4% by mass (these are not solid-solved in the copper matrix), and these exist alone or as a PbS compound or Bi 2 S 3 compound.
  • a copper alloy for a sliding material is disclosed.
  • JP 2007-297675 A discloses a lead-free copper alloy for castings containing S, Bi, Fe (and / or Ni) and having sulfides dispersed therein.
  • Japanese Patent Application Laid-Open No. 2007-297675 relates to a lead-free copper alloy for casting used as a material for a faucet fitting or a water faucet.
  • a copper alloy containing Bi useful as a free-cutting element
  • Fe Coexistence of Ni and Ni effectively disperses sulfides in the copper matrix, suppresses the formation of pits caused by Bi, and provides excellent machinability and pressure resistance without containing lead harmful to the human body.
  • Lead-free copper alloy for castings that demonstrates its properties.
  • JP-A-11-293305, JP-A-2002-285262, and International Publication WO 2007/126006 A1 are based on a low-melting-point metal compound or sulfide such as bismuth in a copper base. It is added in such a large amount as to be crystallized in order to utilize the solid lubricity of the crystallized product, and is difficult to be industrially used in terms of production cost and castability. For example, bismuth is more than five times the price of copper bullion, and adding 10% by mass greatly increases the manufacturing cost, which is not practical.
  • a copper alloy using the solid lubricity of the crystallized material has a problem that it can only achieve seizure resistance about half that of lead bronze.
  • the technology described in Japanese Patent Application Laid-Open No. 2007-297675 is a lead-free copper alloy for casting used as a material for faucet fittings and water faucets, and has wear resistance and seizure resistance. From the viewpoint of achieving both at a high level, it is not necessarily sufficient.
  • the melting point of produced copper sulfide is lower than the primary crystal temperature (solidification start temperature) of copper by the addition of Bi, Fe, or Ni. The main focus is on improving the machinability by suppressing the occurrence of cast holes and forming sulfides.
  • the invention described in Japanese Patent Application Laid-Open No. 2007-297675 is directed to a lead-free copper alloy for casting used as a material for a faucet fitting or a water faucet.
  • the Sn content is 3 to 4 % Is mainly considered, and no consideration is given to wear resistance and seizure resistance.
  • the present invention has been proposed in view of such conventional circumstances, and a bronze alloy capable of realizing excellent wear friction characteristics and seizure resistance while reducing lead or lead-free. And a sliding member. Furthermore, it is possible to suppress the addition of expensive elements and elements that impair the castability, and it is possible to reduce the manufacturing cost, and industrially useful bronze. It aims at providing an alloy and its manufacturing method, and also aims at providing a sliding member.
  • spheroidal graphite cast iron is widely used as a bearing or a sliding member, but its characteristics differ greatly depending on the metal structure of the base.
  • the structure mainly composed of ⁇ -iron (ferrite) is rich in ductility and is used for structures where impact force is applied. However, seizure resistance and wear resistance are low and insufficient for use as bearings and sliding materials.
  • the structure mainly composed of eutectoid phase (pearlite) composed of ⁇ iron and iron carbide (cementite: Fe 3 C) is very thin and has appropriate wear resistance and seizure resistance.
  • pearlite eutectoid phase
  • cementite: Fe 3 C cementite
  • the structure is controlled in the manufacturing process so that it becomes a pearlite base. What is important here is that cast iron contains a large amount of graphite with excellent solid lubricity, and the crystallized amount of graphite hardly changes between ferrite bases and pearlite bases. This is largely due to the visual form (morphology
  • the morphology of pearlite is that two structures of extremely different hardness, ferrite and cementite, change at intervals of several hundred nm to 1 ⁇ m, and the structures with different hardness have different seizure characteristics.
  • the expansion propagation of the seizure area in the initial stage is hindered.
  • the soft ferrite increases the compatibility with an important shaft as a bearing member, and the hard cementite exhibits excellent frictional sliding characteristics due to the synergistic effect of increasing the wear resistance.
  • high tin bronze has a eutectoid structure of ⁇ copper (Cu 31 Sn 8 ) or ⁇ copper (Cu 3 Sn), which is an intermetallic compound of ⁇ -copper and copper-tin based metal, as in steel.
  • ⁇ copper Cu 31 Sn 8
  • Cu 3 Sn ⁇ copper
  • it is not a structure having a morphology similar to that of pearlite, but a morphology similar to redebrite in which a small amount of granular ⁇ copper is precipitated in a coarse intermetallic compound.
  • a material exhibiting such a non-uniform structure has not been used industrially because its tensile strength and elongation are extremely reduced.
  • transformation to ⁇ copper takes the initiative, so transformation to ⁇ copper is extremely unlikely, and annealing is performed for a long time at a temperature of 350 ° C. or less after strong processing. It is obtained for the first time.
  • the present invention uses the eutectoid transformation of bronze to make the pearlite-like eutectoid phase excellent in seizure resistance morphologically mentioned above, and cast a copper alloy excellent in frictional wear characteristics and seizure resistance. It is what is offered in.
  • bronze used industrially a pearlite-like eutectoid phase does not appear due to the eutectoid transformation, and a metal structure in which a small amount of granular ⁇ copper is mixed at the base of the ⁇ copper single phase.
  • the present inventors have developed an element that promotes solidification segregation by inhibiting the diffusion of tin in copper and lowering the solid solubility limit of ⁇ -copper in bronze, which has copper and tin as main components and solidifies in a dendrite type.
  • the bronze alloy of the present invention is a bronze alloy mainly composed of copper and tin, in a metal structure, in ⁇ copper. It is characterized in that a eutectoid phase in which copper tin-based intermetallic compounds are precipitated and metal fine particles containing bismuth are dispersed and precipitated is expressed. Further, the eutectoid phase is generated by a peritectic reaction.
  • the eutectoid phase has a fine laminated structure in which a flake copper tin-based metal compound is precipitated in ⁇ copper, the bronze alloy is ⁇ It is a bronze alloy in which copper appears and is characterized in that the metal structure at the eutectoid transformation is controlled to include the eutectoid phase by containing three elements of nickel, bismuth, and sulfur. is there.
  • the bronze alloy of the present invention can also be defined from the viewpoint of composition.
  • the bronze alloy mainly contains copper and tin, and the nickel content is 0.5 mass% to 5 mass%. 0.0 mass%, bismuth content is 0.5 mass% to 5.0 mass%, sulfur content is 0.08 mass% to 1.0 mass%, and the above eutectoid phase is expressed. It is a bronze alloy characterized by
  • the above eutectoid phase can be formed by adding 5% or more of nickel or 10% or more of silver instead of sulfur, the use of these precious metals in large quantities greatly increases the production cost. This is not realistic. Therefore, in the present invention, it is an essential requirement to contain sulfur.
  • the bronze alloy of the present invention can be specified from the viewpoint of a pearlite-like eutectoid phase, and in this case, the bronze alloy is characterized in that the proportion of the eutectoid phase is 10 area% to 70 area%. It turns out that.
  • the ratio of the eutectoid phase in the metal structure can be controlled by adjusting the tin content in the bronze alloy.
  • the aforementioned eutectoid phase can appear by partially stabilizing the ⁇ phase generated by the peritectic reaction with an additive element. Therefore, the method for producing a bronze alloy according to the present invention adds nickel, bismuth, and sulfur as additive elements to copper and tin, which are the main components of the bronze alloy, and partially stabilizes the ⁇ phase generated by the peritectic reaction with the additive element. In this case, a copper tin-based intermetallic compound is precipitated in ⁇ -copper and a eutectoid phase in which metal fine particles containing bismuth are dispersed and precipitated appears.
  • the bronze alloy described above has excellent wear friction characteristics and seizure resistance, and can be used as a sliding member. That is, the bronze alloy of the present invention is characterized in that the sliding surface is formed of the aforementioned bronze alloy. Alternatively, the above bronze alloy is bonded to the sliding surface of the iron-based material.
  • the bronze alloy of the present invention having the above-described structure has seizure resistance comparable to that of lead bronze, and has excellent frictional wear characteristics, mechanical properties, and machinability, and is an industrial lead bronze substitute bearing. It is useful as a copper alloy material. Further, if the metal phase transformation shown in the present invention is used, an expensive element such as bismuth or an element that impairs castability such as sulfur, as compared with the prior art using solid lubrication of a generated compound or a crystallization phase. It is possible to provide a bronze alloy having a high utility value industrially, such as being able to minimize the amount of addition of copper, suppressing manufacturing costs, and improving productivity.
  • the sliding member of the present invention (for example, a hydraulic cylinder block) is formed by sticking the above-described copper alloy to the sliding surface on a steel body by a method such as diffusion bonding, casting bonding, or press fitting. It is a characteristic (bimetal). Since the above-mentioned copper alloy is excellent in friction and wear characteristics and seizure resistance, sliding members using it exhibit excellent performance, for example, excellent bearing characteristics under continuous high load and high speed sliding Demonstrate.
  • FIG. 1 is a photomicrograph of a bronze alloy in which a layered eutectoid phase has appeared due to simultaneous addition of 0.7 mass% sulfur, 1.5 mass% nickel and 3 mass% bismuth to tin bronze.
  • FIG. 2 is an electron micrograph showing a pearlite layered structure of eutectoid phase.
  • FIG. 3 is a reflection electron composition image of a eutectoid phase in which fine bismuth is precipitated.
  • FIG. 4 is a schematic perspective view showing an example of a hydraulic cylinder block.
  • FIG. 5 is a diagram showing a schematic configuration of a cylindrical friction tester used in the cylindrical friction test.
  • FIG. 6 is a characteristic diagram showing the relationship between the composition of the copper alloy and the seizure limit PV value.
  • FIG. 1 is a photomicrograph of a bronze alloy in which a layered eutectoid phase has appeared due to simultaneous addition of 0.7 mass% sulfur, 1.5 mass% nickel and 3 mass% bismuth to
  • FIG. 7 is a diagram showing a composition range in which a layered eutectoid phase appears when the addition amount of nickel is constant (1.5 mass%) and the addition amounts of sulfur and bismuth are changed.
  • FIG. 8 is a diagram showing a composition range in which a layered eutectoid phase appears when the addition amount of sulfur is constant (0.7 mass%) and the addition amounts of nickel and bismuth are changed.
  • FIG. 9 is a photomicrograph showing the metal structure when 1% by mass of sulfur is added to tin bronze.
  • FIG. 10 is a photomicrograph showing the metal structure when 1% by mass of sulfur and 3% by mass of bismuth are added to tin bronze.
  • FIG. 11 is a photomicrograph showing the metal structure when 0.7 mass% sulfur and 1.5 mass% nickel are added to tin bronze.
  • FIG. 12 is a diagram showing the relationship between the tin concentration and the area ratio of the eutectoid phase in the metal structure in tin bronze containing 3% by mass of bismuth, 1.5% by mass of nickel, and 0.4% by mass of sulfur. It is.
  • FIG. 13 shows the sulfur concentration and the area ratio of the eutectoid phase in the metal structure in tin bronze containing 12% by mass of tin, 3% by mass of bismuth, 2% by mass of lead, and 1.5% by mass of nickel. It is a figure which shows a relationship.
  • the base structure affects the frictional sliding characteristics.
  • the pearlite base has better friction and wear characteristics.
  • the morphological characteristics of repeated hard and soft phases are difficult to seize. ing.
  • the conformability required for the bearing is good.
  • Pearlite is produced by eutectoid transformation of austenite containing carbon at a high concentration at a high temperature, and a laminated structure of several hundred nanometer level has a feature that it is thermodynamically stable as a structural form of the alloy.
  • the present inventors have thought that if the same structure can appear in bronze, the above advantages can be exhibited, and the copper alloy of the present invention has been developed. That is, in the copper alloy of the present invention, the basic idea is to improve the friction and wear characteristics by utilizing the morphological characteristics of the metal structure.
  • the present invention is based on a bronze-based copper alloy in which tin (Sn) is added in an amount of 4% by mass to 20% by mass to copper, and at least a part of lead is replaced with bismuth to reduce lead or lead-free.
  • tin (Sn) is added in an amount of 4% by mass to 20% by mass to copper, and at least a part of lead is replaced with bismuth to reduce lead or lead-free.
  • the eutectoid transformation that tin bronze occurs at 586 ° C. to 520 ° C. is utilized, but the eutectoid transformation of tin bronze proceeds in two stages as follows, and the eutectoid transformation of ⁇ copper or ⁇ copper: Is controlled by an additive element to obtain a pearlite-like eutectoid phase (intermediate phase having a fine structure in which flaky copper-tin intermetallic compound is precipitated in ⁇ -copper).
  • the intermediate phase does not appear at room temperature because it is metastable, but in the bronze alloy of the present invention, the intermediate phase appears at room temperature because it is stabilized by the additive element.
  • ⁇ copper undergoes eutectoid transformation to ⁇ + ⁇ at 586 ° C.
  • ⁇ copper undergoes eutectoid transformation again to ⁇ + ⁇ at 520 ° C.
  • ⁇ copper and ⁇ copper have the same crystal structure and are difficult to distinguish under an optical microscope.
  • ⁇ copper has a composition of Cu 31 Sn 8 (Sn 32.5 mass%) and is a hard and brittle structure.
  • the eutectoid transformation of tin bronze proceeds in two stages, but ⁇ + ⁇ is observed as a bronze structure at room temperature.
  • sulfur (S) that inhibits Sn diffusion in copper and lowers the solid solubility limit of ⁇ copper to promote solidification segregation is added to transform from ⁇ copper to a large amount of ⁇ copper, Further, the simultaneous addition of a small amount of bismuth (Bi) and nickel (Ni) suppresses the growth of ⁇ copper and lowers the eutectoid transformation temperature by compositional supercooling, so that ⁇ -copper and copper-tin intermetallic compounds become pearlite. The laminated eutectoid phase appears easily and stably. That is, S is added to narrow the Sn solid solubility limit in ⁇ -copper, and ⁇ -copper having a high Sn concentration is generated.
  • Ni delays (stabilizes) the start time of the eutectoid transformation of ⁇ copper and suppresses the formation of coarse ⁇ lumps.
  • Bi lowers the eutectoid transformation temperature by compositional supercooling, and a part thereof is dissolved in ⁇ copper.
  • the Sn diffusion rate is lowered and the bulk growth of ⁇ copper is suppressed, and supersaturated tin in ⁇ copper produces a copper tin-based intermetallic compound, but the free energy of formation is small.
  • the eutectoid phase ⁇ ′ (that is, a co-deposited layer having a fine layered structure) in which two structures having extremely different hardnesses change at intervals of several hundred nm to several ⁇ m in order to precipitate in the form of flakes with ⁇ copper.
  • the deposited phase ⁇ ′) is obtained.
  • Bi dissolved in ⁇ copper is finely dispersed and precipitated in the eutectoid phase as fine bismuth particles (metal fine particles) during eutectoid transformation.
  • the deposited bismuth has been confirmed to be not a compound by electron microanalyzer (EPMA).
  • the ratio of the tin content in the bronze can be controlled by adjusting the tin content in the bronze.
  • the copper tin intermetallic compound that appears at this time may contain a small amount of nickel or sulfur added as an additive element.
  • FIG. 1 is a metallographic micrograph of a bronze alloy in which a eutectoid phase ⁇ ′ appears, and the eutectoid phase ⁇ ′ is shown in the electron micrograph of FIG. 2 by etching with a hydrochloric acid alcohol solution containing ferric chloride. Such a fine laminated structure can be confirmed.
  • FIG. 3 is a reflected electron composition image of the eutectoid phase.
  • the light-colored portion is the ⁇ phase (primary crystal)
  • the dark-colored portion is the eutectoid phase ⁇ ′.
  • the intermediate color portion is Cu 2 S.
  • FIG. 1 is a metallographic micrograph of a bronze alloy in which a eutectoid phase ⁇ ′ appears, and the eutectoid phase ⁇ ′ is shown in the electron micrograph of FIG. 2 by etching with a hydrochloric acid alcohol solution containing ferric chloride. Such a fine laminated structure
  • the white portion is fine bismuth grains
  • the dark portion is ⁇ phase
  • the intermediate color is minute and the copper tin-based intermetallic compound
  • the portion that is largely continuous in the intermediate color is untransformed ⁇ copper having a high tin concentration.
  • the bronze alloy of the present invention in addition to the morphological characteristics in which the soft ⁇ -copper and the hard copper-tin intermetallic compound of the eutectoid phase ⁇ ′ alternate every several hundreds of nanometers, due to precipitation dispersion of fine bismuth grains, Especially under boundary lubrication, excellent seizure resistance and wear resistance surpassing lead bronze are exhibited.
  • the bronze alloy of the present invention has a metal structure by adding an additive element that has the effect of lowering the solid solubility limit of ⁇ copper in tin bronze, suppressing the growth of ⁇ copper, and lowering the eutectoid transformation temperature.
  • the eutectoid phase ⁇ ′ having a fine laminated structure and fine bismuth grains precipitated therein appears, and from the viewpoint of the alloy composition, three elements of S, Bi, and Ni are simultaneously added in appropriate amounts. It is essential. Therefore, the bronze alloy of the present invention is a bronze alloy in which ⁇ copper appears from the viewpoint of composition, and the inclusion of three elements of nickel, bismuth, and sulfur as additive elements allows the metal structure at the eutectoid transformation to be increased. It is defined that it is controlled to include the eutectoid phase.
  • the addition amount of each additive element has an optimum range
  • the Ni content is 0.5 mass% to 5.0 mass%
  • the Bi content is 0.5 mass% to 7.0 mass%
  • the content of sulfur is preferably 0.08% by mass to 1.2% by mass.
  • Ni improves the solidification mode of the long solidification range type, reduces the fine shrinkage foci, increases pressure resistance, and improves the mechanical properties by solid solution in ⁇ -copper, the base structure. Widely used as an effective element. Further, when the amount of Ni is 5% by mass or more, an intermetallic compound ( ⁇ phase) of copper and Ni is precipitated. When the present inventors added 1.5% by mass of Ni to phosphor bronze containing 0.3% by mass of sulfur and 2.5% by mass of Bi, a layered eutectoid phase ⁇ ′ appears, and seizure resistance and It has been found that wear resistance is improved. Bronze solidified at high temperature undergoes eutectoid transformation in the temperature range of 586 ° C.
  • the eutectoid phase ⁇ ′ is formed in a form in which ⁇ copper and a copper tin-based intermetallic compound are laminated.
  • the addition amount (content) of Ni is suitably 0.5% by mass to 5.0% by mass. Desirably, the content is in the range of 1.0% by mass to 3.0% by mass.
  • Bi is a low melting point metal that hardly dissolves in copper like lead, and agglomerates and fills in fine shrinkage nests between dendrites that are likely to occur in tin bronze. As a result, the pressure resistance is improved. Used in lead-free copper alloys. However, excessive addition of Bi has a bad influence on mechanical properties such as elongation and impact value as in the case of lead. In an experiment of adding Bi to phosphor bronze containing 0.5% by mass of sulfur and 1.5% by mass of Ni nickel, the appearance of a layered eutectoid phase ⁇ ′ was observed even with addition of about 1.0% by mass. Addition of 0.0 mass% or more causes the excess to crystallize in the matrix, so the addition amount is suitably 0.5 mass% to 7.0 mass%. Desirably, the content is 2.0% by mass to 5.0% by mass.
  • S is absorbed in the molten metal when melted in a heating furnace using a sulfur-rich fuel such as a heavy oil furnace, and forms copper sulfide and combines with oxygen in the molten metal to generate SO 2 gas. Therefore, the allowable amount is set to 0.08% by mass or less.
  • S is an element that most strongly affects the increase in the precipitation amount of fine bismuth grains in the eutectoid phase by stabilizing the layer eutectoid phase ⁇ ′ and significantly increasing the Bi solid solubility limit in ⁇ copper. In tin bronze containing 0.5 mass% and Bi bismuth 2.5 mass%, the appearance of the layered eutectoid phase ⁇ ′ was observed even when 0.1 mass% was added.
  • the addition amount of S is suitably 0.08% by mass to 1.2% by mass. Desirably, it is 0.15 to 0.5 mass%.
  • the bronze alloy of the present invention can be defined from the viewpoint of the area ratio of the layered eutectoid phase ⁇ ′.
  • the bronze alloy of the present invention is a bronze alloy characterized in that a eutectoid phase having a fine laminated structure in which a fine bismuth grain is precipitated and dispersed appears in a metal structure at a predetermined area ratio. It turns out that.
  • the proportion (area ratio) of the eutectoid phase is preferably 10 area% to 70 area%, and more preferably 20 area% to 70 area%.
  • the ratio of the layered eutectoid phase ⁇ ′ is less than 10 area%, it is not possible to sufficiently obtain the seizure resistance and frictional wear characteristics due to the fine laminated structural characteristics and the precipitation of fine bismuth grains. Further, the frictional wear characteristics can be improved as the ratio of the layered eutectoid phase ⁇ ′ is increased. However, since the solidification segregation of Sn in bronze is used, the appearance of primary crystal ⁇ and some transformed ⁇ copper are obtained. In other words, it is difficult for the ratio of the eutectoid phase ⁇ ′ to exceed 70% by area.
  • the ratio of the layered eutectoid phase ⁇ ′ is preferably 20 area%, and in this case, the Sn concentration is 8 to 15 mass. %, More preferably 10 to 13% by mass.
  • the appearance of the layered eutectoid phase ⁇ ′ can be easily discriminated by confirming the fine laminated structure (layered structure) as shown in FIG.
  • the ratio of the layered eutectoid phase ⁇ ′ can be easily calculated by image analysis of the metal structure.
  • etching surface treatment
  • the layered eutectoid phase ⁇ ′ is clearly shown as a dark portion in the metal structure. Observed. Therefore, the ratio of the layered eutectoid phase ⁇ ′ can be determined by determining the ratio (area) occupied by the dark portion in the metal structure.
  • a hydrochloric acid / alcohol solution eg, ferric chloride 5 g + hydrochloric acid 10 mL + ethyl alcohol 85 mL
  • bronze alloy it is possible to further improve the characteristics by adding a small amount of lead. From the viewpoint of environmental regulations, it is desirable to make lead-free without adding lead.
  • lead is added within the scope of environmental regulations, the shape of the primary dendrites changes, and the seizure resistance is further improved, especially when sliding at high speed and high surface pressure, bearing performance surpasses current lead bronze. It becomes a bronze alloy.
  • Pb solid-dissolved in ⁇ -copper precipitates in the eutectoid phase as fine particles of lead or alloy particles of bismuth and lead as metal fine particles during eutectoid transformation. To do.
  • the growth of ⁇ dendrite is suppressed and the layered eutectoid phase ⁇ ′ appears in a network, and the seizure PV value is increased by about 10% to 20%.
  • the cutting resistance is reduced by about 10% due to the free cutting effect of lead.
  • the amount added is suitably 4% by mass or less in consideration of environmental regulations and the like. Desirably, it is 1.5 mass% to 3.0 mass%.
  • the above bronze alloy it is possible to improve the castability such as hot water flow by adding zinc.
  • Zinc is easier to bond with oxygen than copper and tin, and the generated zinc oxide immediately escapes from the molten metal. Therefore, in the molten metal containing a large amount of tin like this bronze alloy, the inclusion of oxide or It is effective in preventing the occurrence of bubble defects due to the compound gas.
  • zinc since zinc has the effect of narrowing the solid solubility limit of tin in ⁇ -copper, it slightly increases the appearance ratio of the layered eutectoid phase ⁇ ′ in the metal structure and has a good influence on the mechanical properties.
  • the corrosion resistance of the bronze alloy decreases and the seizure resistance tends to decrease as the amount of zinc increases, the amount of zinc added is suitably 5% by mass or less. Desirably, it is 1.0 mass% to 3.0 mass%.
  • the bronze alloy of the present invention can be produced by adding Bi, Ni, and S as additive elements to Cu and Sn as main components and using the same technique as that for a normal bronze alloy. At this time, by adding nickel, bismuth, and sulfur as additive elements to Cu and Sn, which are the main components of the bronze alloy, and partially stabilizing the ⁇ phase generated by the peritectic reaction with the alloy element, In this case, a copper tin-based intermetallic compound is precipitated, and a eutectoid phase in which fine metal particles containing bismuth are finely dispersed appears.
  • the order of adding the respective components is arbitrary, but usually, those which are difficult to dissolve are dissolved first, and the low melting point metal is added later.
  • the aforementioned bronze alloy is suitable as a bronze alloy for casting, but can also be applied to wrought materials, rolled materials, powder metallurgy materials, and the like.
  • the bronze alloy described above is excellent in seizure resistance and frictional wear characteristics but has low ductility. Therefore, for example, the bronze alloy is preferably applied to a sliding member by bimetalization with a steel material.
  • the sliding member the sliding surface may be formed of the aforementioned bronze alloy.
  • the bronze alloy is joined to a base member made of an iron-based material, and the bronze alloy constitutes a sliding surface. Thereby, it is possible to reduce the cost compared to the case where the entire sliding member is made of the bronze alloy.
  • the formation method of the bronze alloy to a sliding member is arbitrary.
  • the sliding member include an axial piston type hydraulic pump used in the construction machinery field and a cylinder block of a motor.
  • a hydraulic cylinder block 1 of an axial piston type hydraulic pump is obtained by processing a steel material, which is an iron-based material, into a cylindrical shape, and a shaft hole 2 into which a drive shaft is inserted is formed at the center.
  • a plurality of pores 3 are formed on the circumference.
  • the pore 3 is a hole into which a piston enters.
  • a piston is inserted into each pore 3 of the hydraulic cylinder block 1, and the piston moves while sliding on the inclined surface of the swash plate (yoke) as the hydraulic cylinder block 1 rotates. Then, it reciprocates in the pore 3 of the hydraulic cylinder block 1.
  • the piston and the drive shaft slide at high speed under high surface pressure. Therefore, if the inner surfaces of the pores 3 and the shaft hole 2 are formed of the bronze alloy of the present invention, it is possible to realize a hydraulic cylinder block excellent in frictional wear characteristics without seizure.
  • a method of forming the inner surface of the pore 3 and the shaft hole 2 with the copper alloy of the present invention for example, a method in which the bronze alloy is cast-bonded or diffusion-bonded to the pore 3 of the hydraulic cylinder block 1 made of steel or the inner surface of the shaft hole 2.
  • a method of press-fitting a bronze alloy material that has been processed into a cylindrical shape in advance into the pore 3 or the shaft hole 2 can be exemplified.
  • the hydraulic cylinder block 1 configured as described above has excellent seizure resistance and frictional wear characteristics, and can exhibit stable sliding characteristics even under severe conditions such as high pressure and high speed. It is.
  • the application object of the bronze alloy of the present invention is not limited to the axial piston type hydraulic pump and the cylinder block of the motor, but any one having a sliding surface such as a valve plate, a piston shoe, a cradle or the like. It can be applied widely.
  • Abrasion test A bronze alloy having the following composition was prepared and subjected to a cylindrical friction test on a steel rotating shaft.
  • bronze alloys C and D correspond to the examples, and the appearance of a eutectoid phase having a fine laminated structure and fine bismuth grains precipitated was observed.
  • bronze alloys A, B, E, and F correspond to comparative examples, and the appearance of the layered eutectoid phase was not observed.
  • Bronze alloy A Cu-12Sn-1.5Ni-0.6S Bronze alloy B: Cu-12Sn-1.5Ni-0.6S-3Pb Bronze alloy C: Cu-12Sn-1.5Ni-0.6S-5Bi Bronze alloy D: Cu-12Sn-1.5Ni-0.6S-5Bi-2Pb Bronze alloy E: Cu-13Sn-1.5Ni-10Pb Bronze alloy F: Cu-10Sn-10Pb [In addition, in each bronze alloy, a number represents content (mass%) of each element. ]
  • the cylindrical friction test is performed by inserting the rotating shaft 11 into a steel housing 12 into which a cylindrical bearing test piece 13 is press-fitted and applying a pressing load to the housing 12 with a hydraulic cylinder from the direction of arrow A. It was.
  • the diameter of the rotating shaft 11 is 40 mm, and while rotating the rotating shaft 11 while supplying lubricating oil (turbine oil # 32) from the oil supply hole 14 at a pressure of 0.5 MPa, the test speeds are 1.5 m / s and 3 m / s. s, the applied load was 3 kN to 12 kN (constant), and the test time was 2 hours.
  • Table 1 ⁇ indicates that there is no abnormality such as seizure or wear, X indicates that seizure or abnormal wear occurs, and ⁇ indicates that the test was not performed under the conditions.
  • the bronze alloys C, D, G, H and I to which the present invention is applied exhibit excellent seizure resistance.
  • tin bronze solid bronze alloys A, B, etc.
  • ⁇ -copper solid solution strengthened
  • a layered eutectoid phase does not appear, so that it is 1/2 that of bronze alloys C, D, G, H to which the present invention is applied.
  • the PV value was about the seizure limit.
  • the bronze alloys K and L to which the present invention is applied have a low cutting resistance like the bronze alloy E, which is lead bronze, and are not at a level causing a problem during mass production. Further, it has been found that the bronze alloy L to which Bi and Pb are added simultaneously has a cutting resistance of about 10% lower than that of the bronze alloy E which is the current material.
  • FIG. 7 shows a composition range in which a layered eutectoid phase appears when the addition amount of Ni is constant (1.5 mass%) and the addition amounts of S and Bi are changed.
  • FIG. 8 shows a composition range in which a layered eutectoid phase appears when the addition amount of S is constant (0.7% by mass) and the addition amounts of Ni and Bi are changed.
  • the appearance of a layered eutectoid phase was observed in a region surrounded by a broken line.
  • a layered eutectoid layer appears by setting it to 0.08% by mass or more.
  • a small amount of a layered eutectoid phase appears when the amount is 0.5% by mass or more, and a necessary amount of a layered eutectoid phase appears when the amount is 2.0% by mass or more.
  • FIG. 8 when FIG. 8 is seen, about 0.5 mass% or more about Ni, even if it is a small amount, the appearance of a layer eutectoid phase is seen.
  • Bi as in the case of FIG. 7, when it is 0.5% by mass or more, a small amount of layered eutectoid phase appears, and when it is 2.0% by mass or more, the necessary amount of layered co-eutectic phase is observed. A deposited phase has appeared.
  • FIGS. 9 to 11 show changes in the metal structure accompanying the addition of each element. These metal structures were observed by mirror polishing and etching with ferric chloride / hydrochloric alcohol (ferric chloride 5 g + hydrochloric acid 10 mL + ethyl alcohol 85 mL) for several seconds.
  • FIG. 9 shows a metal structure when 1% by mass of sulfur is added to tin bronze
  • FIG. 10 shows a metal structure when 1% by mass of sulfur and 3% by mass of bismuth are added to tin bronze
  • FIG. The metal structure at the time of adding 0.7 mass% of sulfur and 1.5 mass% of nickel to tin bronze is shown.
  • the ⁇ phase generated between dendrites does not generate massive ⁇ copper, and ⁇ + copper tin system
  • the intermetallic compound is transformed into a eutectoid phase laminated in layers.
  • the phase that looks like an amoeba is the one in which Sn is concentrated and stabilized and the ⁇ phase remains in the base as an untransformed phase.
  • the boundary portion of the untransformed phase is eroded in layers.
  • FIG. 3 it can be seen that fine bismuth grains are uniformly precipitated in the eutectoid phase.
  • the element with the larger atomic number has a white contrast.
  • the mechanism of the appearance of a layered eutectoid phase in which fine bismuth grains are uniformly precipitated is (1) by adding S, the Sn solid solubility limit in ⁇ copper is narrowed to produce ⁇ copper with a high Sn concentration. (2) The addition of Ni suppresses the formation of ⁇ copper by the peritectic reaction and the diffusion of Sn into the ⁇ copper, and the Sn in ⁇ copper becomes supersaturated. (3) The eutectoid transformation temperature decreases due to compositional supercooling due to the addition of Bi, so the diffusion rate of Sn decreases, and supersaturated Sn and Bi are converted into copper by eutectoid transformation. It is considered that fine bismuth particles were precipitated as a tin-based intermetallic compound.
  • FIG. 12 shows a layered state in which Sn concentration is caused by eutectoid transformation in bronze containing 3 mass% Bi, 1.5 mass% Ni, and 0.4 mass% S.
  • the effect of the eutectoid phase ⁇ 'and the untransformed phase ( ⁇ ) on the area ratio in the metal structure was investigated.
  • the eutectoid transformation occurs only in ⁇ -copper enriched with Sn present between the dendrites of the primary crystal ⁇ , and ⁇ ′ + ⁇ in FIG. 12 corresponds to the amount of ⁇ -copper produced.
  • the amount of ⁇ copper produced is a constant value when the Sn concentration is 12% by mass or more, the layered eutectoid phase ⁇ ′ does not exceed this amount.
  • the Sn concentration is 4% by mass or less, all is ⁇ -copper, and thus no eutectoid transformation occurs.
  • the Sn concentration is in the range of 4 to 12% by mass, the amount of the layered eutectoid phase ⁇ ′ produced is proportional to the Sn concentration. It is increasing linearly.
  • the Sn concentration increases, the amount of untransformed phase increases because ⁇ copper is stabilized.
  • the Sn concentration is 12% by mass or more, the layered eutectoid phase ⁇ ′ starts to decrease.
  • FIG. 13 shows a layered eutectoid phase ⁇ produced by eutectoid transformation with S concentration in tin bronze containing 12% by mass of Sn, 3% by mass of Bi, 2% by mass of Pb, and 1.5% by mass of Ni.
  • the effect of ′ and the untransformed phase ( ⁇ ) on the area ratio in the metal structure was investigated.
  • ⁇ ′ + ⁇ corresponding to the amount of ⁇ copper exhibits an exponential behavior, and when the S concentration is 1% by mass, there is about 80% of ⁇ copper that can undergo eutectoid transformation.
  • the S concentration is in the range of 0.05 to 0.6% by mass
  • the amount of untransformed phase is constant, so that the layered eutectoid phase ⁇ ′ increases in proportion to the S concentration.
  • the S concentration is 0.6% by mass or more
  • the untransformed ⁇ tends to increase due to stabilization of ⁇ copper. Therefore, in the tin bronze of this alloy composition, the layered eutectoid phase ⁇ ′ is saturated at about 60 area%. . Since ⁇ copper is greatly affected and stabilized by Ni, it can be brought close to the amount of ⁇ copper generated during solidification by reducing the amount of Ni and optimizing it.
  • the area ratio in the metal structure of the layered eutectoid phase ⁇ ′ in the bronze alloy of the present invention is in a practical range of 10 area% to 70 area%.
  • the area ratio of the layered eutectoid phase ⁇ ′ in the metal structure can be made 10% to 70% by area, thereby achieving high seizure resistance and friction. Wear characteristics can be obtained.
  • the area ratio of the layered eutectoid phase ⁇ ′ in the metal structure is desirably 20 area% or more.
  • the Sn concentration is preferably 8% by mass to 15% by mass, more preferably 10% by mass to 13% by mass (see FIG. 12).
  • the area ratio was 24 area% and the seizure limit PV value was 795. That is, by setting the area ratio of the layered eutectoid phase ⁇ ′ in the metal structure to 20 area% or more, the seizure limit PV value exceeding the bronze alloys A and B, which are conventional examples, is achieved. Further, in the bronze alloys C, D, G, H, K, and L having a Sn concentration of 12% by mass, the area ratio of the layered eutectoid phase ⁇ ′ in the metal structure reaches 40% by area or more. As shown in the experimental results, a further increase in the seizure limit PV value has been confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の青銅合金では、金属組織中にα銅と銅スズ系金属間化合物が積層された微細積層構造を有するとともに少なくともビスマスを含有する金属微粒子(微細ビスマス粒等)が分散析出した共析相が出現している。層状共析相の割合は10面積%~70面積%である。また、組成の観点からは、銅とスズを主成分とする青銅合金であって、ニッケル、ビスマス、及び硫黄を添加元素として含有し、ニッケルの含有量は0.5質量%~5.0質量%、ビスマスの含有量は0.5質量%~7.0質量%、硫黄の含有量は0.08質量%~1.2質量%である。スズの含有量は8質量%~15質量%であることが好ましい。さらに鉛を4質量%以下の割合で含有していてもよい。本発明の青銅合金は、摺動部材(例えば油圧シリンダブロック)の摺動面に使用される。

Description

青銅合金及びその製造方法、青銅合金を用いた摺動部材
 本発明は、低鉛あるいは鉛フリーでありながら優れた摩擦摩耗特性を発揮する新規な青銅合金及びその製造方法に関するものであり、さらには、係る青銅合金を用いた摺動部材に関するものである。
 油圧機器においては、小型化や高圧化、高速化等が進められており、油圧ポンプやモータのシリンダブロック、足廻り、変速機軸受け等は、過酷な条件下で使用される傾向にある。例えば、パワーショベル等の建設機械分野で使用されるアキシャルピストン型油圧ポンプやモータでは、年々厳しくなる排ガス規制に対処するため触媒等の付帯設備が動力室に占める体積が増加している。したがって、油圧ポンプを小型化せざるを得ないが、小型化した油圧ポンプにこれまでと同等の吐出量を求めようとすると、圧力450bar、回転数3000rpmを越える高圧・高速下での使用が求められる。
 このような状況から、油圧ポンプのシリンダブロック等のように高面圧が加わる摺動部材には、前述のような過酷な条件下でも安定した摺動特性を発揮することが求められている。そして、過酷な条件下で安定した摺動特性を得るには、鋼のピストンと銅合金を摺動材料として用いたシリンダブロックという組み合わせが不可欠であり、摺動部材として、鋼に銅合金層を強固に溶着させた複合材料も開発されている。
 ただし、前述の油圧ポンプのシリンダブロック等のような高面圧が加わる摺動部材では、高い耐焼付性も要求されるため、前記銅合金として主に鉛を10質量%程度含有する鉛青銅が使用されている。銅合金中に含まれる鉛は、鋼材及び銅合金の両方に対して親和力が小さく、高い耐焼付性と耐摩耗性を付与する不可欠な元素である。前記鉛青銅においては、鉛の含有量を抑えると、耐焼付性が低くなり、過酷な条件で使用されることの多い油圧機器摺動部材に使用することは難しい。
 一方で、環境保全の観点から、銅合金中に含まれる鉛の含有量を低減する低鉛化や鉛フリー化が検討されている。近年、各種工業製品に含まれる鉛やカドミウムに代表される環境負荷物質の含有を禁止あるいは減少させる動きがあり、例えば、欧州の環境規制を考えると、銅合金中に含まれる鉛の含有量を4質量%以下に低減しなければならない。
 このような状況から、摺動用銅合金の低鉛化や鉛フリー化について各方面で検討されており、鉛の含有量を抑えながら摺動特性を向上した種々の摺動材料が提案されている。例えば、特開平11-293305号公報には、銅系あるいは鉄系の摺動材料であって、1種類以上のBi系金属間化合物を分散・析出させてなる摺動材料が開示されている。当該摺動材料においては、Pbレス化を達成するとともに、Bi系金属間化合物の固体潤滑作用により焼き付き性を改善することができる、とされている。
 特開2002-285262号公報には、鋼板と、該鋼板に接合されている焼結銅合金とを有する銅系複層摺動材料において、前記焼結銅合金の組成が、Sn:1.5~15質量%、Bi:1.5~15質量%、固体潤滑剤:1.5~20体積%、残部Cuからなり、Biと固体潤滑剤の体積比が0.5~2.0である銅系複層摺動材料が開示されている。特開2002-285262号公報に記載される発明も、Pbを含まずに鉛青銅系の焼結合金と同等、あるいはそれ以上の優れた摺動性能を有する銅系複層摺動材料を提供するものである。
 国際公開公報 WO 2007/126006 A1には、固溶強化した銅合金、または固溶と化合物生成による強化を行った銅合金に、0.05~1.5質量%のSを含有し、CuS化合物、またはCuS化合物+ZnS化合物を形成させた摺動材料用銅合金が開示されており、さらには、0.1質量%以上、11.0質量%以下のPb、0.1質量%以上、5.4質量%未満のBiのうち少なくともどちらか一方(これらは銅マトリックスには固溶せず。)を含有し、これらが単独で、あるいはPbS化合物、Bi化合物として存在する摺動材料用銅合金が開示されている。当該公報に記載される銅合金では、Sを適量含有させることで、耐摩耗性と耐焼付性を高いレベルで両立させることができ、過酷な条件であっても摺動材料用部材として長期間にわたって使用できるようになる、とされている。
 さらに、特開2007-297675号公報には、S、Bi、Fe(および/またはNi)を含有し、硫化物が分散された鋳物用無鉛銅合金が開示されている。特開2007-297675号公報は、水栓金具や接水栓等の素材として使用される鋳物用無鉛銅合金に関するものであるが、快削性元素として有用なBiを含有する銅合金において、FeやNiを共存させることで、銅マトリクス中に硫化物を効果的に分散させるとともに、Biに原因する鋳巣の発生を抑え、人体に有害な鉛を含有せずとも優れた被削性、耐圧性を発揮する鋳物用無鉛銅合金を実現している。
 しかしながら、特開平11-293305号公報や特開2002-285262号公報、国際公開公報 WO 2007/126006 A1に記載される技術は、いずれもビスマス等の低融点金属の化合物や硫化物を銅基地中に晶出するほど多量に添加し、これら晶出物の固体潤滑性を利用したものであり、製造コストや鋳造性の点で産業利用は困難である。例えばビスマスは、銅地金に比べて価格が5倍以上にもなり、10質量%も添加すると製造コストを大きく増大させることになり、現実的でない。また、晶出物の固体潤滑性を利用した銅合金では、鉛青銅の半分程度の耐焼付性しか実現できないという問題もある。
 一方、特開2007-297675号公報に記載される技術は、前述の通り、水栓金具や接水栓等の素材として使用される鋳物用無鉛銅合金であり、耐摩耗性と耐焼付性を高いレベルで両立させるという観点からは、必ずしも十分とは言えない。特開2007-297675号公報記載の発明では、例えば段落0018に記載されるように、生成する硫化銅の融点がBiやFe、Niの添加により銅の初晶温度(凝固開始温度)よりも低下することに着目したもので、鋳巣の発生を抑制し硫化物の形成により被削性を向上することに主眼が置かれている。そもそも、特開2007-297675号公報記載の発明は、水栓金具や接水栓等の素材として使用される鋳物用無鉛銅合金を対象とするものであり、例えばSnの含有量も3~4%程度での検討が中心であり、耐摩耗性や耐焼付性に関しては全く考慮されていない。
 本発明は、このような従来の実情に鑑みて提案されたものであり、鉛の低減、あるいは鉛フリー化を図りながら、優れた摩耗摩擦特性や耐焼付性を実現することが可能な青銅合金及び摺動部材を提供することを目的とし、さらには、高価な元素や鋳造性を阻害する元素の添加も抑えることが可能で、製造コストを抑えることが可能で工業的に利用価値の高い青銅合金及びその製造方法を提供することを目的とし、さらには摺動部材を提供することを目的とする。
 例えば球状黒鉛鋳鉄は、軸受や摺動部材として広く利用されているが、基地の金属組織により、その特性が大きく相違する。α鉄(フェライト)が主体の組織は延性に富み、衝撃力が加わるような構造体に利用されるが、軸受や摺動材としての使用では耐焼付性や耐摩耗性が低く不十分である。一方、α鉄と炭化鉄(セメンタイト:FeC)が極薄に積層した共析相(パーライト)が主体の組織は、適度な耐摩耗性や耐焼付性を持つことから、軸受や摺動材として使用する鋳鉄ではパーライト基地となるように、その製造プロセスにおいて組織制御されている。ここで重要なことは、鋳鉄は優れた固体潤滑性を持つ黒鉛を多量に含み、フェライト基地でもパーライト基地でも黒鉛晶出量はほとんど変わらず、両者の摩擦摺動特性上の差異はパーライトの微視的形態(モフォロジー)に起因するところが大きいことである。
 パーライトのモフォロジーは、フェライトとセメンタイトという硬さが極端に異なる2つの組織が数百nm~1μmの間隔で変化していることであり、硬さが異なる組織では焼付特性が異なるため、焼付きの初期段階での焼付領域の拡大伝播が阻害されることになる。また、柔軟なフェライトが軸受部材として重要な軸とのなじみ性を高め、硬いセメンタイトが耐摩耗性を高めるという相乗効果により優れた摩擦摺動特性を発揮している。
 これまで高スズ青銅において、鉄鋼と同様に相変態によりα銅と銅スズ系金属間化合物であるδ銅(Cu31Sn)またはε銅(CuSn)の共析組織を生じることが知られているが、パーライトと同様のモフォロジーを持つ組織ではなく、粗大金属間化合物中に少量の粒状α銅が析出したレデブライトに類したモフォロジーである。このような不均一な組織を呈した材料では引張強度や伸びが極端に低下するため、工業的に使用されることはなかった。なお、工業的に使用されている青銅鋳物では、δ銅への変態が率先して生じるためにε銅への変態が極めて起こり難く、強加工した後に350℃以下の温度で長時間焼きなましを行うことで初めて得られている。
 本発明は、青銅の共析変態を利用して、上述したモフォロジー的に耐焼付性に優れたパーライト状の共析相を出現させ、摩擦摩耗特性や耐焼付性に優れた銅合金を鋳放しで提供するものである。工業的に使用されている青銅では、共析変態でパーライト状の共析相が出現せず、α銅単相の基地に粒状δ銅が少量混在した金属組織となる。本発明者らは、銅とスズを主成分としデンドライト型の凝固をする青銅に、銅中でのスズの拡散を阻害するとともにα銅の固溶限を低下させて凝固偏析を促進する元素(硫黄、ニッケル、銀等)を添加してβ銅から多量のγ銅を出現させ、さらに少量のビスマスとニッケルの同時添加によってδ銅の生成を抑制するとともに共析変態温度を低下させることにより、α銅中に片状のδ銅またはε銅等の銅スズ系金属間化合物が析出した共析相が容易かつ安定に出現することを見出した。また、ビスマスや鉛は銅と液相分離を生じるため、通常は銅マトリックスに固溶することはできないが、この共析相が出現する合金系ではビスマス(あるいはビスマスと鉛の合金)をスズの濃度が高いβ銅中で硫黄の添加量に応じて固溶できるようになり、固溶したビスマス(あるいはビスマスと鉛の合金)は共析変態時に平均粒径1μm以下程度の微細なビスマス粒(あるいは微小ビスマス鉛粒)として共析相中で分散析出しうることも見出した。そして、この微細構造を持つ共析相が出現した青銅においては、摩擦摩耗特性や耐焼付性が飛躍的に向上することを見出した。
 本発明は、このような理論と知見に基づいて完成されたものであり、本発明の青銅合金は、銅及びスズを主成分とする青銅合金であって、金属組織中に、α銅中に銅スズ系金属間化合物が析出するとともにビスマスを含む金属微粒子が分散析出した共析相が発現していることを特徴とするものであり、さらには、前記共析相は包晶反応により生成するβ相を添加元素で部分安定化させることにより出現していること、前記共析相はα銅中に片状の銅スズ系金属化合物が析出した微細積層構造を有すること、前記青銅合金はβ銅が出現する青銅合金であってニッケル、ビスマス、及び硫黄の3元素を含有させることで共析変態時の金属組織が前記共析相を含むように制御されていることを特徴とするものである。
 また、本発明の青銅合金は、組成の観点から規定することもでき、この場合には、銅及びスズを主成分とする青銅合金であって、ニッケルの含有量が0.5質量%~5.0質量%、ビスマスの含有量が0.5質量%~5.0質量%、硫黄の含有量が0.08質量%~1.0質量%であり、前述の共析相が発現していることを特徴とする青銅合金ということになる。
 なお、硫黄の代わりに5%以上のニッケルや10%以上の銀等の添加でも前述の共析相を形成することができるが、これら貴重金属を大量に使用することは製造コストを大きく増大させることになるため現実的ではない。したがって、本発明においては、硫黄を含有することを必須の要件とする。また、パーライト状の共析相という観点から本発明の青銅合金を規定することもでき、この場合には、共析相の割合が10面積%~70面積%であることを特徴とする青銅合金ということになる。なお、共析相の出現割合は、凝固偏析によって生成するβ銅の量に支配されるため、青銅合金中のスズの含有量を加減することにより金属組織中で占める割合をコントロールできる。
 前述の共析相は、包晶反応により生成するβ相を添加元素で部分安定化させることにより出現させることができる。したがって、本発明の青銅合金の製造方法は、青銅合金の主成分である銅及びスズにニッケル、ビスマス、及び硫黄を添加元素として添加し、包晶反応により生成するβ相を添加元素で部分安定化させることにより、α銅中に銅スズ系金属間化合物が析出するとともにビスマスを含む金属微粒子が分散析出した共析相を出現させることを特徴とする。青銅合金の主成分である銅及びスズにニッケル、ビスマス、及び硫黄を添加元素として添加すると、Cuとあらゆる割合で溶け合う全固溶の関係にあるNiの働きによって、包晶反応により生成するβ相が部分安定化される。その結果、CuのSnに対する反応が抑制され、α銅中に銅スズ系金属間化合物が片状に析出するとともに、ビスマスを含む金属微粒子が析出する。
 また、前述の青銅合金は、優れた摩耗摩擦特性や耐焼付性を有するものであり、摺動部材として用いることができる。すなわち、本発明の青銅合金は、摺動面が前述の青銅合金により形成されていることを特徴とする。あるいは、鉄系材料の摺動面に前述の青銅合金が接合されていることを特徴とする。
 以上のような構成を有する本発明の青銅合金は、鉛青銅に匹敵する耐焼付性を持ち、摩擦摩耗特性や機械的性質、被削性に優れたものであり、工業的な鉛青銅代替軸受銅合金材料として有用なものである。また、本発明で示す金属の相変態を利用すれば、生成化合物や晶出相の固体潤滑を利用する従来技術に比べて、ビスマス等の高価な元素や硫黄のような鋳造性を阻害する元素の添加量を最小限に抑えることができ、製造コストの抑制や生産性を向上することができる等、工業的に利用価値の高い青銅合金を提供することが可能である。
 また、本発明の摺動部材(例えば油圧シリンダーブロック)は、摺動面に前述の銅合金を鉄鋼製ボディに拡散接合や鋳造接合、圧入等の方法で貼り付けることにより形成されていることを特徴とするもの(バイメタル)である。前述の銅合金が摩擦摩耗特性や耐焼付性に優れるものであることから、これを用いた摺動部材も優れた性能を発揮し、例えば連続した高荷重、高速摺動下で優れた軸受特性を発揮する。
図1は、スズ青銅に硫黄0.7質量%及びニッケル1.5質量%、ビスマス3質量%の同時添加により、層状共析相が出現した青銅合金の顕微鏡写真である。 図2は、共析相のパーライト状積層構造を示す電子顕微鏡写真である。 図3は、微細ビスマスが析出した共析相の反射電子組成像である。 図4は、油圧シリンダブロックの一例を示す概略斜視図である。 図5は、円筒摩擦試験に用いた円筒摩擦試験機の概略構成を示す図である。 図6は、銅合金の組成と焼付限界PV値の関係を示す特性図である。 図7は、ニッケルの添加量を一定(1.5質量%)とし、硫黄とビスマスの添加量を変えた場合の層状共析相が出現する組成範囲を示す図である。 図8は、硫黄の添加量を一定(0.7質量%)とし、ニッケルとビスマスの添加量を変えた場合の層状共析相が出現する組成範囲を示す図である。 図9は、スズ青銅に硫黄を1質量%添加した場合の金属組織を示す顕微鏡写真である。 図10は、スズ青銅に硫黄1質量%及びビスマス3質量%を添加した場合の金属組織を示す顕微鏡写真である。 図11は、スズ青銅に硫黄0.7質量%及びニッケル1.5質量%を添加した場合の金属組織を示す顕微鏡写真である。 図12は、3質量%のビスマスと1.5質量%のニッケル、0.4質量%の硫黄を含有したスズ青銅において、スズ濃度と金属組織中の共析相の面積率の関係を示す図である。 図13は、12質量%のスズと3質量%のビスマス、2質量%の鉛、1.5質量%のニッケルを含有するスズ青銅において、硫黄濃度と金属組織中の共析相の面積率の関係を示す図である。
 以下、本発明を適用した青銅合金及び摺動部材の実施形態について、図面を参照しながら詳細に説明する。
 例えば、鋳鉄においては、基地組織が摩擦摺動特性に影響することが古くから知られており、球状黒鉛鋳鉄のフェライト基地とパーライト基地とを比べると、パーライト基地の方が摩擦摩耗特性に優れている。パーライトの場合、フェライト(α鉄)とセメンタイト(炭化鉄:FeC)による数百ナノメートルレベルの積層構造を有しているが、硬い相と柔らかい相が繰り返される形態的特徴が焼き付き難くしている。また、適度な強度と硬さのため、軸受に求められるなじみ性も良い。パーライトは、高温で炭素を高濃度に含むオーステナイトが共析変態して生成し、数百ナノメートルレベルの積層構造は、合金の組織形態として熱力学的に安定であるという特徴を有する。
 本発明者らは、青銅においても同様の組織を出現させることができれば、前記利点を発現させることができるのではないかと考え、本発明の銅合金を開発するに至った。すなわち、本発明の銅合金においては、金属組織のモフォロジー(形態)的特徴を利用し、摩擦摩耗特性を改善するというのが基本的な考えである。
 銅合金としては、摺動部材に多く使用されている高力黄銅系やアルミ青銅系の合金が知られているが、これらは被削性が悪く、耐焼付性も低い。そこで、本発明では、銅にスズ(Sn)を4質量%~20質量%加えた青銅系の銅合金をベースとし、鉛の少なくとも一部をビスマス置換することで低鉛化あるいは鉛フリー化を図るとともに、低融点硫化物を材料中に分散させる等の手法により、耐焼付性や機械的性質の改善を図り、鉛青銅代替材を実現することとする。
 本発明では、スズ青銅が586℃~520℃で起こす共析変態を利用するが、スズ青銅の共析変態は、下記の通り2段階で進行しており、β銅またはγ銅の共析変態を添加元素により制御することでパーライト状の共析相(α銅中に片状の銅スズ系金属間化合物が析出した微細構造を有する中間相)を得ている。通常の青銅では、中間相が準安定なために常温では出現しないが、本発明の青銅合金では、添加元素によって安定化しているために前記中間相が常温でも出現する。
 共析変態:α+β→α+α+δ
 2段進行:β→α+γ(586℃)、γ→α+δ、 or α′(520℃)
 α:初晶
 α:変態生成(Sn:2質量%~4質量%)
 α′:微細構造を有する共析相(α銅中に片状のδまたはεが析出)
 β:Snを高濃度に含んだ高温で安定な相(Sn:8質量%~18質量%)
 γ:Snを高濃度に含んだ586℃以下で安定な相(Sn:16質量%~25質量%)
 δ:Cu31Snで表される金属間化合物(Sn32.5質量%)
 ε:CuSnで表される金属間化合物
 前記共析変態において、工業的に使用されている青銅(CAC406、603等)では、凝固温度範囲が広いために、凝固開始時にSnの固溶量の少ないα銅を生成し、余剰となった低融点のSnが未凝固の融液中に排出・濃化されるため、凝固直後には、包晶反応により出現するSn固溶量の多いβ銅(Sn:8質量%~25質量%)と混在したα+β組織になる。その後、β銅は586℃でα+γに共析変態し、さらにγ銅は520℃でα+δへ再び共析変態する。なお、β銅とγ銅は同じ結晶構造を持ち、光学顕微鏡下で区別することは難しい。δ銅は、Cu31Snなる組成(Sn32.5質量%)を有し、硬く脆い組織である。このようにスズ青銅の共析変態は2段階で進行しているが、常温での青銅組織として観察されるのはα+δである。
 本発明においては、銅中でのSnの拡散を阻害するとともにα銅の固溶限を低下させて凝固偏析を促進する硫黄(S)を添加してβ銅から多量のγ銅に変態させ、さらに少量のビスマス(Bi)とニッケル(Ni)の同時添加によってδ銅の成長を抑制するとともに組成的過冷によって共析変態温度を低下させ、α銅と銅スズ系金属間化合物がパーライト状に積層した共析相を容易かつ安定に出現させている。すなわち、Sを添加してα銅中のSn固溶限を狭め、Sn濃度の高いβ銅を生成させる。また、Niの添加はβ銅の共析変態開始時間を遅らせ(安定化させ)、粗大δ塊の生成を抑制する。さらに、Biの添加は、組成的過冷により共析変態温度を低下させるとともに、その一部はβ銅中で固溶される。共析変態温度が低下するとSnの拡散速度が低下してδ銅の塊状成長が抑制され、α銅中で過飽和となったスズは銅スズ系金属間化合物を生成するが、生成自由エネルギーの小さな形態、すなわちα銅で片状に析出するために、硬さが極端に異なる2つの組織が数百nm~数μmの間隔で変化している共析相α′(すなわち微細積層構造を有する共析相α′)が得られる。この時、β銅に固溶したBiは、共析変態時に微細ビスマス粒(金属微粒子)として共析相中で微細に分散析出する。なお、析出したビスマスは、電子線マイクロアナライザ(EPMA)によりその組成が化合物ではないことが確認されている。なお、共析相の出現割合は凝固偏析によって生成するβ銅の量に支配されるため、青銅中のスズの含有量を加減することにより金属組織中で占める割合をコントロールすることができる。また、この際に出現する銅スズ系金属間化合物には、添加元素として加えたニッケルや硫黄の少量が含まれていても良い。
 図1は、共析相α′の出現した青銅合金の金属顕微鏡写真であり、共析相α′は塩化第二鉄を含む塩酸アルコール溶液でエッチングすることで、図2の電子顕微鏡写真に示すような微細積層構造を確認することができる。図3は、共析相の反射電子組成像である。図1において、淡色部分がα相(初晶)であり、濃色部分が共析相α′である。中間色部分はCuSである。図3において、白色部分が微細ビスマス粒、濃色部分がα相、中間色で微小なものが銅スズ系金属間化合物、中間色で大きく連続した部分はスズ濃度が高い未変態β銅である。本発明の青銅合金では、前記共析相α′の持つ軟質なα銅と硬質な銅スズ系金属間化合物が数百nm毎に交互するモフォロジー的特徴に加え、微細ビスマス粒の析出分散により、特に境界潤滑下においては鉛青銅を凌ぐ優れた耐焼付性と耐摩耗性が発揮される。なお、共析相α′を出現させるために加えたSの余剰分は、Cuと反応して低融点の硫化物(CuS)を生成し、基地中に分散介在することで摩擦摩耗特性の向上に寄与していると思われるが、その効果は前記モフォロジー的特徴と微細ビスマス粒の析出分散による効果と比べると遙かに小さい。
 本発明の青銅合金は、前述の通り、スズ青銅においてα銅の固溶限を低下させ、δ銅の成長を抑制し、共析変態温度を低下させる効果のある添加元素を加えることで金属組織中に微細積層構造を持ち微細ビスマス粒が析出分散された共析相α′を出現させたものであり、合金組成の観点から見た時には、S、Bi、Niの3元素を同時に適量添加することが必須である。したがって、本発明の青銅合金は、組成の観点から、β銅が出現する青銅合金であって、添加元素としてニッケル、ビスマス、及び硫黄の3元素を含有させることで共析変態時の金属組織が前記共析相を含むように制御されていること、と規定される。
 ここで、各添加元素の添加量には最適範囲があり、Niの含有量が0.5質量%~5.0質量%、Biの含有量が0.5質量%~7.0質量%、硫黄の含有量が0.08質量%~1.2質量%であることが好ましい。以下、各添加元素の添加量について詳述する。
 青銅鋳物において、Niは、長凝固範囲型の凝固様式を改善して微細な収縮巣を減少させて耐圧性を高めるとともに、基地組織であるα銅に固溶して機械的性質を向上させるために有効な元素として広く使用されている。また、Ni量が5質量%以上になると、銅とNiの金属間化合物(θ相)を析出する。本発明者らは、硫黄0.3質量%とBi2.5質量%を含むリン青銅に1.5質量%のNiを加えると、層状共析相α′が出現するとともに、耐焼き付き性や耐摩耗性が向上することを見いだした。高温で凝固した青銅は、586℃~520℃の温度域で共析変態を起こしてα銅(Sn:2質量%~4質量%)とδ銅(32.5質量%Sn)を生じる。この際に銅中におけるSnの拡散が妨げられてδ銅の成長が起こらなければα銅と銅スズ系金属間化合物が積層した形態の共析相α′となる。Niが0.05質量%以下では、銅中におけるSnの拡散とδ銅の成長を妨げる効果(固溶量)が不十分であり、5質量%以上になると固溶しきれずにθ相を生じるため、Niの添加量(含有量)としては0.5質量%~5.0質量%が適当である。望ましくは1.0質量%~3.0質量%の範囲とするのが良い。
 Biは、鉛と同様に銅にほとんど固溶しない低融点金属であり、スズ青銅に生じ易いデンドライト間の微細な収縮巣に凝集してこれを埋め、その結果耐圧性を良くするので、多くの鉛フリー銅合金に使用されている。ただし、過剰のBiの添加は、鉛と同様、伸びや衝撃値等の機械的性質に対して悪い影響を与える。硫黄0.5質量%とNiニッケルを1.5質量%含むリン青銅において、Biを加える実験をしたところ、1.0質量%程度の添加でも層状共析相α′の出現が認められ、7.0質量%以上の添加では余剰分が基地中で晶出するため、その添加量は0.5質量%~7.0質量%とするのが適当である。望ましくは2.0質量%~5.0質量%である。
 Sは、重油炉等の硫黄分の多い燃料を使用した加熱炉で溶解した際に溶湯に吸収され、硫化銅を生成するとともに溶湯中の酸素と結合してSOガスを生成し、気泡巣の原因となるため、その許容量は0.08質量%以下とされている。しかしながら、Sは層状共析相α′の安定化とβ銅中へのBi固溶限を著しく上昇させて共析相中での微細ビスマス粒析出量増加に最も強く影響する元素であり、Ni1.5質量%とBiビスマス2.5質量%を含むスズ青銅においては、0.1質量%の添加でも層状共析相α′の出現が認められた。電気炉溶解の場合、銅合金中の硫黄は、市販の加硫剤を使用して容易に高めることができ、酸化溶解による除去も比較的容易である。ただし、1.2質量%以上の添加では、溶湯の粘性が著しく上昇して注湯を困難にするとともに、SOガスに起因した気泡巣の発生が著しくなる。したがって、Sの添加量としては、0.08質量%~1.2質量%とするのが適当である。望ましくは0.15~0.5質量%である。
 一方、本発明の青銅合金は、層状共析相α′の面積率の観点から規定することもできる。この場合には、本発明の青銅合金は、金属組織中に微細積層構造を有し微細ビスマス粒が析出分散された共析相が所定の面積率で出現していることを特徴とする青銅合金ということになる。ここで、共析相の割合(面積率)は、10面積%~70面積%であることが好ましく、20面積%~70面積%であることがより好ましい。層状共析相α′の割合が10面積%未満であると、微細積層構造的特徴及び微細ビスマス粒の析出に起因する耐焼付性や摩擦摩耗特性を十分に得ることができない。また、層状共析相α′の割合が多ければ多いほど摩擦摩耗特性を向上することができるが、青銅におけるSnの凝固偏析を利用しているため、初晶αの出現と若干の変態α銅やβ銅の残留を避けられず、現実的には共析相α′の割合が70面積%を越えることは難しい。さらに、例えば摺動部材において十分な耐焼付性や摩擦摩耗特性を得るには、層状共析相α′の割合が20面積%であることが好ましく、この場合にはSn濃度を8~15質量%とする必要があり、より好ましくは10~13質量%である。
 なお、層状共析相α′の出現は、図2に示すような微細積層構造(層状構造)を確認することで容易に判別することができる。また、層状共析相α′の割合は、金属組織を画像解析することで容易に算出することができる。金属組織において、前記層状共析相α′を識別可能とするためには、観察前の表面処理(エッチング)に工夫を要し、例えば、青銅合金の表面を鏡面研磨した後、塩化第二鉄を含む塩酸アルコール溶液(例えば、塩化第二鉄5g+塩酸10mL+エチルアルコール85mL)でエッチングすれば、図1に示されているように、層状共析相α′は金属組織中において濃色部分として明瞭に観察される。したがって、金属組織において濃色部分が占める割合(面積)を求めることにより、層状共析相α′の割合を求めることができる。
 前述の青銅合金においては、微量の鉛を添加することで、さらなる特性の改善を図ることも可能である。環境規制の観点から言えば、鉛を添加せずに鉛フリーとすることが望まれる。しかしながら、環境規制の範囲内で鉛を添加すると初晶デンドライトの形態が変化し、耐焼付性のさらなる向上、特に高速・高面圧の摺動下では、現行の鉛青銅を凌ぐ軸受性能を発揮する青銅合金となる。具体的には、ビスマスと共に数質量%の鉛を加えると、β銅に固溶したPbは、共析変態時に微細な鉛粒あるいはビスマスと鉛の合金粒が金属微粒子として共析相中で析出する。それと共に、αデンドライトの成長が抑制されて層状共析相α′が網状に出現し、焼付きPV値は10%~20%程度高くなる。また、鉛の快削効果により、切削抵抗は10%程度低くなる。前述のように鉛を添加する場合、環境規制等を考慮して、その添加量は4質量%以下とするのが適当である。望ましくは1.5質量%~3.0質量%である。
 また、前述の青銅合金においては、亜鉛を添加することで湯流れ等の鋳造性の改善を図ることも可能である。亜鉛は、銅やスズよりも酸素と結合し易く、また、生成した酸化亜鉛は直ちに溶湯外に逸出するために、本青銅合金のようにスズを多量に含む溶湯では、酸化物の巻き込みや化合物ガスによる気泡欠陥の発生防止に効果的である。さらに、亜鉛はα銅におけるスズの固溶限を狭める効果があることから、金属組織中で層状共析相α′の出現割合を若干増加させ、機械的性質に良い影響を与える。ただし、亜鉛量が増加するにつれて青銅合金の耐食性が低下するとともに、耐焼付性が低下する傾向にあることから、亜鉛の添加量は5質量%以下とするのが適当である。望ましくは1.0質量%~3.0質量%である。
 本発明の青銅合金は、主成分であるCu、Snに添加元素であるBi、Ni、Sを加え、通常の青銅合金と同様の手法によって製造することができる。この際、青銅合金の主成分であるCu及びSnに、ニッケル、ビスマス、及び硫黄を添加元素として添加し、包晶反応により生成するβ相を合金元素で部分安定化させることにより、α銅中に銅スズ系金属間化合物が析出するとともにビスマスを含む金属微粒子が微細に分散した共析相を出現させる。製造に際して、各成分の添加の順序は任意であるが、通常は、溶け難いものから先に溶かし、低融点金属は後から加える。
 前述の青銅合金は、鋳造用の青銅合金として好適であるが、その他、展伸材や圧延材、粉末冶金材等にも適用可能である。また、前述の青銅合金は、耐焼付性や摩擦摩耗特性に優れるが延性が低いことから、例えば鋼材とのバイメタル化による摺動部材への適用が好適である。摺動部材において、摺動面を前述の青銅合金により形成すればよい。例えば、鉄系材料からなるベース部材に前記青銅合金を接合し、当該青銅合金が摺動面を構成するようにする。これにより、摺動部材全体を前記青銅合金で構成するよりも、コストの削減を図ることが可能である。なお、摺動部材への青銅合金の形成方法は任意である。
 摺動部材の具体例としては、建設機械分野で使用されるアキシャルピストン型油圧ポンプやモータのシリンダブロック等を挙げることができる。図4に示すように、例えばアキシャルピストン型油圧ポンプの油圧シリンダブロック1は、鉄系材料である鋼材を円筒形状に加工したものであり、中央にドライブシャフトが挿入されるシャフト孔2が形成されるとともに、その周囲には円周上に複数のポア3が形成されている。前記ポア3は、ピストンが入る孔である。例えば斜板式アキシャルピストンポンプの場合、前記油圧シリンダブロック1の各ポア3にそれぞれピストンが挿入され、油圧シリンダブロック1の回転に伴ってこれらピストンが斜板(ヨーク)の傾斜面上を滑りながら動き、油圧シリンダブロック1のポア3内において往復運動する。
 前記油圧シリンダブロック1において、ポア3やシャフト孔2においては、ピストンやドライブシャフトが高面圧下、高速で摺動する。そこで、これらポア3やシャフト孔2の内面を本発明の青銅合金で形成しておけば、焼付きの無い摩擦摩耗特性に優れた油圧シリンダブロックを実現することが可能になる。ポア3やシャフト孔2の内面を本発明の銅合金で形成する方法としては、例えば前記青銅合金を鋼材製の油圧シリンダブロック1のポア3やシャフト孔2の内面と鋳造接合または拡散接合する方法や、予め円筒形状に加工した青銅合金材を前記ポア3やシャフト孔2内に圧入する方法等を挙げることができる。
 以上のように構成される油圧シリンダブロック1は、耐焼付性や摩擦摩耗特性に優れたものであり、高圧、高速等のような過酷な条件下でも安定した摺動特性を発揮することが可能である。勿論、本発明の青銅合金の適用対象としては、前記アキシャルピストン型油圧ポンプやモータのシリンダブロック等に限られるものではなく、バルブプレートやピストンシュー、クレードル等、摺動面を有するものであれば広範に適用することが可能である。
実施例
 次に、本発明の具体的な実施例について、実験結果を基に説明する。
摩耗試験
 下記の組成を有する青銅合金を作製し、鋼鉄製回転軸に対する円筒摩擦試験を行った。なお、下記の青銅合金のうち、青銅合金C及びDは実施例に相当し、微細積層構造を有し微細ビスマス粒が析出した共析相の出現が認められた。一方、青銅合金A,B,E,Fは比較例に相当するものであり、層状共析相の出現は認められなかった。
 青銅合金A:Cu-12Sn-1.5Ni-0.6S
 青銅合金B:Cu-12Sn-1.5Ni-0.6S-3Pb
 青銅合金C:Cu-12Sn-1.5Ni-0.6S-5Bi
 青銅合金D:Cu-12Sn-1.5Ni-0.6S-5Bi-2Pb
 青銅合金E:Cu-13Sn-1.5Ni-10Pb
 青銅合金F:Cu-10Sn-10Pb
[なお、各青銅合金において、数字は各元素の含有量(質量%)を表す。]
 円筒摩擦試験は、図5に示すように、円筒状の軸受試験片13を圧入した鋼製ハウジング12に回転軸11を挿入し、矢印A方向からハウジング12に油圧シリンダーで押付荷重を加えながら行った。回転軸11の直径は40mmであり、オイル供給孔14から潤滑油(タービン油#32)を圧力0.5MPaで供給しながら回転軸11を回転させ、試験速度を1.5m/s及び3m/s、負荷荷重を3kN~12kN(一定)とし、試験時間は2時間とした。結果を表1に示す。表1において、○印は焼付きや摩耗等の異常がない場合、×印は焼付きまたは異常摩耗した場合、-印は当該条件で試験を行わなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、硫黄を添加するとともにNiとBiを同時添加して微細積層構造を持ち微細ビスマス粒が析出した共析相を出現させた青銅合金C,Dにおいて、鉛青銅(青銅合金E,F)以上の摩擦摩耗特性が得られ、特に高速(試験速度3m/s)において耐摩擦摩耗性の大幅な向上が見られる。
耐焼付性試験
 前記青銅合金A~D、及び下記組成を有する青銅合金G,H(実施例に相当)、青銅合金I(比較例に相当)について、焼付限界PV値を測定した。結果を図6に示す。
 青銅合金G:Cu-12Sn-1.5Ni-3Bi-1.0S
 青銅合金H:Cu-12Sn-1.5Ni-3Bi-2Pb-1.0S
 青銅合金I:Cu-12Sn-1.5Ni-3Bi-2Pb-1.0Si
 図6から明らかなように、本発明を適用した青銅合金C,D,G,H,Iは、優れた耐焼付性を発揮することがわかる。α銅を固溶強化したスズ青銅(青銅合金A,B等)では、層状共析相が出現していないため、本発明を適用した青銅合金C,D,G,Hに比べて1/2程度の焼付限界PV値であった。
切削試験
 下記の青銅合金について切削試験を行った。切削試験における使用工具は、市販のPVDコーティング超硬チップである。切削条件は、切削速度150m/min、送り0.3mm/rev、切り込み3.0mmとした。なお、比較のため、青銅合金E(比較例に相当)についても同様の試験を行った。結果を表2に示す。
 青銅合金K:Cu-12Sn-1.5Ni-0.6S-3Bi
 青銅合金L:Cu-12Sn-1.5Ni-0.6S-3Bi-3Pb
Figure JPOXMLDOC01-appb-T000002
 本発明を適用した青銅合金K,Lは、いずれも鉛青銅である青銅合金Eと同様に切削抵抗が低く、量産時に問題となるレベルではなかった。また、BiとPbを同時添加した青銅合金Lでは、現行材である青銅合金Eに比べて切削抵抗が10%程度低くなることが判明した。
組成についての検討
 Snを12質量%含有する青銅合金において、層状共析相が出現する組成を調べた。実験に際しては、NiあるいはSの添加量を固定し、他の元素の濃度を変えて層状共析相が出現する濃度範囲を調べた。図7は、Niの添加量を一定(1.5質量%)とし、SとBiの添加量を変えた場合の層状共析相が出現する組成範囲を示すものである。図8は、Sの添加量を一定(0.7質量%)とし、NiとBiの添加量を変えた場合の層状共析相が出現する組成範囲を示すものである。いずれの図面においても、破線で囲まれた領域において層状共析相の出現が認められた。
 図7を見ると、Sについては、0.08質量%以上とすることで層状共析層が出現している。また、Biについては、0.5質量%以上とすることで少量ではあるが層状共析相の出現が見られ、2.0質量%以上とすることで必要量の層状共析相が出現している。同様に、図8を見ると、Niについては、0.5質量%以上とすることで少量ではあるが層状共析相の出現が見られる。Biについては、図7の場合と同様、0.5質量%以上とすることで少量ではあるが層状共析相の出現が見られ、2.0質量%以上とすることで必要量の層状共析相が出現している。
 一方、図9~図11は、各元素の添加に伴う金属組織の変化の様子を示すものである。なお、これら金属組織は、鏡面研磨の後、塩化第二鉄・塩酸アルコール(塩化第二鉄5g+塩酸10mL+エチルアルコール85mL)で数秒間エッチングを行い、観察を行ったものである。図9は、スズ青銅に硫黄を1質量%添加した場合の金属組織を示し、図10は、スズ青銅に硫黄1質量%及びビスマス3質量%を添加した場合の金属組織を示し、図11は、スズ青銅に硫黄0.7質量%及びニッケル1.5質量%を添加した場合の金属組織を示す。
 硫黄のみを添加した場合、図9に示すように、初晶αデンドライトアーム間にスズが濃化したβ相(濃色部分)が多く存在しており、凝固偏析の促進によるβ相の安定化が起こっている。β相の中央部では包晶反応により粗大なδ銅塊を生じている。初晶αデンドライト中に晶出する硫化物は、初晶温度以上で形成されたCuSである。これにBiを添加すると、図10に示すようにβ相の量が減少し、硫化物は初晶αデンドライトアーム間に移行することから、硫化物の融点が初晶温度以下に低下するとともに共析変態が促進されて初晶αデンドライト間隔が狭くなっている。また、δ銅塊は分断され、共析変態により成長することで丸みをおびている。一方、Niを添加した場合では、図11に示すように、包晶反応によるδ銅の生成が抑制されるためにδ銅の生成量が少なく、基地組織はとともに、β相の共析変態によりα+銅スズ系金属間化合物となるが、一部には未変態βの残留が認められる。これらの金属組織的変化は、スズ青銅における共析変態がSやBi、およびNiの合金化によって制御できる事実を示しており、前述の層状共析相生成の仮説を肯定するものである。
 これに対して、S、Bi、Niの3元素を同時添加したスズ青銅では、図1に示すように、デンドライト間で生成するβ相は、塊状δ銅を生成することがなくα+銅スズ系金属間化合物が層状に積層した共析相に変態している。また、アメーバ状に見える相は、Snが濃化して安定化したγ、或いはβ相が未変態相として基地中に残留したものであり、図2において未変態相の境界部が層状に浸食されている様子、図3において共析相中には微細なビスマス粒が一様に析出している様子がわかる。なお、図3においては、原子番号の大きい元素ほど白いコントラストとなっている。
 したがって、微細なビスマス粒が一様に析出した層状共析相が出現するメカニズムは、(1)Sの添加によりα銅におけるSn固溶限を狭め、Sn濃度の高いβ銅を生成させることでBiの固溶を可能にしたこと、(2)Niの添加により包晶反応によるδ銅の生成とδ銅へのSnの拡散が抑制され、α銅中のSnが過飽和になることでβ銅の生成量が増加すること、(3)Biの添加による組成的過冷で共析変態温度が低下するためにSnの拡散速度が減少し、過飽和となったSnやBiは共析変態により銅スズ系金属間化合物として層状に析出するとともに微細ビスマス粒が析出したものと考えられる。
層状共析相の面積率についての検討
 図12は、3質量%のBiと1.5質量%のNi、0.4質量%のSを含有する青銅において、Sn濃度が共析変態で生じる層状共析相α′と未変態相(γ)の金属組織中での面積率に及ぼす影響を調べたものである。共析変態は、初晶αのデンドライト間に存在するSnが濃縮したβ銅でのみ生じ、図12中のα’+γはβ銅の生成量に対応している。β銅生成量がSn濃度12質量%以上で一定値となるため、層状共析相α′もこの量を超えることはない。Sn濃度が4質量%以下では、全てα銅となるため、共析変態を起こさないが、Sn濃度4~12質量%の範囲では、Sn濃度に比例して層状共析相α′生成量が直線的に増加している。一方、Sn濃度の増加とともにγ銅が安定化するために未変態相の残留量が増加し、その結果Sn濃度12質量%以上では、層状共析相α′は減少に転じることになる。
 図13は、12質量%のSnと3質量%のBi、2質量%のPb、1.5質量%のNiを含有するスズ青銅において、S濃度が共析変態で生成する層状共析相α′と未変態相(γ)の金属組織中での面積率に及ぼす影響を調べたものである。図13に示すように、β銅の量に対応するα’+γは指数関数的挙動を示し、S濃度が1質量%では、共析変態し得るβ銅が約80%存在する。S濃度が0.05~0.6質量%の範囲では、未変態相量が一定であるために層状共析相α′はS濃度に比例して増加する。S濃度が0.6質量%以上では、γ銅の安定化によって未変態γは増加傾向となることから、本合金組成のスズ青銅では、層状共析相α′が約60面積%で飽和した。なお、γ銅はNiの影響を大きく受けて安定化することから、Ni添加量を減じて最適化すれば、凝固の際に生じたβ銅の量に近づけることができる。
 これらの実験結果より、本発明の青銅合金における層状共析相α′の金属組織中での面積率は10面積%~70面積%が現実的な範囲ということになる。青銅合金中の各元素の割合を調整することで、層状共析相α′の金属組織中での面積率を10面積%~70面積%とすることができ、これにより高い耐焼付性や摩擦摩耗特性を得ることができる。
 また、特に、摺動部材のような高面圧下、高速で摺動する部材においては、より一層の耐焼付性や摩擦摩耗特性が要求されるが、このような用途を考えた場合には、前記層状共析相α′の金属組織中での面積率は20面積%以上であることが望ましい。前記面積率が20面積%以上であれば、前記高面圧下、高速での摺動に耐え得る耐焼付性や摩擦摩耗特性を実現することができる。これを組成の観点から見ると、Sn濃度は8質量%~15質量%とすることが好ましく、10質量%~13質量%とすることがより好ましいと言える(図12参照)。
 例えば、組成をCu-9Sn-1Ni-2Bi-0.4Sとした青銅合金では、前記面積率は24面積%であり、焼付限界PV値は795であった。すなわち、層状共析相α′の金属組織中での面積率を20面積%以上とすることで、従来例である青銅合金A,Bを越える焼付限界PV値が達成されている。さらに、Snの濃度を12質量%とした青銅合金C,D,G,H,K,Lでは、層状共析相α′の金属組織中での面積率が40面積%以上に達し、先に実験結果を示したように、焼付限界PV値のより一層の上昇が確認されている。
 

Claims (12)

  1.  銅及びスズを主成分とする青銅合金であって、金属組織中に、α銅中に銅スズ系金属間化合物が析出するとともにビスマスを含む金属微粒子が分散析出した共析相が発現していることを特徴とする青銅合金。
  2.  前記共析相は、包晶反応により生成するβ相を添加元素で部分安定化させることにより出現していることを特徴とする請求項1記載の青銅合金。
  3.  前記共析相は、α銅中に片状の銅スズ系金属化合物が析出した微細積層構造を有することを特徴とする請求項1記載の青銅合金。
  4.  β銅が出現する青銅合金であって、添加元素としてニッケル、ビスマス、及び硫黄の3元素を含有させることで共析変態時の金属組織が前記共析相を含むように制御されていることを特徴とする請求項1記載の青銅合金。
  5.  ニッケルの含有量が0.5質量%~5.0質量%、ビスマスの含有量が0.5質量%~7.0質量%、硫黄の含有量が0.08質量%~1.2質量%であることを特徴とする請求項4記載の青銅合金。
  6.  前記共析相の割合が10面積%~70面積%であることを特徴とする請求項5記載の青銅合金。
  7.  スズを8~15質量%含有し、前記共析相の割合が20面積%~70面積%であることを特徴とする請求項5記載の青銅合金。
  8.  さらに鉛を4質量%以下の割合で含有することを特徴とする請求項1から7のいずれか1項記載の青銅合金。
  9.  さらに亜鉛を5質量%以下の割合で含有することを特徴とする請求項1から7のいずれか1項記載の青銅合金。
  10.  青銅合金の主成分である銅及びスズにニッケル、ビスマス、及び硫黄を添加元素として添加し、包晶反応により生成するβ相を添加元素で部分安定化させることにより、α銅中に銅スズ系金属間化合物が析出するとともにビスマスを含む金属微粒子が分散析出した共析相を出現させることを特徴とする青銅合金の製造方法。
  11.  摺動面が、銅及びスズを主成分とする青銅合金であって、金属組織中に、α銅中に銅スズ系金属間化合物が析出するとともにビスマスを含む金属微粒子が分散析出した共析相が発現している青銅合金により形成されていることを特徴とする摺動部材。
  12.  鉄系材料の摺動面に前記青銅合金が接合されていることを特徴とする請求項11記載の摺動部材。
PCT/JP2008/070755 2008-05-09 2008-11-14 青銅合金及びその製造方法、青銅合金を用いた摺動部材 WO2009136457A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008801290324A CN102099498A (zh) 2008-05-09 2008-11-14 青铜合金及其制造方法、使用青铜合金的滑动构件
EP08874205.1A EP2292805B1 (en) 2008-05-09 2008-11-14 Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
KR1020107027602A KR101306597B1 (ko) 2008-05-09 2008-11-14 청동합금 및 그 제조방법, 청동합금을 사용한 슬라이딩 부재
DK08874205.1T DK2292805T3 (da) 2008-05-09 2008-11-14 Bronzelegering, fremgangsmåde til fremstilling deraf, og glideelement omfattende bronzelegering
US12/736,484 US8900721B2 (en) 2008-05-09 2008-11-14 Bronze alloy, process for producing the same, and sliding member comprising bronze alloy

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-123887 2008-05-09
JP2008123887 2008-05-09
JP2008-171776 2008-06-30
JP2008171776 2008-06-30
JP2008-268822 2008-10-17
JP2008268822A JP4806823B2 (ja) 2008-05-09 2008-10-17 青銅合金及びその製造方法、青銅合金を用いた摺動部材

Publications (1)

Publication Number Publication Date
WO2009136457A1 true WO2009136457A1 (ja) 2009-11-12

Family

ID=41264514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070755 WO2009136457A1 (ja) 2008-05-09 2008-11-14 青銅合金及びその製造方法、青銅合金を用いた摺動部材

Country Status (7)

Country Link
US (1) US8900721B2 (ja)
EP (1) EP2292805B1 (ja)
JP (1) JP4806823B2 (ja)
KR (1) KR101306597B1 (ja)
CN (2) CN104018024B (ja)
DK (1) DK2292805T3 (ja)
WO (1) WO2009136457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT511196B1 (de) 2011-06-14 2012-10-15 Miba Gleitlager Gmbh Mehrschichtlagerschale
CN102418002B (zh) * 2011-09-25 2013-04-17 宁波市鄞州锡青铜带制品有限公司 一种高性能低锡青铜带及其制备方法
US9073116B2 (en) * 2012-06-11 2015-07-07 National Oilwell Varco, L.P. Carbon foam metal matrix composite and mud pump employing same
GB2546952B (en) * 2014-12-19 2018-06-06 Cummins Ltd A turbomachine shaft and journal bearing assembly
CN105463464B (zh) * 2015-12-21 2018-09-25 广州兴森快捷电路科技有限公司 用于焊接过程形成的imc层检测的微蚀液及检测方法
WO2020136772A1 (ja) * 2018-12-26 2020-07-02 株式会社明石合銅 鋳造用青銅合金及びその青銅合金を用いた摺動部材
JP7376998B2 (ja) * 2019-03-22 2023-11-09 大豊工業株式会社 摺動部材用合金、摺動部材、内燃機関、及び自動車
DE102020106995A1 (de) * 2020-03-13 2021-09-16 Ks Gleitlager Gmbh Kupfer-Zinn-Bronze Stranggusslegierung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293305A (ja) 1998-04-07 1999-10-26 Komatsu Ltd 摺動材料および複層焼結摺動部材
JP2001220630A (ja) * 2000-02-08 2001-08-14 Daido Metal Co Ltd 銅系摺動材料
JP2002285262A (ja) 2001-03-23 2002-10-03 Daido Metal Co Ltd 銅系複層摺動材料
JP2005060808A (ja) * 2003-08-20 2005-03-10 Kaibara:Kk 耐摩耗性、耐焼付性に優れた摺動部材用銅合金
WO2007126006A1 (ja) 2006-04-28 2007-11-08 Kaibara Corporation 軸受性に優れた摺動材料用銅合金
JP2007297675A (ja) 2006-04-28 2007-11-15 Shiga Valve Cooperative 被削性に優れた鋳物用無鉛銅合金
JP2008050688A (ja) * 2006-07-11 2008-03-06 Senju Metal Ind Co Ltd 摺動材料およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038136A (en) * 1933-09-02 1936-04-21 American Brass Co Copper-selenium alloys
JPS55158245A (en) * 1979-05-29 1980-12-09 Tadao Kimura High-tin lead bronze forge-rolled material
GB2179673A (en) * 1985-08-23 1987-03-11 London Scandinavian Metall Grain refining copper alloys
GB9008957D0 (en) * 1990-04-20 1990-06-20 Shell Int Research Copper alloy and process for its preparation
US5230757A (en) * 1991-03-04 1993-07-27 Cone Drive Operations, Inc. As-cast, age-hardened Cu-Sn-Ni worm gearing and method of making same
US5266099A (en) * 1992-08-11 1993-11-30 The United States Of America As Represented By The Secretary Of The Navy Method for producing closed cell spherical porosity in spray formed metals
US5330712A (en) * 1993-04-22 1994-07-19 Federalloy, Inc. Copper-bismuth alloys
DE695372T1 (de) * 1993-04-22 1998-01-02 Federalloy Inc Kupfer-wismut-gusslegierungen
JPH0967630A (ja) * 1995-08-29 1997-03-11 Komatsu Ltd 摺動材料
JP2003089831A (ja) * 2001-07-12 2003-03-28 Komatsu Ltd 銅系焼結摺動材料および複層焼結摺動部材
JP2003193157A (ja) * 2001-12-28 2003-07-09 Kitz Corp 銅基合金等の合金とその製造方法並びにその合金を用いた鋳塊・接液部品
US20040094243A1 (en) * 2002-11-15 2004-05-20 Albert Wynne Lead-free copper alloys
CN101374969B (zh) * 2006-01-30 2012-05-16 株式会社小松制作所 铁系烧结多层卷绕衬套、其制造方法及作业机连结装置
AT504088B1 (de) * 2006-09-01 2008-11-15 Miba Gleitlager Gmbh Gleitlager
JP4998704B2 (ja) * 2007-01-22 2012-08-15 上村工業株式会社 置換錫合金めっき皮膜の形成方法、置換錫合金めっき浴及びめっき性能の維持方法
JP4748551B2 (ja) * 2008-06-24 2011-08-17 古河電気工業株式会社 電気電子部品用複合材料、その製造方法および電気電子部品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293305A (ja) 1998-04-07 1999-10-26 Komatsu Ltd 摺動材料および複層焼結摺動部材
JP2001220630A (ja) * 2000-02-08 2001-08-14 Daido Metal Co Ltd 銅系摺動材料
JP2002285262A (ja) 2001-03-23 2002-10-03 Daido Metal Co Ltd 銅系複層摺動材料
JP2005060808A (ja) * 2003-08-20 2005-03-10 Kaibara:Kk 耐摩耗性、耐焼付性に優れた摺動部材用銅合金
WO2007126006A1 (ja) 2006-04-28 2007-11-08 Kaibara Corporation 軸受性に優れた摺動材料用銅合金
JP2007297675A (ja) 2006-04-28 2007-11-15 Shiga Valve Cooperative 被削性に優れた鋳物用無鉛銅合金
JP2008050688A (ja) * 2006-07-11 2008-03-06 Senju Metal Ind Co Ltd 摺動材料およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2292805A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy

Also Published As

Publication number Publication date
CN104018024B (zh) 2015-09-02
US8900721B2 (en) 2014-12-02
EP2292805A4 (en) 2013-06-19
KR20110004910A (ko) 2011-01-14
JP4806823B2 (ja) 2011-11-02
EP2292805A1 (en) 2011-03-09
DK2292805T3 (da) 2014-08-18
KR101306597B1 (ko) 2013-09-11
US20110027612A1 (en) 2011-02-03
CN104018024A (zh) 2014-09-03
EP2292805B1 (en) 2014-08-06
CN102099498A (zh) 2011-06-15
JP2010031347A (ja) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4806823B2 (ja) 青銅合金及びその製造方法、青銅合金を用いた摺動部材
JP5143827B2 (ja) Pbフリー銅合金摺動材料を製造する方法
JP6255501B2 (ja) 潤滑剤適合性銅合金
JP5342882B2 (ja) 摺動部材用高力黄銅合金および摺動部材
KR102309320B1 (ko) 구리 합금, 구리 합금의 용도, 구리 합금을 가지는 베어링, 및 구리 합금으로 이루어진 베어링의 제조 방법
JP2020183580A (ja) 多層滑り軸受けエレメント
JP2738999B2 (ja) 高耐摩耗性アルミニウム青銅鋳造合金、該合金を用いた摺動部材
KR102343107B1 (ko) 청동 합금 및 그 청동 합금을 사용한 슬라이딩 부재
EP2135964B1 (en) Copper-based sliding material
JPS5846539B2 (ja) 軸受用アルミニウム合金およびその製造法
CN109804095B (zh) 滑动材料及其制造方法、以及滑动构件
JP2008075127A (ja) マグネシウム合金の製造方法
US5665480A (en) Copper-lead alloy bearing
KR100501619B1 (ko) 싱크로나이저링용 고강도 내마모성 동합금 및 그 제조방법
JP4203803B2 (ja) マグネシウム合金摺動部材
KR100834202B1 (ko) Sn함유 구리합금 및 그 제조방법
JPS6056220B2 (ja) アルミニウム軸受合金
KR20210069725A (ko) 특수 황동 합금 및 특수 황동 합금 프로덕트

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129032.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12736484

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6860/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008874205

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107027602

Country of ref document: KR

Kind code of ref document: A