WO2009136432A1 - 糖質定量方法および糖質定量キット - Google Patents

糖質定量方法および糖質定量キット Download PDF

Info

Publication number
WO2009136432A1
WO2009136432A1 PCT/JP2008/058440 JP2008058440W WO2009136432A1 WO 2009136432 A1 WO2009136432 A1 WO 2009136432A1 JP 2008058440 W JP2008058440 W JP 2008058440W WO 2009136432 A1 WO2009136432 A1 WO 2009136432A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbohydrate
digestive enzyme
enzyme
animal
molecular
Prior art date
Application number
PCT/JP2008/058440
Other languages
English (en)
French (fr)
Inventor
恒行 奥
禎子 中村
Original Assignee
長崎県公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長崎県公立大学法人 filed Critical 長崎県公立大学法人
Priority to US12/991,606 priority Critical patent/US8367365B2/en
Priority to PCT/JP2008/058440 priority patent/WO2009136432A1/ja
Priority to JP2010510973A priority patent/JP5532256B2/ja
Publication of WO2009136432A1 publication Critical patent/WO2009136432A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/926Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/926Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase
    • G01N2333/934Glucoamylase

Definitions

  • the present invention relates to a carbohydrate quantification method using a low-molecular-weight carbohydrate digestive enzyme and a carbohydrate quantification kit equipped with a low-molecular-weight carbohydrate digestive enzyme. More specifically, the present invention comprises a method for quantifying oligosaccharides (digestible oligosaccharides, indigestible oligosaccharides) using animal-derived low molecular sugar digestive enzymes, and animal-derived low molecular sugar digestive enzymes. The present invention relates to a quantification kit for oligosaccharides (digestible oligosaccharides, indigestible oligosaccharides).
  • Oligosaccharides are those whose number of polymerized saccharides is generally 2 or more and less than 10; those digested by digestive enzymes (digestible oligosaccharides), those that cannot be digested or those that are extremely difficult to digest ( Indigestible oligosaccharides). Many oligosaccharides that have already been developed and have added value to health are those that are not digested by digestive enzymes, or those that are difficult to digest.
  • Indigestible oligosaccharides are used in health-oriented foods such as foods for specified health use, but these indigestible oligosaccharides are metabolized by different pathways from digestible carbohydrates such as sucrose and starch. . Indigestible oligosaccharides taken orally escape the digestion by ⁇ -amylase and small intestinal mucosal disaccharide hydrolase and reach the large intestine. Therefore, it undergoes fermentation by resident intestinal bacteria and is metabolized to carbon dioxide gas, hydrogen gas, methane gas, bacterial cell components, etc. in addition to short-chain fatty acids such as acetic acid, propionic acid and n-butyric acid. Among these, short-chain fatty acids are absorbed from the large intestine and used as the host's only energy source. In other words, even carbohydrates that are not digested or absorbed supply energy to the living body through fermentation and absorption in the large intestine.
  • indigestible oligosaccharides are used in foods for specified insurance as the components involved, but their quantification is carried out by a method unique to the developer, and a common quantification method has not yet been established. Not. The reason is that indigestible oligosaccharides are not only those that are very difficult to digest in the small intestine, but also those that are partially digested, and because the constituent sugars and structures differ depending on the indigestible oligosaccharides, This is because there is a difference in the stability of each oligosaccharide and the action mechanism of the hydrolase.
  • Prosky's enzyme-weight method which is a dietary fiber quantification method, is a method in which digestive carbohydrates and proteins are completely digested by hydrolase and the weight of the remaining undigested material having a large molecular weight is measured.
  • Dietary fiber which is a polymer, can be quantified by established quantitative methods such as Prosky's enzyme-gravimetric method, but low molecular weight indigestible oligosaccharides and sugar alcohols cannot be quantified by this enzyme-gravimetric method.
  • indigestible oligosaccharides and sugar alcohols have come to be used in various health-oriented foods, and a common quantitative method for these has been studied.
  • One of the approved methods for quantification of indigestible oligosaccharides by AOAC is the enzyme-HPLC method, which is a partial modification of Prosky's enzyme-gravimetric dietary fiber quantification method (Fig. 6).
  • Fig. 6 Prosky's enzyme-gravimetric dietary fiber quantification method
  • a digestible component is hydrolyzed with a hydrolase and then an indigestible low molecular weight substance that does not precipitate with ethanol is used in a specific column. This is a method of analyzing and quantifying by HPLC.
  • thermostable ⁇ -amylase and amyloglucosidase which are carbohydrate digestive enzymes used in the enzyme-HPLC method, can digest high molecular polysaccharides, but digest low molecular carbohydrates such as oligosaccharides according to the nature of the enzyme. It can be difficult.
  • fructooligosaccharides and isomaltoligosaccharides which are said to be indigestible oligosaccharides
  • hydrogen gas produced only by fermentation by intestinal bacteria is discharged into the breath from about 2 hours after ingestion. Initially, it reaches a peak at 3 to 4 hours, whereas almost no exhaled hydrogen gas is observed with isomaltoligosaccharides.
  • fructooligosaccharide against transient diarrhea is 0.3 to 0.4 g per kg of body weight, whereas isomaltoligosaccharide is 1.2 g or more per kg of body weight. The feature is that it is very high.
  • isomaltooligosaccharides are quantified by the AOAC official method of enzyme-HPLC, as described above, it is considered that they are digested because they are difficult to digest low-molecular sugars such as oligosaccharides due to the nature of the enzyme. Isomaltooligosaccharides are detected as indigestible oligosaccharides. This clearly shows that there are problems with the enzyme-HPLC method. In addition, since the digestive enzyme used in the enzyme-HPLC method lacks ⁇ -galactosidase, lactose that should be digested may be quantified as an indigestible oligosaccharide.
  • the enzyme-HPLC method which is the official method of AOAC, has a problem that any of the indigestible oligosaccharide and the digestible oligosaccharide is quantified as the indigestible oligosaccharide.
  • an object of the present invention is to provide a carbohydrate quantification method capable of more accurately quantifying carbohydrates.
  • Another object of the present invention is to provide a carbohydrate quantification kit capable of more accurately quantifying carbohydrates.
  • the present invention has been made to solve the above-described problems, and is a carbohydrate quantification method using a digestive enzyme, wherein the digestive enzyme is an animal-derived low-molecular-weight carbohydrate digestive enzyme. Yes.
  • the present invention has been made to solve the above-mentioned problems, and is a carbohydrate quantification method using a digestive enzyme, including a first reaction step using a thermostable ⁇ -amylase, a protease, and an amyloglucosidase. And a third reaction step using an animal-derived low-molecular-weight carbohydrate digestive enzyme.
  • an animal-derived small intestinal mucosal hydrolase is used as the low-molecular-weight carbohydrate digestive enzyme.
  • the present invention has been made in order to solve the above problems, and is a carbohydrate quantification kit having a digestive enzyme, comprising an animal-derived low-molecular-weight carbohydrate digestive enzyme as the digestive enzyme. It is a feature.
  • the carbohydrate quantification kit according to the present invention preferably has a structure provided with an animal-derived small intestinal mucosal hydrolase as the digestive enzyme. More specifically, the carbohydrate quantification kit according to the present invention is preferably configured to include thermostable ⁇ -amylase, protease, amyloglucosidase, and animal-derived small intestinal mucosal hydrolase as the digestive enzyme.
  • a carbohydrate quantification method capable of more accurately quantifying carbohydrates can be obtained.
  • a carbohydrate quantification kit capable of more accurately quantifying carbohydrates can be obtained.
  • movement procedure figure of the carbohydrate determination method concerning the 1st Example of this invention is shown.
  • the chromatograph of fructooligosaccharide, lactulose, and galactosyl sucrose used as standard substances is shown.
  • the chromatographs of isomaltoligosaccharide, sucrose, and lactose used as standard substances are shown. It is the graph which showed the fixed_quantity
  • FOS fructooligosaccharide
  • IMO isomaltoligosaccharide
  • FIG. 3 is a diagram showing an operation procedure of an enzyme-HPLC method in which the dietary fiber determination method by Prosky's enzyme-gravimetric method according to the prior art is partially modified.
  • the carbohydrate quantification method according to the first embodiment of the present invention is a carbohydrate quantification method using a digestive enzyme, wherein an animal-derived low-molecular-weight carbohydrate digestive enzyme is used as the digestive enzyme. .
  • the carbohydrate quantification method according to the second embodiment of the present invention is a carbohydrate quantification method using a digestive enzyme, and includes a first reaction step using a thermostable ⁇ -amylase, and a first reaction step using a protease and amyloglucosidase. It has two reaction steps and a third reaction step using an animal-derived low-molecular-weight carbohydrate digestive enzyme.
  • an animal-derived small intestinal mucosal hydrolase is used as the low-molecular-weight carbohydrate digestive enzyme in the carbohydrate quantification method according to the first embodiment or the second embodiment. It is characterized by.
  • the carbohydrate quantification kit according to the fourth embodiment of the present invention is a carbohydrate quantification kit having a digestive enzyme, and is characterized by comprising an animal-derived low-molecular-weight carbohydrate digestive enzyme as the digestive enzyme.
  • the fifth embodiment of the present invention is characterized in that the carbohydrate quantification kit according to the fourth embodiment is provided with an animal-derived small intestinal mucosal hydrolyzing enzyme as the digestive enzyme.
  • the carbohydrate quantification method according to this embodiment described above is a carbohydrate quantification method using a digestive enzyme, and is characterized by using an animal-derived low-molecular-weight carbohydrate digestive enzyme as the digestive enzyme. More specifically, animal-derived low-molecular-weight carbohydrate digestive enzymes are added to the enzyme treatment reaction system in the carbohydrate quantification method according to the present embodiment.
  • the carbohydrate quantification kit according to the present embodiment may have any configuration as long as the above-described carbohydrate quantification method can be performed, and as a digestive enzyme, low-molecular-weight carbohydrate digestion derived from animals is used. It is characterized by having an enzyme.
  • animal is a concept excluding microorganisms. That is, “animal-derived low-molecular-weight carbohydrate digestive enzyme” is a concept excluding “microorganism-derived low-molecular-weight carbohydrate digestive enzyme”.
  • a pig small intestine mucosa brush border membrane suspension is used as an animal-derived low-molecular-weight carbohydrate digestive enzyme.
  • a method for preparing a pig small intestine mucosa brush border membrane suspension will be described.
  • Porcine small intestinal mucosa brush border membrane suspension was prepared by the method of Kessler et al. (Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G (1978) A modified procedure for the rapid preparation of efficiently transporting vesicles small intestinal brush border membranes. Biochim Biophys Acta 506: 136-54.).
  • the porcine small intestine provided by the Nagasaki Prefectural Meat Hygiene Inspection Station carefully cuts off fats and the like adhering to the small intestine on an ice-cold vat, and the upper half of the small intestine with high disaccharide hydrolase activity is spaced at 10 cm intervals. Carved.
  • the cut small intestine is cut vertically on an ice-cooled glass plate, the inside of the small intestine lumen is washed twice or three times with physiological saline, water drops are removed with a paper towel, and the small intestine is spread and stacked. Stored at ⁇ 80 ° C. until preparation of brush border membrane suspension.
  • the suspension was crushed for 20 minutes with an ultrasonic device (US-4, manufactured by SND Co., Ltd.). And powdery calcium chloride was added to this suspension so that final concentration might be 10 mM, and it left still for 20 minutes under ice-cooling.
  • the mixture was centrifuged at 3000 ⁇ g and 4 ° C. for 15 minutes, and the obtained supernatant was further centrifuged at 27000 ⁇ g and 4 ° C. for 30 minutes.
  • the precipitate was suspended in 2 mM Tris-Cl buffer (pH 7.1) containing 50 mM mannitol, and centrifuged at 27000 ⁇ g, 4 ° C. for 30 minutes. This operation is repeated once more, and the resulting precipitate is suspended in an appropriate amount of 0.05 M phosphate buffer (pH 7.0), centrifuged at 27000 ⁇ g for 30 minutes at 4 ° C.
  • 0.05 M phosphate buffer pH 7.0
  • the resulting precipitate (purified brush border membrane) is suspended in an appropriate amount of 0.05M phosphate buffer (pH 7.0) and then dispensed into a 10 mL plastic tube for actual carbohydrate determination. It was stored frozen at ⁇ 80 ° C. until used.
  • FIG. 1 is an operation procedure diagram of the carbohydrate quantification method according to the first embodiment of the present invention. More specifically, FIG. 1 shows an operation procedure diagram of carbohydrate determination by the enzyme-HPLC method according to this example.
  • FOS fructto-oligosaccharide
  • IMO isomalto-oligosaccharide
  • sucrose and lactose were used as the digestible sugar (carbohydrate). That is, the carbohydrate quantification method according to the present embodiment, which can more accurately quantify the saccharide using these hardly digestible saccharide and digestible saccharide, will be described.
  • each indigestible saccharide and 1 g of each digestible saccharide were weighed and placed in a tall beaker (capacity 500 mL), and 0.05 M MES / TRIS buffer (pH 6. 3) It melt
  • an ⁇ -amylase treatment is performed. Specifically, 200 ⁇ L of heat-resistant ⁇ -amylase (derived from Bacillus licheniformis), a digestive enzyme, is added, the tall beaker is covered with aluminum foil, and DIGITAL HOT PLATATE / STIRRE DP-1M (manufactured by AS ONE Co., Ltd.) is used. After the liquid temperature in the tall beaker reached 95 ° C., the reaction was carried out with stirring for 30 minutes (first reaction step).
  • heat-resistant ⁇ -amylase derived from Bacillus licheniformis
  • STIRRE DP-1M manufactured by AS ONE Co., Ltd.
  • a pig small intestine disaccharide hydrolase treatment is performed. Specifically, in order to digest the oligosaccharide, an animal-derived low-molecular-weight carbohydrate digestive enzyme was added and reacted at 37 ° C. for 1 hour (third reaction step).
  • an animal-derived small intestinal mucosal hydrolase was used as the “animal-derived low-molecular-weight carbohydrate digestive enzyme”. More specifically, a pig small intestine mucosa brush border membrane suspension (pH 7.0) prepared in-house as described above was used.
  • the protease was inactivated so that the animal-derived low-molecular-weight carbohydrate digestive enzyme was not degraded by the protease (inactivation step).
  • the supernatant obtained by ethanol precipitation was reacted while sucking with an ASPIRATOR A-3S (manufactured by Tokyo Science Instruments Co., Ltd.) into a glass filter in which a filter layer was previously formed with Celite.
  • the solution was injected and fractionated into a residue and a supernatant (filtration fractionation step).
  • the residue on the inner wall of the tall beaker and the glass filter is washed 3 times with 20 mL of 78% ethanol, twice with 10 mL of 95% ethanol, and further twice with 10 mL of acetone, and the washing solution is added to the Erlenmeyer flask. Collected (washing process).
  • the evaporated solution was dissolved in a small amount of water and desalted with an amphoteric ion exchange resin (Amberlite MB-3, manufactured by Organo Corp.) (desalting step).
  • an amphoteric ion exchange resin Amberlite MB-3, manufactured by Organo Corp.
  • the collected solution is fixed to 50 mL using a graduated cylinder, and then impurities such as proteins are filtered using a membrane filter (Millex-GV Non-Sterile 0.22 ⁇ m ⁇ 13 mm, Millipore Co., USA). It was set as the analytical sample of HPLC.
  • Measuring instrument LC-20AD (manufactured by Shimadzu Corporation) Column Shodex SUGAR KS-802 (8.0 ⁇ ⁇ 300mm, Showa Denko K.K.) Column temperature 70 ° C Mobile phase H 2 O Flow rate 0.5mL / min Sample flow rate 10 ⁇ L Detector Differential refractometer RID-10A (manufactured by Shimadzu Corporation)
  • the indigestible saccharides and digestible saccharides that were not decomposed by a series of enzyme treatments of the saccharide quantification method (enzyme-HPLC method improvement method) according to this example were analyzed using a Shodex SUGAR KS-802 column. Analysis was performed at a column temperature of 70 ° C. As the standard solution, each indigestible saccharide solution and digestible saccharide solution (5.0 mg / mL each) dissolved in distilled water were used.
  • FIG. 2 and FIG. 3 show elution profiles of standard substance solutions used for quantification of each indigestible saccharide and digestible saccharide by HPLC.
  • Recovery rate of undigested saccharides after the enzyme treatment was calculated by the following formula.
  • Recovery rate of undigested material (%) (((A / B) ⁇ dilution rate) / sample weight (g)) ⁇ 100
  • A Peak area of carbohydrate after enzyme treatment
  • B Peak area of standard substance solution
  • the carbohydrate determination method according to the present example can obtain the following results by having the above-described configuration.
  • FIG. 4 and FIG. 5 show the results of the carbohydrate quantification method according to the above-described example.
  • FIG. 4 is a graph showing the quantification results of the indigestible saccharide fraction concerning fructooligosaccharide (FOS) and isomaltoligosaccharide (IMO) when the saccharide quantification method according to this example is used.
  • FIG. 5 is a graph showing the quantification results of the indigestible saccharide fraction relating to sucrose and lactose when the saccharide quantification method according to this example is used.
  • IMO which is regarded as an indigestible carbohydrate, is almost completely digested by adding disaccharide hydrolase derived from porcine small intestine to the enzyme treatment reaction system, and only glucose, which is the minimum constituent unit of IMO, is detected. (See FIG. 4).
  • sucrose digested with sucrase was digested almost completely by adding disaccharide hydrolase derived from porcine small intestine to the enzyme treatment reaction system as in IMO (see FIG. 5).
  • lactose digested with lactase was digested only 56.8% due to the low lactase activity of the porcine small intestinal mucosa brush border membrane suspension. It was also confirmed that a disaccharide other than lactose was newly produced by reacting with the porcine small intestinal mucosa brush border membrane suspension (see FIG. 5).
  • the carbohydrate digestive enzyme used in the enzyme-HPLC method according to the prior art can digest high molecular polysaccharides, but low molecular oligosaccharides are difficult to digest. . Therefore, although IMO is easily digested by human and rat small intestinal mucosal enzymes, it is only slightly hydrolyzed by the hydrolyzing enzymes for dietary fiber determination according to the prior art. This indicates that the enzyme-HPLC method, which is an official method of AOAC, has a defect that is quantified as an indigestible oligosaccharide regardless of whether it is digestible or indigestible oligosaccharide.
  • the carbohydrate-digesting enzymes currently used in the enzyme-HPLC method lack ⁇ -glucosidase and ⁇ -galactosidase that digest low-molecular-weight carbohydrates, so by adding both to the reaction system, Sugar (oligosaccharide) can be quantified more accurately.
  • a porcine small intestine mucosa brush border membrane suspension pig small intestinal mucosal digestive enzyme
  • this example is a carbohydrate quantification method using a digestive enzyme, wherein the digestive enzyme is an animal-derived low-molecular-weight carbohydrate digestive enzyme.
  • the present example is a carbohydrate determination method using a digestive enzyme, which is a first reaction step using a thermostable ⁇ -amylase, a second reaction step using a protease and amyloglucosidase, and an animal-derived method. And a third reaction step using a low-molecular-weight carbohydrate digestive enzyme.
  • an animal-derived small intestinal mucosal hydrolase is used as a low-molecular-weight carbohydrate digestive enzyme.
  • any kit can be used as long as it has this feature. It belongs to the technical scope of the present invention.
  • the present invention is a carbohydrate quantification kit having a digestive enzyme, and is characterized by comprising an animal-derived low-molecular-weight carbohydrate digestive enzyme as the digestive enzyme.
  • the carbohydrate quantification kit according to the present invention is characterized by comprising thermostable ⁇ -amylase, protease, amyloglucosidase, and animal-derived small intestinal mucosal hydrolase as digestive enzymes.
  • the carbohydrate quantification kit according to the present invention preferably has a constitution provided with an animal-derived small intestinal mucosal hydrolase as a digestive enzyme.
  • low molecular carbohydrate digestive enzyme derived from porcine pig small intestinal mucosa brush border membrane suspension
  • animal derived low molecular carbohydrate digestive enzyme animal derived low molecular carbohydrate digestive enzyme
  • the present invention is not limited to this configuration, and low molecular carbohydrate digestive enzymes derived from “other animals” can be used as long as their activities are similar to those of “human”. is there. Therefore, for example, the small intestinal mucosal hydrolase of other animals such as rats and cows may be used.
  • Dietary fiber and indigestible oligosaccharides / sugar alcohols have been shown to have special physiological effects on health that are different from conventional carbohydrates and are deeply involved in the prevention of lifestyle-related diseases. .
  • health-consciousness has become stronger due to changes in national values, and functional foods such as foods for specified health use that emphasize various physiological functions by food manufacturers and pharmaceutical manufacturers are also actively developed.
  • the dietary fiber quantification method and the indigestible oligosaccharide quantification method which are the current official methods (according to the prior art), are considered to be overestimated, and may be false. Consumers have the right to know the right information based on scientific evidence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、糖質をより正確に定量可能な糖質定量方法を提供することを課題としている。  この課題を解決する本発明は、消化酵素を用いた糖質定量方法であって、前記消化酵素として、動物由来の低分子糖質消化酵素が用いられることを特徴としている。より具体的には、本発明は、消化酵素を用いた糖質定量方法であって、耐熱性α-アミラーゼを用いた第一反応工程と、プロテアーゼおよびアミログルコシダーゼを用いた第二反応工程と、動物由来の低分子糖質消化酵素を用いた第三反応工程とを備えたことを特徴としている。

Description

糖質定量方法および糖質定量キット
 本発明は、低分子糖質消化酵素を用いた糖質定量方法、および低分子糖質消化酵素を備えた糖質定量キットに関するものである。より具体的には、本発明は、動物由来の低分子糖類消化酵素を用いたオリゴ糖(消化性オリゴ糖、難消化性オリゴ糖)の定量方法、および動物由来の低分子糖類消化酵素を備えたオリゴ糖(消化性オリゴ糖、難消化性オリゴ糖)の定量キットに関するものである。
 近年、国民の健康志向が高まり、砂糖とは異なった生理作用を有する甘味糖質であるオリゴ糖の開発が盛んである。オリゴ糖とは、その重合した構成糖の数が概ね2個以上10個未満のものをいい、消化酵素によって消化されるもの(消化性オリゴ糖)と、消化されないものあるいは極めて消化されにくいもの(難消化性オリゴ糖)等がある。すでに開発されている健康に対する付加価値を有するオリゴ糖は、多くのものが消化酵素で消化されないものか、あるいは極めて消化されにくい難消化性ものものである。
 難消化性オリゴ糖は、特定保健用食品などの健康志向食品に使用されているが、これらの難消化性オリゴ糖は、ショ糖やデンプンなどの消化性糖質とは異なる経路で代謝される。経口摂取された難消化性オリゴ糖は、α-アミラーゼや小腸粘膜二糖類水解酵素による消化を免れて大腸に到達する。そこで常在の腸内細菌による発酵を受け、酢酸、プロピオン酸、n-酪酸などの短鎖脂肪酸の他、炭酸ガス、水素ガス、メタンガス、菌体成分等に代謝される。このうち、短鎖脂肪酸は大腸から吸収されて宿主の唯一のエネルギー源として利用される。つまり、消化・吸収されない糖質であっても、大腸で発酵・吸収されることで生体にエネルギーを供給している。
 現在、特定保健用食品は、741品目認可されているが、そのうち難消化性オリゴ糖を使用したものは93品目ある(平成19年11月26日現在)。関与する成分として、9種類の難消化性オリゴ糖が特定保険用食品に使用されているが、それらの定量は、開発メーカー独自の方法でそれぞれ行われており、共通の定量方法は未だ確立されていない。その理由としては、難消化性オリゴ糖は小腸できわめて消化されにくいものだけではなく、部分的に消化されるものが含まれており、構成糖や構造が難消化性オリゴ糖によって異なるために、各オリゴ糖の安定性や加水分解酵素の作用機序等に差異があるからである。
 食物繊維定量法であるProskyの酵素-重量法は、加水分解酵素により消化性糖質およびタンパク質を完全に消化させ、残存する分子量の大きい未消化物重量を測定する方法である。高分子である食物繊維は、Proskyの酵素-重量法のように確立された定量法で定量できるが、低分子の難消化性オリゴ糖ならびに糖アルコールは、この酵素-重量法では定量できない。近年、難消化性オリゴ糖および糖アルコールが、様々な健康志向食品に使用されるようになってきたため、これらに共通の定量法が検討されるようになった。
 AOAC(Association of Official Analytical Chemists)で難消化性オリゴ糖の定量方法として認可されている一つに、Proskyの酵素-重量法による食物繊維定量法を一部改変した酵素-HPLC法がある(図6参照)。図6に示すように、酵素-HPLC法は、食物繊維定量法と同様に、加水分解酵素で消化性成分を加水分解後、エタノールで沈殿しない難消化性の低分子物質を特定のカラムを用いてHPLCで分析・定量する方法である。この方法は、生体の消化管における酵素処理過程を想定していることから、小腸で消化を免れて大腸に到達する量、すなわち、難消化性オリゴ糖が腸内細菌によって利用される量を推定できることになる。
特許第3183500号公報
 しかしながら、酵素-HPLC法に用いられている糖質消化酵素である耐熱性α-アミラーゼおよびアミログルコシターゼは、高分子多糖は消化できるが、オリゴ糖等の低分子糖質を酵素の性質により消化しにくいことが考えられる。事実、難消化性オリゴ糖といわれているフラクトオリゴ糖およびイソマルトオリゴ糖をヒトに摂取させると、腸内細菌による発酵のみによって産生される水素ガスが、フラクトオリゴ糖は摂取2時間前後から呼気に排出されはじめ、3~4時間でピークになるのに対し、イソマルトオリゴ糖ではほとんど呼気水素ガス排出は観察されない。また、フラクトオリゴ糖の一過性下痢に対する最大無作用量は体重1kgあたり0.3~0.4gであるのに対して、イソマルトオリゴ糖は体重1kgあたり1.2g以上で、消化されないオリゴ糖に比べて非常に高いのが特徴である。これらの報告は、フラクトオリゴ糖は消化されないが、イソマルトオリゴ糖は消化されることを示唆している。
 AOAC公定法である酵素-HPLC法でイソマルトオリゴ糖を定量すると、上述したように、「オリゴ糖等の低分子糖質を酵素の性質により消化しにくい」ため、本来は消化されると考えられるイソマルトオリゴ糖が、難消化性オリゴ糖として検出される。このことは、酵素-HPLC法に問題があることを明確に示している。また、酵素-HPLC法にて用いられる消化酵素には、β-ガラクトシダーゼが欠如していることから、消化されるはずのラクトース等も難消化性オリゴ糖として定量される可能性がある。
 すなわち、AOAC公定法である酵素-HPLC法では、難消化性オリゴ糖ならびに消化性オリゴ糖のいずれであっても、難消化性オリゴ糖として定量されるという問題があった。
 そこで、本発明は、上記従来技術の問題を解決するためになされたものであって、糖質をより正確に定量可能な糖質定量方法を提供することを課題とする。また、本発明は、糖質をより正確に定量可能な糖質定量キットを提供することを課題とする。
 本発明は、上記課題を解決するためになされたものであり、消化酵素を用いた糖質定量方法であって、前記消化酵素が、動物由来の低分子糖質消化酵素であることを特徴としている。
 また、本発明は、上記課題を解決するためになされたものであり、消化酵素を用いた糖質定量方法であって、耐熱性α-アミラーゼを用いた第一反応工程と、プロテアーゼおよびアミログルコシダーゼを用いた第二反応工程と、動物由来の低分子糖質消化酵素を用いた第三反応工程とを備えたことを特徴としている。
 さらに、本発明にかかる糖質定量方法においては、前記低分子糖質消化酵素として、動物由来の小腸粘膜水解酵素が用いられる構成が好ましい。
 また、本発明は、上記課題を解決するためになされたものであり、消化酵素を有する糖質定量キットであって、前記消化酵素として、動物由来の低分子糖質消化酵素を備えたことを特徴としている。
 さらに、本発明にかかる糖質定量キットにおいては、前記消化酵素として、動物由来の小腸粘膜水解酵素を備えた構成であることが好ましい。より具体的には、本発明にかかる糖質定量キットは、前記消化酵素として、耐熱性α-アミラーゼ、プロテアーゼ、アミログルコシダーゼ、および動物由来の小腸粘膜水解酵素を備えた構成であることが好ましい。
 本発明によれば、糖質をより正確に定量可能な糖質定量方法を得ることができる。また、本発明によれば、糖質をより正確に定量可能な糖質定量キットを得ることができる。
本発明の第一実施例にかかる糖質定量方法の操作手順図を示したものである。 標準物質として用いたフラクトオリゴ糖、ラクチュロース、ならびにガラクトシルスクロースのクロマトグラフを示したものである。 標準物質として用いたイソマルトオリゴ糖、スクロース、ならびにラクトースのクロマトグラフを示したものである。 本発明の第一実施例にかかる糖質定量方法を用いた場合におけるフラクトオリゴ糖(FOS)およびイソマルトオリゴ糖(IMO)に関する難消化性糖質画分の定量結果を示したグラフである。 本発明の第一実施例にかかる糖質定量方法を用いた場合におけるスクロースおよびラクトースに関する難消化性糖質画分の定量結果を示したグラフである。 従来技術にかかるProskyの酵素-重量法による食物繊維定量法を一部改変した酵素-HPLC法の操作手順図を示したものである。
 以下、本発明の実施形態について説明する。
 本発明の第一実施形態にかかる糖質定量方法は、消化酵素を用いた糖質定量方法であって、前記消化酵素として、動物由来の低分子糖質消化酵素が用いられることを特徴としている。
 本発明の第二実施形態にかかる糖質定量方法は、消化酵素を用いた糖質定量方法であって、耐熱性α-アミラーゼを用いた第一反応工程と、プロテアーゼおよびアミログルコシダーゼを用いた第二反応工程と、動物由来の低分子糖質消化酵素を用いた第三反応工程とを備えたことを特徴としている。
 また、本発明の第三実施形態は、上記第一実施形態あるいは第二実施形態にかかる糖質定量方法にて、前記低分子糖質消化酵素として、動物由来の小腸粘膜水解酵素が用いられることを特徴としている。
 本発明の第4実施形態にかかる糖質定量キットは、消化酵素を有する糖質定量キットであって、前記消化酵素として、動物由来の低分子糖質消化酵素を備えたことを特徴としている。
 また、本発明の第5実施形態は、上記第4実施形態にかかる糖質定量キットにて、前記消化酵素として、動物由来の小腸粘膜水解酵素を備えたことを特徴としている。
 すなわち、上述した本実施形態にかかる糖質定量方法は、消化酵素を用いた糖質定量方法であって、消化酵素として、動物由来の低分子糖質消化酵素を用いることを特徴としている。より具体的には、本実施形態にかかる糖質定量方法における酵素処理反応系に、動物由来の低分子糖質消化酵素を添加することを特徴としている。また、本実施形態にかかる糖質定量キットは、上述した糖質定量方法を実施可能なキットであれば、どのような構成であってもよく、消化酵素として、動物由来の低分子糖質消化酵素を備えたことを特徴としている。本発明(上述した各実施形態および以下に説明する実施例等)において、「動物」とは、微生物を除く概念である。すなわち「動物由来の低分子糖質消化酵素」とは、「微生物由来の低分子糖質消化酵素」を除く概念である。
 本発明の実施形態にかかる糖質定量方法および後述する実施例にかかる糖質定量方法においては、動物由来の低分子糖質消化酵素として、ブタ小腸粘膜刷子縁膜懸濁液を用いている。以下、ブタ小腸粘膜刷子縁膜懸濁液の調製方法について説明する。
 ブタ小腸粘膜刷子縁膜懸濁液の調製は、Kesslerらの方法(Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G (1978) A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Biochim Biophys Acta 506 : 136-54.)に準じて行った。
 長崎県食肉衛生検査場より供与されたブタ小腸は、氷冷したバット上で小腸に付着している脂肪等を丁寧に切り離し、二糖類水解酵素活性が高い小腸上部約1/2を10cm間隔に切り分けた。切り分けた小腸は、氷冷ガラスプレート上で縦に切り開き、小腸管腔内を生理食塩水で2~3度洗浄した後、ペーパータオルで水滴を除去し、小腸を広げた状態で積み重ね、ブタ小腸粘膜刷子縁膜懸濁液の調製まで-80℃で保存した。
 冷凍保存したブタ小腸(約300g)を凍結した状態で、細かく包丁で切り、50mMマンニトール入り2mM Tris-Cl緩衝液(pH7.1)19倍量を加えて氷冷したワーリングブレンダーを用いて60秒間のインターバルで約90秒間均一化した。
 さらに、その懸濁液を超音波装置(US-4,(株)エスエヌディ製)で20分間破砕した。そして、この懸濁液に最終濃度が10mMとなるように粉末状塩化カルシウムを加え、氷冷下で20分間静置した。
 その後、3000×g、4℃で15分間遠心分離し、得られた上清をさらに27000×g、4℃で30分間遠心分離した。沈殿物の小腸粘膜刷子縁膜画分を洗浄するために、50mMマンニトール入り2mM Tris-Cl緩衝液(pH7.1)で沈殿物を懸濁し、27000×g、4℃で30分間遠心分離した。この操作をもう一度繰り返し、得られた沈殿物を適当量の0.05Mリン酸緩衝液(pH7.0)で懸濁し、27000×g、4℃で30分間遠心分離し、二糖類水解酵素に対して阻害作用のあるトリス(ヒドロキシメチル)アミノメタンを0.05Mリン酸緩衝液(pH7.0)で置換した。
 そして、得られた沈殿物(精製した刷子縁膜)を適当量の0.05Mリン酸緩衝液(pH7.0)で懸濁後、10mL用プラスチックチューブに分注し、実際の糖質定量に供するまで-80℃で凍結保存した。
 以下、図面等に基づいて、上述したブタ小腸粘膜刷子縁膜懸濁液(動物由来の低分子糖質消化酵素)を用いて行われる、本発明の実施例にかかる糖質定量方法を説明する。
<第一実施例>
 図1は、本発明の第一実施例にかかる糖質定量方法の操作手順図を示したものである。より具体的には、図1は、本実施例にかかる酵素-HPLC法による糖質定量の操作手順図を示したものである。
 本実施例においては、難消化性オリゴ糖(糖質)としてFOS(フラクトオリゴ糖)およびIMO(イソマルトオリゴ糖)を用い、消化性糖質(糖質)としてスクロースおよびラクトースを用いた。つまり、これらの難消化性糖質と消化性糖質とを用いて、糖質をより正確に定量可能な本実施例にかかる糖質定量方法について説明する。
 図1に示すように、本実施例においては、各難消化性糖質および各消化性糖質1gを秤量し、トールビーカー(容量500mL)に入れ、0.05M MES/TRIS緩衝液(pH6.3)40mLに溶解した(糖質溶解工程)。
 次いで、上記溶解後、α-アミラーゼ処理を行う。具体的には、消化酵素である耐熱性α-アミラーゼ(Bacillus licheniformis由来)200μLを添加し、トールビーカーをアルミニウム箔で覆い、DIGITAL HOT PLATE/STIRRER DP-1M(アズワン(株)製)を用いて、トールビーカー内の液温が95℃に到達後、30分間攪拌しながら反応させた(第一反応工程)。
 次いで、上記第一反応工程後、0.05M MES/TRIS緩衝液(pH6.3)10mLをトールビーカーに加え、室温まで冷却後、消化酵素であるプロテアーゼ(Bacillus thermoproteolyticus 由来)およびアミログルコシダーゼ(Aspergillus niger由来)をそれぞれ200μLずつ添加し、トールビーカーをアルミニウム箔で覆い、トールビーカー内の液温が60℃に到達後、30分間攪拌しながら反応させた(第二反応工程)。
 次いで、上記第二反応工程後、ブタ小腸二糖類水解酵素処理を行う。具体的には、オリゴ糖を消化するために、動物由来の低分子糖質消化酵素を添加して、37℃で1時間反応させた(第三反応工程)。ここでは、「動物由来の低分子糖質消化酵素」として、動物由来の小腸粘膜水解酵素を用いた。より具体的には、上述のように自家調製したブタ小腸粘膜刷子縁膜懸濁液(pH7.0)を用いた。また、この第三反応工程の前には、動物由来の低分子糖質消化酵素がプロテアーゼによる分解を受けないように、プロテアーゼを失活させた(失活工程)。
 次いで、上記第三反応工程後、あらかじめ60℃に加温しておいた95%エタノール4倍量を反応液に加え、室温で正確に60分間静置して、高分子のものを沈殿させた(沈殿工程)。
 次いで、上記沈殿工程後、エタノール沈殿して得た上清は、あらかじめセライトでろ過層を形成しておいたガラスろ過器にASPIRATOR A-3S(東京理科器械(株)製)で吸引しながら反応溶液を注入し、残渣と上清とに分別した(ろ過分別工程)。
 次いで、上記ろ過分別工程後、トールビーカーの内壁およびガラスろ過器上の残渣を78%エタノール20mLで3回、95%エタノール10mLで2回、さらにアセトン10mLで2回洗浄し、三角フラスコに洗浄液を回収した(洗浄工程)。
 次いで、回収した上清(ろ液)のアルコールをロータリーエバポレーター(Rotavapor R-200,柴田科学(株)製)で蒸発させた(蒸発工程)。
 次いで、蒸発させた溶液を少量の水に溶解させ、両性イオン交換樹脂(アンバーライト MB-3,オルガノ(株)製)で脱塩した(脱塩工程)。
 次いで、回収した溶液は、メスシリンダーを用いて50mLに定容後、メンブレンフィルター(Millex-GV Non-Sterile 0.22μm×13mm,Millipore Co., USA)を用いてタンパク質等の不純物をろ過してHPLCの分析試料とした。
 HPLCを用いた各糖質定量のための分析は以下の通りである。
 測定機器    LC-20AD((株)島津製作所製)
 カラム     Shodex SUGAR KS-802
         (8.0φ×300mm,昭和電工(株)製)
 カラム温度   70℃
 移動相     H
 流速      0.5mL/min
 試料流入量   10μL
 検出器     示差屈折計 RID-10A((株)島津製作所製)
 本実施例にかかる糖質定量方法(酵素-HPLC法の改良方法)の一連の酵素処理によって分解されなかった各難消化性糖質および消化性糖質は、Shodex SUGAR KS-802カラムを用いてカラム温度70℃で分析した。標準液としては、蒸留水に溶解した各難消化性糖質溶液および消化性糖質溶液(それぞれ5.0mg/mL)を用いた。
 ここで、図2および図3は、HPLCによる各難消化性糖質および消化性糖質の定量に用いる標準物質溶液の溶出プロファイルを示したものである。
 また、酵素処理後の各糖質の未消化物の回収率は、下式により算出した。
 未消化物の回収率(%)=(((A/B)×希釈倍率)/試料重量(g))×100
ここで、A:酵素処理後の糖質のピークエリア
    B:標準物質溶液のピークエリア
 本実施例にかかる糖質定量方法は、以上のような構成を有することによって、以下のような結果を得ることができる。
 上述した本実施例にかかる糖質定量方法の結果を示したのが図4および図5である。ここで、図4は、本実施例にかかる糖質定量方法を用いた場合におけるフラクトオリゴ糖(FOS)およびイソマルトオリゴ糖(IMO)に関する難消化性糖質画分の定量結果を示したグラフである。また、図5は、本実施例にかかる糖質定量方法を用いた場合におけるスクロースおよびラクトースに関する難消化性糖質画分の定量結果を示したグラフである。
 これらの図から明らかなように、FOSは、ブタ小腸由来の二糖類水解酵素を酵素処理反応系に添加してもほとんど消化されず、未消化物の回収率は98.2%と極めて高かった(図4参照)。
 一方、難消化性糖質とされているIMOは、ブタ小腸由来の二糖類水解酵素を酵素処理反応系に添加することにより、ほぼ完全に消化され、IMOの最小構成単位であるグルコースのみが検出された(図4参照)。
 また、スクラーゼにより消化されるスクロースにおいてもIMOと同様、ブタ小腸由来の二糖類水解酵素を酵素処理反応系に添加することにより、ほぼ完全に消化された(図5参照)。
 しかしながら、ラクターゼによって消化されるラクトースは、ブタ小腸粘膜刷子縁膜懸濁液のラクターゼ活性が低いことから56.8%しか消化されなかった。また、ブタ小腸粘膜刷子縁膜懸濁液と反応させることにより、ラクトース以外の二糖が新たに生成されることも確認された(図5参照)。
 先にも説明したように、従来技術にかかる酵素-HPLC法に用いられている糖質消化酵素は、その性質上、高分子多糖は消化できるが、低分子オリゴ糖は消化しにくいと考えられる。そのため、IMOはヒトやラットの小腸粘膜酵素で容易に消化されるにもかかわらず、従来技術にかかる食物繊維定量用の加水分解酵素では僅かしか加水分解されない。このことは、AOAC公定法である酵素-HPLC法は、消化性ならびに難消化性オリゴ糖のいずれであっても、難消化性オリゴ糖として定量される欠陥を有することを示している。
 これに対して、本実施例によれば、上述した従来技術の欠陥を無くし、糖質をより正確に定量可能な糖質定量方法を得ることができる。つまり、酵素-HPLC法に現在用いられている糖質消化酵素には、低分子糖質を消化するα-グルコシダーゼおよびβ-ガラクトシダーゼが欠如しているので、この両方を反応系へ加えることによって、より正確に糖質(オリゴ糖)を定量可能となる。本実施例においては、そのために、ブタ小腸粘膜刷子縁膜懸濁液(ブタ小腸粘膜消化酵素)を用いている。
 より具体的には、本実施例は、消化酵素を用いた糖質定量方法であって、消化酵素が、動物由来の低分子糖質消化酵素であることを特徴としている。また、本実施例は、消化酵素を用いた糖質定量方法であって、耐熱性α-アミラーゼを用いた第一反応工程と、プロテアーゼおよびアミログルコシダーゼを用いた第二反応工程と、動物由来の低分子糖質消化酵素を用いた第三反応工程とを備えたことを特徴としている。さらに、本実施例は、低分子糖質消化酵素として、動物由来の小腸粘膜水解酵素が用いられている。
 このような構成に基づき、本実施例によれば、難消化性糖質および消化性糖質を区別して定量できることが可能となり、正確に難消化性オリゴ糖を定量することができる。
 ところで、本実施例の特徴は、加水分解反応系に動物由来の低分子糖質消化酵素を加えることであるため、この特徴を有する構成であれば、どのようなキット(糖質定量キット)も本発明の技術的範囲に属する。
 具体的には、本発明は、消化酵素を有する糖質定量キットであって、消化酵素として、動物由来の低分子糖質消化酵素を備えたことを特徴としている。また、本発明にかかる糖質定量キットは、消化酵素として、耐熱性α-アミラーゼ、プロテアーゼ、アミログルコシダーゼ、および動物由来の小腸粘膜水解酵素を備えたことを特徴としている。さらに、本発明にかかる糖質定量キットにおいては、消化酵素として、動物由来の小腸粘膜水解酵素を備えた構成であることが好ましい。
<その他の実施例等>
 なお、本発明は、上記実施形態および実施例(以下「実施形態等」という。)に限定されるものではなく、必要に応じて種々の変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 例えば、上記実施形態等においては、「動物由来の低分子糖質消化酵素」として「ブタ由来の低分子糖質消化酵素(ブタ小腸粘膜刷子縁膜懸濁液)」を用いた場合について説明したが、本発明はこの構成に限定されるものではなく、その活性が「ヒト」と類似しているものであれば、「他の動物」由来の低分子糖質消化酵素を用いることも可能である。したがって、例えば、ラット、牛等の他の動物の小腸粘膜水解酵素を用いてもよい。
 食物繊維ならびに難消化性オリゴ糖・糖アルコールは、健康に対して従来の糖質とは異なった特殊な生理作用を持ち、生活習慣病等の予防に深く関わっていることが明らかにされている。また、国民の価値観の変化によって健康志向が強まり、食品メーカーや医薬品メーカーによる種々の生理機能を強調した特定保健用食品等の機能性食品の開発も盛んである。
 このような背景の下、食物繊維や難消化性オリゴ糖・糖アルコールを添加した特定保健用食品は数多く許可されている。そして、特定保健用食品をはじめとする加工食品には、健康増進法に定められている栄養表示基準制度によって、栄養成分を表示することが義務付けられている。加工食品へ添加された成分の機能発現は、それに添加された成分含量に依存するので、その定量は重要である。
 しかしながら、現在の(従来技術にかかる)公定法である食物繊維定量法や難消化性オリゴ糖定量法は、過大評価をしていると考えられるため、虚偽の表示にもなりかねない。消費者は、科学的根拠に基づいた正しい情報を知る権利がある。
 そこで、先に説明した本発明にかかる糖質定量方法および糖質定量キットを用いれば、正確に難消化性糖質および消化性糖質を区別して定量できることが可能となり、消費者に対し正しい情報を提供することが可能となる。

Claims (5)

  1.  消化酵素を用いた糖質定量方法であって、
     前記消化酵素として、動物由来の低分子糖質消化酵素が用いられる
    ことを特徴とする糖質定量方法。
  2.  消化酵素を用いた糖質定量方法であって、
     耐熱性α-アミラーゼを用いた第一反応工程と、
     プロテアーゼおよびアミログルコシダーゼを用いた第二反応工程と、
     動物由来の低分子糖質消化酵素を用いた第三反応工程とを備えた
    ことを特徴とする糖質定量方法。
  3.  前記低分子糖質消化酵素として、動物由来の小腸粘膜水解酵素が用いられる
    請求項1または2に記載の糖質定量方法。
  4.  消化酵素を有する糖質定量キットであって、
     前記消化酵素として、動物由来の低分子糖質消化酵素を備えた
    ことを特徴とする糖質定量キット。
  5.  前記消化酵素として、動物由来の小腸粘膜水解酵素を備えた
    請求項4に記載の糖質定量キット。
PCT/JP2008/058440 2008-05-06 2008-05-06 糖質定量方法および糖質定量キット WO2009136432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/991,606 US8367365B2 (en) 2008-05-06 2008-05-06 Method for determining carbohydrate and kit for determining carbohydrate
PCT/JP2008/058440 WO2009136432A1 (ja) 2008-05-06 2008-05-06 糖質定量方法および糖質定量キット
JP2010510973A JP5532256B2 (ja) 2008-05-06 2008-05-06 糖質定量方法および糖質定量キット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058440 WO2009136432A1 (ja) 2008-05-06 2008-05-06 糖質定量方法および糖質定量キット

Publications (1)

Publication Number Publication Date
WO2009136432A1 true WO2009136432A1 (ja) 2009-11-12

Family

ID=41264494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058440 WO2009136432A1 (ja) 2008-05-06 2008-05-06 糖質定量方法および糖質定量キット

Country Status (3)

Country Link
US (1) US8367365B2 (ja)
JP (1) JP5532256B2 (ja)
WO (1) WO2009136432A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690130A1 (en) * 1994-06-27 1996-01-03 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Saccharide composition with reduced reducibility, and preparation and uses thereof
JPH10150934A (ja) * 1996-11-20 1998-06-09 Matsutani Chem Ind Ltd 還元難消化性水飴およびこれを用いた食品
WO2006035725A1 (ja) * 2004-09-27 2006-04-06 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo イソサイクロマルトオリゴ糖及びイソサイクロマルトオリゴ糖生成酵素とそれらの製造方法並びに用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249514A (en) * 1963-11-18 1966-05-03 Bode Harold Eli Production and use of amyloglucosidase
GB1446965A (en) * 1974-02-14 1976-08-18 Agricultural Vegetable Prod Preparation of food products
JP3183500B2 (ja) 1989-04-10 2001-07-09 日本化薬株式会社 糖アルコールの定量方法
JP4070250B2 (ja) * 1994-06-27 2008-04-02 株式会社林原生物化学研究所 還元性を低減させた糖質とその製造方法並びに用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690130A1 (en) * 1994-06-27 1996-01-03 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Saccharide composition with reduced reducibility, and preparation and uses thereof
JPH10150934A (ja) * 1996-11-20 1998-06-09 Matsutani Chem Ind Ltd 還元難消化性水飴およびこれを用いた食品
WO2006035725A1 (ja) * 2004-09-27 2006-04-06 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo イソサイクロマルトオリゴ糖及びイソサイクロマルトオリゴ糖生成酵素とそれらの製造方法並びに用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MCCLEARY, BV. ET AL.: "An integrated procedure for the measurement of total dietary fibre (including resistant starch), non-digestible oligosaccharides and available carbohydrates.", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 389, no. 1, 2007, pages 291 - 308, XP019537567, DOI: doi:10.1007/s00216-007-1389-6 *
OSAMU CHONAN ET AL.: "Galacto-oligosaccharide no Nanshokasei no Kento", JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY, vol. 51, no. 1, 2004, pages 28 - 33 *

Also Published As

Publication number Publication date
US8367365B2 (en) 2013-02-05
JPWO2009136432A1 (ja) 2011-09-01
JP5532256B2 (ja) 2014-06-25
US20110059474A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
Kostopoulos et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro
Ugidos-Rodríguez et al. Lactose malabsorption and intolerance: a review
Qin et al. RS5 produced more butyric acid through regulating the microbial community of human gut microbiota
Karppinen et al. In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria
Engfer et al. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract
Gnoth et al. Human milk oligosaccharides are minimally digested in vitro
Guan et al. Cell wall integrity of pulse modulates the in vitro fecal fermentation rate and microbiota composition
Hu et al. In vitro effects of a novel polysaccharide from the seeds of Plantago asiatica L. on intestinal function
Catenza et al. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review
Rodriguez-Colinas et al. Analysis of fermentation selectivity of purified galacto-oligosaccharides by in vitro human faecal fermentation
JPH11209403A (ja) 難消化性デキストリンを含有する酒類
Oku et al. D-sorbose inhibits disaccharidase activity and demonstrates suppressive action on postprandial blood levels of glucose and insulin in the rat
JP2008521906A (ja) 自閉症の治療用の組成物及び方法
BRPI0709667A2 (pt) Composições de b-glicano,glicosamina e n-acetilglicosanina solúveis em água e métodos para a sua produção
Tanabe et al. Inaccuracy of AOAC method 2009.01 with amyloglucosidase for measuring non-digestible oligosaccharides and proposal for an improvement of the method
Ebihara et al. Hydroxypropyl-modified potato starch increases fecal bile acid excretion in rats
Broekaert et al. An ESPGHAN position paper on the use of breath testing in paediatric gastroenterology
Stewart et al. Assessment of dietary fiber fermentation: Effect of Lactobacillus reuteri and reproducibility of short‐chain fatty acid concentrations
Daud et al. Characterization of edible swiftlet’s nest as a prebiotic ingredient using a simulated colon model
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) et al. Re‐evaluation of gellan gum (E 418) as food additive
JP2639726B2 (ja) 水溶性食物繊維およびその製造法
Oku et al. Polydextrose as dietary fiber hydrolysis by digestive enzyme and its effect on gastrointestinal transit time in rats
Han et al. In vitro fermentation potential of the residue of Korean red ginseng root in a mixed culture of swine faecal bacteria
JP5532256B2 (ja) 糖質定量方法および糖質定量キット
Ruemmele et al. Metabolism of glycosyl ureides by human intestinal brush border enzymes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12991606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08752345

Country of ref document: EP

Kind code of ref document: A1