WO2009133716A1 - ダイオードおよびそれを備えた光センサ回路並びに表示装置 - Google Patents

ダイオードおよびそれを備えた光センサ回路並びに表示装置 Download PDF

Info

Publication number
WO2009133716A1
WO2009133716A1 PCT/JP2009/050371 JP2009050371W WO2009133716A1 WO 2009133716 A1 WO2009133716 A1 WO 2009133716A1 JP 2009050371 W JP2009050371 W JP 2009050371W WO 2009133716 A1 WO2009133716 A1 WO 2009133716A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
photodiode
semiconductor region
diodes
channel
Prior art date
Application number
PCT/JP2009/050371
Other languages
English (en)
French (fr)
Inventor
耕平 田中
クリス ブラウン
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN200980103935XA priority Critical patent/CN101933165A/zh
Priority to US12/867,151 priority patent/US8294079B2/en
Publication of WO2009133716A1 publication Critical patent/WO2009133716A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J1/46Electric circuits using a capacitor

Definitions

  • the present invention basically relates to a diode structure, and more particularly to a diode structure that can eliminate individual differences in characteristics, a photosensor circuit including the diode, and a display device including the photosensor circuit. Is.
  • a plurality of photosensors are arranged at regular intervals in a display device having a photosensor in a frame region around the display screen or a display panel having a plurality of pixels, and the photosensors are assigned to corresponding pixels.
  • a display device provided inside has been developed. By utilizing the light amount detection function of the optical sensor, these display devices may have various functions such as a backlight dimming function, a touch panel function, an OCR function for character recognition, or a security function such as fingerprint authentication. it can.
  • a PIN photodiode is used as an optical sensor included in the display device as described above.
  • the structure of the PIN photodiode includes a vertical structure in which a P layer, an I layer, and an N layer are stacked in this order on a substrate, and a horizontal type in which the P layer, the I layer, and the N layer are arranged in the in-plane direction on the substrate ( Lateral) structure.
  • the P layer is a semiconductor layer having a high P-type impurity concentration
  • the I layer is an intrinsic semiconductor layer or a semiconductor layer having a low impurity concentration
  • the N layer is a semiconductor layer having a high N-type impurity concentration.
  • the lateral structure is a structure in which the P layer, the I layer, and the N layer do not overlap each other, and as a result, the parasitic capacitance between the layers is reduced, resulting in a sensing speed that is faster than the vertical structure.
  • the lateral structure has an advantage that it can be manufactured by using the same process as a TFT having a configuration such as PNP, PIP, NPN, or NIN.
  • FIG. 17 shows an optical sensor formed by a lateral structure PIN photodiode (see Patent Document 1 below).
  • the optical sensor 81 of FIG. 17 includes a P layer 82, an I layer 83, and an N layer 84 formed on the silicon film 85.
  • the P layer 82, the I layer 83, and the N layer 84 are sequentially arranged along the in-plane direction of the silicon film 85.
  • the silicon film 85 is formed on a glass substrate 90 that serves as a base of the active matrix substrate.
  • the electrode pattern 88 is connected to the P layer 82 via the contact plug 86, and the electrode pattern 89 is connected to the N layer 84 via the contact plug 87.
  • a mask having a pattern for forming the P layer 82 is applied to the silicon film 85, for example, and ion implantation of P-type impurities such as boron is performed, while the N layer 84 is formed. Then, another mask having a pattern for forming n is applied, and ion implantation of N-type impurities such as phosphorus and arsenic is performed.
  • the length W of the long side where the I layer 83 is in contact with the P layer 82 and the N layer 84 is better.
  • the relationship shown in FIG. 18 is established between the short side length L of the I layer 83 (hereinafter referred to as the channel length L) and the current magnitude I.
  • the first problem that it is difficult to manufacture a PIN photodiode having stable characteristics, and the channel width W must be increased in order to increase the light receiving sensitivity. Therefore, there arises a second problem that the occupied area becomes large when the PIN photodiode is formed on the substrate.
  • the first problem is that by providing such an optical sensor 81, the various functions given to the display device vary from device to device.
  • the second problem is that in the case of a display device in which such a photosensor 81 is incorporated in a pixel, the area occupied by the photosensor 81 in the pixel is increased, and thus a high-definition display device with a high pixel density is manufactured. This makes it difficult, or causes the optical sensor 81 to lower the aperture ratio of the pixel. This causes a negative effect such that the display screen becomes a dark display device instead of having the various functions.
  • the channel length L of the I layer 83 is L ⁇ L.
  • the design current I0 with respect to the design value L0 cannot be obtained, corresponding to L0 ⁇ L.
  • a reduced current I0- ⁇ I is obtained. That is, the variation in the channel length L causes a variation in the detection value based on the current generated by the optical sensor 81.
  • the design current I0 is not only decreased, but may increase.
  • the increase occurs, for example, when the mask at the time of forming the N layer 84 is shifted in the opposite direction to the above example and the channel length L becomes larger than the design value L0.
  • the shift of the mask for forming the P layer also causes variations in the channel length L independently of the shift of the mask for forming the N layer.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to stabilize characteristics in a diode having a lateral structure in which an intrinsic semiconductor region is sandwiched between impurity semiconductor regions, and in a substrate.
  • An object of the present invention is to provide a display device that can be stabilized.
  • the diode according to the present invention (1) a first semiconductor region having a relatively high impurity concentration and exhibiting a first polarity; a channel region which is a semiconductor region having a relatively low impurity concentration; A diode that is in contact with each other and is arranged in order along a specific direction included in the plane of the substrate is defined as a reference diode, and a channel width of the reference diode is defined as a reference diode.
  • the channel length is a length of a channel region formed between the first semiconductor region and the second semiconductor region in a direction parallel to the specific direction included in the plane of the substrate, In other words, it is the length from the boundary between the first semiconductor region and the channel region to the boundary between the channel region and the second semiconductor region.
  • the channel width is the line length at the boundary between the first semiconductor region and the channel region, and is also the line length at the boundary between the channel region and the second semiconductor region.
  • the magnitude of the photocurrent of the photodiode has a maximum value with respect to the channel length, and the photocurrent increases in the range of the channel length from 0 to the maximum value. It shows a change that current decreases.
  • the IV characteristic representing the relationship between the diode current and the voltage applied to the diode changes linearly with respect to the range that is linearly changing with respect to the channel length or the range that can be regarded as linearly changing. It cannot be regarded as being, but has a non-linearly changing range.
  • the diode of the present invention has a channel width W1 smaller than the channel width W and substantially equal to each other without changing the size of each semiconductor region in the direction parallel to the channel length of the reference diode.
  • the diode of the present invention has a range that the channel width W1 and the channel length can take.
  • the electrical connection is appropriately selected from a parallel connection, a series connection, and a combination of these two connections.
  • the layout on the substrate related to the arrangement of the even number of diodes configured as described above is devised as follows. That is, the arrangement directions of the respective semiconductor regions constituting the plurality of diodes are all parallel to the specific direction, and the mutual positional relationship of the respective semiconductor regions is a line-symmetrical or point-symmetrical position as a whole. It is arranged on the substrate so as to be related.
  • the specific direction is equal to the direction parallel to the channel length.
  • the channel length of a diode in which a mask used when forming the first semiconductor region by ion implantation of impurities is located on one side of a line-symmetrical or point-symmetrical positional relationship, for example.
  • the mask is also shifted in the same first direction for the diode (referred to as diode ⁇ ) located on the other side of the line-symmetrical or point-symmetrical positional relationship.
  • the first direction is, for example, a direction from the first semiconductor region to the channel region for the diode ⁇ , and is in a line symmetric or point symmetric positional relationship for the diode ⁇ .
  • the direction is toward the first semiconductor region.
  • the mask for forming the first semiconductor region is shifted in the direction from the channel region toward the first semiconductor region, so that the channel length is increased.
  • the length of the channel length of the diode ⁇ is equal to the length of the diode ⁇ of which the channel length is shortened.
  • the shortening of the channel length in the diode ⁇ is offset by the extension of the channel length in the diode ⁇ .
  • the channel obtained by averaging the shortened channel length of the diode ⁇ and the elongated channel length of the diode ⁇ The length is equal to the channel length of the reference diode.
  • the IV of the diode depends on the degree of mask displacement. Although another problem of characteristic variation occurs, the present invention is not so, and two conflicting characteristic changes cancel each other out. As already described, this is ensured by the condition that “the plurality of diodes are electrically connected to each other, thereby performing the same function as the reference diode”.
  • the channel width W1 of each diode is smaller than the channel width W of the reference diode, the region occupied by the diode on the substrate can be narrowed in a direction parallel to the channel width.
  • the channel length of each channel region of the N diodes is such that the IV characteristic representing the relationship between the diode current and the voltage applied to the diode is linear with respect to the change in channel length. It is selected from a range that can be considered to change.
  • the IV characteristics of the diode that can be considered to change linearly cancel each other out between the diode ⁇ and the diode ⁇ .
  • the above configuration provides a design guideline for the channel length for the diode of the present invention to perform the same function as the reference diode.
  • the channel width W1 can be regarded as a linear change of the IV characteristics of the diode with respect to the change of the channel width. Then, for example, when the channel width W1 is W / N, the IV characteristics of the N diodes constituting the diode of the present invention are linear relations between the channel width W1 and the IV characteristics of the diode. 1 / N of the IV characteristic of the reference diode.
  • each channel width W1 may be set to W / N.
  • N diodes having the channel width W1 of W / N can be connected in parallel to each other.
  • the channel width W1 is selected from a range in which the IV characteristics of the diode can be considered to change linearly with respect to the change in channel width.
  • N 2
  • the diode of the present invention performs the same function as the reference diode.
  • the channel width W1 is selected from a range in which the IV characteristics of the diode can be considered to change linearly with respect to the change in the channel width, and N diodes are electrically connected in parallel, the channel width W1 And N are inversely related.
  • the diode according to the present invention includes a first set in which N / 2 diodes are electrically connected in series, and a second set in which N / 2 diodes are electrically connected in series.
  • the second set and the second set may be electrically connected in parallel so that the channel width W1 is W / 2.
  • the channel width W1 is selected from a range in which the IV characteristics of the diode can be considered to change linearly with respect to the change in channel width.
  • the voltage applied to one diode is the voltage applied to the entire N / 2 diodes.
  • the value obtained by multiplying the number connected in series, that is, the reciprocal of N / 2 is reduced to 2 / N. Therefore, based on the linear relationship between the IV characteristics of the diodes and the channel width, the IV characteristics when N / 2 diodes are electrically connected in series constitute N / 2 diodes. This is the same as the IV characteristic of one diode.
  • the channel width W1 is set to W / 2.
  • the above configuration has two diodes connected in parallel with the channel width W1 set to W / 2. However, this is the same as when the IV characteristics of the reference diode are the same.
  • the N is a diode including a configuration of 2, in other words, is configured by at least two diodes, and the two diodes are used as a first diode and a second diode.
  • the first diode and the second diode are formed in one Si island, and the first semiconductor region or the second semiconductor region is the first diode and the second diode. May be shared.
  • the first semiconductor region is shared by the first diode and the second diode. Then, if the respective second semiconductor regions are electrically connected, the first diode and the second diode are connected in parallel, and the IV characteristics of the diode are affected by changes in channel length and channel width. On the other hand, by appropriately selecting the channel length and the channel width from each range that can be considered to change linearly, a diode that performs the same function as the reference diode can be obtained.
  • the arrangement directions of the semiconductor regions constituting the plurality of diodes are all parallel to the specific direction, and the mutual positional relationship of the semiconductor regions is generally line-symmetric or point-symmetric.
  • the first diode in the first diode, the second semiconductor region, the channel region, and the first semiconductor region are arranged along the specific direction.
  • the second diode has a configuration in which the shared first semiconductor region, channel region, and second semiconductor region are arranged in this order along the specific direction. .
  • the first diode and the second semiconductor region are formed in a single Si island. Two diodes can be built. It is therefore advantageous to reduce the area of the diode that occupies on the substrate.
  • the diode includes a configuration in which N is 4, in other words, is configured by at least four diodes.
  • the four diodes are arranged in the order in which the four diodes are arranged in the specific direction.
  • a third diode and a fourth diode, and the first semiconductor region is shared by the second diode and the third diode
  • the second diode and the fourth diode are structurally equivalent, and the fourth diode is arranged in series with the third diode along the specific direction.
  • the first diode and the third diode are structurally equivalent, and the first diode is arranged in series with the second diode along the specific direction.
  • the first diode and the second diode share the second semiconductor region
  • the third diode and the fourth diode also share the second semiconductor region
  • the first semiconductor regions are electrically connected to each other
  • the second semiconductor regions are also electrically connected to each other. It may be a form.
  • the first to fourth diodes share either the first semiconductor region or the second semiconductor region with adjacent diodes. is doing. Therefore, four diodes can be built in a single Si island. It is therefore advantageous to reduce the area of the diode that occupies on the substrate.
  • the arrangement order of the semiconductor regions (first and second semiconductor regions and channel region) in the second diode and the fourth diode is the same.
  • the arrangement order of the semiconductor regions in the first diode and the third diode is the same.
  • the arrangement of the semiconductor regions in the second diode and the third diode is reverse, that is, symmetrical, and the arrangement of the semiconductor regions in the first diode and the fourth diode. Is also in reverse order, ie symmetric.
  • the configuration described above is as follows: “The arrangement directions of the semiconductor regions constituting the plurality of diodes are all parallel to the specific direction, and the positional relationship between the semiconductor regions is linear as a whole. The above-mentioned condition of “arranged on the substrate so as to have a symmetrical or point-symmetrical positional relationship” is satisfied.
  • the configurations of (6) and (7) above mean that the first to fourth diodes are electrically connected in parallel. Therefore, as already described, by appropriately selecting the channel length and channel width from each range in which the IV characteristics of the diode can be considered to change linearly with changes in the channel length and channel width, the same function as the reference diode is achieved. A diode is obtained.
  • the optical sensor circuit according to the present invention is characterized in that any one of the above-described diodes is used as a photodiode.
  • the arrangement of the semiconductor regions on the substrate is arranged in line symmetry or point symmetry, and functions in the same manner as the reference diode. Therefore, an optical sensor circuit using the diode as a photodiode can have a stable light receiving characteristic that is not affected by the displacement of the mask in the manufacturing process.
  • the photosensor circuit according to the present invention may employ a layout in which the channel width is reduced with respect to the layout on the substrate. it can.
  • the photosensor circuit when the photosensor circuit is incorporated in a pixel of a liquid crystal display device, a plurality of diodes can be dispersed in different pixels one by one, and with respect to the vertical width of the pixel.
  • the ratio occupied by the channel width may be smaller than the ratio occupied by the channel width of the reference diode.
  • a display device is characterized in that the photosensor circuit according to claim 9 is incorporated in at least one of a plurality of pixels constituting a display screen.
  • the light receiving characteristics of the optical sensor circuit are stable without variation depending on the display device, so that the backlight dimming function using the function of the optical sensor, the touch panel function, etc. are stable.
  • a display device can be provided.
  • the display device includes one photosensor circuit for each of a predetermined number of adjacent pixels among the plurality of pixels, and the diode constituting one of the photosensor circuits. And other elements are distributed and arranged in the predetermined number of pixels.
  • the predetermined number is an integer of 2 or more. Accordingly, it is possible to provide a display device in which various functions such as a backlight dimming function using a function of an optical sensor, a touch panel function, an OCR function for character recognition, or a security function such as fingerprint authentication are stable.
  • a display device can be provided.
  • a combination of a configuration described in a certain claim and a configuration described in another claim is limited to a combination of the configuration described in the claim cited in the claim.
  • combinations with configurations described in the claims not cited in the focused claims are possible.
  • FIG. 2 is a circuit diagram showing a configuration of an optical sensor circuit provided, and an explanatory diagram showing a problem that a channel region decreases.
  • It is a schematic block diagram which shows the structure of the display apparatus which concerns on this invention.
  • It is a circuit diagram which shows the structure of the circuit for a display which comprises the pixel circuit provided in 1 pixel of the said display apparatus, and an optical sensor circuit. It is a timing chart which shows operation
  • FIG. 9 is a schematic plan view showing an example of a layout of an optical sensor circuit in which the photodiode of FIG. 8A is built in one pixel.
  • FIG. 9 is a schematic plan view showing an example of a layout of an optical sensor circuit in which the photodiode of FIG. 8B is built in one pixel.
  • It is a circuit diagram which shows the example of the optical sensor circuit using N photodiodes connected in parallel.
  • It is explanatory drawing which shows the example which comprised the group which formed two photodiodes in one Si island, and comprised two or more sets in parallel.
  • FIG. 9 is a schematic plan view showing an example of a layout of an optical sensor circuit in which the photodiode of FIG. 8A is built in one pixel.
  • FIG. 9 is a schematic plan view showing an example of a layout of an optical sensor circuit in which the photodiode of FIG. 8B is built in one pixel.
  • It is a circuit diagram which shows the example of the optical sensor
  • FIG. 4 is a circuit diagram showing an example in which two sets of a plurality of photodiodes connected in series are connected in parallel to form a photodiode and applied to an optical sensor circuit. It is explanatory drawing which shows the example which lays out four photodiodes linearly in one Si island, and comprises a photodiode by connecting in parallel.
  • FIG. 16 is a circuit diagram illustrating a configuration of an optical sensor circuit using the photodiode of FIG. 15. It is a typical top view which shows an example of the layout of the circuit for a display which comprises the pixel circuit provided in 1 pixel of the conventional display apparatus, and an optical sensor circuit. It is a graph which shows the characteristic curve showing the relationship between the photoelectric current which a photodiode receives and generate
  • FIG. 1 (a) and 1 (b) are examples of an optical sensor circuit having the same function.
  • FIG. 1 (a) is an optical sensor circuit using the diode of the present invention, and
  • FIG. ) Shows an optical sensor circuit using a conventional diode.
  • (Reference diode) 1B has a relatively high impurity concentration, and a P (first polarity) type semiconductor region 5a (first semiconductor region) and an intrinsic semiconductor region (relative impurity concentration).
  • a channel region 5b which is a low semiconductor region, and an N (opposite polarity with respect to the first polarity) type semiconductor region 5c (second semiconductor region) having a relatively high impurity concentration are in contact with each other and the substrate It is the structure arranged in order along the specific direction contained in the surface.
  • the photodiode 5 functions in the same manner as the combination of the photodiodes 1 and 2 in FIG. 1A (the diode of the present invention), and serves as a reference channel width for the photodiodes 1 and 2. W and channel length L. Therefore, the photodiode 5 in FIG. 1B is hereinafter referred to as a reference diode 5.
  • the specific direction is a direction in which one impurity semiconductor region, a channel region, and the other impurity semiconductor region constituting the diode are arranged.
  • the diode of the present invention includes N diodes that are even numbers of 2 or more, and one impurity semiconductor region, a channel region, and the other impurity semiconductor region that constitute each diode are included. All the arrangement directions are aligned in parallel with the specific direction.
  • the specific direction is, for example, parallel to the row direction, orthogonal to the column direction, and parallel to the row direction, which will be described later. It is parallel to the reset signal line 8 or row selection signal line 9 and is orthogonal to the power supply line 6 or output signal line 7 parallel to the column direction.
  • the specific direction may be determined in any direction on the substrate as long as the layout relationship with other wirings or elements is not considered.
  • the reference diode 5 generates a photocurrent having an intensity proportional to the channel width W (corresponding to the reference channel width W) and the channel length L when the received light intensity is the same. That is, the light receiving characteristics of the reference diode 5 (IV characteristics representing the relationship between the diode current and the voltage applied to the diode) and the channel width W and the channel length L have a linear relationship. Or, in other words, the channel width W and the channel length L are selected from each range showing a linear change or a change that can be regarded as linear with respect to the IV characteristic.
  • the channel length L of the reference diode 5 is set to L0 in FIG. 18, the channel length L0 is included in a range in which the photocurrent and the channel length can be regarded as linearly changing.
  • the channel length Lp is clearly not included in the range in which the photocurrent and the channel length can be considered to change linearly.
  • the channel length L may be selected from a range of 0 ⁇ L ⁇ Lp or may be selected from a range of Lp ⁇ L.
  • the photocurrent increases when the channel length L decreases, and when the channel length L increases, the photocurrent increases when the channel length L is selected from the former range. Decrease.
  • the photosensor circuit of FIG. 1A includes two photodiodes 1 and photodiodes 2.
  • a P-type semiconductor region 1a, a channel region 1b that is an intrinsic semiconductor region, and an N-type semiconductor region 1c are in contact with each other and are arranged in order along the specific direction.
  • the N-type semiconductor region 2 a, the channel region 2 b that is an intrinsic semiconductor region, and the P-type semiconductor region 2 c are in contact with each other and are sequentially arranged along the specific direction. Yes.
  • each of the regions 1a, 1b, 1c, 2a, 2b, 2c in the direction parallel to the specific direction is equal to the size of the corresponding region 5a, 5b, 5c of the reference diode 5 in the direction parallel to the specific direction. It is the same.
  • the channel width of the photodiode 1 and the photodiode 2 satisfies the condition that the channel width W of the reference diode 5 is smaller than the channel width W. More specifically, the channel widths of the photodiode 1 and the photodiode 2 under the condition that the IV characteristic of the reference diode 5 and the channel width W and the channel length L have a relationship that can be regarded as linear. Are set to W / 2, respectively.
  • the photodiode 1 and the photodiode 2 are configured such that the N-type semiconductor region 1 c and the N-type semiconductor region 2 a having the same polarity are electrically connected, and The P-type semiconductor region 1a and the P-type semiconductor region 2c having the same polarity are electrically connected. That is, the photodiode 1 and the photodiode 2 are electrically connected in parallel.
  • each of the photodiodes 1 and 2 is half the photocurrent (intensity I) generated by the reference diode 5 for the same received light intensity. A photocurrent with an intensity of (I / 2) is generated.
  • the photodiodes 1 and 2 connected in parallel generate a photocurrent having the same intensity as the photocurrent (intensity I) generated by the reference diode 5. That is, the photodiodes 1 and 2 function in the same manner as the reference diode 5.
  • the arrangement directions of the regions 1a, 1b, 1c, 2a, 2b, 2c are all parallel to the specific direction, and the positional relationship between the regions 1a, 1b, 1c, 2a, 2b, 2c Are arranged on the substrate so as to have a line-symmetrical or point-symmetrical positional relationship as a whole.
  • the arrangement of the regions 1a, 1b, and 1c and the arrangement of the regions 2a, 2b, and 2c are line symmetric (mirror symmetry) in the case of FIG.
  • a bias direction (a direction from the P-type semiconductor region 1a toward the N-type semiconductor region 1c) when a forward bias is applied to the photodiode 1
  • a bias when a forward bias is applied to the photodiode 2 The direction (the direction from the P-type semiconductor region 2c toward the N-type semiconductor region 2a) is opposite.
  • the photodiode 1 and the photodiode 2 need only have a layout parallel to the specific direction, and need not be linearly arranged on the same line as shown in FIG. For example, even if the photodiode 1 and the photodiode 2 are arranged on two parallel lines that are parallel to each other in the row direction but are spaced apart from each other, the arrangement relationship is point-symmetric. Is satisfied.
  • the reference diode 5 is always provided. It is possible to stably manufacture a diode having the same IV characteristics.
  • the channel length L of the photodiode 1 is shortened by ⁇ L and becomes La. Even so, in the photodiode 2, the channel length L increases by ⁇ L and becomes Lb. That is, according to the present invention, even if the mask is misaligned, the shortening of the channel length L in the photodiode 1 is offset by the extension of the channel length L in the photodiode 2. That is, the average channel length of the shortened channel length La of the photodiode 1 and the elongated channel length Lb of the photodiode 2 is equal to the original channel length L.
  • the photocurrent increases in the photodiode 2 as much as the photocurrent decreases in the photodiode 1.
  • the magnitude of the photocurrent generated by the photodiodes 1 and 2 is the same as the magnitude of the photocurrent generated by the reference diode 5 regardless of the mask misalignment.
  • the optical sensor circuit using the photodiode having the configuration of the present invention does not have individual differences in IV characteristics (light receiving characteristics), and can uniformly have desired IV characteristics.
  • the display device incorporates a photosensor circuit using photodiodes having a symmetrical layout as described above.
  • the display device 10 includes a transparent substrate 12 on which all the circuit elements constituting various drivers and pixels are integrated.
  • the material of the transparent substrate 12 is, for example, glass.
  • “Monolithically formed” means that a device is formed directly on a glass substrate by a physical process and / or a chemical process, and does not include mounting a semiconductor circuit on the glass substrate. is there.
  • the display device 10 includes an active matrix region 13, a source driver 14, a gate driver 15, a sensor row driver 16, and a sensor reading driver 17.
  • source signal lines and scanning signal lines are formed in a matrix, and there are known elements constituting the pixel, such as a switching element and a pixel electrode for driving the pixel, corresponding to the intersection position of the two lines. Is formed. Further, an optical sensor circuit is provided in each pixel.
  • the source driver 14 supplies a display signal via a source signal line
  • the gate driver 15 supplies a pixel selection signal to each pixel via a scanning signal line.
  • the sensor row driver 16 selects and drives the photosensor circuit for each row, and the sensor reading driver 17 applies a power supply voltage VDD having a constant potential to the photosensor circuit and reads a photodetection signal from the photosensor circuit.
  • FIG. 3 shows a circuit configuration of the pixel circuit 18 provided in one of the pixels constituting the active matrix region 13.
  • the pixel circuit 18 includes a display circuit 18a and a photosensor circuit 18b. Note that the display circuit 18a is provided for each pixel, whereas the photosensor circuit 18b is not necessarily provided for all pixels, and the necessary pixels (in accordance with the resolution required for light detection). For example, it may be provided for every predetermined number of pixels).
  • the display circuit 18 a is formed at or near each intersection of the source signal line 21 and the gate signal line 22 arranged in rows and columns (column direction and row direction), and includes a thin film transistor (hereinafter referred to as TFT) 23,
  • TFT thin film transistor
  • the liquid crystal capacitor 25 is configured between the pixel electrode connected to one end and the common electrode 24 facing the pixel electrode, and the auxiliary capacitor 27 is connected between the common signal line 26.
  • the optical sensor circuit 18b is configured as a 1T (abbreviation of transistor) type circuit using only one transistor.
  • TFT: M1 (corresponding to TFT3 shown in FIG. 1) functions as a source follower transistor (voltage follower transistor).
  • the drain of the TFT M1 is connected to the power supply line 28 (corresponding to the power supply line 6 shown in FIG. 1), and the source is connected to the output signal line 29 (corresponding to the output signal line 7 shown in FIG. 1). Yes.
  • the power supply line 28 and the output signal line 29 are connected to the sensor reading driver 17, and the power supply voltage VDD is applied to the power supply line 28 from the sensor reading driver 17.
  • the gate of the TFT M1 is connected to the cathode (third electrode) of the photodiodes 1 and 2 equivalent to the reference diode 5 (hereinafter, the photodiodes 1 and 2 are collectively referred to as the photodiode 30).
  • One end (second electrode) of an integration capacitor 31 (corresponding to the integration capacitor 4 in FIG. 1) connected in series with the photodiode 30 is connected.
  • the anode (fourth electrode) of the photodiode 30 is connected to a reset signal line (initialization signal input line) 32 to which a reset signal RST is sent from the sensor row driver 16, and the other end (first electrode) of the integration capacitor 31. ) Is connected to a row selection signal line (selection signal input line) 33 to which a row selection signal RWS is sent.
  • the row selection signal RWS has a role of selecting a specific row of the photosensor circuits arranged in a matrix and outputting a detection signal from the photosensor circuit in the specific row.
  • the silicon film for forming the photodiode 30 is formed at the same time as the silicon film for forming an active element such as TFT: M1 is formed on the transparent substrate 12.
  • Each of the regions 1a, 1b, 1c, 2a, 2b, and 2c includes P that constitutes the active element and circuit elements included in the source driver 14, the gate driver 15, the sensor row driver 16, and the sensor reading driver 17. It is formed using a step of forming a type or N type semiconductor region (ion implantation step).
  • the N-type semiconductor region 1c and the N-type semiconductor region 2a can be formed by an N-type semiconductor region forming process (ion implantation process) of an active element.
  • the N-type semiconductor region of the active element is formed by multiple ion implantations having different implantation conditions from those of the N-type semiconductor regions 1c and 2a, the N-type semiconductor region is selected from the multiple ion implantation steps. The optimum ion implantation process for the formation of 1c and 2a is selected.
  • the channel regions 1b and 2b are formed so as to be electrically more neutral than the adjacent impurity semiconductor regions.
  • the above-described mask is provided in the formation region of the channel regions 1b and 2b, or the formed silicon film is electrically
  • the channel regions 1b and 2b can be formed by performing ion implantation also in the formation regions of the channel regions 1b and 2b.
  • the silicon film can be formed of an amorphous silicon film, a polysilicon film, a continuous grain boundary crystal silicon (CGS) film, or the like.
  • the silicon film is preferably formed of a polysilicon film or a CGS film, and particularly preferably formed of a CGS film having the highest electron mobility.
  • a high level reset signal RST is sent from the sensor row driver 16 to the reset signal line 32 in order to reset the gate potential VINT of the TFT: M1.
  • the forward bias is applied to the photodiode 30 during the reset period (t1 to t2), so that the integration capacitor 31 is charged, the gate potential VINT gradually rises, and finally reaches the initialization potential (V DDR ). To do.
  • the gate potential VINT is obtained by subtracting the forward voltage drop (V F ) in the photodiode 30 and the voltage drop ( ⁇ V RST ) caused by the parasitic capacitance of the photodiode 30 from the initialization potential (V DDR ). Value.
  • the light detection result reading period that is, the detection signal reading period (t3 to t4) is entered, and then the high-level row is connected to the other end of the integration capacitor 31 from the sensor row driver 16 via the row selection signal line 33.
  • a selection signal RWS is applied.
  • the gate potential VINT is pushed up through the integration capacitor 31, so that the gate potential VINT is set to a potential obtained by adding the high level potential of the row selection signal RWS to the detection potential (for example, the potential V1 shown in FIG. 4). Become.
  • the potential V1 shown in FIG. 4 corresponds to the bright state when the photodiode 30 receives strong light and the gate potential VINT falls to the lowest level at t3.
  • the threshold voltage for turning on the TFT: M1 is exceeded, so that the TFT: M1 is turned on.
  • a voltage controlled at an amplification factor according to the level of the gate potential VINT that is, according to the light intensity, is detected as a detection signal (for example, VPIX in the bright state shown in FIG. 4) from the source of the TFT: M1.
  • the signal is output and sent to the sensor reading driver 17 via the output signal line 29.
  • the gate potential VINT is pushed up through the integration capacitor 31, so that the gate potential VINT is set to the initialization potential to the high level of the row selection signal RWS. Is substantially equal to the added potential (for example, the potential V2 shown in FIG. 4).
  • the detection signal for example, the dark state VPIX shown in FIG. 4
  • the TFT M1 shows the maximum level.
  • a detection signal having a level corresponding to the intensity of light received by the photodiode 30 is generated, and the detection signal is generated in each pixel in which the photosensor circuit 18b is built. Therefore, by using the light of the backlight that the display device 10 shown in FIG. 2 has as a light source for display, the coordinates on the display screen can be read with respect to the detection target arranged close to the display screen of the display device 10. Detection operations such as character reading or fingerprint reading can be performed.
  • the optical sensor circuit 18b is configured by an extremely small number of elements as compared with a conventional CMOS photosensor circuit described later with reference to FIG. For this reason, since the area occupied by the photosensor circuit 18b in the pixel is small, the 1T photosensor circuit 18b is very advantageous in increasing the aperture ratio of the pixel. Further, if the number of elements is small, the self-parasitic capacitance of the optical sensor circuit 18b is reduced, so that the response speed of the detection operation is increased, and the problem that the dynamic range is reduced by pulling in the parasitic capacitance can be improved. it can.
  • the light detection accuracy varies from display device to display device. There is no problem, and any display device can obtain a desired detection characteristic and can provide an excellent display device that performs bright display.
  • FIG. 6 is an enlarged plan view schematically showing the vicinity of the optical sensor circuit 18b in one pixel composed of red, green, blue (RGB) three-color sub-pixels 35R, 35G, and 35B.
  • RGB red, green, blue
  • the sub-pixels 35R, 35G, and 35B are each provided with the display circuit 18a.
  • the source signal line 21 extends in the column direction between the sub-pixels 35R, 35G, and 35B adjacent to each other in the row direction, and supplies display signals of the respective colors to the TFTs 23 (FIG. 3) that are components of the respective display circuits 18a. To do.
  • the source signal line 21 provided between the sub-pixels 35R and 35G also serves as the power supply line 28, and the source signal line 21 provided between the sub-pixels 35G and 35B35G is It also serves as the output signal line 29.
  • the optical sensor circuit 18b is provided by using one end side region in the column direction of the sub-pixels 35R, 35G, and 35B.
  • the one end side region is partitioned by the reset signal line 32 and the row selection signal line 33 orthogonal to the source signal line 21. Note that the reset signal line 32 and the row selection signal line 33 are provided at regular intervals in the column direction.
  • the TFT: M1 that is a component of the optical sensor circuit 18b is provided in the one end side region of the subpixel 35G, and the photodiodes 1 and 2 as the photodiode 30 are respectively subpixels 35R. And the one end side region of the sub-pixel 35B.
  • a line 36a for connecting the gate of the TFT M1 and the cathode (N layer) of the photodiode 1 is provided, for example, below the source signal line 21 between the sub-pixels 35R and 35G.
  • An extending portion 37a that is a part of the selection signal line 33 extends.
  • An integration capacitor 31a which is a part of the integration capacitor 31 is formed by the overlap of the line 36a and the extending portion 37a.
  • a line 36b that connects the gate of the TFT M1 and the cathode (N layer) of the photodiode 2 is provided, for example, below the source signal line 21 between the sub-pixels 35G and 35B.
  • An extending portion 37 b that is a part of the row selection signal line 33 extends.
  • An integration capacitor 31b which is a part of the integration capacitor 31 is formed by the overlap of the line 36b and the extending portion 37b.
  • the lines 36a and 36b can be formed of Si, for example.
  • the drain of the TFT: M1 is connected to the source signal line 21 also serving as the power supply line 28 via the contact portion 38a, and the source of the TFT: M1 is connected to the source signal line 21 also serving as the output signal line 29 and the contact portion 38b. Connected through. Further, the anode (P layer) of the photodiode 1 is connected to the reset signal line 32 via the contact portion 38c, and the anode (P layer) of the photodiode 2 is also connected to the reset signal line 32 via the contact portion 38d. It is connected.
  • the photosensor circuit 18b is composed of very few components compared to the conventional CMOS photosensor circuit shown in FIG. 7A, which contributes to an improvement in the aperture ratio. It can be seen that bright display is possible.
  • Photosensor elements such as thin-film photodiodes made of low-temperature polysilicon (LPS) have relatively high sensitivity to blue light and relatively low sensitivity to red light. ing. Because of this characteristic, placing the photo sensor element on a red pixel has the demerit that the dynamic range is narrowed due to poor sensitivity, but it has the merit that the signal quality is improved because the stray light that wraps around the pixel is not read. . On the other hand, placing a photosensor element on a blue pixel has the advantage of widening the dynamic range because of its high sensitivity, but it has the disadvantage of reducing signal quality because it tends to pick up stray light.
  • LPS low-temperature polysilicon
  • the photo sensor elements are arranged in both the red pixel and the blue pixel, by combining the above advantages and disadvantages, the photo sensor has a good balance between the dynamic range and the signal quality. ing.
  • FIG. 7 shows a variation of the optical sensor circuit 18b.
  • the photodiode 62 can be replaced with an even number of photodiodes arranged symmetrically of the present invention.
  • FIG. 7C shows a 1T-type optical sensor circuit having the same configuration as the optical sensor circuit 18b already described with reference to FIGS. That is, the constituent elements of the optical sensor circuit 18b shown in FIG. 3 correspond to the constituent elements of the optical sensor circuit shown in FIG. 7C as follows.
  • FIG. 7A shows a 3T-type conventional CMOS photosensor circuit including three TFTs 64, 65 and 66.
  • a photodiode 62 and an integration capacitor 63 are connected in parallel.
  • the anode of the photodiode 62 and one end of the integration capacitor 63 are grounded, while the cathode of the photodiode 62 and the other end of the integration capacitor 63 are connected to the gate of the TFT 65. And connected to the source of the TFT 64.
  • the gate of the TFT 64 is connected to the reset signal line 32 that supplies the reset signal RST, and the drain is connected to the power supply line 28 that supplies the power supply voltage VDD.
  • the source of the TFT 65 and the output signal line 29 are connected via the drain and source of the TFT 66.
  • the gate of the TFT 66 is connected to the row selection signal line 33 that supplies the row selection signal RWS.
  • the integration capacitor 63 is charged by the power supply voltage VDD and holds the gate potential VINT of the TFT 65 at the initialization potential. At this time, a reverse bias is applied to the photodiode 62.
  • the TFT 66 is turned on, and the voltage corresponding to the gate potential VINT of the TFT 65, that is, the maximum in the dark state where the light receiving intensity is 0. In the bright state where the received light intensity is sufficiently strong, a voltage indicating the minimum value is output from the source of the TFT 65 to the output signal line 29 via the TFT 66.
  • FIG. 7B shows a 2T-type photosensor circuit that uses two transistors, reduces the number of components by one from the 3T-type photosensor circuit, and improves the aperture ratio.
  • the TFT 64 that is on / off controlled by the reset signal RST is omitted from the 3T photosensor circuit, and one electrode (second electrode) of the integration capacitor 63 is connected to the gate of the TFT 65 and the photodiode 62.
  • the other electrode (first electrode) of the integration capacitor 63 is connected to a power supply line for supplying the power supply voltage VDD.
  • the reset signal RST is supplied to the anode (fourth electrode) of the photodiode 62 as in the case of the 1T-type photodiode 62.
  • the 2T photosensor circuit is (1) Two drain-source conductive paths are formed in series between the power supply line 6 that supplies the power supply voltage VDD and the output signal line 7 that outputs a photodetection signal of the photosensor circuit. Connected TFT 65 and TFT 66; (2) the row selection signal line 9 for supplying the row selection signal RWS to the gate of the TFT 66 during the reading period of the light detection signal; (3) It changes between a first voltage that applies a forward bias to the photodiode 62 during the reset period of the photodiode 62 and a second voltage that applies a reverse bias to the photodiode 62 during the light detection period.
  • the reset signal line 8 for supplying the reset signal RST, (4)
  • the cathode of the photodiode 62 is connected to the gate of the TFT 65 and is connected to the power supply line 6 via the integration capacitor 63.
  • a high level reset signal RST equal to the power supply voltage VDD is applied to the anode of the photodiode 62 in order to reset the gate potential VINT of the TFT 65.
  • a forward bias is applied to the photodiode 62 during the reset period.
  • the gate potential VINT is an initialization potential obtained by subtracting the forward voltage drop of the photodiode 62 from the power supply voltage VDD.
  • the cathode potential of the photodiode 62 becomes higher than the anode potential, so that the photodiode 62 is reverse-biased. .
  • a photocurrent due to reverse bias flows to the photodiode 62 in accordance with the intensity of light.
  • the gate potential VINT is a voltage obtained by subtracting the voltage applied to the integration capacitor 31 from the power supply voltage VDD. That is, the gate potential VINT falls according to the light intensity.
  • the detection signal reading period starts, and then the high-level row selection signal RWS is applied to the gate of the TFT 66.
  • the TFT 66 is turned on, so that a voltage controlled with an amplification factor corresponding to the level of the gate potential VINT, that is, the light intensity, is output from the source of the TFT 66 as a detection signal.
  • the 2T photosensor circuit is configured with a smaller number of elements than the 3T photosensor circuit, which is advantageous in increasing the aperture ratio of the pixel.
  • the photodiodes 1 and 2 are formed on separate Si islands. In contrast, in the present embodiment, two photodiodes are formed in one Si island.
  • FIG. 8A shows a photodiode 40 equivalent to the photodiodes 1 and 2 shown in FIG.
  • the N-type semiconductor region 1c and the N-type semiconductor region 2a are separate regions and are electrically connected, whereas in the photodiode 40, the N-type semiconductor region 1c and the N-type semiconductor region 2a are shared by the photodiodes 1 and 2.
  • the positional relationship between the semiconductor regions is a line-symmetrical or point-symmetrical positional relationship as a whole. It can be placed on a substrate and can act the same as a reference diode.
  • the area of the photodiode occupying the substrate can be reduced as compared with the case where the two photodiodes are formed on different Si islands. 35B or either of the sub-pixels 35B), it is advantageous for downsizing the pixel or improving the aperture ratio.
  • FIG. 8B shows a photodiode 41 having a configuration in which two photodiodes share a P-type semiconductor region.
  • the arrangement order of the P-type semiconductor region and the N-type semiconductor region is opposite to each other, but the reset signal RST is supplied to the P-type semiconductor region constituting the anode to constitute the cathode. Since the wiring is made so that the integration capacitor is connected to the N-type semiconductor region, the functions are exactly the same.
  • FIG. 9 shows a circuit diagram in which the photodiodes 1 and 2 shown in FIG.
  • the optical sensor circuit shown in FIG. (1) TFT 3 that forms a drain-source conductive path between the power supply line 6 that supplies the power supply voltage VDD and the output signal line 7 that outputs a photodetection signal of the photosensor circuit; and (2) photodetection.
  • the row selection signal line 9 for supplying the row selection signal RWS for raising the gate potential of the TFT 3 through a capacitor during a signal reading period; (3)
  • the reset signal that changes between a first voltage that applies a forward bias to the photodiode 41 during a reset period of the photodiode 41 and a second voltage that applies a reverse bias to the photodiode 41 during a light detection period.
  • a reset signal line 8 for supplying RST.
  • the configuration shown in FIG. (4) The cathode of the photodiode 41 is connected to the conductive path connecting the row selection signal line 9 and the gate of the TFT 3 via the first capacitor CINT as the capacitor, while the anode is the reset signal line 8.
  • the cathode is connected to the conductive path connecting the row selection signal line 9 and the gate of the TFT 3 via the first photodiode connected to the second capacitor CINT and the second capacitor CINT as the capacitor, while the anode is the reset signal.
  • a second photodiode connected to the line 8.
  • FIG. 10 shows an example of a layout of an optical sensor circuit in which the photodiode 40 is built in one pixel (for example, any one of the sub-pixels 35R, 35G, and 35B).
  • a TFT whose drain is connected to the source signal line 21 which also serves as the power supply line 28 and whose source is connected to the source signal line 21 which also serves as the output signal line 29; the N-type semiconductor region of the photodiode 40 is located at the gate of M1. It is connected.
  • the electrode 42 extends from the N-type semiconductor region of the photodiode 40 to the row selection signal line 33 that runs parallel to the specific direction in which the semiconductor regions of the photodiode 40 are arranged. As a result, the integration capacitor 31 is formed.
  • connection wiring is formed so as to straddle the row selection signal line 33 from the reset signal line 32 running parallel to the row selection signal line 33 to the P-type semiconductor regions at both ends of the photodiode 40.
  • FIG. 11 shows an example of a layout of an optical sensor circuit in which the photodiode 41 is built in one pixel (for example, any one of the sub-pixels 35R, 35G, and 35B).
  • the drain is connected to the source signal line 21 that also serves as the power supply line 28, and the source is connected to the source signal line 21 that also serves as the output signal line 29, as in FIG.
  • a bifurcated electrode 43 extends from the gate and is connected to the N-type semiconductor regions at both ends of the photodiode 41.
  • the electrode 43 extends to the row selection signal line 33 through the N-type semiconductor region, and forms an integration capacitor 31 as a result of forming an overlap with the row selection signal line 33.
  • connection wiring is formed so as to straddle the row selection signal line 33 from the reset signal line 32 to the P-type semiconductor region of the photodiode 40.
  • the photodiode of this embodiment has a configuration in which N photodiodes that are an even number of 4 or more are connected in parallel. That is, the cathodes of the N photodiodes are electrically connected, and the anodes are electrically connected. As in the photosensor circuit shown in FIG. 1A, each cathode is connected to the gate of the TFT 3, and the reset signal RST is input to each anode.
  • each of the N photodiodes The channel length L is the same as that of the diode 5, and the channel width is 1 / N of the channel width W of the reference diode 5, that is, W / N.
  • the N photodiodes having the channel width and the channel length set in this manner are electrically connected in parallel, and thus, the same function as the reference diode 5 is achieved.
  • N photodiodes As shown by a frame B in FIG. 12, two photodiodes form one set, and a plurality of sets (N / 2 sets) of photodiodes are arranged in the vertical direction.
  • the two photodiodes forming one set have bias directions opposite to each other, and the cathodes face each other.
  • the arrangement directions of the semiconductor regions constituting the N photodiodes are all parallel to the specific direction, and the mutual positional relationship of the semiconductor regions is line-symmetric or point-symmetric as a whole. It arrange
  • FIG. 13 shows an example in which two sets in which two photodiodes are formed in one Si island are prepared and the two sets of photodiodes are connected in parallel as shown in FIG.
  • the relationship with the specific direction is exactly the same for the N photodiodes constituting the photodiode shown in FIG. That is, the arrangement directions of the semiconductor regions constituting the N photodiodes are all parallel to the specific direction, and the mutual positional relationship of the semiconductor regions is generally line symmetric or point symmetric. It arrange
  • a first group in which N / 2 photodiodes are electrically connected in series and a second group (frame in which N / 2 photodiodes are electrically connected in series). D), and the first set and the second set are electrically connected in parallel.
  • the cathodes of the photodiodes located at each end of the first set and the second set are connected to conductive paths that connect the row selection signal line 9 and the gate of the TFT 3 via the integration capacitor 4, respectively.
  • the anodes of the photodiodes located at the other ends of the first group and the second group are respectively connected to the reset signal line 8.
  • the channel width is selected from a range in which the IV characteristics of the photodiode can be considered to change linearly with respect to the change in the channel width, all the channel widths of the N photodiodes are W / 2. It is. The reason for this is as follows.
  • the voltage applied to one photodiode is connected in series to the voltage applied to the entire N / 2 photodiodes. It becomes a value obtained by multiplying the number, that is, the inverse of N / 2, and decreases to 2 / N. Therefore, the IV characteristic when N / 2 photodiodes are electrically connected in series is not different from the IV characteristic of one diode constituting the N / 2 photodiodes.
  • the first set and the second set are electrically connected in parallel, and the channel width is set to W / 2. This is the same as when two diodes having a channel width of W / 2 are connected in parallel and have the same IV characteristics as the reference diode.
  • the photodiode shown in FIG. 15 has a configuration advantageous for reducing the area of the photodiode occupying on the substrate by forming four photodiodes in one Si island.
  • the configuration is as follows (1) to (7).
  • the four photodiodes are defined as first, second, third, and fourth photodiodes 51, 52, 53, and 54 in the order in which they are arranged along the specific direction, and, for example, a P-type semiconductor region A (first semiconductor region) 55 is shared by the second photodiode 52 and the third photodiode 53.
  • the second photodiode 52 and the fourth photodiode 54 are structurally equivalent, and the fourth photodiode 54 is arranged along the specific direction with the third photodiode 53. Are connected in series.
  • the first photodiode 51 and the third photodiode 53 are structurally equivalent, and the first photodiode 51 is arranged along the specific direction with the second photodiode 52. Are connected in series.
  • the first photodiode 51 and the second photodiode 52 share an N-type semiconductor region (second semiconductor region) 56.
  • the third photodiode 53 and the fourth photodiode 54 also share another N-type semiconductor region (second semiconductor region) 57.
  • the P-type semiconductor region 55 and the P-type semiconductor regions 58 and 59 of the first and fourth photodiodes 51 and 54 are electrically connected to each other. It is connected to the.
  • the N-type semiconductor regions 56 and 57 are also electrically connected to each other.
  • the reset signal RST is supplied to the P-type semiconductor regions 55, 58 and 59, while the N-type semiconductor region 56, 57 is connected to the gate of the TFT 3 and one electrode of the integration capacitor 4.
  • the arrangement order of the semiconductor regions in the second photodiode 52 and the fourth photodiode 54 is the same, and according to the configuration of (3), the first photodiode
  • the arrangement order of the semiconductor regions in 51 and the third photodiode 53 is the same.
  • the arrangement of the semiconductor regions in the second photodiode 52 and the third photodiode 53 is reverse, that is, symmetrical, and the first photodiode 51 and the fourth photodiode are symmetrical.
  • the semiconductor regions in the diode 54 are also arranged in reverse order, that is, symmetrical.
  • the configuration described above is as follows: “The arrangement directions of the semiconductor regions constituting the plurality of photodiodes are all parallel to the specific direction, and the mutual positional relationship of the semiconductor regions is as a whole. The above-mentioned condition of “arranged on the substrate so as to have a line-symmetrical or point-symmetrical positional relationship” is satisfied.
  • the configurations of (6) and (7) above mean that the first to fourth photodiodes 51 to 54 are electrically connected in parallel. Therefore, when the channel width is selected from a range in which the IV characteristics of the photodiode can be considered to change linearly with respect to the change in channel width, the channel length is set to L and the channel width is set to W. By selecting / 4, a photodiode that functions in the same manner as the reference diode 5 is obtained.
  • FIG. 16 is an example in which four photodiodes are connected in parallel.
  • the N-type semiconductor regions are connected to each other to form a P-type. If the semiconductor regions are connected to each other, the number N is not limited to 4, and can be an even number of 4 or more.
  • the “intrinsic semiconductor region” may be a region that is electrically more neutral than the adjacent semiconductor region having the first polarity and the semiconductor region having the second polarity.
  • the “intrinsic semiconductor region” is preferably a region containing no impurities or a region having the same conduction electron density and hole density.
  • the diode of the present invention can be applied to other types of semiconductor elements such as TFTs.
  • the channel width and the channel length can be appropriately selected between the selected channel width and channel length and characteristics, as in the diode of the present invention.
  • the element is such that a linear relationship or a relationship that can be regarded as a linear relationship is established.
  • Such a semiconductor element can be specified as follows.
  • These semiconductors include at least a first semiconductor region having a relatively high impurity concentration, a channel region that is a semiconductor region having a relatively low impurity concentration, and a second semiconductor region having a relatively high impurity concentration.
  • the semiconductor element arranged in order along a specific direction included in the plane of the substrate is a reference semiconductor element, and the channel width of the reference semiconductor element is W.
  • the channel width is smaller than the channel width W and N equal to two or more even numbers having the same channel width W1
  • the direction of arrangement of the semiconductor regions constituting each of the plurality of semiconductor elements is all parallel to the specific direction, and the positional relationship between the semiconductor regions as a whole is a line-symmetrical or point-symmetrical positional relationship.
  • the semiconductor element having the above asymmetric structure is, for example, a TFT whose channel length is defined by an n ⁇ region and a gate end. More specifically, such a TFT corresponds to a TFT having a one-sided GOLD structure in which an LDD region is provided only on the drain side, for example, among TFTs having a GOLD structure.
  • the GOLD structure refers to a structure in which the gate electrode is not only opposed to the channel region, but is further opposed so that the gate electrode overlaps the LDD region.
  • the display device of the present invention may be a display device including an active matrix substrate, and may be not only a liquid crystal display device but also an EL display device.
  • the diode according to the present invention can also be configured as follows. That is, the first semiconductor region having a relatively high impurity concentration and exhibiting the first polarity, the channel region being a semiconductor region having a relatively low impurity concentration, and the first polarity having a relatively high impurity concentration.
  • a second semiconductor region having a polarity opposite to that of the first diode is arranged in contact with each other and arranged in a permutation in the in-plane direction of the substrate, and has a size substantially equal to each semiconductor region of the first diode
  • a second diode having each semiconductor region is symmetrically disposed on the substrate so that the bias direction of the first diode and the bias direction of the second diode are opposite to each other;
  • the first diode and the second diode are electrically connected in parallel, and the first diode or the second diode has a function equivalent to that of a diode whose channel width is doubled. Ord.
  • the second diode when the first semiconductor region, the channel region, and the second semiconductor region are arranged in this order in the in-plane direction of the substrate, According to the condition that “the first diode bias direction and the second diode bias direction are symmetrically arranged on the substrate so as to be opposite to each other”, the second diode The second semiconductor region, the channel region, and the first semiconductor region are arranged in this order along the same direction as the arrangement direction of the respective semiconductor regions of the first diode from the side closer to the diode. It becomes the composition which is.
  • the two first semiconductor regions are electrically connected to each other, and the two second semiconductor regions are connected. They are also electrically connected.
  • the mask used when forming the first semiconductor region by ion implantation of impurities is shifted, for example, in the first direction to shorten the channel length of the first diode. Also for the second diode, the mask shifts in the same first direction.
  • the first direction is a direction from the first semiconductor region to the channel region for the first diode, and a direction from the channel region to the first semiconductor region for the second diode. is there.
  • the channel length of the second diode is increased.
  • a relationship is established in which the length of the channel length of the second diode is equal to the length of the channel length of the first diode.
  • the shortening of the channel length in the first diode is offset by the extension of the channel length in the second diode.
  • the IV of the diode depends on the degree of mask displacement. Although another problem of characteristic variation occurs, the present invention is not so, and two conflicting characteristic changes cancel each other out.
  • the diode when used as a photodiode, the magnitude of the photocurrent generated by the diode by light reception is always proportional to the channel width, while if the channel length range is appropriately selected, It is also almost proportional to the channel length.
  • the above-mentioned condition “acts equivalently to a diode in which the channel width of the first diode or the second diode is doubled” is the range of the channel length in which the IV characteristic of the diode is proportional to the channel length. This means that the configuration is appropriately selected.
  • each of the first diode and the second diode is halved compared to a diode whose channel width is doubled, so that the region occupied by the diode in the substrate is in a direction parallel to the channel width. Can be narrowed.
  • the diode according to the present invention has a relatively high impurity concentration and a first semiconductor region that exhibits the first polarity, and a channel region that is a semiconductor region that has a relatively low impurity concentration.
  • a diode in which a second semiconductor region having a high impurity concentration and a polarity opposite to the first polarity is in contact with each other and arranged in order along a specific direction included in the plane of the substrate is a reference diode
  • the channel width of the reference diode is W
  • the channel width is smaller than the channel width W and equal to each other without changing the size of each semiconductor region in the direction parallel to the channel length of the reference diode.
  • N diodes which are two or more even numbers, and each of the semiconductor regions constituting each of the plurality of diodes is parallel to the specific direction.
  • the respective semiconductor regions are arranged on the substrate so that the mutual positional relationship of the respective semiconductor regions is a line-symmetrical or point-symmetrical positional relationship as a whole, and the plurality of diodes are electrically connected to each other.
  • the configuration is equivalent to that of the reference diode.
  • the mask for forming the first semiconductor region or the mask for forming the second semiconductor region is independently displaced, it always functions as the reference diode. It is possible to manufacture a diode having stable characteristics.
  • the photosensor circuit according to the present invention has a configuration in which any of the above-described diodes is used as a photodiode.
  • the photosensor circuit according to the present invention can have a stable light receiving characteristic that is not affected by the positional deviation of the mask in the manufacturing process.
  • the photosensor circuit is incorporated in a pixel of a liquid crystal display device. Then, there is an effect that a secondary effect such as improving the aperture ratio of the pixel can be obtained.
  • the display device has a configuration in which the photosensor circuit is incorporated in at least one of a plurality of pixels constituting the display screen.
  • the present invention relates to a semiconductor element in which a linear relationship or a relationship that can be regarded as a linear relationship is established between channel width and channel length and characteristics, an electronic circuit using the semiconductor element, and an apparatus including the electronic circuit Can be applied to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 本発明のダイオードを構成する偶数個のフォトダイオード(1,2)は、各領域(1a~1cおよび2a~2c)を備え、各領域(1a~1cおよび2a~2c)の上記特定方向に沿ったサイズは基準ダイオード(5)と変わらず、チャネル幅は基準ダイオード(5)のチャネル幅Wに対し1/2である。また、各領域(1a~1cおよび2a~2c)は、基準ダイオード(5)のチャネル長Lに平行な特定方向に平行にレイアウトされ、互いの位置関係は、全体として線対称または点対称となっている。さらに、フォトダイオード(1,2)は、互いに電気的に並列接続されたことによって、上記基準ダイオード(5)と同等の働きをする。これにより、特性を安定させることができ、かつ、基板におけるダイオードの占有面積を小さくすることのできるダイオードの構造を提供する。

Description

ダイオードおよびそれを備えた光センサ回路並びに表示装置
 本発明は、基本的にはダイオードの構造に関し、特に、特性がばらつく個体差を解消し得るダイオードの構造と、そのダイオードを備えた光センサ回路と、その光センサ回路を内蔵した表示装置とに関するものである。
 近年、表示画面周囲の額縁領域に光センサを備えた表示装置や、あるいは複数の画素を有する表示パネルの表示領域に一定間隔で複数の光センサを配置し、しかもその光センサを、対応する画素の内部に設けた表示装置が開発されている。光センサの光量検知機能を利用して、これらの表示装置に、バックライトの調光機能、タッチパネル機能、文字認識のためのOCR機能、あるいは指紋認証などのセキュリティ機能といった各種機能を持たせることができる。
 上記のような表示装置が具備する光センサとして、例えば、PINフォトダイオードが使用される。PINフォトダイオードの構造は、基板に対し、P層、I層、N層をこの順に積層した縦型構造と、基板上に、P層、I層、N層を面内方向に並べた横型(ラテラル)構造とに分けることができる。なお、P層は、P型の不純物濃度が高い半導体層であり、I層は、真性半導体層または不純物濃度が低い半導体層であり、N層は、N型の不純物濃度が高い半導体層である。
 この内、ラテラル構造は、P層、I層およびN層の各層が互いに重なりを持たない構造であるため、各層間の寄生容量が小さくなる結果、センシング速度が縦型構造より速くなるというメリットを持っている。また、ラテラル構造は、PNP、PIP、NPN、NINのような構成を有するTFTと同じプロセスを用いて製造することができるというメリットも有している。
 図17に、ラテラル構造のPINフォトダイオードによって構成された光センサを示す(下掲の特許文献1参照)。図17の光センサ81は、シリコン膜85に形成されたP層82、I層83およびN層84を備えている。P層82、I層83およびN層84は、シリコン膜85の面内方向に沿って順に配置されている。シリコン膜85は、アクティブマトリクス基板のベースとなるガラス基板90上に成膜されている。また、電極パターン88が、コンタクトプラグ86を介してP層82に接続され、電極パターン89が、コンタクトプラグ87を介してN層84に接続されている。
 このような光センサ81に逆バイアスをかけ、その状態で光が光センサ81に照射されると、I層83において、照射された光の強さに応じた量の電荷が発生し、電極パターン89から電極パターン88に向かって電流が流れる。
 上記ラテラル構造のPINフォトダイオードを作製する場合、シリコン膜85に、例えばP層82を形成するためのパターンを持ったマスクをかけ、ホウ素などのP型不純物のイオン注入を行う一方、N層84を形成するためのパターンを持った別のマスクをかけ、リン、ヒ素などのN型不純物のイオン注入を行う。
 また、光センサ81が、受光によって発生する電流を大きくするためには、I層83が、P層82およびN層84と接している長辺の長さW(図17参照:以降、チャネル幅Wと呼ぶ)を長くするとよい。なお、I層83の短辺の長さL(以降、チャネル長Lと呼ぶ)と電流の大きさIとの間には、図18に示す関係が成り立つ。
 すなわち、図18に示すように、チャネル長Lを0から長くしていくと、I層83で発生した正孔および電子の再結合が生成を上回るチャネル長であるLpを境として、0<L<Lpの範囲では、電流Iが増加し、L=Lpにおいて、電流は最大となり、Lp<Lの範囲では、上記再結合に起因して電流Iが減少する。
国際公開WO 2006/129427 A1(2006年12月7日公開)
 ところが、上記従来の光センサ81の構成では、安定した特性を持つPINフォトダイオードを作製することが困難であるという第1の問題や、受光感度を上げるには、上記チャネル幅Wを大きくしなければならないため、基板にPINフォトダイオードを作り込んだときの占有面積が大きくなるという第2の問題が生じる。
 上記第1の問題は、そのような光センサ81を備えることによって、表示装置に付与された前記各種機能が、装置毎にばらついてしまうという問題を招く。
 また、上記第2の問題は、そのような光センサ81を画素に内蔵した表示装置の場合、画素における光センサ81の占有面積が大きくなるため、画素密度の高い高精細な表示装置の作製を困難にしたり、あるいは、光センサ81が画素の開口率を下げる要因となるので、前記各種機能を備えている代わりに表示画面が暗い表示装置になるなどの弊害を招く。
 上記第1の問題が生じる理由をさらに説明すると、P層82およびN層84を形成するための前述したイオン注入時に、P層形成用のマスクまたはN層形成用のマスクの位置ずれが起き、その結果、チャネル長Lが設計値に対してばらつくことが原因である。
 例えば、図17に示すように、N層84の形成時に、マスクがI層83の方へΔLシフトしたとすると、I層83のチャネル長Lが、L-ΔLとなる。そうすると、図18に示すように、L長を0<L<Lpの範囲内で設計している場合には、設計値L0に対する設計電流I0を得ることができず、L0-ΔLに対応して減少した電流I0-ΔIが得られることになる。すなわち、チャネル長Lのばらつきは、光センサ81が発生した電流に基づく検出値のばらつきを生む。
 なお、設計電流I0は、減少する場合だけではなく、逆に増加する場合もある。増加する場合は、例えば、N層84の形成時のマスクが、上述の例と反対方向にシフトし、チャネル長Lが設計値L0より大きくなったときなどに発生する。さらに、P層形成用のマスクのシフトも、N層形成用のマスクのシフトとは独立して、チャネル長Lのばらつきを生む要因となる。
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、真性半導体領域を不純物半導体領域が挟んだラテラル構造を持つダイオードにおいて、特性を安定させることができ、かつ、基板におけるダイオードの占有面積を小さくすることのできるダイオードの構造を提供するとともに、特性の安定したダイオードを用いることによって、光検出を安定に行うことができる光センサ回路と、光検出を利用した各種機能を安定させることのできる表示装置とを提供することにある。
 本発明に係るダイオードは、上記の課題を解決するために、
 (1)相対的に不純物濃度が高く、第1の極性を示す第1の半導体領域と、相対的に不純物濃度の低い半導体領域であるチャネル領域と、相対的に不純物濃度が高く、第1の極性とは逆極性を示す第2の半導体領域とが、互いに接しており、かつ基板の面内に含まれる特定方向に沿って順に配列されたダイオードを基準ダイオードとし、その基準ダイオードのチャネル幅をWとしたとき、
 (2)基準ダイオードのチャネル長に平行な上記特定方向の各半導体領域のサイズを変えずに、チャネル幅が上記チャネル幅Wより小さく、かつ互いに実質的に等しいチャネル幅W1を備えた2以上の偶数であるN個のダイオードを備え、
 (3)上記N個のダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され、
 (4)上記N個のダイオードが互いに電気的に接続されていることによって、上記基準ダイオードと同等の働きをすることを特徴とする。
 上記の構成において、チャネル長とは、第1の半導体領域と第2の半導体領域との間に形成されたチャネル領域の、基板の面内に含まれる上記特定方向に平行な方向の長さ、言い換えると、第1の半導体領域とチャネル領域との境界から、チャネル領域と第2の半導体領域との境界までの長さのことである。
 また、チャネル幅とは、第1の半導体領域とチャネル領域との境界の線長のことであり、チャネル領域と第2の半導体領域との境界の線長のことでもある。
 上記の「実質的に等しい」とは、N個のダイオードのチャネル幅W1を互いに等しく製造しようとしても、製造プロセス上でバラツキが発生する場合に、製造プロセス上のチャネル幅W1のバラツキを誤差の範囲内で等しいとみなすとの意味である。
 ところで、フォトダイオードの上記光電流の大きさは、上記チャネル長に対して、極大値を持ち、上記チャネル長が0から上記極大値までの範囲では光電流が増加し、極大値を越えると光電流が減少するという変化を示す。
 このように、ダイオード電流とダイオードに印加する電圧との関係を表すI-V特性は、上記チャネル長に対して線形変化している範囲、または線形変化しているとみなせる範囲と、線形変化しているとはみなすことができず、非線形に変化する範囲とを有している。
 これに対し、本発明のダイオードは、「基準ダイオードのチャネル長に平行な方向の各半導体領域のサイズを変えずに、チャネル幅が上記チャネル幅Wより小さく、かつ互いに実質的に等しいチャネル幅W1を備えた2以上の偶数であるN個のダイオードを備え」、さらに「複数のダイオードを互いに電気的に接続」したことにより、偶数個のダイオードが、1個の上記基準ダイオードと同等の働きをするように構成されている。
 これは、つまり、ダイオードのI-V特性が、上記チャネル幅と上記チャネル長の双方に依存して変化するものなので、本発明のダイオードは、上記チャネル幅W1と上記チャネル長とが取り得る範囲をそれぞれ適切に選択し、かつ、電気的な接続を並列接続、直列接続およびこれら両接続の組み合わせから適切に選択した構成であることを意味している。
 上記のように構成された偶数個のダイオードについて、その配置に関する基板上のレイアウトが、以下のように工夫されている。つまり、上記複数のダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように基板上に配置されている。なお、上記特定方向は、チャネル長に平行な方向に等しい。
 これにより、第1の半導体領域を不純物のイオン注入によって形成する際に使用するマスクが、例えば、線対称または点対称の位置関係の一方の側に位置するダイオード(ダイオードαと呼ぶ)のチャネル長を短くするような第1の方向にシフトした場合、線対称または点対称の位置関係の他方の側に位置するダイオード(ダイオードβと呼ぶ)についても、マスクは同じ第1の方向にシフトする。上記第1の方向とは、すなわち、ダイオードαにとっては、例えば第1の半導体領域からチャネル領域に向かう方向であり、ダイオードβにとっては、線対称または点対称の位置関係にあるから、チャネル領域から第1の半導体領域に向かう方向となる。
 この結果、ダイオードβでは、第1の半導体領域を形成するマスクが、チャネル領域から第1の半導体領域に向かう方向へシフトするので、チャネル長が長くなる。このとき、ダイオードβでチャネル長が長くなった長さは、ダイオードαでチャネル長が短くなった長さに等しい。
 したがって、本発明によれば、マスクの位置ずれが発生しても、ダイオードαにおけるチャネル長の短縮が、ダイオードβにおけるチャネル長の伸長によって相殺される。しかも、各ダイオードでは、基準ダイオードのチャネル長に平行な方向の各半導体領域のサイズが変わっていないので、ダイオードαの短縮されたチャネル長と、ダイオードβの伸長されたチャネル長とを平均したチャネル長は、基準ダイオードのチャネル長に等しくなる。
 なお、チャネル長の短縮に伴うダイオードのI-V特性変化と、チャネル長の伸長に伴うダイオードのI-V特性変化とが相殺し合わないと、マスクの位置ずれの程度によってダイオードのI-V特性がばらつくという別の問題が生じることになるが、本発明は、そうはならず、相反する2種類の特性変化が相殺し合う発明である。このことは、すでに説明したように「上記複数のダイオードが互いに電気的に接続されていることによって、上記基準ダイオードと同等の働きをする」という条件により、保証されている。
 以上のように、本発明によれば、第1の半導体領域を形成するためのマスク、あるいは第2の半導体領域を形成するためのマスクが、それぞれ独立に、どのように位置ずれしたとしても、常に、基準ダイオードと同等の働きをする安定した特性を持つダイオードを製造することができる。
 また、基準ダイオードのチャネル幅Wより、各ダイオードのチャネル幅W1は小さいので、基板においてダイオードが占有する領域を、チャネル幅に平行な方向に狭めることができる。
 本発明に係るダイオードにおいては、上記N個のダイオードの各チャネル領域のチャネル長は、ダイオード電流とダイオードに印加する電圧との関係を表すI-V特性がチャネル長の変化に対して、線形に変化するとみなせる範囲から選択されている。
 したがって、上記ダイオードαとダイオードβとを例に挙げて説明したように、例えば、ダイオードαにおけるチャネル長の短縮と、ダイオードβにおけるチャネル長の伸長とが相殺し合うと、チャネル長の変化に対して、線形に変化するとみなせるダイオードのI-V特性が、ダイオードαとダイオードβとで相殺し合う。
 すなわち、上記の構成は、本発明のダイオードが上記基準ダイオードと同等の働きをするための、チャネル長に関する設計指針を与えるものである。
 なお、上記チャネル幅W1については、ダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するとみなすことができる。そうすると、例えばチャネル幅W1をW/Nとすると、本発明のダイオードを構成するN個のダイオードのそれぞれのI-V特性は、チャネル幅W1とダイオードのI-V特性との間での線形関係に基づき、基準ダイオードのI-V特性の1/Nを示すことになる。
 ダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するので、Nは偶数であるという本発明の条件を満たした設計が容易になる。すなわち、それぞれのチャネル幅W1をW/Nに設定すればよい。
 本発明に係るダイオードにおいては、上記チャネル幅W1をW/NとしたN個のダイオードを互いに並列接続した構成とすることができる。
 上記の構成において、ダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するとみなせる範囲から、チャネル幅W1が選択されていることを前提としている。この前提のもとに、例えばN=2とした場合には、本発明のダイオードを構成する2個のダイオードのチャネル幅W1を、W1=W/2とし、その2個のダイオードを電気的に並列接続すると、本発明のダイオードは基準ダイオードと同等の働きをする。
 また、N=4とした場合には、本発明のダイオードを構成する4個のダイオードのチャネル幅W1を、W1=W/4とし、その4個のダイオードを電気的に並列接続すると、本発明のダイオードは基準ダイオードと同等の働きをする。
 このように、ダイオードのI-V特性がチャネル幅の変化に対し線形に変化するとみなせる範囲から、チャネル幅W1を選択し、N個のダイオードを電気的に並列接続した場合には、チャネル幅W1とNとは反比例の関係となる。
 なお、実施の形態としてあとで説明するように、基準ダイオードと同等の働きをするための、チャネル幅および電気的接続の仕方の組み合わせには、いろいろなヴァリエーションがある。
 本発明に係るダイオードは、N/2個のダイオードを電気的に直列接続した第1の組と、N/2個のダイオードを電気的に直列接続した第2の組とを備え、上記第1の組と第2の組とを電気的に並列接続し、上記チャネル幅W1をW/2とした構成としてもよい。
 上記の構成において、ダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するとみなせる範囲から、チャネル幅W1が選択されていることを前提としている。この前提のもとに、チャネル幅W1をW/2としたN/2個のダイオードを電気的に直列接続した場合、1個のダイオードにかかる電圧は、N/2個のダイオード全体にかかる電圧に、直列接続した個数、すなわちN/2の逆数を乗算した値となって、2/Nに減少する。このため、ダイオードのI-V特性とチャネル幅との間の線形関係に基づき、N/2個のダイオードを電気的に直列接続した場合のI-V特性は、N/2個のダイオードを構成する1個のダイオードのI-V特性と変わらない。
 このことをベースとして、上記チャネル幅W1をW/2としているから、ダイオード全体のI-V特性で見ると、上記の構成は、チャネル幅W1をW/2とした2個のダイオードを並列接続し、基準ダイオードのI-V特性と同じにした場合と変わらない。
 本発明に係るダイオードにおいて、上記Nが2の構成を含むダイオードであり、言い換えれば、少なくとも2個のダイオードによって構成されており、当該2個のダイオードを第1のダイオードおよび第2のダイオードとするとき、第1のダイオードおよび第2のダイオードは、1つのSiアイランドの中に形成され、かつ、上記第1の半導体領域または上記第2の半導体領域が、上記第1のダイオードおよび第2のダイオードによって、共有されている形態でもよい。
 上記の構成において、例えば第1の半導体領域が、第1のダイオードおよび第2のダイオードによって、共有されているとする。そうすると、それぞれの第2の半導体領域を電気的に接続すれば、第1のダイオードおよび第2のダイオードは並列接続されたことになり、ダイオードのI-V特性がチャネル長およびチャネル幅の変化に対し線形に変化するとみなせる各範囲から、チャネル長およびチャネル幅を適宜選択することによって、基準ダイオードと同等の働きをするダイオードが得られる。
 また、「上記複数のダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され」ているという前記の条件に照らすと、第1のダイオードでは、上記特定方向に沿って、第2の半導体領域、チャネル領域および第1の半導体領域をこの順に配置し、第2のダイオードでは、上記特定方向に沿って、共有された上記第1の半導体領域、チャネル領域および第2の半導体領域をこの順に配置した構成となっていることが判る。
 このように、第1の半導体領域または上記第2の半導体領域が、上記第1のダイオードおよび第2のダイオードによって共有されているので、単一のSiアイランドの中に、第1のダイオードおよび第2のダイオードを作り込むことができる。また、それゆえに、基板上で占めるダイオードの面積を縮小するのに有利となる。
 本発明に係るダイオードにおいて、
 (1)上記Nが4の構成を含むダイオードであり、言い換えれば、少なくとも4個のダイオードによって構成されており、当該4個のダイオードを、上記特定方向に沿って並んだ順に第1、第2、第3および第4のダイオードとし、かつ、上記第1の半導体領域が、上記第2のダイオードおよび第3のダイオードによって共有されている場合であって、
 (2)上記第2のダイオードと上記第4のダイオードとは構成的に等価であり、上記第4のダイオードは、上記特定方向に沿って、上記第3のダイオードに対し直列接続されて配置され、
 (3)上記第1のダイオードと上記第3のダイオードとは構成的に等価であり、上記第1のダイオードは、上記特定方向に沿って、上記第2のダイオードに対し直列接続されて配置され、
 (4)上記第1のダイオードおよび第2のダイオードは、上記第2の半導体領域を共有し、
 (5)上記第3のダイオードおよび第4のダイオードもまた、上記第2の半導体領域を共有し、
 (6)上記第1の半導体領域同士が相互に電気的に接続され、
 (7)上記第2の半導体領域同士もまた相互に電気的に接続されている、
という形態でもよい。
 上記の(1)(4)および(5)の構成によれば、第1~第4のダイオードは、隣り合うダイオード同士によって、第1の半導体領域および第2の半導体領域のうちいずれかを共有している。したがって、4個のダイオードを単一のSiアイランドの中に作り込むことができる。また、それゆえに、基板上で占めるダイオードの面積を縮小するのに有利となる。
 また、上記(2)の構成によれば、第2のダイオードと第4のダイオードにおける各半導体領域(第1、第2の半導体領域およびチャネル領域)の配列順序が同じであり、上記(3)の構成によれば、第1のダイオードと第3のダイオードにおける各半導体領域の配列順序が同じである。これは、見方を変えると、第2のダイオードと第3のダイオードにおける各半導体領域の並びは、逆順、すなわち対称的になっており、第1のダイオードと第4のダイオードにおける各半導体領域の並びも、逆順、すなわち対称的になっているということである。
 したがって、上記の構成は、「上記複数のダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され」ているという前記条件を満たしている。
 さらに、上記(6)(7)の構成は、第1~第4のダイオードが電気的に並列接続されていることを意味している。よって、既に説明したとおり、ダイオードのI-V特性がチャネル長およびチャネル幅の変化に対し線形に変化するとみなせる各範囲から、チャネル長およびチャネル幅を適宜選択することによって、基準ダイオードと同等の働きをするダイオードが得られる。
 本発明に係る光センサ回路は、上述したいずれかのダイオードをフォトダイオードとして用いたことを特徴とする。
 上述したダイオードは、いずれも、基板上における各半導体領域の配置が線対称または点対称に配置され、基準ダイオードと同等の働きをする。したがって、そのダイオードをフォトダイオードとして用いた光センサ回路は、製造工程におけるマスクの位置ずれによる影響を受けない安定した受光特性を備えることができる。
 また、複数個のダイオードの互いに等しいチャネル幅W1が、基準ダイオードのチャネル幅Wより小さいので、本発明に係る光センサ回路は、基板上のレイアウトに関して、チャネル幅を縮小したレイアウトを採用することができる。
 これにより、例えば、上記光センサ回路を、液晶表示装置の画素に内蔵させた場合、複数個のダイオードを、1つ1つ、異なる画素に分散させることができ、しかも、画素の縦幅に対し、チャネル幅が占める割合が、基準ダイオードのチャネル幅が占める割合より小さくて済む。この結果、画素の開口率を向上させるなどの副次的効果を得ることができる。
 本発明に係る表示装置は、表示画面を構成する複数の画素の少なくとも1つに、請求項9に記載の光センサ回路を内蔵したことを特徴とする。
 これにより、既に説明したように、光センサ回路の受光特性が表示装置によってばらつきを持たず、安定しているので、光センサの機能を利用したバックライトの調光機能、タッチパネル機能などが安定した表示装置を提供することができる。
 さらに、上記表示装置は、上記複数の画素のうち、隣接し合った所定数の複数の画素に対し、上記光センサ回路を1つずつ内蔵し、当該光センサ回路の1つを構成する上記ダイオードおよびその他の素子を、上記所定数の複数の画素に分散して配置したことを特徴とする。
 上記所定数は2以上の整数である。これにより、光センサの機能を利用したバックライトの調光機能、タッチパネル機能、文字認識のためのOCR機能、あるいは指紋認証などのセキュリティ機能といった各種機能が安定した表示装置を提供することができる。
 しかも、既に説明したように、光センサ回路を構成するフォトダイオードおよび素子が画素に占める割合を小さくできるので、上記各種機能が安定している上に、明るい表示を行うことができる優れたパフォーマンスの表示装置を提供することができる。
 なお、ある着目した請求項に記載された構成と、その他の請求項に記載された構成との組み合わせが、その着目した請求項で引用された請求項に記載された構成との組み合わせのみに限られることはなく、本発明の目的を達成できる限り、その着目した請求項で引用されていない請求項に記載された構成との組み合わせが可能である。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
(a)は、本発明のダイオードであるフォトダイオードを備えた光センサ回路の構成を示す回路図と、チャネル領域の相殺原理を示す説明図であり、(b)は基準ダイオードとしてのフォトダイオードを備えた光センサ回路の構成を示す回路図と、チャネル領域が減少する問題を示す説明図である。 本発明に係る表示装置の構成を示す概略ブロック図である。 上記表示装置の1画素内に設けられた画素回路を構成する表示用回路および光センサ回路の構成を示す回路図である。 上記光センサ回路の動作を示すタイミングチャートである。 図1の(a)のフォトダイオードが有する各半導体領域の電気的接続関係を示す説明図である。 上記光センサ回路を画素内に配置した状態を具体的に示す平面図である。 本発明に係るフォトダイオードを用いた光センサ回路のヴァリエーションを示す回路図であり、(a)は3T方式光センサ回路を示し、(b)は2T方式光センサ回路を示し、(c)は1T方式光センサ回路を示している。 1つのSiアイランド内に2つのフォトダイオードを形成した例を示す説明図である。 図8の(b)のフォトダイオードを用いた光センサ回路の構成を示す回路図である。 図8の(a)のフォトダイオードを1つの画素に内蔵させた光センサ回路のレイアウトの一例を示す模式的な平面図である。 図8の(b)のフォトダイオードを1つの画素に内蔵させた光センサ回路のレイアウトの一例を示す模式的な平面図である。 並列接続したN個のフォトダイオードを用いた光センサ回路の例を示す回路図である。 2つのフォトダイオードを1つのSiアイランド内に形成した組を、複数組並列接続してフォトダイオードを構成した例を示す説明図である。 複数個のフォトダイオードを直列接続した組を、2組並列接続してフォトダイオードを構成し、光センサ回路に適用した例を示す回路図である。 4個のフォトダイオードを1つのSiアイランド内にリニアにレイアウトし、並列接続してフォトダイオードを構成する例を示す説明図である。 図15のフォトダイオードを用いた光センサ回路の構成を示す回路図である。 従来の表示装置の1画素内に設けられた画素回路を構成する表示用回路および光センサ回路のレイアウトの一例を示す模式的な平面図である。 フォトダイオードが受光して発生する光電流と、チャネル長との関係を表した特性曲線を示すグラフである。
符号の説明
 1   フォトダイオード(N個のダイオードの1つ、第1のダイオード)
 1a  P型半導体領域
 1b  チャネル領域
 1c  N型半導体領域
 2   フォトダイオード(N個のダイオードの1つ、第2のダイオード)
 2a  N型半導体領域
 2b  チャネル領域
 2c  P型半導体領域
 3   TFT(その他の素子)
 4   積分容量(その他の素子)
 5   基準ダイオード
 5a  P型半導体領域(第1の半導体領域)
 5b  チャネル領域
 5c  N型半導体領域(第2の半導体領域)
10   表示装置
18b  光センサ回路
31   積分容量(その他の素子)
35R  副画素
35G  副画素
35B  副画素
40   フォトダイオード
41   フォトダイオード
51   第1のフォトダイオード
52   第2のフォトダイオード
53   第3のフォトダイオード
54   第4のフォトダイオード
 C   枠囲み(ダイオードを直列接続した第1の組)
 D   枠囲み(ダイオードを直列接続した第2の組)
 L   チャネル長
 M1  TFT(その他の素子)
 W   チャネル幅(基準のチャネル幅)
 〔実施の形態1〕
 本発明の一実施形態について図を参照しながら説明すれば、以下の通りである。
なお、以下で参照する各図は、説明の便宜上、本発明の一実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。このことは、後述する他の実施形態についても同様である。
 図1の(a)および図1の(b)は、同じ働きをする光センサ回路の一例であり、図1の(a)は本発明のダイオードを用いた光センサ回路、図1の(b)は従来のダイオードを用いた光センサ回路を示している。
 (基準ダイオード)
 図1の(b)のフォトダイオード5は、相対的に不純物濃度が高く、P(第1の極性)型半導体領域5a(第1の半導体領域)と、真性半導体領域(相対的に不純物濃度の低い半導体領域)であるチャネル領域5bと、相対的に不純物濃度が高いN(第1の極性に対し逆極性)型半導体領域5c(第2の半導体領域)とが、互いに接しており、かつ基板の面内に含まれる特定方向に沿って順に配列された構成である。
 フォトダイオード5は、後述するように、図1の(a)のフォトダイオード1および2の組み合わせ(本発明のダイオード)と同等の働きをし、フォトダイオード1および2のための基準となるチャネル幅Wおよびチャネル長Lを備えている。そこで、図1の(b)のフォトダイオード5のことを、以下、基準ダイオード5と呼ぶ。
 上記特定方向は、すなわち、ダイオードを構成する一方の不純物半導体領域、チャネル領域および他方の不純物半導体領域が配列する方向である。本発明のダイオードは、あとで具体的に説明するように、2以上の偶数であるN個のダイオードによって構成され、各ダイオードを構成する一方の不純物半導体領域、チャネル領域および他方の不純物半導体領域が配列する方向は、全て上記特定方向に揃っていて平行である。
 なお、光センサ回路を基板上にマトリクス状に配置した場合にあてはめて考えた場合、上記特定方向は、例えば行方向に平行であり、列方向に直交しており、行方向に平行な後述するリセット信号線8または行選択信号線9に平行であり、列方向に平行な電源供給線6または出力信号線7に直交している。しかし、これは一例であって、他の配線または素子とのレイアウト関係を度外視すれば、基板上のどのような方向に特定方向を定めても構わない。
 また、上記基準ダイオード5は、受光強度が同じとき、チャネル幅W(基準のチャネル幅Wに相当)およびチャネル長Lに比例した強度の光電流を発生する。すなわち、基準ダイオード5の受光特性(ダイオード電流とダイオードに印加する電圧との関係を表すI-V特性)と、チャネル幅Wおよびチャネル長Lとは、線形の関係を有している。あるいは、言い方を変えれば、上記チャネル幅Wおよびチャネル長Lは、I-V特性に対し線形変化または線形とみなせる変化を示す各範囲から選択されている。
 この点を光電流とチャネル長との関係を表した図18のグラフに基づいてさらに説明する。基準ダイオード5のチャネル長Lを図18のL0に設定したとすると、チャネル長L0は、光電流とチャネル長とが線形変化するとみなせる範囲に含まれている。一方、チャネル長Lpは、光電流とチャネル長とが線形変化するとみなせる範囲には明らかに含まれていない。
 なお、チャネル長Lを0<L<Lpの範囲から選択してもよいし、Lp<Lの範囲から選択してもよい。後者の範囲からチャネル長Lを選択した場合、前者の範囲からチャネル長Lを選択した場合とは逆に、チャネル長Lが減少すると、光電流は増加し、チャネル長Lが増加すると、光電流は減少する。
 (2個分割型ダイオードの電気的特性)
 一方、図1の(a)の光センサ回路は、2個のフォトダイオード1およびフォトダイオード2を備えている。フォトダイオード1においては、P型半導体領域1aと、真性半導体領域であるチャネル領域1bと、N型半導体領域1cとが、互いに接しており、かつ上記特定方向に沿って順に配列されている。
 同様に、フォトダイオード2においても、N型半導体領域2aと、真性半導体領域であるチャネル領域2bと、P型半導体領域2cとが、互いに接しており、かつ上記特定方向に沿って順に配列されている。
 上記各領域1a,1b,1c,2a,2b,2cの上記特定方向に平行な方向のサイズは、基準ダイオード5の対応する各領域5a,5b,5cの上記特定方向に平行な方向のサイズと同じになっている。
 また、フォトダイオード1およびフォトダイオード2のチャネル幅は、基準ダイオード5の上記チャネル幅Wより小さいという条件を満たしている。より具体的には、基準ダイオード5のI-V特性と、チャネル幅Wおよびチャネル長Lとが、線形とみなせる関係を有しているという条件下では、フォトダイオード1およびフォトダイオード2のチャネル幅は、それぞれW/2に設定されている。
 その上、図1の(a)および図5に示すように、フォトダイオード1およびフォトダイオード2は、同極性を示すN型半導体領域1cとN型半導体領域2aとが電気的に接続され、かつ、同極性を示すP型半導体領域1aとP型半導体領域2cとが電気的に接続されている。すなわち、フォトダイオード1とフォトダイオード2とは電気的に並列接続されている。
 2つのフォトダイオード1,2が並列接続されているから、フォトダイオード1,2のそれぞれには、同じ大きさの電圧がかかり、また基準ダイオード5にかかる電圧の大きさとも同じである。また、チャネル幅が、基準ダイオード5のチャネル幅Wの1/2であるから、同じ受光強度に対し、フォトダイオード1,2のそれぞれは、基準ダイオード5が発生する光電流(強度I)の半分の強度(I/2)の光電流を発生する。
 そうすると、並列接続されたフォトダイオード1,2は、合計すると、基準ダイオード5が発生する光電流(強度I)と同じ強度の光電流を発生する。つまり、フォトダイオード1,2は、基準ダイオード5と同等の働きをする。
 (2個分割型ダイオードのレイアウト)
 次に、フォトダイオード1,2を構成する各領域1a,1b,1c,2a,2b,2cの、基板上におけるレイアウト(配置関係)について説明する。
 上記各領域1a,1b,1c,2a,2b,2cの配列の方向は、全て上記特定方向に平行であり、かつ、上記各領域1a,1b,1c,2a,2b,2cの互いの位置関係が、全体として線対称または点対称の位置関係となるように基板上に配置されている。言い換えると、各領域1a,1b,1cの配置と、各領域2a,2b,2cの配置とは、図1の(a)の場合、線対称(鏡面対称)になっている。
 さらに、言い換えると、フォトダイオード1に順方向バイアスがかかった場合のバイアス方向(P型半導体領域1aからN型半導体領域1cに向かう方向)と、フォトダイオード2に順方向バイアスがかかった場合のバイアス方向(P型半導体領域2cからN型半導体領域2aに向かう方向)とが、逆向きになっている。
 なお、フォトダイオード1およびフォトダイオード2は、上記特定方向に平行なレイアウトを有していさえすればよく、図1の(a)に示すような同一線上にリニアに配置されている必要はない。例えば、フォトダイオード1およびフォトダイオード2が、行方向に平行だが、間隔の開いた2本の平行線上のそれぞれに配置されていたとしても、点対称の配置関係になるので、本発明の構成要件を満足している。
 このようなレイアウトにより、P型半導体領域を一斉に作製するためのマスク(後述)や、あるいはN型半導体領域を一斉に作製するためのマスクに位置ずれが生じたとしても、常に、基準ダイオード5と同じI-V特性のダイオードを安定して製造することができる。
 なぜなら、例えば、図1の(a)に示すように、N型半導体領域を一斉に作製するためのマスクに位置ずれが生じた結果、フォトダイオード1において、チャネル長LがΔL短くなりLaになったとしても、フォトダイオード2において、チャネル長LがΔL長くなりLbになる。すなわち、本発明によれば、マスクの位置ずれが発生しても、フォトダイオード1におけるチャネル長Lの短縮が、フォトダイオード2におけるチャネル長Lの伸長によって相殺される。つまり、フォトダイオード1の短縮されたチャネル長Laと、フォトダイオード2の伸長されたチャネル長Lbとを平均したチャネル長は、元のチャネル長Lに等しくなる。
 この場合、フォトダイオード1で光電流が減少した分、フォトダイオード2で光電流が増加する。結局、マスクの位置ずれがどのように起きても、フォトダイオード1,2が発生する光電流の大きさは、基準ダイオード5が発生する光電流の大きさと同じになる。
 したがって、本発明の構成を持つフォトダイオードを用いた光センサ回路は、I-V特性(受光特性)に個体差を持たず、所望のI-V特性を均一に備えることができる。
 これに対し、基準ダイオード5の場合には、図1の(b)に示すように、マスクに位置ずれが生じると、それに伴ってチャネル長が変化し、LがLcに減少するだけなので、受光特性が変わってしまう。すなわち、I-V特性に個体差が生まれる。
 (光センサ回路を内蔵した表示装置)
 本発明に係る表示装置は、上記のように対称的なレイアウトを持つフォトダイオードを使用した光センサ回路を内蔵している。
 まず、表示装置の概略構成を説明する。図2に示すように、本発明に係る表示装置10は、各種ドライバおよび画素を構成する全ての回路素子が集積された透明基板12を備えている。透明基板12の材質は、例えばガラスである。
 なお、上記全ての回路素子は、透明基板12上にモノリシックに形成されている。「モノリシックに形成」とは、物理的プロセスおよび/または化学的プロセスにより、ガラス基板上に直接に素子が形成されることを意味し、半導体回路がガラス基板に実装されることを含まない意である。
 また、表示装置10は、アクティブマトリクス領域13、ソースドライバ14、ゲートドライバ15、センサ行ドライバ16およびセンサ読取ドライバ17とを備えている。
 アクティブマトリクス領域13には、ソース信号線および走査信号線がマトリクス状に形成され、両線の交差位置に対応して、画素を駆動するスイッチング素子および画素電極等、画素を構成する周知の要素が形成されている。また、各画素内に光センサ回路が設けられている。
 ソースドライバ14は、ソース信号線を介して表示信号を供給し、ゲートドライバ15は、走査信号線を介して各画素に画素選択信号を供給する。
 センサ行ドライバ16は、光センサ回路を行ごとに選択して駆動し、センサ読取ドライバ17は、光センサ回路に一定電位の電源電圧VDDを印加するとともに、光検出信号を光センサ回路から読み出す。
 図3は、アクティブマトリクス領域13を構成する画素の1つに設けられた画素回路18の回路構成を示している。画素回路18は、表示用回路18aと、光センサ回路18bとを備えている。なお、表示用回路18aは画素毎に設けられているのに対し、光センサ回路18bは全ての画素に必ずしも設ける必要はなく、光検出のために求められる解像度との兼ね合いにより、必要な画素(例えば、所定数の複数画素ごと)に設ければよい。
 表示用回路18aは、縦横(列方向および行方向)に列設されるソース信号線21およびゲート信号線22の各交点もしくは近傍に形成され、薄膜トランジスタ(以下、TFTと呼ぶ)23と、TFT23の一端に接続された画素電極と画素電極に対向する共通電極24との間に構成される液晶容量25と、共通信号線26との間に接続される補助容量27とから構成されている。
 一方、光センサ回路18bは、トランジスタを1つだけ用いた1T(トランジスタの略)方式の回路として構成されている。TFT:M1(図1に示すTFT3に相当)は、ソースフォロワトランジスタ(電圧フォロワトランジスタ)として機能する。TFT:M1のドレインは電源供給線28(図1に示す前記電源供給線6に相当)に接続され、ソースは出力信号線29(図1に示す前記出力信号線7に相当)に接続されている。上記電源供給線28および出力信号線29は、センサ読取ドライバ17に接続され、電源供給線28にはセンサ読取ドライバ17から前記電源電圧VDDが印加される。
 また、TFT:M1のゲートには、基準ダイオード5と等価なフォトダイオード1,2(以下、フォトダイオード1,2をフォトダイオード30と総称する)のカソード(第3電極)が接続されるとともに、フォトダイオード30と直列に接続された積分容量31(図1の積分容量4に相当)の一端(第2電極)が接続されている。
 なお、フォトダイオード30のアノード(第4電極)は、センサ行ドライバ16からリセット信号RSTが送られるリセット信号線(初期化信号入力線)32に接続され、積分容量31の他端(第1電極)は、行選択信号RWSが送られる行選択信号線(選択信号入力線)33に接続されている。なお、行選択信号RWSは、マトリクス状に並んでいる光センサ回路の特定行を選択し、その特定行にある光センサ回路から検出信号を出力させる役割を持っている。
 (光センサ回路の製造プロセス)
 本実施の形態において、上記フォトダイオード30を形成するためのシリコン膜は、TFT:M1などのアクティブ素子を形成するためのシリコン膜を透明基板12上に形成するのと同時に形成されている。また、上記各領域1a,1b,1c,2a,2b,2cは、上記アクティブ素子や、上記ソースドライバ14、ゲートドライバ15、センサ行ドライバ16およびセンサ読取ドライバ17に含まれる回路素子を構成するP型またはN型の半導体領域の形成工程(イオン注入工程)を利用して形成されている。
 例えば、N型半導体領域1cとN型半導体領域2aとは、アクティブ素子のN型半導体領域の形成工程(イオン注入工程)によって形成することができる。アクティブ素子のN型半導体領域が、N型半導体領域1cおよび2aとは注入条件の異なる複数回のイオン注入によって形成される場合には、この複数回のイオン注入工程の中から、N型半導体領域1cおよび2aの形成に最適なイオン注入の工程が選択される。
 チャネル領域1bおよび2bは、それぞれが隣接する不純物半導体領域よりも電気的に中性に近くなるように形成されている。例えば、N型半導体領域1cおよび2a、またはP型半導体領域1aおよび2cのイオン注入時に、チャネル領域1bおよび2bの形成領域に前述したマスクを設けることによって、または、成膜されたシリコン膜が電気的に中性でない場合は、チャネル領域1bおよび2bの形成領域にもイオン注入を行うことによって、チャネル領域1bおよび2bを形成することができる。
 なお、シリコン膜は、アモルフアスシリコン膜や、ポリシリコン膜、あるいは連続粒界結晶シリコン(CGS;Continuous Grain Silicon)膜等によって形成することができる。ただし、本実施の形態においては、全ての回路素子を透明基板12上にモノリシックに形成する。このため、電子の移動度の点から、シリコン膜はポリシリコン膜やCGS膜によって形成するのが好ましく、特に、電子の移動度が最も高いCGS膜によって形成することが好ましい。
 (光センサ回路の動作;明状態)
 次に、図4を参照して、光センサ回路18bの動作を説明する。
まず、TFT:M1のゲート電位VINTをリセットするために、センサ行ドライバ16からリセット信号線32にハイレベルのリセット信号RSTが送られる。これにより、リセット期間(t1~t2)において、フォトダイオード30に順方向バイアスがかかるので、積分容量31が充電され、ゲート電位VINTは徐々に立ち上がり、最終的に初期化電位(VDDR)に到達する。
 ゲート電位VINTが初期化電位に到達した後、リセット信号RSTをローレベルに落とすと、フォトダイオード30のカソード電位の方がアノード電位より高くなるので、フォトダイオード30に逆バイアスがかかる。このときのゲート電位VINTは、上記初期化電位(VDDR)から、フォトダイオード30における順方向電圧降下分(V)およびフォトダイオード30の寄生容量に起因した電圧降下分(ΔVRST)を差し引いた値となる。
 この状態で、フォトダイオード30に光が照射される光検出期間(t2~t3)では、光の強さに応じて、逆バイアスによる光電流がフォトダイオード30に流れる。この結果、積分容量31に保持されていた電荷が、リセット信号線32を介して放電されるため、ゲート電位VINTが次第に下がり、最終的には、光の強さに応じた検出電位まで下がる。
 続いて、光検出結果の読み取り期間、すなわち検出信号読取期間(t3~t4)に入り、その後、積分容量31の他端に、センサ行ドライバ16から行選択信号線33を介してハイレベルの行選択信号RWSが印加される。これにより、積分容量31越しにゲート電位VINTが突き上げられるので、ゲート電位VINTは、上記検出電位に行選択信号RWSのハイレベルの電位が上乗せされた電位(例えば、図4に示す電位V1)になる。
 なお、図4に示す電位V1は、強い光をフォトダイオード30が受光し、t3において、ゲート電位VINTが最も低いレベルに落ちたときの明状態に対応している。
 ゲート電位VINTが突き上げられると、TFT:M1がオンになるしきい値電圧を越えるので、TFT:M1がオン状態になる。この結果、ゲート電位VINTのレベルに応じた、すなわち光の強さに応じた増幅率で制御された電圧が、検出信号(例えば図4に示す明状態のVPIX)として、TFT:M1のソースから出力され、出力信号線29を介してセンサ読取ドライバ17に送られる。
 (光センサ回路の動作;暗状態)
 一方、上記光検出期間(t2~t3)において、フォトダイオード30に光が照射されない場合には、フォトダイオード30に光電流が発生しないため、ゲート電位VINTは、初期化電位をほぼ保持し続ける。実際には、わずかにリーク電流が生じるため、ゲート電位VINTは、初期化電位より若干低い検出電位になる。
 続いて、上記検出信号読取期間(t3~t4)では、上記と同様に、積分容量31越しにゲート電位VINTが突き上げられるので、ゲート電位VINTは、上記初期化電位に行選択信号RWSのハイレベルの電位が上乗せされた電位とほぼ等しい電位(例えば、図4に示す電位V2)になる。
 このとき、TFT:M1が出力する検出信号(例えば図4に示す暗状態のVPIX)は、最大レベルを示す。
 このようにして、フォトダイオード30が受光した光の強さに応じたレベルを持つ検出信号が生成され、しかも、その検出信号は、光センサ回路18bが内蔵された各画素において生成される。したがって、図2に示す表示装置10が表示用の光源として備えているバックライトの光を利用して、表示装置10の表示画面に近接配置された検出対象物について、表示画面上の座標読み取りや、文字読み取り、あるいは指紋読み取りなどの検出動作を行うことができる。
 なお、光センサ回路18bは、図7の(a)に基づいて後述する従来のCMOS光センサ回路と比較して、非常に少ない数の素子によって構成されている。このため、光センサ回路18bが画素に占める占有面積が小さくなるため、1T方式の光センサ回路18bは、画素の開口率を大きくするのに非常に有利である。また、素子の数が少なければ、光センサ回路18bの自己寄生容量が小さくなるので、検出動作の反応速度が速くなるとともに、寄生容量の引き込みによって、ダイナミックレンジが低減される問題も改善することができる。
 以上のように、本発明のフォトダイオードを利用して1T方式の光センサ回路を構成し、その光センサ回路を画素に内蔵して表示装置を構成すると、光検出精度が表示装置毎にばらつくという問題が無く、どの表示装置でも、所望の検出特性を得ることができ、かつ明るい表示を行う優れた表示装置を提供することができる。
 (画素における光センサ回路のレイアウト例)
 上記光センサ回路18bをフルカラー表示を行う液晶表示装置の画素内に設けたときの素子レイアウトの一例について、図6を参照して説明する。
 図6は、赤緑青(RGB)三色の副画素35R,35G,35Bによって構成された1画素における、光センサ回路18b付近を拡大して模式的に表した平面図である。
 副画素35R,35G,35Bは、図6には図示していないが、上記表示用回路18aをそれぞれ備えている。ソース信号線21は、互いに行方向に隣接した副画素35R,35G,35Bの各間を列方向に延び、各表示用回路18aの構成要素であるTFT23(図3)に各色の表示信号を供給する。
 なお、図6に示す構成例では、副画素35R,35G間に設けられたソース信号線21が、前記電源供給線28を兼ね、副画素35G,35B35G間に設けられたソース信号線21が、前記出力信号線29を兼ねている。
 光センサ回路18bは、副画素35R,35G,35Bの列方向の一端側領域を利用して設けられている。その一端側領域は、ソース信号線21と直交する前記リセット信号線32と行選択信号線33とによって区画されている。なお、リセット信号線32と行選択信号線33とは、互いに列方向に一定間隔を置いて設けられている。
 図6に示す構成例では、光センサ回路18bの構成要素であるTFT:M1が、副画素35Gの上記一端側領域に設けられ、フォトダイオード30としてのフォトダイオード1,2が、それぞれ副画素35Rおよび副画素35Bの上記一端側領域に設けられている。
 また、副画素35R,35G間のソース信号線21の例えば下層に、TFT:M1のゲートとフォトダイオード1のカソード(N層)とを接続するライン36aが設けられ、ライン36aの上に、行選択信号線33の一部である延伸部37aが延び出している。このライン36aと延伸部37aの重なりにより、前記積分容量31の一部である積分容量31aが形成されている。
 同様に、副画素35G,35B間のソース信号線21の例えば下層に、TFT:M1のゲートとフォトダイオード2のカソード(N層)とを接続するライン36bが設けられ、ライン36bの上に、行選択信号線33の一部である延伸部37bが延び出している。このライン36bと延伸部37bとの重なりにより、前記積分容量31の一部である積分容量31bが形成されている。なお、上記ライン36aおよび36bを例えばSiで形成することができる。
 TFT:M1のドレインは、電源供給線28を兼ねたソース信号線21とコンタクト部38aを介して接続され、TFT:M1のソースは、出力信号線29を兼ねたソース信号線21とコンタクト部38bを介して接続されている。さらに、フォトダイオード1のアノード(P層)は、リセット信号線32とコンタクト部38cを介して接続され、フォトダイオード2のアノード(P層)もまた、リセット信号線32とコンタクト部38dを介して接続されている。
 図6に示すように、光センサ回路18bは、図7の(a)に示す従来のCMOS光センサ回路と比較して、非常に少ない構成要素から成っているため、開口率の向上に寄与し、明るい表示を可能にすることがわかる。
 なお、低温ポリシリコン(LPS;Low temperature Poly Silicon)で作成した薄膜フォトダイオードのような光センサ素子は、青色光に対する感度が相対的に高く、赤色光に対する感度が相対的に低いという特性を持っている。この特性のため、光センサ素子を赤色画素に置くと、感度が悪いために、ダイナミックレンジが狭くなるというデメリットがあるが、画素に回り込む迷光を読まなくなるので、信号品質が良くなるというメリットがある。一方、光センサ素子を青色画素に置くと、感度が良いために、ダイナミックレンジが広くなるというメリットがあるが、迷光を拾いやすいので、信号品質が落ちるというデメリットがある。
 図6の構成は、光センサ素子を赤色画素と青色画素との双方に配置したので、上記のメリットとデメリットとを併せ持つことにより、ダイナミックレンジと信号品質とのバランスがうまく取れた光センサとなっている。
 (光センサ回路のヴァリエーション;1T方式)
 図7に、光センサ回路18bのヴァリエーションを示す。図7の(a)~(c)に示す光センサ回路61のいずれにおいても、フォトダイオード62を、本発明の対称的に配置された偶数個のフォトダイオードで置き換えることができる。
 図7の(c)は、図3,4,6に基づいて既に説明した光センサ回路18bと同じ構成の1T方式の光センサ回路を示している。すなわち、図3に示す光センサ回路18bの構成要素と、図7の(c)に示す光センサ回路の構成要素とは、以下のように対応している。
 フォトダイオード30---フォトダイオード62
 積分容量31    ---積分容量63
 TFT:M1    ---TFT65(ソースフォロワトランジスタ)
 (光センサ回路のヴァリエーション;3T方式)
 一方、図7の(a)は、3つのTFT64,65,66を備えた3T方式の従来のCMOS光センサ回路である。フォトダイオード62と積分容量63とが並列に接続され、フォトダイオード62のアノードと積分容量63の一端とは接地される一方、フォトダイオード62のカソードと積分容量63の他端とは、TFT65のゲートに接続されるとともに、TFT64のソースに接続されている。
 TFT64のゲートは、前記リセット信号RSTを供給する前記リセット信号線32に接続され、ドレインは前記電源電圧VDDを供給する電源供給線28に接続されている。
 また、TFT65のソースと、前記出力信号線29とは、TFT66のドレインおよびソースを介して接続されている。こTFT66のゲートは、前記行選択信号RWSを供給する前記行選択信号線33に接続されている。
 上記の構成において、TFT64のゲートにリセット信号RSTが供給されると、積分容量63は電源電圧VDDによって充電され、TFT65のゲート電位VINTを初期化電位に保持する。また、このとき、フォトダイオード62には逆バイアスがかかる。
 この状態で、フォトダイオード62が受光すると、受光強度に応じた強さの光電流が発生するので、積分容量63に保持された電荷が放電し、TFT65のゲート電位VINTは受光強度に応じた電位に下がる。
 次に、検出信号読取期間において、TFT66のゲートに行選択信号RWSが供給されると、TFT66がオンになり、TFT65のゲート電位VINTに応じた電圧、すなわち、受光強度が0の暗状態では最大値を示し、受光強度が充分強い明状態では最小値を示す電圧が、TFT65のソースからTFT66を経て、出力信号線29に出力される。
 (光センサ回路のヴァリエーション;2T方式)
 次に、図7の(b)は、トランジスタを2つ用い、3T方式の光センサ回路より構成要素を1つ減らし、開口率の向上を図った2T方式の光センサ回路を示している。
 2T方式の光センサ回路では、3T方式の光センサ回路から、リセット信号RSTによってオンオフ制御されるTFT64を省略し、積分容量63の一方の電極(第2電極)をTFT65のゲートおよびフォトダイオード62のカソード(第3電極)に接続するとともに、積分容量63の他方の電極(第1電極)を電源電圧VDDを供給する電源供給線に接続している。フォトダイオード62のアノード(第4電極)には、1T方式のフォトダイオード62と同様に、リセット信号RSTが供給されるようになっている。
 すなわち、2T方式の光センサ回路は、
 (1)電源電圧VDDを供給する上記電源供給線6と、光センサ回路の光検出信号を出力する出力信号線7との間に、2つのドレインソース導電路を直列に形成するように、直列接続されたTFT65およびTFT66と、
 (2)上記光検出信号の読取期間中に、上記TFT66のゲートに上記行選択信号RWSを供給する上記行選択信号線9と、
 (3)上記フォトダイオード62のリセット期間中に、上記フォトダイオード62に順方向バイアスをかける第1電圧と、光検出期間中に、上記フォトダイオード62に逆バイアスをかける第2電圧とに変化する上記リセット信号RSTを供給する上記リセット信号線8とを備え、
 (4)上記フォトダイオード62のカソードが、上記TFT65のゲートに接続されているとともに、積分容量63を介して上記電源供給線6に接続されている。
 以下、2T方式の光センサ回路の動作を説明する。
まず、TFT65のゲート電位VINTをリセットするために、電源電圧VDDに等しいハイレベルのリセット信号RSTがフォトダイオード62のアノードに印加される。これにより、リセット期間において、フォトダイオード62に順方向バイアスがかかる。ゲート電位VINTは、電源電圧VDDからフォトダイオード62の順方向電圧降下分を差し引いた初期化電位になる。
 ゲート電位VINTが初期化電位に到達した後、リセット信号RSTをローレベル(例えば0V)に落とすと、フォトダイオード62のカソード電位の方がアノード電位より高くなるので、フォトダイオード62に逆バイアスがかかる。この状態で、フォトダイオード62に光が照射される光検出期間では、光の強さに応じて、逆バイアスによる光電流がフォトダイオード62に流れる。この結果、積分容量63に電荷が溜まるので、ゲート電位VINTは、積分容量31にかかる電圧を電源電圧VDDから差し引いた電圧となる。すなわち、ゲート電位VINTは、光の強さに応じて下降する。
 続いて、検出信号読取期間に入り、その後、TFT66のゲートに、ハイレベルの行選択信号RWSが印加される。これにより、TFT66がオンになるので、ゲート電位VINTのレベルに応じた、すなわち光の強さに応じた増幅率で制御された電圧が、検出信号として、TFT66のソースから出力される。
 このように、2T方式の光センサ回路は、3T方式の光センサ回路より少ない数の素子によって構成されているので、画素の開口率を大きくするのに有利である。
 〔実施の形態2〕
 本発明の他の実施形態について図を参照しながら説明すれば、以下の通りである。なお、説明の便宜上、前記実施の形態に登場した構成要素と同等の構成要素には、同じ記号を付し、重複した説明を省略する。このことは、後述する他の実施形態についても同様である。
 (フォトダイオードにおける半導体領域のレイアウト1)
 前記実施の形態1では、図6に示したとおり、フォトダイオード1,2を別々のSiアイランドに形成していた。これに対し、本実施の形態では、2つのフォトダイオードが1つのSiアイランドの中に形成されている。
 図8の(a)は、図5に示すフォトダイオード1,2と等価なフォトダイオード40を示している。図5に示すフォトダイオード1,2では、N型半導体領域1cとN型半導体領域2aとが別々の領域であり、電気的に接続されているのに対し、フォトダイオード40では、N型半導体領域1cとN型半導体領域2aとがフォトダイオード1,2によって共有されている。
 このように、2つのフォトダイオードを1つのSiアイランドの中に形成した構成であっても、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置することができ、かつ、基準ダイオードと同じ働きをさせることができる。
 これにより、2つのフォトダイオードを別々のSiアイランドに形成した場合と比べて、基板上で占めるフォトダイオードの面積を縮小することができるので、例えば、フォトダイオードを1つの画素(例えば、上記副画素35Rまたは副画素35Bのどちらか)に内蔵させる場合に、その画素の小型化、もしくは開口率の向上に有利となる。
 (フォトダイオードにおける半導体領域のレイアウト2)
 図8の(b)は、2つのフォトダイオードが、P型半導体領域を共有した構成を持つフォトダイオード41を示している。
 フォトダイオード40とフォトダイオード41とは、P型半導体領域およびN型半導体領域の配列順序が正反対になっているが、アノードを構成するP型半導体領域にリセット信号RSTが供給され、カソードを構成するN型半導体領域に積分容量が接続されるように配線されているので、働きとして全く同等である。
 図1の(a)に示すフォトダイオード1,2を、フォトダイオード41によって置き換えた回路図を図9に示す。
 すなわち、図9に示す光センサ回路は、
(1)上記電源電圧VDDを供給する電源供給線6と、光センサ回路の光検出信号を出力する出力信号線7との間に、ドレインソース導電路を形成するTFT3と、(2)光検出信号の読取期間中に、TFT3のゲートの電位を容量を介して突き上げる前記行選択信号RWSを供給する前記行選択信号線9と、
(3)フォトダイオード41のリセット期間中に、フォトダイオード41に順方向バイアスをかける第1電圧と、光検出期間中に、フォトダイオード41に逆バイアスをかける第2電圧とに変化する前記リセット信号RSTを供給するリセット信号線8とを備えている。
 上記(1)~(3)の構成を備えた上で、さらに、図9の構成の場合、
(4)上記フォトダイオード41は、上記容量としての第1の容量CINTを介して行選択信号線9とTFT3のゲートとを接続する導電路にカソードが接続される一方、アノードがリセット信号線8に接続された第1のフォトダイオードと、上記容量としての第2の容量CINTを介して行選択信号線9とTFT3のゲートとを接続する導電路にカソードが接続される一方、アノードがリセット信号線8に接続された第2のフォトダイオードとを備えている。
 (光センサ回路のレイアウト1)
 図10は、フォトダイオード40を1つの画素(例えば、上記副画素35R,35G,35Bのいずれか)に内蔵させた光センサ回路のレイアウトの一例を示している。
 電源供給線28を兼ねたソース信号線21にドレインが接続され、出力信号線29を兼ねたソース信号線21にソースが接続されたTFT;M1のゲートに、フォトダイオード40のN型半導体領域が接続されている。
 フォトダイオード40の各半導体領域が配列された前記特定方向に平行に走る行選択信号線33に対して、フォトダイオード40のN型半導体領域から電極42が延び出すことによって、行選択信号線33と電極42との重なりができ、その結果、前記積分容量31が形成されている。
 さらに、行選択信号線33に対して平行に走るリセット信号線32から、フォトダイオード40の両端のP型半導体領域に対して、行選択信号線33を跨ぐように接続配線が形成されている。
 (光センサ回路のレイアウト2)
 図11は、フォトダイオード41を1つの画素(例えば、上記副画素35R,35G,35Bのいずれか)に内蔵させた光センサ回路のレイアウトの一例を示している。
 TFT;M1においては、図10と同様に、電源供給線28を兼ねたソース信号線21にドレインが接続され、出力信号線29を兼ねたソース信号線21にソースが接続されている。ただし、ゲートから二股の電極43が延び出し、フォトダイオード41の両端にあるN型半導体領域に接続されている。
 上記電極43は、N型半導体領域を経て、さらに行選択信号線33まで延び、行選択信号線33との重なりを形成する結果、前記積分容量31を形成している。
 なお、リセット信号線32から、フォトダイオード40のP型半導体領域に対して、行選択信号線33を跨ぐように接続配線が形成されている。
 〔実施の形態3〕
 本発明のさらに他の実施形態について図を参照しながら説明すれば、以下の通りである。
 図12に示すように、本実施形態のフォトダイオードは、4以上の偶数であるN個のフォトダイオードを並列接続した構成である。すなわち、N個のフォトダイオードのカソード同士が電気的に接続されているとともに、アノード同士が電気的に接続されている。なお、図1の(a)に示す光センサ回路と同じく、各カソードは上記TFT3のゲートに接続され、各アノードには、上記リセット信号RSTが入力される。
 さらに、前述したように、フォトダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するとみなせる範囲から、チャネル幅が選択されているので、N個のフォトダイオードのそれぞれは、基準ダイオード5と同じチャネル長Lを有し、チャネル幅は、基準ダイオード5のチャネル幅Wの1/N、すなわちW/Nになっている。このようにチャネル幅およびチャネル長が設定されたN個のフォトダイオードを、電気的に並列接続したことによって、前記基準ダイオード5と同等の働きをするようになっている。
 次に、N個のフォトダイオードの基板におけるレイアウトについて説明する。図12に枠囲みBで示すように、2個のフォトダイオードが1セットをなし、複数セット(N/2セット)のフォトダイオードが縦方向に配列されている。上記1セットをなす2個のフォトダイオードは、バイアス方向が互いに逆向きであり、カソード同士が対向している。
 また、N個のフォトダイオードをそれぞれ構成する各半導体領域の配列の方向は、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように基板上に配置されている。
 したがって、N個のフォトダイオードを基板上で作製する際に、不純物のイオン注入工程にて用いるマスクに位置ずれが生じても、1セットをなす2個のフォトダイオード同士が、それぞれのセット毎に特性の変化を相殺し合うので、常に基準ダイオード5と同じ特性のフォトダイオードを安定して作製することができる。
 図13は、図8に示すように、2個のフォトダイオードを1つのSiアイランド内に形成したセットを2つ用意し、その2セットのフォトダイオードを並列接続した例を示している。
 〔実施の形態4〕
 本発明のさらに他の実施形態について図を参照しながら説明すれば、以下の通りである。
 図14に示すフォトダイオードを構成するN個のフォトダイオードについても、上記特定方向との関係は全く同じである。すなわち、N個のフォトダイオードをそれぞれ構成する各半導体領域の配列の方向は、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように基板上に配置されている。
 その上で、N/2個のフォトダイオードを電気的に直列接続した第1の組(枠囲みC)と、N/2個のフォトダイオードを電気的に直列接続した第2の組(枠囲みD)とを備え、上記第1の組と第2の組とが、電気的に並列接続されている。
 上記第1の組および第2の組の各一端に位置するフォトダイオードのカソードは、それぞれ、上記行選択信号線9と上記TFT3のゲートとを上記積分容量4を介して接続する導電路に接続される一方、上記第1の組および第2の組の各他端に位置するフォトダイオードのアノードは、それぞれ、上記リセット信号線8に接続されている。
 なお、フォトダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するとみなせる範囲から、チャネル幅が選択されているので、N個のフォトダイオードの各チャネル幅は、全てW/2である。この理由は、以下のとおりである。
 チャネル幅をW/2としたN/2個のフォトダイオードを電気的に直列接続した場合、1個のフォトダイオードにかかる電圧は、N/2個のフォトダイオード全体にかかる電圧に、直列接続した個数、すなわちN/2の逆数を乗算した値となって、2/Nに減少する。このため、N/2個のフォトダイオードを電気的に直列接続した場合のI-V特性は、N/2個のフォトダイオードを構成する1個のダイオードのI-V特性と変わらない。
 このことをベースとして、上記第1の組と第2の組とを電気的に並列接続し、上記チャネル幅をW/2としているから、フォトダイオード全体の特性で見ると、上記の構成は、チャネル幅をW/2とした2個のダイオードを並列接続し、基準ダイオードのI-V特性と同じにした場合と変わらない。
 〔実施の形態5〕
 本発明のさらに他の実施形態について図を参照しながら説明すれば、以下の通りである。
 図15に示すフォトダイオードは、4個のフォトダイオードを1つのSiアイランド内に作り込むことによって、基板上で占めるフォトダイオードの面積を縮小するのに有利な構成を有しており、より具体的には、以下の(1)から(7)のように構成されている。
 (1)当該4個のフォトダイオードを、上記特定方向に沿って並んだ順に第1、第2、第3および第4のフォトダイオード51,52,53,54とし、かつ、例えばP型半導体領域(第1の半導体領域)55が、上記第2のフォトダイオード52および第3のフォトダイオード53によって共有されている。
 (2)上記第2のフォトダイオード52と上記第4のフォトダイオード54とは構成的に等価であり、上記第4のフォトダイオード54は、上記特定方向に沿って、上記第3のフォトダイオード53に対し直列接続されて配置されている。
 (3)上記第1のフォトダイオード51と上記第3のフォトダイオード53とは構成的に等価であり、上記第1のフォトダイオード51は、上記特定方向に沿って、上記第2のフォトダイオード52に対し直列接続されて配置されている。
 (4)上記第1のフォトダイオード51および第2のフォトダイオード52は、N型半導体領域(第2の半導体領域)56を共有している。
 (5)上記第3のフォトダイオード53および第4のフォトダイオード54もまた、他のN型半導体領域(第2の半導体領域)57を共有している。
 (6)図16も併せて参照すればわかるように、上記P型半導体領域55と、第1および第4のフォトダイオード51,54の各P型半導体領域58,59同士は、相互に電気的に接続されている。
 (7)上記N型半導体領域56,57同士もまた相互に電気的に接続されている。
 なお、図15のフォトダイオードを上記光センサ回路に用いた場合には、図16に示すように、P型半導体領域55,58,59にリセット信号RSTを供給する一方、N型半導体領域56,57を、TFT3のゲートおよび積分容量4の一方の電極に接続する。
 上記(2)の構成によれば、第2のフォトダイオード52と第4のフォトダイオード54における各半導体領域の配列順序が同じであり、上記(3)の構成によれば、第1のフォトダイオード51と第3のフォトダイオード53における各半導体領域の配列順序が同じである。これは、見方を変えると、第2のフォトダイオード52と第3のフォトダイオード53における各半導体領域の並びは、逆順、すなわち対称的になっており、第1のフォトダイオード51と第4のフォトダイオード54における各半導体領域の並びも、逆順、すなわち対称的になっているということである。
 したがって、上記の構成は、「上記複数のフォトダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され」ているという前記条件を満たしている。
 さらに、上記(6)(7)の構成は、第1~第4のフォトダイオード51~54が電気的に並列接続されていることを意味している。よって、フォトダイオードのI-V特性がチャネル幅の変化に対して、線形に変化するとみなせる範囲から、チャネル幅が選択されている場合には、チャネル長を上記Lに設定し、チャネル幅をW/4に選択することによって、基準ダイオード5と同等の働きをするフォトダイオードになる。
 なお、図15および図16のフォトダイオードは、4個のフォトダイオードを並列接続した例であるが、上記(6)(7)の構成のように、N型半導体領域同士を接続し、P型半導体領域同士を接続すれば、個数Nは4に限らず、4以上の偶数とすることができる。
 以上、発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。また、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明において、「真性半導体領域」は、隣接する第1の極性を示す半導体領域および第2の極性を示す半導体領域に比べて電気的に中性に近い領域であれば良い。但し「真性半導体領域」は、不純物を全く含まない領域や、伝導電子密度と正孔密度とが等しい領域であるのが好ましい。
 また、本発明のダイオードをTFTなど、他の種類の半導体素子に適用することも可能である。その場合、当該他の種類の半導体素子は、本発明のダイオードと同様に、チャネル幅およびチャネル長の取り得る範囲をそれぞれ適宜選択すれば、その選択したチャネル幅およびチャネル長と特性との間に、線形関係または線形関係とみなせる関係が成立するような素子である。
 このような半導体素子を下記のように特定することができる。
 相対的に不純物濃度が高い第1の半導体領域と、相対的に不純物濃度の低い半導体領域であるチャネル領域と、相対的に不純物濃度が高い第2の半導体領域とを少なくとも含み、かつこれらの半導体領域が、基板の面内に含まれる特定方向に沿って順に配列された半導体素子を基準半導体素子とし、その基準半導体素子のチャネル幅をWとしたとき、
 基準半導体素子のチャネル長に平行な上記特定方向の各半導体領域のサイズを変えずに、チャネル幅が上記チャネル幅Wより小さく、かつ互いに等しいチャネル幅W1を備えた2以上の偶数であるN個の半導体素子を備え、
 上記複数の半導体素子をそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され、
 上記複数の半導体素子が互いに電気的に接続されていることによって、上記基準半導体素子と同等の働きをすること
を特徴とする半導体素子。
 上記の構成によって特定される半導体素子には、別々のマスク(N用とP用)を用いることを考慮して、チャネルを設計しているダイオードがあてはまるだけではなく、チャネル長の両端を別々のレイヤで設計している、すなわち非対称な構造を持つ半導体素子があてはまる。
 上記の非対称な構造を持つ半導体素子とは、例えばn-領域とゲート端とでチャネル長が規定されるTFTなどである。より具体的には、そのようなTFTには、GOLD構造を備えたTFTのうち、LDD領域を例えばドレイン側にのみ備えた片側GOLD構造を持つTFTが該当する。なお、上記GOLD構造とは、ゲート電極がチャネル領域と対向しているだけではなく、さらにゲート電極がLDD領域とオーバーラップするように対向した構造を指す。
 また、本発明の表示装置は、アクティブマトリクス基板を備える表示装置であれば良く、液晶表示装置のみならず、EL表示装置であってもよい。
 なお、本発明に係るダイオードを以下のように構成することもできる。
すなわち、相対的に不純物濃度が高く、第1の極性を示す第1の半導体領域と、相対的に不純物濃度の低い半導体領域であるチャネル領域と、相対的に不純物濃度が高く、第1の極性とは逆極性を示す第2の半導体領域とが、互いに接して、かつ基板の面内方向に順列配置された第1のダイオードと、第1のダイオードの各半導体領域と実質的に等しいサイズの各半導体領域を備えた第2のダイオードとが、第1のダイオードのバイアス方向と、第2のダイオードのバイアス方向とを、互いに逆向きとするように、上記基板上に対称的に配置され、かつ、第1のダイオードと第2のダイオードとが電気的に並列接続され、第1のダイオードまたは第2のダイオードのチャネル幅を2倍にしたダイオードと同等の働きをすることを特徴とするダイオード。
 上記の構成によれば、第1のダイオードにおいて、第1の半導体領域と、チャネル領域と、第2の半導体領域とが、基板の面内方向にこの順で配置されている例を考えると、「第1のダイオードのバイアス方向と、第2のダイオードのバイアス方向とを、互いに逆向きとするように、上記基板上に対称的に配置」するという条件に従って、第2のダイオードでは、第1のダイオードに近い方から、第2の半導体領域と、チャネル領域と、第1の半導体領域とが、第1のダイオードの各半導体領域の配列方向と同じ方向に沿って、この順で配置されている構成となる。
 なお、第1のダイオードと第2のダイオードとが電気的に並列接続されているので、上記の例では、2つの第1の半導体領域同士が電気的に接続され、2つの第2の半導体領域同士も電気的に接続されている。
 上記のように配置された構成では、第1の半導体領域を不純物のイオン注入によって形成する際に使用するマスクが、例えば、第1のダイオードのチャネル長を短くする第1の方向にシフトした場合、第2のダイオードについても、マスクは同じ第1の方向にシフトする。上記第1の方向とは、すなわち、第1のダイオードにとっては、第1の半導体領域からチャネル領域に向かう方向であり、第2のダイオードにとっては、チャネル領域から第1の半導体領域に向かう方向である。
 この結果、第2のダイオードでは、チャネル領域から第1の半導体領域に向かう方向へ第1の半導体領域を形成するマスクがシフトするので、チャネル長が長くなる。このとき、第2のダイオードでチャネル長が長くなった長さは、第1のダイオードでチャネル長が短くなった長さに等しいという関係が成立する。
 したがって、本発明によれば、マスクの位置ずれが発生しても、第1のダイオードにおけるチャネル長の短縮が、第2のダイオードにおけるチャネル長の伸長によって相殺される。
 なお、チャネル長の短縮に伴うダイオードのI-V特性変化と、チャネル長の伸長に伴うダイオードのI-V特性変化とが相殺し合わないと、マスクの位置ずれの程度によってダイオードのI-V特性がばらつくという別の問題が生じることになるが、本発明は、そうはならず、相反する2種類の特性変化が相殺し合う発明である。
 このことは、「第1のダイオードまたは第2のダイオードのチャネル幅を2倍にしたダイオードと同等の働きをする」という条件により、保証されている。より具体的な例を挙げると、上記ダイオードをフォトダイオードとして使用した場合、受光によってダイオードが発生する光電流の大きさは、チャネル幅に常に比例する一方、チャネル長の範囲を適宜選択すれば、チャネル長にもほぼ比例する。
 上述の「第1のダイオードまたは第2のダイオードのチャネル幅を2倍にしたダイオードと同等の働きをする」という条件は、ダイオードのI-V特性がチャネル長に比例するようなチャネル長の範囲を適宜選択した構成であるという意味を表現している。
 以上のように、本発明によれば、第1の半導体領域を形成するためのマスク、あるいは第2の半導体領域を形成するためのマスクが、それぞれ独立に、どのように位置ずれしたとしても、常に、第1のダイオードまたは第2のダイオードのチャネル幅を2倍にしたダイオードと同等の働きをする安定した特性を持つダイオードを製造することができる。
 また、チャネル幅を2倍にしたダイオードと比較すると、第1のダイオードおよび第2のダイオードの各チャネル幅は1/2になるので、基板においてダイオードが占有する領域を、チャネル幅に平行な方向に狭めることができる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。また、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明に係るダイオードは、以上のように、相対的に不純物濃度が高く、第1の極性を示す第1の半導体領域と、相対的に不純物濃度の低い半導体領域であるチャネル領域と、相対的に不純物濃度が高く、第1の極性とは逆極性を示す第2の半導体領域とが、互いに接しており、かつ基板の面内に含まれる特定方向に沿って順に配列されたダイオードを基準ダイオードとし、その基準ダイオードのチャネル幅をWとしたとき、基準ダイオードのチャネル長に平行な方向の各半導体領域のサイズを変えずに、チャネル幅が上記チャネル幅Wより小さく、かつ互いに等しいチャネル幅W1を備えた2以上の偶数であるN個のダイオードを備え、上記複数のダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され、上記複数のダイオードが互いに電気的に接続されていることによって、上記基準ダイオードと同等の働きをする構成である。
 それゆえ、第1の半導体領域を形成するためのマスク、あるいは第2の半導体領域を形成するためのマスクが、それぞれ独立に、どのように位置ずれしたとしても、常に、基準ダイオードと同等の働きをする安定した特性を持つダイオードを製造することができるという効果を奏する。
 本発明に係る光センサ回路は、以上のように、上述したいずれかのダイオードをフォトダイオードとして用いた構成である。
 それゆえ、本発明に係る光センサ回路は、製造工程におけるマスクの位置ずれによる影響を受けない安定した受光特性を備えることができ、上記光センサ回路を液晶表示装置の画素に内蔵させた場合などでは、画素の開口率を向上させるなどの副次的効果を得ることができるという効果を奏する。
 本発明に係る表示装置は、以上のように、表示画面を構成する複数の画素の少なくとも1つに、上記光センサ回路を内蔵した構成である。
 それゆえ、光センサの機能を利用した各種機能が安定し、しかも明るい表示を行える優れたパフォーマンスの表示装置を提供することができるという効果を奏する。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明は、チャネル幅およびチャネル長と特性との間に、線形関係または線形関係とみなせる関係が成立するような半導体素子と、その半導体素子を用いた電子回路と、その電子回路を備えた装置に適用することができる。

Claims (14)

  1.  相対的に不純物濃度が高く、第1の極性を示す第1の半導体領域と、相対的に不純物濃度の低い半導体領域であるチャネル領域と、相対的に不純物濃度が高く、第1の極性とは逆極性を示す第2の半導体領域とが、互いに接しており、かつ基板の面内に含まれる特定方向に沿って順に配列されたダイオードを基準ダイオードとし、その基準ダイオードのチャネル幅をWとしたとき、
     基準ダイオードのチャネル長に平行な上記特定方向の各半導体領域のサイズを変えずに、チャネル幅が上記チャネル幅Wより小さく、かつ互いに実質的に等しいチャネル幅W1を備えた2以上の偶数であるN個のダイオードを備え、
     上記N個のダイオードをそれぞれ構成する各半導体領域の配列の方向が、全て上記特定方向に平行であり、かつ、上記各半導体領域の互いの位置関係が、全体として線対称または点対称の位置関係となるように上記基板上に配置され、
     上記N個のダイオードが互いに電気的に接続されていることによって、上記基準ダイオードと同等の働きをすること
    を特徴とするダイオード。
  2.  上記N個のダイオードの各チャネル領域のチャネル長は、ダイオード電流とダイオードに印加する電圧との関係を表すI-V特性がチャネル長の変化に対して、線形に変化するとみなせる範囲から選択されていること
    を特徴とする請求の範囲第1項に記載のダイオード。
  3.  上記チャネル幅W1はW/Nであり、
     N個のダイオードが互いに並列接続されていること
    を特徴とする請求の範囲第1項または第2項に記載のダイオード。
  4.  N/2個のダイオードを電気的に直列接続した第1の組と、N/2個のダイオードを電気的に直列接続した第2の組とを備え、
     上記第1の組と第2の組とが、電気的に並列接続され、
     上記チャネル幅W1はW/2であること
    を特徴とする請求の範囲第1項または第2項に記載のダイオード。
  5.  上記Nが2の構成を含むダイオードであり、
     当該2個のダイオードを第1のダイオードおよび第2のダイオードとするとき、第1のダイオードおよび第2のダイオードは、1つのSiアイランドの中に形成され、
     かつ、上記第1の半導体領域または上記第2の半導体領域が、上記第1のダイオードおよび第2のダイオードによって、共有されていること
    を特徴とする請求の範囲第1項または第2項に記載のダイオード。
  6.  上記Nが4の構成を含むダイオードであり、
     当該4個のダイオードを、上記特定方向に沿って並んだ順に第1、第2、第3および第4のダイオードとし、かつ、上記第1の半導体領域が、上記第2のダイオードおよび第3のダイオードによって共有されている場合であって、
     上記第2のダイオードと上記第4のダイオードとは構成的に等価であり、上記第4のダイオードは、上記特定方向に沿って、上記第3のダイオードに対し直列接続されて配置され、
     上記第1のダイオードと上記第3のダイオードとは構成的に等価であり、上記第1のダイオードは、上記特定方向に沿って、上記第2のダイオードに対し直列接続されて配置され、
     上記第1のダイオードおよび第2のダイオードは、上記第2の半導体領域を共有し、
     上記第3のダイオードおよび第4のダイオードもまた、上記第2の半導体領域を共有し、
     上記第1の半導体領域同士が相互に電気的に接続され、
     上記第2の半導体領域同士もまた相互に電気的に接続されていること
    を特徴とする請求の範囲第1項または第2項に記載のダイオード。
  7.  請求の範囲第1項から第6項のいずれか1項に記載のダイオードをフォトダイオードとして用いたこと
    を特徴とする光センサ回路。
  8.  (1)電源電圧を供給する電源供給線と、光センサ回路の光検出信号を出力する出力信号線との間に、ドレインソース導電路を形成するトランジスタと、
     (2)上記光検出信号の読取期間中に、上記トランジスタのゲートの電位を容量を介して突き上げる行選択信号を供給する行選択信号線と、
     (3)上記フォトダイオードのリセット期間中に、上記フォトダイオードに順方向バイアスをかける第1電圧と、光検出期間中に、上記フォトダイオードに逆バイアスをかける第2電圧とに変化するリセット信号を供給するリセット信号線とを備えたこと、
    を特徴とする請求の範囲第7項に記載の光センサ回路。
  9.  上記フォトダイオードを構成する上記N個のフォトダイオードのそれぞれのカソードは、上記行選択信号線と上記ゲートとを上記容量を介して接続する導電路に接続される一方、それぞれのアノードが上記リセット信号線に接続されたこと、
    を特徴とする請求の範囲第8項に記載の光センサ回路。
  10.  上記フォトダイオードは、N/2個のフォトダイオードを電気的に直列接続した第1の組と、N/2個のフォトダイオードを電気的に直列接続した第2の組とを備え、
     上記第1の組および第2の組の各一端に位置するフォトダイオードのカソードは、それぞれ、上記行選択信号線と上記ゲートとを上記容量を介して接続する導電路に接続される一方、上記第1の組および第2の組の各他端に位置するフォトダイオードのアノードは、それぞれ、上記リセット信号線に接続されていること、
    を特徴とする請求の範囲第8項に記載の光センサ回路。
  11.  (1)電源電圧を供給する電源供給線と、光センサ回路の光検出信号を出力する出力信号線との間に、2つのドレインソース導電路を直列に形成するように、直列接続された第1のトランジスタおよび第2のトランジスタと、
     (2)上記光検出信号の読取期間中に、上記第2のトランジスタのゲートに行選択信号を供給する行選択信号線と、
     (3)上記フォトダイオードのリセット期間中に、上記フォトダイオードに順方向バイアスをかける第1電圧と、光検出期間中に、上記フォトダイオードに逆バイアスをかける第2電圧とに変化するリセット信号を供給するリセット信号線とを備え、
     (4)上記フォトダイオードのカソードが、上記第1のトランジスタのゲートに接続されているとともに、容量を介して上記電源供給線に接続されていること、
    を特徴とする請求の範囲第7項に記載の光センサ回路。
  12.  表示画面を構成する複数の画素の少なくとも1つに、請求の範囲第7項から第11項のいずれか1項に記載の光センサ回路を内蔵したこと
    を特徴とする表示装置。
  13.  上記複数の画素のうち、隣接し合った所定数の複数の画素に対し、上記光センサ回路を1つずつ内蔵し、
     当該光センサ回路の1つを構成する上記ダイオードおよびその他の素子を、上記所定数の複数の画素に分散して配置したこと
    を特徴とする請求の範囲第12項に記載の表示装置。
  14.  上記複数の画素のそれぞれは、赤緑青三色の副画素によって構成され、
     上記光センサ回路の1つを構成する上記N個のダイオードを、赤色の副画素と、青色の副画素とに分散して配置したこと、
    を特徴とする請求の範囲第12項に記載の表示装置。
PCT/JP2009/050371 2008-04-28 2009-01-14 ダイオードおよびそれを備えた光センサ回路並びに表示装置 WO2009133716A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980103935XA CN101933165A (zh) 2008-04-28 2009-01-14 二极管和包括该二极管的光传感器电路以及显示装置
US12/867,151 US8294079B2 (en) 2008-04-28 2009-01-14 Diode, photodetector circuit including same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008117434 2008-04-28
JP2008-117434 2008-04-28

Publications (1)

Publication Number Publication Date
WO2009133716A1 true WO2009133716A1 (ja) 2009-11-05

Family

ID=41254940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050371 WO2009133716A1 (ja) 2008-04-28 2009-01-14 ダイオードおよびそれを備えた光センサ回路並びに表示装置

Country Status (3)

Country Link
US (1) US8294079B2 (ja)
CN (1) CN101933165A (ja)
WO (1) WO2009133716A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294315A (ja) * 2008-06-03 2009-12-17 Toshiba Mobile Display Co Ltd 液晶表示装置
JPWO2011059038A1 (ja) * 2009-11-13 2013-04-04 シャープ株式会社 半導体装置およびその製造方法
JP2015029354A (ja) * 2009-11-12 2015-02-12 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472854A4 (en) * 2009-08-26 2013-12-04 Sharp Kk LIGHT DETECTOR AND DISPLAY DEVICE
DE102013110695A1 (de) * 2012-10-02 2014-04-03 Samsung Electronics Co., Ltd. Bildsensor, Verfahren zum Betreiben desselben und Bildverarbeitungssystem mit demselben
EP3224700B1 (en) 2014-11-24 2023-03-08 Hewlett-Packard Development Company, L.P. Touch screen
CN104915657B (zh) 2015-06-29 2018-09-18 京东方科技集团股份有限公司 基于ltps技术的掌纹识别电路、掌纹识别方法以及显示屏
CN108732609B (zh) * 2017-04-24 2022-01-25 睿生光电股份有限公司 感测装置
CN107479760B (zh) * 2017-09-22 2021-09-24 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板和显示系统
US10818816B2 (en) * 2017-11-22 2020-10-27 Advanced Semiconductor Engineering, Inc. Optical device with decreased interference
CN108303176B (zh) * 2018-01-02 2020-02-11 京东方科技集团股份有限公司 一种光传感器、光检测方法和显示装置
DE102022124808A1 (de) 2022-09-27 2024-03-28 Infineon Technologies Ag Leistungs-halbleitervorrichtung, messsystem und verfahren zum bestimmen eines stroms einer leistungs-halbleitervorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129427A1 (ja) * 2005-05-31 2006-12-07 Sharp Kabushiki Kaisha 光センサ及び表示装置
WO2008044370A1 (fr) * 2006-10-11 2008-04-17 Sharp Kabushiki Kaisha Affichage à cristaux liquides
WO2008047677A1 (fr) * 2006-10-19 2008-04-24 Sharp Kabushiki Kaisha Appareil d'affichage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267967A (ja) 2005-03-25 2006-10-05 Toshiba Matsushita Display Technology Co Ltd 平面表示装置
GB2439118A (en) 2006-06-12 2007-12-19 Sharp Kk Image sensor and display
GB2439098A (en) 2006-06-12 2007-12-19 Sharp Kk Image sensor and display
JP5292787B2 (ja) * 2007-11-30 2013-09-18 ソニー株式会社 固体撮像装置及びカメラ
JP5749975B2 (ja) * 2010-05-28 2015-07-15 株式会社半導体エネルギー研究所 光検出装置、及び、タッチパネル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129427A1 (ja) * 2005-05-31 2006-12-07 Sharp Kabushiki Kaisha 光センサ及び表示装置
WO2008044370A1 (fr) * 2006-10-11 2008-04-17 Sharp Kabushiki Kaisha Affichage à cristaux liquides
WO2008047677A1 (fr) * 2006-10-19 2008-04-24 Sharp Kabushiki Kaisha Appareil d'affichage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294315A (ja) * 2008-06-03 2009-12-17 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2015029354A (ja) * 2009-11-12 2015-02-12 株式会社半導体エネルギー研究所 半導体装置
JPWO2011059038A1 (ja) * 2009-11-13 2013-04-04 シャープ株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
CN101933165A (zh) 2010-12-29
US20100308212A1 (en) 2010-12-09
US8294079B2 (en) 2012-10-23

Similar Documents

Publication Publication Date Title
WO2009133716A1 (ja) ダイオードおよびそれを備えた光センサ回路並びに表示装置
US11574978B2 (en) Display panel and display apparatus
WO2009139204A1 (ja) 薄膜トランジスタおよびそれを備えた光センサ回路並びに表示装置
KR101041970B1 (ko) 액정 표시 장치
CN102630313B (zh) 显示装置
US20110122111A1 (en) Display device
CN112510015B (zh) 显示面板以及电子设备
US11251249B2 (en) Display panel, display apparatus, display substrate, and method of fabricating display panel and display apparatus
CN114651332B (zh) 显示基板和显示装置
KR20210039323A (ko) 이미지 센서의 반도체 구조, 칩 및 전자 장치
US20120001880A1 (en) Display device
JP2008282961A (ja) 固体撮像装置
WO2006129427A1 (ja) 光センサ及び表示装置
WO2011152307A1 (ja) タッチセンサ付き表示装置
JPWO2009041112A1 (ja) 表示装置
US11600681B2 (en) Display device and manufacturing method thereof
CN115104186B (zh) 显示基板、显示面板、显示装置
US20220344425A1 (en) Display panel and display apparatus
CN114464137B (zh) 显示基板及显示装置
KR20210050621A (ko) 유기 발광 표시 장치
US20130207190A1 (en) Semiconductor device, and method for producing same
CN111261683A (zh) 显示基板、显示面板和显示装置
US20240138191A1 (en) Display panel and display apparatus
US20240138192A1 (en) Display panel and display apparatus
WO2021085484A1 (ja) 光検出器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103935.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12867151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09738653

Country of ref document: EP

Kind code of ref document: A1