US10818816B2 - Optical device with decreased interference - Google Patents

Optical device with decreased interference Download PDF

Info

Publication number
US10818816B2
US10818816B2 US15/821,302 US201715821302A US10818816B2 US 10818816 B2 US10818816 B2 US 10818816B2 US 201715821302 A US201715821302 A US 201715821302A US 10818816 B2 US10818816 B2 US 10818816B2
Authority
US
United States
Prior art keywords
substrate
region
optical device
disposed
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/821,302
Other versions
US20190157492A1 (en
Inventor
Lu-Ming Lai
Shih-Chieh Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Semiconductor Engineering Inc
Original Assignee
Advanced Semiconductor Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Engineering Inc filed Critical Advanced Semiconductor Engineering Inc
Priority to US15/821,302 priority Critical patent/US10818816B2/en
Assigned to ADVANCED SEMICONDUCTOR ENGINEERING, INC. reassignment ADVANCED SEMICONDUCTOR ENGINEERING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Lai, Lu-Ming, TANG, SHIH-CHIEH
Priority to CN201810126478.7A priority patent/CN109817657A/en
Priority to TW107104417A priority patent/TWI714826B/en
Publication of US20190157492A1 publication Critical patent/US20190157492A1/en
Application granted granted Critical
Publication of US10818816B2 publication Critical patent/US10818816B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • G06K9/00013
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present disclosure relates to an optical device and a method for manufacturing the same.
  • Some display panels can be categorized into liquid-crystal display (LCD) type display panels or organic light-emitting diode (OLED) type display panels.
  • LCD liquid-crystal display
  • OLED organic light-emitting diode
  • neither the LCD display panel nor the OLED display panel can achieve full-color light display.
  • full-screen display it can be desirable to integrate a fingerprint identification module into a display.
  • it is challenging to achieve such integration due to interference or cross-talk between a light emitting device and a photo detector included in such devices.
  • an optical device includes a substrate, a plurality of light emitting devices, a photo detector and a circuit layer.
  • the substrate has a first surface and a second surface opposite to the first surface.
  • the substrate includes a first region and a second region.
  • the light emitting devices are disposed on the first surface in the first region of the substrate.
  • the photo detector is disposed in the second region of the substrate.
  • the photo detector includes an electrical contact exposed from the second surface of the substrate.
  • the circuit layer is disposed on the second surface of the substrate and electrically connected to the electrical contact of the photo detector.
  • a display device in accordance another aspect of the present disclosure, includes a substrate, a pixel, a photo diode and a circuit layer.
  • the substrate includes a first region and a second region.
  • the pixel is disposed at the first region of the substrate.
  • the pixel includes a plurality of nanowire LEDs.
  • the photo diode is disposed at the second region of the substrate and adjacent to the pixel.
  • the circuit layer is electrically connected to the nanowire LEDs and the photo diode.
  • a method of manufacturing a display device includes (a) forming a plurality of nanowire LEDs on a top surface of a substrate; (b) forming a plurality of photo diodes within the substrate, wherein a thickness of each of the photo diodes is substantially the same as a thickness of the substrate; and (c) forming a circuit layer that is electrically connected to the nanowire LEDs and the photo diodes.
  • FIG. 1A illustrates a cross-sectional view of an optical device in accordance with some embodiments of the present disclosure.
  • FIG. 1B illustrates a perspective view of an optical device in accordance with some embodiments of the present disclosure.
  • FIG. 1C illustrates a cross-sectional view of a photo detector in accordance with some embodiments of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of an optical system in accordance with some embodiments of the present disclosure.
  • FIG. 3 illustrates a cross-sectional view of an optical device in accordance with some embodiments of the present disclosure.
  • FIG. 4A , FIG. 4B , FIG. 4C , FIG. 4D , FIG. 4E , FIG. 4F and FIG. 4G illustrate one or more stages of a method for manufacturing an optical device in accordance with some embodiments of the present disclosure.
  • FIG. 1A illustrates a cross-sectional view of some embodiments of an optical device 1 in accordance with some embodiments of the present disclosure.
  • the optical device 1 includes a substrate 10 , a circuit layer 11 , a protection layer 12 , light emitting devices 13 , a photo detector 14 and a collimator 15 .
  • the substrate 10 includes a silicon carbide (SiC) substrate, a sapphire substrate or a silicon substrate.
  • the substrate 10 also includes a heterojunction formed between two different semiconductor material layers, such as material layers with different band gaps.
  • the semiconductor structure 10 includes a non-doped narrow-band gap channel layer and a wide-band gap n-type donor-supply layer.
  • the substrate 10 has a top surface 101 (also referred to as “first surface”) and a bottom surface 102 (also referred to as “second surface”) opposite to the top surface 101 .
  • the substrate 10 may include a first region on which the light emitting devices 13 are disposed and a second region adjacent to the first region for accommodating the photo detector 14 .
  • the light emitting devices 13 are disposed on the top surface 101 of the substrate 10 . In some embodiments, the light emitting devices 13 are disclosed on the top surface 101 of the first region of the substrate 10 .
  • the light emitting devices 13 may include a plurality of emitting dies or other optical dies.
  • the light emitting devices 13 may include light-emitting diodes (LEDs), laser diodes, or other devices that may include one or more semiconductor layers.
  • the semiconductor layers may include silicon, silicon carbide, gallium nitride, or any other semiconductor materials.
  • the light emitting devices 13 are red-green-blue (RGB) LEDs including at least one red LED 13 a , at least one green LED 13 b and at least one blue LED 13 c .
  • RGB red-green-blue
  • the light emitting devices 13 include a plurality of red LEDs 13 a , a plurality of green LEDs 13 b and a plurality of blue LEDs 13 c arranged in arrays (e.g. uniform arrays, or non-uniform arrays).
  • the red LEDs 13 a , the green LEDs 13 b and the blue LEDs 13 c correspond to, or define, a pixel, which is adjacent to the photo detector 14 .
  • each pixel of the optical device 1 includes RGB LEDs.
  • the red LEDs 13 a , the green LEDs 13 b and the blue LEDs 13 c are nanowire LEDs. A wavelength of a light emitted by a nanowire LED varies according to a width of the nanowire LED. Therefore, respective widths of the red LED 13 a , the green LED 13 b and the blue LED 13 c are different from each other.
  • the nanowire LEDs can include any semiconductor material, and suitable materials for the nanowire LEDs include but are not limited to: GaAs (e.g. p-type GaAs), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GalnAs, AlInP, GaAIInP, GaAlInAsP, GalnSb, InSb, and Si.
  • GaAs e.g. p-type GaAs
  • InAs e.g. p-type GaAs
  • InAs InAs
  • Ge GaInN
  • GaN AlGaInN GaN AlGaInN
  • BN InP
  • InAsP GaInP
  • InGaP:Si InGaP:Zn
  • GalnAs AlInP
  • GaAIInP GaAlInAsP
  • a nanowire LED has an aspect ratio (corresponding to a ratio of its length to its width) of about 3 or greater, about 4 or greater, about 5 or greater, or about 10 or greater.
  • the photo detector 14 is disposed within the substrate 10 . In some embodiments, the photo detector 14 is disposed within the second region of the substrate 10 . In some embodiments, the photo detector 14 is for example, a PIN diode, a photo-diode, or a photo-transistor. In some embodiments, the photo detector 14 includes an electrical contact 14 c 2 exposed from, or protruding from, the bottom surface 102 of the substrate 10 . In some embodiments, the photo detector 14 includes a photo diode.
  • FIG. 1C illustrates an enlarged view of the photo detector 14 shown in FIG. 1A in accordance with some embodiments of the present disclosure.
  • the photo detector 14 is a PIN diode including a p-type semiconductor region 14 p , an intrinsic semiconductor region 14 i (or active region) and an n-type semiconductor region 14 n .
  • the n-type semiconductor region 14 n is adjacent to the top surface 101 of the substrate 10
  • the p-type semiconductor region 14 p is adjacent to the bottom surface 102 of the substrate 10
  • the intrinsic semiconductor region 14 i is sandwiched between the n-type semiconductor region 14 n and the p-type semiconductor region 14 p .
  • the n-type semiconductor region 14 n is adjacent to the bottom surface 102 of the substrate 10 and the p-type semiconductor region 14 p is adjacent to the top surface 101 of the substrate 10 depending on design specifications.
  • a thickness of the photo detector 14 is substantially the same as a thickness of the substrate 10 . In some embodiments, the thickness of the substrate 10 is about 3 micrometers ( ⁇ m).
  • the substrate 10 and the n-type semiconductor region 14 n include a same doping type.
  • the substrate 10 and the p-type semiconductor region 14 p include a same doping type.
  • a thickness of the n-type semiconductor region 14 n is less than that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i (e.g.
  • the thickness of the n-type semiconductor region 14 n is less than or equal to about 0.95 times that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i , less than or equal to about 0.90 times that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i , or less than or equal to about 0.85 times that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i ).
  • a width of the p-type semiconductor region 14 p is substantially equal to or less than that of the n-type semiconductor region 14 n (e.g.
  • the width of the p-type semiconductor region is less than or equal to about 0.95 times that of the n-type semiconductor region 14 n or the intrinsic semiconductor region 14 i , is less than or equal to about 0.90 times that of the n-type semiconductor region 14 n or the intrinsic semiconductor region 14 i , or is less than or equal to about 0.85 times that of the n-type semiconductor region 14 n or the intrinsic semiconductor region 14 i ).
  • the photo detector 14 may include an electrical contact 14 c 1 adjacent to the n-type semiconductor region 14 n and an electrical contact 14 c 2 adjacent to the p-type semiconductor region 14 p to provide electrical connection.
  • the photo detector 14 may include an anti-reflection (AR) coating 14 a on the n-type semiconductor region 14 n to help prevent at least some of the light emitted toward the photo detector 14 (e.g. received and transmitted by the photodetector 14 ) from reflecting.
  • AR anti-reflection
  • a full-color light display can be achieved.
  • the photo detector 14 is built-in or embedded with a relatively thin substrate 10 (e.g., a substrate having a thickness of about 3 ⁇ m) on which the nanowire LEDs are grown, it is unnecessary to additionally place the photo detector on the substrate 10 by a pick and place technique, and implementing the built-in or embedded photo detector 14 can help to reduce a manufacturing cost and a total size of the optical device 1 .
  • a fingerprint identification module into a display. As shown in FIG. 1A , by integrating both nanowire LEDs 13 and photo detector 14 into a single pixel of the optical device 1 , the optical device 1 can achieve both the fingerprint identification and the full-color light display (e.g. simultaneously).
  • the collimator 15 is disposed on the top surface 101 of the substrate 10 and over the photo detector 14 .
  • the collimator 15 includes a light transmission element 15 a and a light absorbing layer 15 b disposed on a sidewall of the light transmission element 15 a .
  • the light transmission element 15 a includes a transparent resin layer.
  • the light absorbing layer 15 b may include an ink, a photoresist, or a combination of two or more thereof.
  • the collimator 15 In the collimator 15 , light reaching the sidewall the light transmission element 15 a is absorbed by the light absorbing layer 15 b so that cross talk or noise is reduced, and light propagating substantially in a direction of extension of the collimator 15 is selectively allowed to pass through the collimator 15 .
  • Such an arrangement improves an optical performance (e.g., for image recognition) of the photo detector 14 .
  • the protection layer 12 is disposed on the top surface 101 of the substrate 10 to cover the light emitting devices 13 , the collimator 15 and a portion of the photo detector 14 .
  • the protection layer 12 is or may include a transparent molding compound.
  • the circuit layer 11 is disposed on the bottom surface 102 of the substrate 10 .
  • the circuit layer 11 may include an interconnection layer (e.g., a redistribution layer (RDL)) and a dielectric layer, and a first portion of the interconnection layer is covered or encapsulated by the dielectric layer while a second portion of the interconnection layer is exposed from the dielectric layer to provide electrical connections for the photo detector 14 and the light emitting devices 13 .
  • the electrical contact 14 c 2 of the photo detector 14 exposed from the bottom surface 102 of the substrate 10 is electrically connected to the circuit layer 11 .
  • the light emitting devices 13 are electrically connected to the circuit layer 11 through through-silicon vias (TSVs) within the substrate 10 .
  • the circuit layer 11 may include a plurality of transistors 11 t embedded therein, each electrically connected to a respective corresponding one of the light emitting devices 13 .
  • FIG. 2 illustrates a cross-sectional view of an optical system 2 in accordance with some embodiments of the present disclosure.
  • the optical system 2 includes the optical device 1 shown in FIG. 1A and a glass cover 20 (or other transparent cover).
  • the optical system 2 includes a plurality of optical devices 1 .
  • the optical system 2 may be at least a portion of a display device, a cell phone, a tablet, a notebook, a display or any other suitable electronic components equipped with a screen and a fingerprint recognition module.
  • the nanowire LEDs of the optical device 1 can achieve the full-color light display.
  • the light emitted by the nanowire LEDs of the optical device 1 is reflected by an object (e.g., a finger of the user) and then the reflected light is received or detected by the photo detector of the optical device 1 to achieve the function of fingerprint recognition. Therefore, the electronic component equipped with the optical system 2 can achieve both the fingerprint identification and the full-color light display (e.g. simultaneously).
  • FIG. 3 illustrates a cross-sectional view of an optical device 3 in accordance with some embodiments of the present disclosure.
  • the optical device 3 is similar to the optical device 1 shown in FIG. 1A except that in FIG. 1A , a photo detector 14 is embedded or built-in within a substrate 10 while in FIG. 3 , a photo detector 34 is disposed on a top surface 101 of the substrate 10 .
  • FIG. 4A , FIG. 4B , FIG. 4C , FIG. 4D , FIG. 4E , FIG. 4F and FIG. 4G illustrate various stages of a method for manufacturing an optical device 1 as shown in FIG. 1A in accordance with some embodiments of the present disclosure.
  • some processes, operations or stags are described in the following with respect to each of a plurality of components, any of those processes, operations or stages may be selectively performed with respect to one of the plurality of components, or with respect to some number in between one and the full plurality of components.
  • a substrate 10 ′ is provided.
  • the substrate 10 ′ includes a SiC substrate, a sapphire substrate or a silicon substrate.
  • a plurality of light emitting devices 13 are formed on the top surface 101 of the substrate 10 ′.
  • the light emitting devices 13 are grown on the top surface 101 of the substrate 10 ′ by an epitaxy technique (e.g. epitaxial growth).
  • a collimator 15 is disposed on the top surface 101 of the substrate 10 ′.
  • the collimator 15 is disposed adjacent to the light emitting devices 13 .
  • a protection layer 12 ′ is then formed on the top surface 101 of the substrate 10 ′ to cover the light emitting devices 13 and the collimator 15 .
  • the protection layer 12 ′ is formed by a molding technique, such as transfer molding or compression molding.
  • a carrier 49 is disposed on the protection layer 12 ′ to provide a support in subsequent processes.
  • a portion of the substrate 10 ′ is removed from the bottom surface 102 of the substrate 10 ′ by, for example, a grinding technique, to form a thinner substrate 10 .
  • a thickness of the substrate 10 ′ is more than about 100 ⁇ m (e.g., in a range of about 200 ⁇ m to about 300 ⁇ m) while a thickness of the substrate 10 is less than about 5 ⁇ m (e.g., about 3 ⁇ m or less).
  • the thinning operation of the substrate 10 ′ may help to avoid a large aspect ratio of a TSV formed in the subsequent processes.
  • the thinner substrate 10 may facilitate formation of a photo detector within the substrate 10 in the subsequent processes.
  • a photo detector 14 is formed within the substrate 10 and under the collimator 15 .
  • photo detector 14 is formed by a doping process.
  • the photo detector can be formed by implanting dopant impurities (e.g. n-type impurities or p-type impurities) into the bottom surface 102 of the substrate 10 to form an n-type region and a p-type region. Doping may be done through ion implantation processes. When coupled with photolithographic processes, doping may be performed in selected areas by implanting atoms into exposed regions while other areas are masked. Also, a thermal drive or anneal cycles may be used to drive thermal diffusion to expand or extend a previously doped region.
  • dopant impurities e.g. n-type impurities or p-type impurities
  • some epitaxial deposition of semiconductor materials allows for in-situ doping during the epitaxial deposition.
  • Implantation can be done through certain materials, such as, for example, thin oxide layers.
  • the doping concentration and the doping depth can be controlled or selected according to design specifications.
  • a circuit layer 11 is formed on the bottom surface 102 of the substrate 10 and electrically connected to the photo detector 14 and an electrical connection (e.g., one or more TSVs) within the substrate 10 .
  • the circuit layer 11 can be formed by a lithographic technique.
  • the circuit layer 11 includes conductive wires and/or transistors covered or encapsulated by a passivation layer or dielectric layer. A portion of the conductive wires or transistors is exposed from the passivation layer or the dielectric layer to provide for electrical connections to the conductive wires or transistors.
  • the carrier 49 is removed from the protection layer 12 ′.
  • a portion of the protection layer 12 ′ is then removed to expose a portion of the collimator 15 to form the optical device 1 as shown in FIG. 1A .
  • conductive As used herein, the terms “conductive,” “electrically conductive” and “electrical conductivity” refer to an ability to transport an electric current. Electrically conductive materials typically indicate those materials that exhibit little or no opposition to the flow of an electric current. One measure of electrical conductivity is Siemens per meter (S/m). Typically, an electrically conductive material is one having a conductivity greater than approximately 10 4 S/m, such as at least 10 5 S/m or at least 10 6 S/m. The electrical conductivity of a material can sometimes vary with temperature. Unless otherwise specified, the electrical conductivity of a material is measured at room temperature.
  • the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation.
  • the terms can refer to a range of variation of less than or equal to ⁇ 10% of that numerical value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • two numerical values can be deemed to be “substantially” the same or equal if a difference between the values is less than or equal to ⁇ 10% of an average of the values, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • substantially parallel can refer to a range of angular variation relative to 0° that is less than or equal to ⁇ 10°, such as less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • substantially perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ⁇ 10°, such as less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • “substantially” coplanar can refer to two surfaces within 50 ⁇ m of lying along a same plane, such as within 40 ⁇ m, within 30 ⁇ m, within 20 ⁇ m, within 10 ⁇ m, or within 1 ⁇ m of lying along the same plane.
  • substantially aligned can refer to two components overlapping or being within 200 ⁇ m, within 150 ⁇ m, within 100 ⁇ m, within 50 ⁇ m, within 40 ⁇ m, within 30 ⁇ m, within 20 ⁇ m, within 10 ⁇ m, or within 1 ⁇ m of overlapping.
  • a component provided “on” or “over” another component can encompass cases where the former component is directly on (e.g., in physical contact with) the latter component, as well as cases where one or more intervening components are located between the former component and the latter component.
  • a component characterized as “light conducting,” “light transmitting” or “transparent” can refer to such a component as having a light transmittance of at least 80%, such as at least 85% or at least 90%, over a relevant wavelength or a relevant range of wavelengths.
  • a component characterized as “light shielding,” “light blocking,” or “opaque” can refer to such a component as having a light transmittance of no greater than 20%, such as no greater than 15% or no greater than 10%, over a relevant wavelength or a relevant range of wavelengths.

Abstract

An optical device includes a substrate, a plurality of light emitting devices, a photo detector and a circuit layer. The substrate has a first surface and a second surface opposite to the first surface. The substrate includes a first region and a second region. The light emitting devices are disposed on the first surface in the first region of the substrate. The photo detector is disposed in the second region of the substrate. The photo detector includes an electrical contact exposed from the second surface of the substrate. The circuit layer is disposed on the second surface of the substrate and electrically connected to the electrical contact of the photo detector.

Description

BACKGROUND 1. Technical Field
The present disclosure relates to an optical device and a method for manufacturing the same.
2. Description of the Related Art
Some display panels can be categorized into liquid-crystal display (LCD) type display panels or organic light-emitting diode (OLED) type display panels. However, neither the LCD display panel nor the OLED display panel can achieve full-color light display. In addition, to achieve “full-screen display,” it can be desirable to integrate a fingerprint identification module into a display. However, it is challenging to achieve such integration due to interference or cross-talk between a light emitting device and a photo detector included in such devices.
SUMMARY
In accordance with an aspect of the present disclosure, an optical device includes a substrate, a plurality of light emitting devices, a photo detector and a circuit layer. The substrate has a first surface and a second surface opposite to the first surface. The substrate includes a first region and a second region. The light emitting devices are disposed on the first surface in the first region of the substrate. The photo detector is disposed in the second region of the substrate. The photo detector includes an electrical contact exposed from the second surface of the substrate. The circuit layer is disposed on the second surface of the substrate and electrically connected to the electrical contact of the photo detector.
In accordance another aspect of the present disclosure, a display device includes a substrate, a pixel, a photo diode and a circuit layer. The substrate includes a first region and a second region. The pixel is disposed at the first region of the substrate. The pixel includes a plurality of nanowire LEDs. The photo diode is disposed at the second region of the substrate and adjacent to the pixel. The circuit layer is electrically connected to the nanowire LEDs and the photo diode.
In accordance another aspect of the present disclosure, a method of manufacturing a display device includes (a) forming a plurality of nanowire LEDs on a top surface of a substrate; (b) forming a plurality of photo diodes within the substrate, wherein a thickness of each of the photo diodes is substantially the same as a thickness of the substrate; and (c) forming a circuit layer that is electrically connected to the nanowire LEDs and the photo diodes.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A illustrates a cross-sectional view of an optical device in accordance with some embodiments of the present disclosure.
FIG. 1B illustrates a perspective view of an optical device in accordance with some embodiments of the present disclosure.
FIG. 1C illustrates a cross-sectional view of a photo detector in accordance with some embodiments of the present disclosure.
FIG. 2 illustrates a cross-sectional view of an optical system in accordance with some embodiments of the present disclosure.
FIG. 3 illustrates a cross-sectional view of an optical device in accordance with some embodiments of the present disclosure.
FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D, FIG. 4E, FIG. 4F and FIG. 4G illustrate one or more stages of a method for manufacturing an optical device in accordance with some embodiments of the present disclosure.
Common reference numerals are used throughout the drawings and the detailed description to indicate the same or similar components. The present disclosure can be best understood from the following detailed description taken in conjunction with the accompanying drawings.
DETAILED DESCRIPTION
FIG. 1A illustrates a cross-sectional view of some embodiments of an optical device 1 in accordance with some embodiments of the present disclosure. The optical device 1 includes a substrate 10, a circuit layer 11, a protection layer 12, light emitting devices 13, a photo detector 14 and a collimator 15.
In some embodiments, the substrate 10 includes a silicon carbide (SiC) substrate, a sapphire substrate or a silicon substrate. The substrate 10 also includes a heterojunction formed between two different semiconductor material layers, such as material layers with different band gaps. For example, the semiconductor structure 10 includes a non-doped narrow-band gap channel layer and a wide-band gap n-type donor-supply layer. The substrate 10 has a top surface 101 (also referred to as “first surface”) and a bottom surface 102 (also referred to as “second surface”) opposite to the top surface 101. In some embodiments, the substrate 10 may include a first region on which the light emitting devices 13 are disposed and a second region adjacent to the first region for accommodating the photo detector 14.
The light emitting devices 13 are disposed on the top surface 101 of the substrate 10. In some embodiments, the light emitting devices 13 are disclosed on the top surface 101 of the first region of the substrate 10. The light emitting devices 13 may include a plurality of emitting dies or other optical dies. For example, the light emitting devices 13 may include light-emitting diodes (LEDs), laser diodes, or other devices that may include one or more semiconductor layers. The semiconductor layers may include silicon, silicon carbide, gallium nitride, or any other semiconductor materials. In some embodiments, the light emitting devices 13 are red-green-blue (RGB) LEDs including at least one red LED 13 a, at least one green LED 13 b and at least one blue LED 13 c. In some embodiments, as shown in FIG. 1B, which illustrates a perspective view of the light emitting devices 13 shown in FIG. 1A, the light emitting devices 13 include a plurality of red LEDs 13 a, a plurality of green LEDs 13 b and a plurality of blue LEDs 13 c arranged in arrays (e.g. uniform arrays, or non-uniform arrays).
In some embodiments, the red LEDs 13 a, the green LEDs 13 b and the blue LEDs 13 c correspond to, or define, a pixel, which is adjacent to the photo detector 14. For example, each pixel of the optical device 1 includes RGB LEDs. In some embodiments, the red LEDs 13 a, the green LEDs 13 b and the blue LEDs 13 c are nanowire LEDs. A wavelength of a light emitted by a nanowire LED varies according to a width of the nanowire LED. Therefore, respective widths of the red LED 13 a, the green LED 13 b and the blue LED 13 c are different from each other. The nanowire LEDs can include any semiconductor material, and suitable materials for the nanowire LEDs include but are not limited to: GaAs (e.g. p-type GaAs), InAs, Ge, ZnO, InN, GaInN, GaN AlGaInN, BN, InP, InAsP, GaInP, InGaP:Si, InGaP:Zn, GalnAs, AlInP, GaAIInP, GaAlInAsP, GalnSb, InSb, and Si. Possible donor dopants for, for example, GaP inclde Si, Sn, Te, Se, S, or other donor dopants, and acceptor dopants for GaP include Zn, Fe, Mg, Be, Cd, or other acceptor dopants. The nanowire LEDs provide for use of nitrides such as GaN, InN and AlN, which can facilitate fabrication of LEDs emitting light in wavelength regions not easily accessible by some comparative techniques. In some embodiments, a nanowire LED has an aspect ratio (corresponding to a ratio of its length to its width) of about 3 or greater, about 4 or greater, about 5 or greater, or about 10 or greater.
The photo detector 14 is disposed within the substrate 10. In some embodiments, the photo detector 14 is disposed within the second region of the substrate 10. In some embodiments, the photo detector 14 is for example, a PIN diode, a photo-diode, or a photo-transistor. In some embodiments, the photo detector 14 includes an electrical contact 14 c 2 exposed from, or protruding from, the bottom surface 102 of the substrate 10. In some embodiments, the photo detector 14 includes a photo diode.
FIG. 1C illustrates an enlarged view of the photo detector 14 shown in FIG. 1A in accordance with some embodiments of the present disclosure. As shown in FIG. 1C, the photo detector 14 is a PIN diode including a p-type semiconductor region 14 p, an intrinsic semiconductor region 14 i (or active region) and an n-type semiconductor region 14 n. In some embodiments, the n-type semiconductor region 14 n is adjacent to the top surface 101 of the substrate 10, the p-type semiconductor region 14 p is adjacent to the bottom surface 102 of the substrate 10 and the intrinsic semiconductor region 14 i is sandwiched between the n-type semiconductor region 14 n and the p-type semiconductor region 14 p. Alternatively, the n-type semiconductor region 14 n is adjacent to the bottom surface 102 of the substrate 10 and the p-type semiconductor region 14 p is adjacent to the top surface 101 of the substrate 10 depending on design specifications. In some embodiments, a thickness of the photo detector 14 is substantially the same as a thickness of the substrate 10. In some embodiments, the thickness of the substrate 10 is about 3 micrometers (μm).
In some embodiments, the substrate 10 and the n-type semiconductor region 14 n include a same doping type. Alternatively, the substrate 10 and the p-type semiconductor region 14 p include a same doping type. In some embodiments, a thickness of the n-type semiconductor region 14 n is less than that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i (e.g. the thickness of the n-type semiconductor region 14 n is less than or equal to about 0.95 times that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i, less than or equal to about 0.90 times that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i, or less than or equal to about 0.85 times that of the p-type semiconductor region 14 p or the intrinsic semiconductor region 14 i). In some embodiments, a width of the p-type semiconductor region 14 p is substantially equal to or less than that of the n-type semiconductor region 14 n (e.g. the width of the p-type semiconductor region is less than or equal to about 0.95 times that of the n-type semiconductor region 14 n or the intrinsic semiconductor region 14 i, is less than or equal to about 0.90 times that of the n-type semiconductor region 14 n or the intrinsic semiconductor region 14 i, or is less than or equal to about 0.85 times that of the n-type semiconductor region 14 n or the intrinsic semiconductor region 14 i). In some embodiments, the photo detector 14 may include an electrical contact 14 c 1 adjacent to the n-type semiconductor region 14 n and an electrical contact 14 c 2 adjacent to the p-type semiconductor region 14 p to provide electrical connection. In some embodiments, the photo detector 14 may include an anti-reflection (AR) coating 14 a on the n-type semiconductor region 14 n to help prevent at least some of the light emitted toward the photo detector 14 (e.g. received and transmitted by the photodetector 14) from reflecting.
In accordance with one or more embodiments shown in FIG. 1A, by growing nanowire LEDs on the silicon substrate 10 using an epitaxy technique to provide three-dimensional (3D) quantum confinement, a full-color light display can be achieved. In addition, since the photo detector 14 is built-in or embedded with a relatively thin substrate 10 (e.g., a substrate having a thickness of about 3 μm) on which the nanowire LEDs are grown, it is unnecessary to additionally place the photo detector on the substrate 10 by a pick and place technique, and implementing the built-in or embedded photo detector 14 can help to reduce a manufacturing cost and a total size of the optical device 1. Furthermore, to achieve “full-screen display,” it can be desirable to integrate a fingerprint identification module into a display. As shown in FIG. 1A, by integrating both nanowire LEDs 13 and photo detector 14 into a single pixel of the optical device 1, the optical device 1 can achieve both the fingerprint identification and the full-color light display (e.g. simultaneously).
Referring back to FIG. 1A, the collimator 15 is disposed on the top surface 101 of the substrate 10 and over the photo detector 14. In some embodiments, as shown in FIG. 1B, the collimator 15 includes a light transmission element 15 a and a light absorbing layer 15 b disposed on a sidewall of the light transmission element 15 a. In some embodiments, the light transmission element 15 a includes a transparent resin layer. In some embodiments, the light absorbing layer 15 b may include an ink, a photoresist, or a combination of two or more thereof. In the collimator 15, light reaching the sidewall the light transmission element 15 a is absorbed by the light absorbing layer 15 b so that cross talk or noise is reduced, and light propagating substantially in a direction of extension of the collimator 15 is selectively allowed to pass through the collimator 15. Such an arrangement improves an optical performance (e.g., for image recognition) of the photo detector 14.
The protection layer 12 is disposed on the top surface 101 of the substrate 10 to cover the light emitting devices 13, the collimator 15 and a portion of the photo detector 14. In some embodiments, the protection layer 12 is or may include a transparent molding compound.
The circuit layer 11 is disposed on the bottom surface 102 of the substrate 10. The circuit layer 11 may include an interconnection layer (e.g., a redistribution layer (RDL)) and a dielectric layer, and a first portion of the interconnection layer is covered or encapsulated by the dielectric layer while a second portion of the interconnection layer is exposed from the dielectric layer to provide electrical connections for the photo detector 14 and the light emitting devices 13. For example, the electrical contact 14 c 2 of the photo detector 14 exposed from the bottom surface 102 of the substrate 10 is electrically connected to the circuit layer 11. For example, the light emitting devices 13 are electrically connected to the circuit layer 11 through through-silicon vias (TSVs) within the substrate 10. In some embodiments, the circuit layer 11 may include a plurality of transistors 11 t embedded therein, each electrically connected to a respective corresponding one of the light emitting devices 13.
FIG. 2 illustrates a cross-sectional view of an optical system 2 in accordance with some embodiments of the present disclosure. The optical system 2 includes the optical device 1 shown in FIG. 1A and a glass cover 20 (or other transparent cover). In some embodiments, the optical system 2 includes a plurality of optical devices 1. In some embodiments, the optical system 2 may be at least a portion of a display device, a cell phone, a tablet, a notebook, a display or any other suitable electronic components equipped with a screen and a fingerprint recognition module. As mentioned above, the nanowire LEDs of the optical device 1 can achieve the full-color light display. The light emitted by the nanowire LEDs of the optical device 1 is reflected by an object (e.g., a finger of the user) and then the reflected light is received or detected by the photo detector of the optical device 1 to achieve the function of fingerprint recognition. Therefore, the electronic component equipped with the optical system 2 can achieve both the fingerprint identification and the full-color light display (e.g. simultaneously).
FIG. 3 illustrates a cross-sectional view of an optical device 3 in accordance with some embodiments of the present disclosure. The optical device 3 is similar to the optical device 1 shown in FIG. 1A except that in FIG. 1A, a photo detector 14 is embedded or built-in within a substrate 10 while in FIG. 3, a photo detector 34 is disposed on a top surface 101 of the substrate 10.
FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D, FIG. 4E, FIG. 4F and FIG. 4G illustrate various stages of a method for manufacturing an optical device 1 as shown in FIG. 1A in accordance with some embodiments of the present disclosure. Although some processes, operations or stags are described in the following with respect to each of a plurality of components, any of those processes, operations or stages may be selectively performed with respect to one of the plurality of components, or with respect to some number in between one and the full plurality of components.
Referring to FIG. 4A, a substrate 10′ is provided. The substrate 10′ includes a SiC substrate, a sapphire substrate or a silicon substrate. A plurality of light emitting devices 13 are formed on the top surface 101 of the substrate 10′. In some embodiments, the light emitting devices 13 are grown on the top surface 101 of the substrate 10′ by an epitaxy technique (e.g. epitaxial growth).
Referring to FIG. 4B, a collimator 15 is disposed on the top surface 101 of the substrate 10′. The collimator 15 is disposed adjacent to the light emitting devices 13. A protection layer 12′ is then formed on the top surface 101 of the substrate 10′ to cover the light emitting devices 13 and the collimator 15. In some embodiments, the protection layer 12′ is formed by a molding technique, such as transfer molding or compression molding.
Referring to FIG. 4C, a carrier 49 is disposed on the protection layer 12′ to provide a support in subsequent processes.
Referring to FIG. 4D, a portion of the substrate 10′ is removed from the bottom surface 102 of the substrate 10′ by, for example, a grinding technique, to form a thinner substrate 10. For example, a thickness of the substrate 10′ is more than about 100 μm (e.g., in a range of about 200 μm to about 300 μm) while a thickness of the substrate 10 is less than about 5 μm (e.g., about 3 μm or less). The thinning operation of the substrate 10′ may help to avoid a large aspect ratio of a TSV formed in the subsequent processes. In addition, the thinner substrate 10 may facilitate formation of a photo detector within the substrate 10 in the subsequent processes.
Referring to FIG. 4E, a photo detector 14 is formed within the substrate 10 and under the collimator 15. In some embodiments, photo detector 14 is formed by a doping process. For example, the photo detector can be formed by implanting dopant impurities (e.g. n-type impurities or p-type impurities) into the bottom surface 102 of the substrate 10 to form an n-type region and a p-type region. Doping may be done through ion implantation processes. When coupled with photolithographic processes, doping may be performed in selected areas by implanting atoms into exposed regions while other areas are masked. Also, a thermal drive or anneal cycles may be used to drive thermal diffusion to expand or extend a previously doped region. As alternatives, some epitaxial deposition of semiconductor materials allows for in-situ doping during the epitaxial deposition. Implantation can be done through certain materials, such as, for example, thin oxide layers. The doping concentration and the doping depth can be controlled or selected according to design specifications.
Referring to FIG. 4F, a circuit layer 11 is formed on the bottom surface 102 of the substrate 10 and electrically connected to the photo detector 14 and an electrical connection (e.g., one or more TSVs) within the substrate 10. In some embodiments, the circuit layer 11 can be formed by a lithographic technique. In some embodiments, the circuit layer 11 includes conductive wires and/or transistors covered or encapsulated by a passivation layer or dielectric layer. A portion of the conductive wires or transistors is exposed from the passivation layer or the dielectric layer to provide for electrical connections to the conductive wires or transistors.
Referring to FIG. 4G, the carrier 49 is removed from the protection layer 12′. A portion of the protection layer 12′ is then removed to expose a portion of the collimator 15 to form the optical device 1 as shown in FIG. 1A.
As used herein, the singular terms “a,” “an,” and “the” may include a plurality of referents unless the context clearly dictates otherwise.
As used herein, the terms “conductive,” “electrically conductive” and “electrical conductivity” refer to an ability to transport an electric current. Electrically conductive materials typically indicate those materials that exhibit little or no opposition to the flow of an electric current. One measure of electrical conductivity is Siemens per meter (S/m). Typically, an electrically conductive material is one having a conductivity greater than approximately 104 S/m, such as at least 105 S/m or at least 106 S/m. The electrical conductivity of a material can sometimes vary with temperature. Unless otherwise specified, the electrical conductivity of a material is measured at room temperature.
As used herein, the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation of less than or equal to ±10% of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, two numerical values can be deemed to be “substantially” the same or equal if a difference between the values is less than or equal to ±10% of an average of the values, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, “substantially” parallel can refer to a range of angular variation relative to 0° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°. For example, “substantially” perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°. For example, “substantially” coplanar can refer to two surfaces within 50 μm of lying along a same plane, such as within 40 μm, within 30 μm, within 20 μm, within 10 μm, or within 1 μm of lying along the same plane. For example, “substantially” aligned can refer to two components overlapping or being within 200 μm, within 150 μm, within 100 μm, within 50 μm, within 40 μm, within 30 μm, within 20 μm, within 10 μm, or within 1 μm of overlapping.
In the description of some embodiments, a component provided “on” or “over” another component can encompass cases where the former component is directly on (e.g., in physical contact with) the latter component, as well as cases where one or more intervening components are located between the former component and the latter component.
In the description of some embodiments, a component characterized as “light conducting,” “light transmitting” or “transparent” can refer to such a component as having a light transmittance of at least 80%, such as at least 85% or at least 90%, over a relevant wavelength or a relevant range of wavelengths. In the description of some embodiments, a component characterized as “light shielding,” “light blocking,” or “opaque” can refer to such a component as having a light transmittance of no greater than 20%, such as no greater than 15% or no greater than 10%, over a relevant wavelength or a relevant range of wavelengths.
Additionally, amounts, ratios, and other numerical values are sometimes presented herein in a range format. It can be understood that such range formats are used for convenience and brevity, and should be understood flexibly to include not only numerical values explicitly specified as limits of a range, but also all individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly specified.
While the present disclosure has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations do not limit the present disclosure. It can be clearly understood by those skilled in the art that various changes may be made, and equivalent elements may be substituted within the embodiments without departing from the true spirit and scope of the present disclosure as defined by the appended claims. The illustrations may not necessarily be drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus, due to variables in manufacturing processes and such. There may be other embodiments of the present disclosure which are not specifically illustrated. The specification and drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it can be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Therefore, unless specifically indicated herein, the order and grouping of the operations are not limitations of the present disclosure.

Claims (26)

What is claimed is:
1. An optical device, comprising:
a substrate having a first surface and a second surface opposite to the first surface, the substrate comprising a first region and a second region,
a plurality of light emitting devices disposed on the first surface in the first region of the substrate;
a photo detector disposed in the second region of the substrate and at a lateral side of the plurality of light emitting devices, the photo detector comprising an electrical contact exposed from the second surface of the substrate;
a circuit layer disposed on the second surface of the substrate and electrically connected to the electrical contact of the photo detector; and
a collimator disposed on the first surface in the second region of the substrate and over the photo detector, wherein the collimator comprises a light transmission element and a light absorbing layer disposed on a sidewall of the light transmission element.
2. The optical device of claim 1, wherein the photo detector is a PIN diode.
3. The optical device of claim 2, wherein the PIN diode includes a n-type region adjacent to the first surface of the substrate and a p-type region adjacent to the second surface of the substrate.
4. The optical device of claim 1, wherein the light transmission element includes a transparent resin layer.
5. The optical device of claim 1, further comprising a protection layer disposed on the first surface of the substrate and covering the light emitting devices.
6. The optical device of claim 1, wherein the substrate further comprises a through-silicon via (TSV) to electrically connect the light emitting devices to the circuit layer.
7. The optical device of claim 1, wherein the circuit layer comprises a plurality of transistors.
8. The optical device of claim 1, wherein the light emitting devices include a first light emitting diode (LED), a second LED and a third LED, and respective widths of the first LED, the second LED and the third LED are different from each other.
9. The optical device of claim 8, wherein the first LED, the second LED and the third LED comprise a pixel that is adjacent to the photo detector.
10. The optical device of claim 1, wherein the light emitting devices include a plurality nanowire LEDs.
11. The optical device of claim 1, wherein the substrate is a silicon substrate, and a thickness of the substrate is substantially the same as a thickness of the photo detector.
12. A display device, comprising:
a substrate comprising a first region and a second region;
a pixel disposed at the first region of the substrate, the pixel comprising a plurality of nanowire LEDs;
a photo diode disposed at the second region of the substrate and adjacent to the pixel; and
a circuit layer electrically connected to the nanowire LEDs and the photo diode;
wherein the substrate is a silicon substrate, and a thickness of the substrate is substantially the same as a thickness of the photo diode.
13. The display device of claim 12, further including:
a plurality of pixels disposed at the first region of the substrate including the pixel disposed at the first region of the substrate, each pixel comprising a plurality of nanowire LEDs; and
a plurality of photo diodes disposed at the second region of the substrate including the photo diode disposed at the second region of the substrate, wherein each photo diode is disposed adjacent to a corresponding one of the pixels.
14. The display device of claim 12, wherein the photo diode is disposed within the substrate.
15. The display device of claim 12, further comprising a collimator disposed over the photo diode.
16. The display device of claim 15, wherein the collimator comprises a light transmission element and a light absorbing layer surrounding the light transmission element.
17. The display device of claim 12, further comprising a protection layer disposed on the first region of the substrate and covering the pixel.
18. The display device of claim 12, wherein the nanowire LEDs extend away from the substrate.
19. An optical device, comprising:
a substrate having a first surface and a second surface opposite to the first surface, the substrate comprising a first region and a second region,
a plurality of light emitting devices disposed on the first surface in the first region of the substrate;
a photo detector disposed in the second region of the substrate and at a lateral side of the plurality of light emitting devices, the photo detector comprising an electrical contact exposed from the second surface of the substrate; and
a circuit layer disposed on the second surface of the substrate and electrically connected to the electrical contact of the photo detector;
wherein the substrate further comprises a through-silicon via (TSV) to electrically connect the light emitting devices to the circuit layer.
20. The optical device of claim 19, wherein the photo detector is a PIN diode.
21. The optical device of claim 20, wherein the PIN diode includes a n-type region adjacent to the first surface of the substrate and a p-type region adjacent to the second surface of the substrate.
22. The optical device of claim 19, further comprising a protection layer disposed on the first surface of the substrate and covering the light emitting devices.
23. The optical device of claim 19, wherein the circuit layer comprises a plurality of transistors.
24. The optical device of claim 19, wherein the light emitting devices include a first light emitting diode (LED), a second LED and a third LED, and respective widths of the first LED, the second LED and the third LED are different from each other.
25. The optical device of claim 24, wherein the first LED, the second LED and the third LED comprise a pixel that is adjacent to the photo detector.
26. The optical device of claim 19, wherein the light emitting devices include a plurality nanowire LEDs.
US15/821,302 2017-11-22 2017-11-22 Optical device with decreased interference Active 2037-12-20 US10818816B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/821,302 US10818816B2 (en) 2017-11-22 2017-11-22 Optical device with decreased interference
CN201810126478.7A CN109817657A (en) 2017-11-22 2018-02-08 Optical devices and its manufacturing method
TW107104417A TWI714826B (en) 2017-11-22 2018-02-08 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/821,302 US10818816B2 (en) 2017-11-22 2017-11-22 Optical device with decreased interference

Publications (2)

Publication Number Publication Date
US20190157492A1 US20190157492A1 (en) 2019-05-23
US10818816B2 true US10818816B2 (en) 2020-10-27

Family

ID=66533326

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/821,302 Active 2037-12-20 US10818816B2 (en) 2017-11-22 2017-11-22 Optical device with decreased interference

Country Status (3)

Country Link
US (1) US10818816B2 (en)
CN (1) CN109817657A (en)
TW (1) TWI714826B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640845A4 (en) * 2018-09-06 2020-09-02 Shenzhen Goodix Technology Co., Ltd. Optical image collection unit, optical image collection system and electronic device
CN110244482B (en) * 2019-05-21 2022-07-19 华为技术有限公司 Display assembly, display screen and electronic equipment
CN110265496A (en) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 A kind of light-sensitive element and production method, fingerprint recognition device, display device
FR3125358A1 (en) * 2021-07-16 2023-01-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Interactive display device and method of manufacturing such a device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574744A (en) * 1995-02-03 1996-11-12 Motorola Optical coupler
US6261859B1 (en) * 1997-08-05 2001-07-17 Canon Kabushiki Kaisha Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device
US20020153529A1 (en) * 2001-04-24 2002-10-24 Jin-Shown Shie LED array with optical isolation structure and method of manufacturing the same
US20040142539A1 (en) * 2002-10-15 2004-07-22 Seiko Epson Corporation Semiconductor device and method of fabrication thereof, optical module and method of fabrication thereof, circuit board, and electronic instrument
US20070063647A1 (en) * 2005-09-16 2007-03-22 Hon Hai Precision Industry Co., Ltd. Light emitting diode for emitting white light
US20080142686A1 (en) * 2006-12-15 2008-06-19 Yasutaka Konno Solid-state imaging element, photo-detector and authentication system using the photo-detector
US20100308212A1 (en) 2008-04-28 2010-12-09 Kohei Tanaka Diode, photodetector circuit including same, and display device
US20120199812A1 (en) * 2009-10-07 2012-08-09 University Of Florida Research Foundation, Incorporated Strain tunable silicon and germanium nanowire optoelectronic devices
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US20160118529A1 (en) * 2014-10-27 2016-04-28 International Business Machines Corporation Signal distribution in integrated circuit using optical through silicon via
US20160266721A1 (en) 2009-11-06 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US20160343780A1 (en) 2015-05-18 2016-11-24 Boe Technology Group Co., Ltd. Array substrate, fabrication method thereof and organic light-emitting diode display device
US9570002B2 (en) 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
US20170078513A1 (en) 2014-03-19 2017-03-16 Bidirectional Display Inc. Image sensor panel and method for capturing graphical information using same
US20180066982A1 (en) * 2016-09-06 2018-03-08 Advanced Semiconductor Engineering, Inc. Optical device and method of manufacturing the same
US20190095671A1 (en) * 2017-09-28 2019-03-28 Apple Inc. Electronic device including sequential operation of light source subsets while acquiring biometric image data and related methods

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574744A (en) * 1995-02-03 1996-11-12 Motorola Optical coupler
US6261859B1 (en) * 1997-08-05 2001-07-17 Canon Kabushiki Kaisha Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device
US20020153529A1 (en) * 2001-04-24 2002-10-24 Jin-Shown Shie LED array with optical isolation structure and method of manufacturing the same
US20040142539A1 (en) * 2002-10-15 2004-07-22 Seiko Epson Corporation Semiconductor device and method of fabrication thereof, optical module and method of fabrication thereof, circuit board, and electronic instrument
US20070063647A1 (en) * 2005-09-16 2007-03-22 Hon Hai Precision Industry Co., Ltd. Light emitting diode for emitting white light
US20080142686A1 (en) * 2006-12-15 2008-06-19 Yasutaka Konno Solid-state imaging element, photo-detector and authentication system using the photo-detector
US20100308212A1 (en) 2008-04-28 2010-12-09 Kohei Tanaka Diode, photodetector circuit including same, and display device
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US20120199812A1 (en) * 2009-10-07 2012-08-09 University Of Florida Research Foundation, Incorporated Strain tunable silicon and germanium nanowire optoelectronic devices
US20160266721A1 (en) 2009-11-06 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US20170078513A1 (en) 2014-03-19 2017-03-16 Bidirectional Display Inc. Image sensor panel and method for capturing graphical information using same
US9570002B2 (en) 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
US20160118529A1 (en) * 2014-10-27 2016-04-28 International Business Machines Corporation Signal distribution in integrated circuit using optical through silicon via
US20160343780A1 (en) 2015-05-18 2016-11-24 Boe Technology Group Co., Ltd. Array substrate, fabrication method thereof and organic light-emitting diode display device
US20180066982A1 (en) * 2016-09-06 2018-03-08 Advanced Semiconductor Engineering, Inc. Optical device and method of manufacturing the same
US20190095671A1 (en) * 2017-09-28 2019-03-28 Apple Inc. Electronic device including sequential operation of light source subsets while acquiring biometric image data and related methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Office Action from Corresponding Taiwan Patent Application No. 107104417, dated Aug. 3, 2020, 6 pages, with English summary.
Search Report from Corresponding Taiwan Patent Application No. 107104417, dated Aug. 3, 2020, 1 page.

Also Published As

Publication number Publication date
US20190157492A1 (en) 2019-05-23
CN109817657A (en) 2019-05-28
TW201926670A (en) 2019-07-01
TWI714826B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
US10818816B2 (en) Optical device with decreased interference
US9941319B2 (en) Semiconductor and optoelectronic methods and devices
US8163581B1 (en) Semiconductor and optoelectronic devices
US8283215B2 (en) Semiconductor and optoelectronic devices
US9197804B1 (en) Semiconductor and optoelectronic devices
US7535033B2 (en) Multicolor photodiode array and method of manufacturing
KR20200019215A (en) Optoelectronic device with axial array of three-dimensional semiconductor structure
US11410979B2 (en) Light-emitting element, and method for producing a light-emitting element
CN105144410A (en) Semiconductor element and method for manufacturing same
US10978501B1 (en) Multilevel semiconductor device and structure with waveguides
JP2013175686A (en) Light receiving element, process of manufacturing the same, and detecting device
US20120091474A1 (en) Novel semiconductor and optoelectronic devices
US7115910B2 (en) Multicolor photodiode array and method of manufacturing thereof
US11594526B2 (en) Multilevel semiconductor device and structure with oxide bonding
US11327227B2 (en) Multilevel semiconductor device and structure with electromagnetic modulators
US20120235271A1 (en) Solid-state image sensing device
CN104247022A (en) Solid-state imaging device and manufacturing method thereof
JP2014110391A (en) Light-receiving element array, manufacturing method of the same and sensing device
KR20110007100A (en) Radiation-emitting thin-film semiconductor chip and method for production thereof
JP2015035550A (en) Semiconductor element and manufacturing method of the same
CN219246682U (en) Silicon-based germanium image sensor with transverse PIN photodiode
US11282702B2 (en) Method of forming a semiconductor device structure
US11694922B2 (en) Multilevel semiconductor device and structure with oxide bonding
CN219246681U (en) Silicon-based germanium image sensor
US11855100B2 (en) Multilevel semiconductor device and structure with oxide bonding

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED SEMICONDUCTOR ENGINEERING, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAI, LU-MING;TANG, SHIH-CHIEH;REEL/FRAME:044202/0470

Effective date: 20171121

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STCF Information on status: patent grant

Free format text: PATENTED CASE