WO2009131144A1 - ガラス溶着方法 - Google Patents

ガラス溶着方法 Download PDF

Info

Publication number
WO2009131144A1
WO2009131144A1 PCT/JP2009/057982 JP2009057982W WO2009131144A1 WO 2009131144 A1 WO2009131144 A1 WO 2009131144A1 JP 2009057982 W JP2009057982 W JP 2009057982W WO 2009131144 A1 WO2009131144 A1 WO 2009131144A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
laser beam
glass member
glass layer
irradiation
Prior art date
Application number
PCT/JP2009/057982
Other languages
English (en)
French (fr)
Inventor
聡 松本
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008115580A external-priority patent/JP5264266B2/ja
Priority claimed from JP2008115583A external-priority patent/JP5264267B2/ja
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN200980114477XA priority Critical patent/CN102015567B/zh
Priority to US12/989,244 priority patent/US8490430B2/en
Priority to DE112009000987T priority patent/DE112009000987T5/de
Priority to KR1020107019662A priority patent/KR101519693B1/ko
Publication of WO2009131144A1 publication Critical patent/WO2009131144A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam

Definitions

  • the present invention relates to a glass welding method for producing a glass welded body by welding a first glass member and a second glass member.
  • a glass frit layer including a glass frit is formed between the first glass member and the second glass member along the annular welding planned region, and then the welding is scheduled. It is known that a first glass member and a second glass member are welded by irradiating a glass frit layer with a laser beam along a region (see, for example, Patent Document 1).
  • the first glass member and the second glass member may not be reliably welded.
  • this invention is made
  • a glass welding method is a glass welding method for manufacturing a glass welded body by welding a first glass member and a second glass member. Crystallizing the glass layer by irradiating a part of the glass layer with the first laser beam along the annular welding planned region between the member and the second glass member. The first glass member and the second glass member by irradiating the glass layer with the second laser beam along the planned welding region, with the step of forming the portion and the crystallization portion as the irradiation start position and irradiation end position And a step of welding.
  • the first glass member is irradiated by irradiating the glass layer with the second laser beam along the planned welding region with the crystallization portion formed in the glass layer as the irradiation start position and the irradiation end position. And the second glass member are welded.
  • the glass layer is moved when the second laser beam is moved from the irradiation start position along the planned welding region. Is gradually heated.
  • the glass layer is gradually cooled.
  • the linear expansion coefficient of the crystallized portion is lower than the linear expansion coefficient of the glass layer, and the first glass member and the second glass member are firmly welded at the irradiation start position, Even if the irradiation position comes close to the irradiation start position, peeling between the first glass member and the second glass member welded at the irradiation start position is suppressed. Therefore, according to this glass welding method, it is possible to prevent the residual stress from being generated in the portion including the irradiation start position and the irradiation end position of the second laser beam. Therefore, it becomes possible to weld the 1st glass member and the 2nd glass member reliably.
  • the glass frit at the irradiation position is set.
  • the first glass member and the second glass member, which are welded at the irradiation start position are peeled off due to the melting / expansion of the layer. Therefore, if the irradiation position of the laser beam is further moved beyond the irradiation start position at a speed faster than the peeling speed, the first glass member and the second glass member can be re-welded.
  • the glass welding method according to the present invention is a glass welding method for manufacturing a glass welded body by welding a first glass member and a second glass member, and the first glass member and the second glass.
  • the first glass member and the second glass member are irradiated by irradiating a glass layer having a curved portion in which a crystallized portion is formed with a second laser beam along the planned welding region.
  • a glass layer having a curved portion in which a crystallized portion is formed with a second laser beam along the planned welding region.
  • the linear expansion coefficient of the crystallization part is lower than the linear expansion coefficient of the glass layer, and the first glass member and the second glass member are firmly welded in the crystallization part, Even if the irradiation position approaches the crystallization part, peeling between the first glass member and the second glass member welded in the crystallization part is suppressed. Therefore, according to this glass welding method, it can avoid that the curved part of a glass layer will be in the state of excessive heat input which may damage a 1st glass member or a 2nd glass member.
  • the glass welding method according to the present invention it is preferable to form the crystallized portion so that the absorption rate of the second laser light gradually decreases toward the central portion.
  • the glass layer can be heated more gently, while the crystallization portion is aligned along the planned welding region.
  • the glass layer can be cooled more gradually.
  • the first laser beam is pulse-oscillated and the second laser beam is continuously oscillated.
  • the first glass member and the second glass member can be reliably welded.
  • the first glass member and the second glass member can be reliably welded.
  • FIG. 1 is a perspective view of a glass welded body manufactured by the first embodiment of the glass welding method according to the present invention.
  • the glass welded body 101 includes a glass member (first glass member) 104 and a glass member (second glass member) through a glass layer 103 formed along the planned welding region R. ) 105 is welded.
  • the glass members 104 and 105 are, for example, rectangular plate-like members made of non-alkali glass and having a thickness of 0.7 mm.
  • the planned welding region R is set in a rectangular shape along the outer edge of the glass members 104 and 105. Yes.
  • the glass layer 103 is made of, for example, amorphous low-melting glass (vanadium phosphate glass, lead borate glass, or the like), and is formed in a rectangular ring shape along the planned welding region R. In one curved portion of the glass layer 103, a crystallization portion 108 formed by crystallization of a part of the glass layer 103 is formed.
  • amorphous low-melting glass vanadium phosphate glass, lead borate glass, or the like
  • a powdery glass frit 102 made of low-melting glass (vanadium phosphate glass, lead borate glass, etc.) is fixed to the surface of the glass member 104, and rectangular annular welding is performed.
  • a glass layer 103 is formed along the planned region R.
  • a frit paste (kneaded glass frit 102, an organic solvent and a binder) is applied to the surface of the glass member 104 along the planned welding region R by a dispenser, screen printing or the like, and then the frit paste is applied.
  • the glass member 104 is dried in a dryer to remove the organic solvent.
  • the glass frit 102 is melted and re-solidified by firing at a higher temperature (temporary firing) to form the glass layer 103 on the glass member 104. .
  • the powdery glass frit 102 causes light scattering that exceeds the absorption characteristics of the laser light absorbing pigment, so that the absorption rate of the laser light is low. (It looks white in visible light).
  • the gap is filled and transparentized by melting and resolidification, and the absorption characteristic of the laser light absorbing pigment appears remarkably, so that the laser light absorption rate increases rapidly (black in visible light). Looks).
  • the glass member 105 is placed on the glass member 104 through the glass layer 103, and the glass member 104 and the glass are pressed so that the glass member 105 is pressed against the glass member 104.
  • the member 105 is fixed. Thereby, a glass layer 103 is formed between the glass member 104 and the glass member 105 along the rectangular annular planned welding region R.
  • the glass layer 103 is irradiated with a laser beam (first laser beam) L ⁇ b> 1 by aligning a condensing spot on the glass layer 103 and irradiating one curved portion of the glass layer 103.
  • the crystallized portion 108 is formed in one of the curved portions.
  • the laser beam L1 is pulse-oscillated from a semiconductor laser having an oscillation wavelength of 940 nm, and is irradiated to one curved portion of the glass layer 103 under the conditions of a spot diameter of 1.6 mm, a laser power of 40 W, and an irradiation time of 300 msec.
  • the laser light L1 is absorbed by the glass layer 103 having a high laser light absorption rate, and as a result, a spherical crystallized portion 108 in which the laser light absorption rate gradually decreases toward the central portion is formed.
  • the crystallization part 108 As shown in FIG. 6, in the crystallization part 108, light scattering exceeding the absorption characteristics of the laser light absorbing pigment occurs at each crystalline interface or between the crystalline and amorphous interfaces. The absorptance of the laser light becomes low (appears white in visible light). In the crystallized portion 108, the laser light absorptance gradually decreases toward the central portion (in visible light, the central portion appears whiter).
  • a focused spot is aligned with the glass layer 103, and the laser light (the first laser beam is applied to the glass layer 103 along the planned welding region R with the crystallization portion 108 as an irradiation start position and an irradiation end position. 2), the glass member 104 and the glass member 105 are welded to obtain the glass welded body 101.
  • the laser beam L2 is continuously oscillated from a semiconductor laser having an oscillation wavelength of 940 nm, a spot diameter of 1.6 mm, a laser power of 40 W, and a scanning speed (relative moving speed of a focused spot of the laser beam L2 along the planned welding region R) is 10 mm.
  • the glass layer 103 is irradiated under the condition of / sec. As a result, the laser beam L2 is absorbed by the glass layer 103 having a high laser beam absorption rate, and the glass layer 103 and its peripheral portion (surface portions of the glass members 104 and 105) are melted and re-solidified, whereby the glass member is obtained. 104 and the glass member 105 are welded.
  • the glass layer 103 is irradiated with the laser beam L2 along the planned welding region R, so that the crystallization formed on the glass layer 103 when the glass member 104 and the glass member 105 are welded.
  • the unit 108 is set as an irradiation start position and an irradiation end position.
  • the laser beam absorptance in the crystallization part 108 is lower than the laser beam absorptivity in the glass layer 103 (see FIG. 6), so that the laser beam L2 is condensed from the irradiation start position along the planned welding region R.
  • the glass layer 103 is gradually heated.
  • the condensing spot of the laser beam L2 is moved to the irradiation end position along the planned welding region R, the glass layer 103 is gradually moved. It will be cooled.
  • the crystallization part 108 is formed so that the absorptance of the laser beam gradually decreases toward the central part, the condensing spot of the laser beam L2 from the irradiation start position along the planned welding region R.
  • the glass layer 103 can be heated more slowly when the is moved. The same applies to the cooling of the glass layer 103 when the focused spot of the laser beam L2 is moved along the planned welding region R to the irradiation end position.
  • the linear expansion coefficient of the crystallization part 108 is lower than the linear expansion coefficient of the glass layer 103, and the glass member 104 and the glass member 105 are firmly welded at the irradiation start position. Therefore, even if the irradiation position of the laser beam L2, which is the position where the glass layer 103 is melted / expanded, approaches the irradiation start position, the separation between the glass member 104 and the glass member 105 that has been welded at the irradiation start position is suppressed. Is done.
  • the glass welding method described above it is possible to prevent the residual stress from being generated in the portion including the irradiation start position and the irradiation end position of the laser beam L2. If the crystallization part 108 is continuously formed along the planned welding region R, the glass members 104 and 105 may be damaged because the shrinkage when the crystallization part 108 is formed is rapid.
  • the laser beam L1 for forming the crystallized portion 108 is pulse-oscillated and the laser beam L2 for welding the glass member 104 and the glass member 105 is continuously oscillated, the glass members 104 and 105 can be damaged. While avoiding excessive heat input, the crystallized portion 108 can be reliably formed on a part of the glass layer 103, and the glass member 104 and the glass member 105 can be reliably welded. it can.
  • the present invention is not limited to the first embodiment described above.
  • the position where the crystallization part 108 is formed (that is, the irradiation start position and the irradiation end position of the laser beam L2) is not limited to the curved part of the planned welding region R, but is a straight part of the planned welding region R. Also good. Further, the welding planned region R is not limited to a rectangular ring shape, and may be a circular ring shape or the like as long as it is circular.
  • the glass layer 103 may be formed along the planned welding region R by interposing the glass frit 102 between the glass member 104 and the glass member 105 without fixing the glass frit 102 to the glass member 104.
  • FIG. 7 is a perspective view of a glass welded body manufactured by the second embodiment of the glass welding method according to the present invention.
  • the glass welded body 201 includes a glass member (first glass member) 204 and a glass member (second glass member) via a glass layer 203 formed along the planned welding region R. ) 205 is welded.
  • the glass members 204 and 205 are, for example, rectangular plate-shaped members made of non-alkali glass and having a thickness of 0.7 mm.
  • the planned welding region R is set in a rectangular ring shape along the outer edges of the glass members 204 and 205. Yes.
  • the glass layer 203 is made of, for example, amorphous low-melting glass (vanadium phosphate glass, lead borate glass, etc.), and is formed in a rectangular ring shape along the planned welding region R. In each of the four curved portions 203a of the glass layer 203, a crystallized portion 208 formed by crystallizing a part of the glass layer 203 is formed.
  • amorphous low-melting glass vanadium phosphate glass, lead borate glass, etc.
  • a powdery glass frit 202 made of low melting glass (vanadium phosphate glass, lead borate glass, etc.) is fixed to the surface of the glass member 204, and rectangular annular welding is performed.
  • a glass layer 203 is formed along the planned region R.
  • a frit paste (kneaded glass frit 202, organic solvent and binder) is applied to the surface of the glass member 204 along the planned welding region R by a dispenser, screen printing or the like, and then the frit paste is applied.
  • the glass member 204 is dried in a dryer to remove the organic solvent.
  • the glass member 204 is heated in a heating furnace to remove the binder, and further baked (temporarily baked) at a high temperature to melt and resolidify the glass frit 202 to form the glass layer 203 on the glass member 204. .
  • the powdery glass frit 202 causes light scattering that exceeds the absorption characteristics of the laser light absorbing pigment, so that the absorption rate of the laser light is low. (It looks white in visible light).
  • the gap is filled and made transparent by melting and resolidification, and the absorption characteristic of the laser light absorbing pigment appears remarkably, so that the absorption rate of the laser light rapidly increases (black in visible light). Looks).
  • the glass member 205 is disposed on the glass member 204 through the glass layer 203, and the glass member 204 and the glass are pressed so that the glass member 205 is pressed against the glass member 204.
  • the member 205 is fixed.
  • a glass layer 203 is formed between the glass member 204 and the glass member 205 along the rectangular annular planned welding region R.
  • the glass layer 203 is irradiated with a laser beam (first laser beam) L ⁇ b> 1 by aligning a focused spot on the glass layer 203 and irradiating each curved portion 203 a of the glass layer 203.
  • a crystallization part 208 is formed in each of the curved parts 203a.
  • the laser beam L1 is pulse-oscillated from a semiconductor laser having an oscillation wavelength of 940 nm, and is irradiated to one curved portion 203a of the glass layer 203 under the conditions of a spot diameter of 1.6 mm, a laser power of 40 W, and an irradiation time of 300 msec.
  • the laser beam L1 is absorbed by the glass layer 203 having a high laser beam absorption rate, and as a result, a spherical crystallized portion 208 is formed in which the laser beam absorption rate gradually decreases toward the center.
  • the crystallized portion 208 As shown in FIG. 12, in the crystallized portion 208, light scattering exceeding the absorption characteristics of the laser light absorbing pigment occurs at each crystalline interface or between the crystalline and amorphous interfaces. The absorptance of the laser light becomes low (appears white in visible light). In the crystallized portion 208, the absorptance of the laser light gradually decreases toward the central portion (in visible light, the central portion appears whiter).
  • a focused spot is aligned with the glass layer 203, and laser light is applied to the glass layer 203 along the planned welding region R with one crystallization portion 208 serving as an irradiation start position and an irradiation end position.
  • the glass member 204 and the glass member 205 are welded to obtain a glass welded body 201.
  • the laser beam L2 is continuously oscillated from a semiconductor laser having an oscillation wavelength of 940 nm, a spot diameter of 1.6 mm, a laser power of 40 W, and a scanning speed (relative moving speed of a focused spot of the laser beam L2 along the planned welding region R) is 10 mm.
  • the glass layer 203 is irradiated under the condition of / sec. Thereby, the laser beam L2 is absorbed by the glass layer 203 having a high absorption rate of the laser beam, and the glass layer 203 and its peripheral portion (surface portions of the glass members 204 and 205) are melted and re-solidified. 204 and the glass member 205 are welded.
  • each curved portion 203a of the glass layer 203 is previously provided.
  • the crystallized portion 208 is formed in
  • the absorption rate of the laser beam in the crystallization portion 208 is lower than the absorption rate of the laser beam in the glass layer 203 (see FIG. 12), the collection of the laser beam L2 from the crystallization portion 208 along the planned welding region R.
  • the glass layer 203 is gradually heated.
  • the condensing spot of the laser beam L2 is moved to the crystallization portion 208 along the planned welding region R, the glass layer 203 is It will be cooled gradually.
  • each crystallization part 208 is formed so that the absorption rate of the laser light gradually decreases toward the center part, the collection of the laser light L2 from the crystallization part 208 along the planned welding region R.
  • the glass layer 203 can be heated more slowly when the light spot is moved. The same applies to the cooling of the glass layer 203 when the condensing spot of the laser beam L2 is moved to the crystallization part 208 along the planned welding region R.
  • the linear expansion coefficient of the crystallization part 208 is lower than the linear expansion coefficient of the glass layer 203, and the glass member 204 and the glass member 205 are firmly welded in each crystallization part 208. Therefore, even if the irradiation position of the laser beam L2, which is the position where the glass layer 203 is melted / expanded, approaches the crystallization part 208, the glass member 204 and the glass member 205 that have been welded in the crystallization part 208 are separated. Is suppressed.
  • the respective curved portions 203a of the glass layer 203 are in a state of excessive heat input that can damage the glass members 204 and 205.
  • the shrinkage when the crystallization part 208 is formed is abrupt, and the glass members 204 and 205 may be damaged.
  • the laser beam L1 for forming the crystallized portion 208 is pulse-oscillated and the laser beam L2 for welding the glass member 204 and the glass member 205 is continuously oscillated, the glass members 204 and 205 can be damaged. While avoiding an excessive heat input state, the crystallized portion 208 can be reliably formed on the curved portion 203a of the glass layer 203, and the glass member 204 and the glass member 205 are reliably welded. Can do.
  • the glass member 204 and the glass member 205 are firmly welded by the curved portion 203a of the glass layer 203 through the crystallization portion 208, the curved portion 203a where stress concentration easily occurs.
  • the glass member 204 and the glass member 205 are reliably prevented from peeling off.
  • FIG. 13 is a graph showing the relationship between the laser light irradiation position from the irradiation start position to the irradiation end position and the temperature at the laser light irradiation position during laser light irradiation.
  • the result represented with the dashed-dotted line is based on the conventional glass welding method
  • the result represented with the continuous line is based on the glass welding method mentioned above.
  • the scanning speed of the laser light L2 is high. Since it falls at each curved part 203a, temperature rises at each curved part 203a at the time of irradiation of the laser beam L2. Therefore, there is a possibility that the glass members 204 and 205 may be damaged due to excessive heat input in each of the curved portions 203a.
  • the crystallized portion 208 having a low laser light absorption rate is not formed in the curved portion 203a of the glass layer 203 which is the irradiation start position and the irradiation end position of the laser light L2, irradiation is performed along the planned welding region R.
  • the condensing spot of the laser beam L2 is moved from the start position, the temperature of the glass layer 203 rapidly increases, and on the other hand, the condensing spot of the laser beam L2 is moved along the planned welding region R to the irradiation end position. When this is done, the temperature of the glass layer 203 decreases rapidly. Accordingly, there is a possibility that residual stress may be generated in a portion including the irradiation start position and the irradiation end position of the laser beam L2.
  • the scanning speed of the laser light L2 is set to each curved portion 203a. Even if the laser beam L2 falls, the temperature rise at each curved portion 203a is suppressed during the irradiation with the laser beam L2. Accordingly, it is possible to prevent the glass members 204 and 205 from being damaged due to excessive heat input in each of the curved portions 203a.
  • the crystallized portion 208 having a low absorption rate of the laser beam is formed in the curved portion 203a of the glass layer 203 which is the irradiation start position and the irradiation end position of the laser beam L2, irradiation is performed along the planned welding region R.
  • the condensing spot of the laser beam L2 is moved from the start position, the temperature of the glass layer 203 gradually increases, and on the other hand, the condensing spot of the laser beam L2 is moved along the planned welding region R to the irradiation end position. When this is done, the temperature of the glass layer 203 gradually decreases. Accordingly, it is possible to prevent the residual stress from being generated in the portion including the irradiation start position and the irradiation end position of the laser beam L2.
  • the present invention is not limited to the second embodiment described above.
  • the welding planned region R is not limited to a rectangular ring shape, and may be a circular ring shape or the like as long as it is circular.
  • the irradiation start position and irradiation end position of the laser beam L2 for welding the glass member 204 and the glass member 205 are not limited to the crystallization portion 208, and the crystallization portion 208 is not formed in the glass layer 203. It may be a part. Further, the irradiation start position and the irradiation end position of the laser beam L2 may be different from each other.
  • the curved portion 203a of the glass layer 203 is not limited to a bent one, and may be curved.
  • a crystallization portion 208 may be formed at the center of the curved portion, or as shown in FIG. 14B. As described above, the crystallized portions 208 may be formed at both ends of the curved portion.
  • the laser beam L2 for welding the glass member 204 and the glass member 205 may not be scanned in a single stroke.
  • the single laser beam L2 is reciprocated a plurality of times. You may scan, and as shown in FIG.15 (b), you may scan so that the multi laser beam L2 may reciprocate once each.
  • the glass layer 203 may be formed along the planned welding region R by interposing the glass frit 202 between the glass member 204 and the glass member 205 without fixing the glass frit 202 to the glass member 204. .
  • the first glass member and the second glass member can be reliably welded.

Abstract

 溶着予定領域Rに沿ってガラス層203にレーザ光L2を照射することにより、ガラス部材104とガラス部材105とを溶着するに際し、ガラス層203に形成された結晶化部108を照射開始位置及び照射終了位置とする。このとき、結晶化部108におけるレーザ光の吸収率がガラス層203におけるレーザ光の吸収率よりも低いため、溶着予定領域Rに沿って照射開始位置からレーザ光L2を移動させた際にはガラス層203が徐々に加熱され、一方、溶着予定領域Rに沿って照射終了位置までレーザ光L2を移動させた際にはガラス層203が徐々に冷却されることになる。これにより、レーザ光L2の照射開始位置及び照射終了位置を含む部分に残留応力が生じるのを防止することができる。

Description

ガラス溶着方法
 本発明は、第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法に関する。
 上記技術分野における従来のガラス溶着方法として、第1のガラス部材と第2のガラス部材との間に、ガラスフリットを含むガラスフリット層を環状の溶着予定領域に沿って形成した後、その溶着予定領域に沿ってガラスフリット層にレーザ光を照射することにより、第1のガラス部材と第2のガラス部材とを溶着するものが知られている(例えば、特許文献1参照)。
特表2006-524419号公報
 しかしながら、上述したようなガラス溶着方法にあっては、第1のガラス部材と第2のガラス部材とを確実に溶着することができない場合がある。
 そこで、本発明は、このような事情に鑑みてなされたものであり、第1のガラス部材と第2のガラス部材とを確実に溶着することができるガラス溶着方法を提供することを目的とする。
 上記目的を達成するために、本発明に係るガラス溶着方法は、第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法であって、第1のガラス部材と第2のガラス部材との間に、環状の溶着予定領域に沿ってガラス層を形成する工程と、ガラス層の一部に第1のレーザ光を照射することにより、ガラス層に結晶化部を形成する工程と、結晶化部を照射開始位置及び照射終了位置として溶着予定領域に沿ってガラス層に第2のレーザ光を照射することにより、第1のガラス部材と第2のガラス部材とを溶着する工程と、を含むことを特徴とする。
 このガラス溶着方法では、ガラス層に形成された結晶化部を照射開始位置及び照射終了位置として、溶着予定領域に沿ってガラス層に第2のレーザ光を照射することにより、第1のガラス部材と第2のガラス部材とを溶着する。このとき、結晶化部におけるレーザ光の吸収率がガラス層におけるレーザ光の吸収率よりも低いため、溶着予定領域に沿って照射開始位置から第2のレーザ光を移動させた際にはガラス層が徐々に加熱され、一方、溶着予定領域に沿って照射終了位置まで第2のレーザ光を移動させた際にはガラス層が徐々に冷却されることになる。しかも、結晶化部の線膨張係数がガラス層の線膨張係数よりも低く、照射開始位置において第1のガラス部材と第2のガラス部材とが強固に溶着されるため、第2のレーザ光の照射位置が照射開始位置に近付いても、照射開始位置において溶着されていた第1のガラス部材と第2のガラス部材との剥離が抑制される。従って、このガラス溶着方法によれば、第2のレーザ光の照射開始位置及び照射終了位置を含む部分に残留応力が生じるのを防止することができる。よって、第1のガラス部材と第2のガラス部材とを確実に溶着することが可能となる。
 つまり、従来のガラス溶着方法にあっては、環状の溶着予定領域に沿ってレーザ光の照射位置を移動させた際に、レーザ光の照射位置が照射開始位置に近付くと、照射位置におけるガラスフリット層の溶融・膨張によって、照射開始位置において溶着されていた第1のガラス部材と第2のガラス部材とが剥離するおそれがある。そこで、剥離速度よりも速い速度で照射開始位置を越えてレーザ光の照射位置を更に移動させれば、第1のガラス部材と第2のガラス部材とを再溶着することが可能となる。ところが、このような場合には、照射開始位置や照射終了位置を含む部分に残留応力が生じ、衝撃等を受けた際にその部分が剥離の起点となるおそれがある。これに対し、本発明に係るガラス溶着方法によれば、レーザ光の照射開始位置及び照射終了位置を含む部分に残留応力が生じるのを防止することができる。
 また、本発明に係るガラス溶着方法は、第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法であって、第1のガラス部材と第2のガラス部材との間に、環状の溶着予定領域に沿ってガラス層を形成する工程と、ガラス層の曲部に第1のレーザ光を照射することにより、ガラス層に結晶化部を形成する工程と、溶着予定領域に沿ってガラス層に第2のレーザ光を照射することにより、第1のガラス部材と第2のガラス部材とを溶着する工程と、を含むことを特徴とする。
 このガラス溶着方法では、結晶化部が形成された曲部を有するガラス層に、溶着予定領域に沿って第2のレーザ光を照射することにより、第1のガラス部材と第2のガラス部材とを溶着する。このとき、結晶化部におけるレーザ光の吸収率がガラス層におけるレーザ光の吸収率よりも低いため、溶着予定領域に沿って結晶化部から第2のレーザ光を移動させた際にはガラス層が徐々に加熱され、一方、溶着予定領域に沿って結晶化部まで第2のレーザ光を移動させた際にはガラス層が徐々に冷却されることになる。しかも、結晶化部の線膨張係数がガラス層の線膨張係数よりも低く、結晶化部において第1のガラス部材と第2のガラス部材とが強固に溶着されるため、第2のレーザ光の照射位置が結晶化部に近付いても、結晶化部において溶着されていた第1のガラス部材と第2のガラス部材との剥離が抑制される。従って、このガラス溶着方法によれば、ガラス層の曲部が、第1のガラス部材や第2のガラス部材を破損させ得る入熱過多の状態となるのを回避することができる。
 つまり、従来のガラス溶着方法にあっては、環状の溶着予定領域に沿ってレーザ光の照射位置を移動させた際に、ガラスフリット層の曲部において入熱過多の状態となり、第1のガラス部材や第2のガラス部材が破損するおそれがある。これに対し、本発明に係るガラス溶着方法によれば、第1のガラス部材や第2のガラス部材を破損させ得る入熱過多の状態となるのを回避することができる。
 本発明に係るガラス溶着方法においては、第2のレーザ光の吸収率が中心部に向かって漸次的に低下するように結晶化部を形成することが好ましい。この場合、溶着予定領域に沿って結晶化部から第2のレーザ光を移動させた際には、より一層緩やかにガラス層を加熱することができ、一方、溶着予定領域に沿って結晶化部まで第2のレーザ光を移動させた際には、より一層緩やかにガラス層を冷却することができる。
 本発明に係るガラス溶着方法においては、第1のレーザ光をパルス発振させ、第2のレーザ光を連続発振させることが好ましい。この場合、第1のガラス部材や第2のガラス部材を破損させ得る入熱過多の状態となるのを回避しつつ、ガラス層の一部に結晶化部を確実に形成することができ、また、第1のガラス部材と第2のガラス部材とを確実に溶着することができる。
 本発明によれば、第1のガラス部材と第2のガラス部材とを確実に溶着することができる。
本発明に係るガラス溶着方法の第1の実施形態によって製造されたガラス溶着体の斜視図である。 図1のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 図1のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 図1のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 図1のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 ガラスの加熱温度とレーザ光の吸収率との関係を示すグラフである。 本発明に係るガラス溶着方法の第2の実施形態によって製造されたガラス溶着体の斜視図である。 図7のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 図7のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 図7のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 図7のガラス溶着体を製造するためのガラス溶着方法を説明するための斜視図である。 ガラスの加熱温度とレーザ光の吸収率との関係を示すグラフである。 照射開始位置から照射終了位置までのレーザ光の照射位置とレーザ光照射時におけるレーザ光の照射位置での温度との関係を示すグラフである。 ガラス層の曲部が湾曲しているものである場合における結晶化部の形成位置を説明するための図である。 複数の溶着予定領域がマトリックス状に配置されている場合におけるレーザ光のスキャン方法を説明するための図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
 図1は、本発明に係るガラス溶着方法の第1の実施形態によって製造されたガラス溶着体の斜視図である。図1に示されるように、ガラス溶着体101は、溶着予定領域Rに沿って形成されたガラス層103を介して、ガラス部材(第1のガラス部材)104とガラス部材(第2のガラス部材)105とが溶着されたものである。ガラス部材104,105は、例えば、無アルカリガラスからなる厚さ0.7mmの矩形板状の部材であり、溶着予定領域Rは、ガラス部材104,105の外縁に沿って矩形環状に設定されている。ガラス層103は、例えば、非晶質の低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなり、溶着予定領域Rに沿って矩形環状に形成されている。ガラス層103の1つの曲部には、ガラス層103の一部が結晶化されてなる結晶化部108が形成されている。
 次に、上述したガラス溶着体101を製造するためのガラス溶着方法について説明する。
 まず、図2に示されるように、例えば、低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなる粉末状のガラスフリット102をガラス部材104の表面に固着させ、矩形環状の溶着予定領域Rに沿ってガラス層103を形成する。具体的には、ディスペンサやスクリーン印刷等によって溶着予定領域Rに沿ってフリットペースト(ガラスフリット102、有機溶剤及びバインダを混練したもの)をガラス部材104の表面に塗布した後、フリットペーストが塗布されたガラス部材104を乾燥機内で乾燥させて有機溶剤を除去する。そして、ガラス部材104を加熱炉内で加熱し、バインダを除去した後、更に高温で焼成(仮焼成)してガラスフリット102を溶融・再固化させて、ガラス部材104にガラス層103を形成する。
 なお、図6に示されるように、ガラスフリット102の固着層においては、粉末状のガラスフリット102によって、レーザ光吸収性顔料の吸収特性を上回る光散乱が起こるため、レーザ光の吸収率が低い(可視光では白色に見える)。それに対し、ガラス層103においては、溶融・再固化によって空隙が埋まると共に透明化し、レーザ光吸収性顔料の吸収特性が顕著に現れるため、レーザ光の吸収率が急激に高くなる(可視光では黒色に見える)。
 続いて、図3に示されるように、ガラス層103を介してガラス部材104上にガラス部材105を配置し、ガラス部材104に対してガラス部材105が押圧されるように、ガラス部材104とガラス部材105とを固定する。これにより、ガラス部材104とガラス部材105との間に、矩形環状の溶着予定領域Rに沿ってガラス層103が形成される。
 続いて、図4に示されるように、ガラス層103に集光スポットを合わせて、ガラス層103の1つの曲部にレーザ光(第1のレーザ光)L1を照射することにより、ガラス層103の1つの曲部に結晶化部108を形成する。レーザ光L1は、発振波長940nmの半導体レーザからパルス発振させられ、スポット径1.6mm、レーザパワー40W、照射時間300msecの条件でガラス層103の1つの曲部に照射される。これにより、レーザ光の吸収率が高いガラス層103にレーザ光L1が吸収されて、その結果、レーザ光の吸収率が中心部に向かって漸次的に低下する球状の結晶化部108が形成される。
 なお、図6に示されるように、結晶化部108においては、各結晶質の界面や結晶質と非晶質との界面で、レーザ光吸収性顔料の吸収特性を上回る光散乱が起こるため、レーザ光の吸収率が低くなる(可視光では白色に見える)。そして、この結晶化部108においては、レーザ光の吸収率が中心部に向かって漸次的に低下している(可視光では中心部ほど白みを増しているように見える)。
 続いて、図5に示されるように、ガラス層103に集光スポットを合わせて、結晶化部108を照射開始位置及び照射終了位置として溶着予定領域Rに沿ってガラス層103にレーザ光(第2のレーザ光)L2を照射することにより、ガラス部材104とガラス部材105とを溶着して、ガラス溶着体101を得る。レーザ光L2は、発振波長940nmの半導体レーザから連続発振させられ、スポット径1.6mm、レーザパワー40W、スキャン速度(溶着予定領域Rに沿ったレーザ光L2の集光スポットの相対移動速度)10mm/secの条件でガラス層103に照射される。これにより、レーザ光の吸収率が高いガラス層103にレーザ光L2が吸収されて、ガラス層103及びその周辺部分(ガラス部材104,105の表面部分)が溶融・再固化することで、ガラス部材104とガラス部材105とが溶着される。
 以上のガラス溶着方法においては、溶着予定領域Rに沿ってガラス層103にレーザ光L2を照射することにより、ガラス部材104とガラス部材105とを溶着するに際し、ガラス層103に形成された結晶化部108を照射開始位置及び照射終了位置とする。
 このとき、結晶化部108におけるレーザ光の吸収率がガラス層103におけるレーザ光の吸収率よりも低いため(図6参照)、溶着予定領域Rに沿って照射開始位置からレーザ光L2の集光スポットを移動させた際にはガラス層103が徐々に加熱され、一方、溶着予定領域Rに沿って照射終了位置までレーザ光L2の集光スポットを移動させた際にはガラス層103が徐々に冷却されることになる。ここでは、レーザ光の吸収率が中心部に向かって漸次的に低下するように結晶化部108が形成されているため、溶着予定領域Rに沿って照射開始位置からレーザ光L2の集光スポットを移動させた際におけるガラス層103の加熱をより一層緩やかに行うことができる。溶着予定領域Rに沿って照射終了位置までレーザ光L2の集光スポットを移動させた際におけるガラス層103の冷却も同様である。
 しかも、結晶化部108の線膨張係数がガラス層103の線膨張係数よりも低く、照射開始位置においてはガラス部材104とガラス部材105とが強固に溶着されている。そのため、ガラス層103が溶融・膨張している位置であるレーザ光L2の照射位置が照射開始位置に近付いても、照射開始位置において溶着されていたガラス部材104とガラス部材105との剥離が抑制される。
 従って、上述したガラス溶着方法によれば、レーザ光L2の照射開始位置及び照射終了位置を含む部分に残留応力が生じるのを防止することができる。なお、結晶化部108を溶着予定領域Rに沿って連続的に形成すると、結晶化部108が形成される際の収縮が急激であるため、ガラス部材104,105を破損させるおそれがある。
 更に、結晶化部108を形成するためのレーザ光L1をパルス発振させ、ガラス部材104とガラス部材105とを溶着するためのレーザ光L2を連続発振させるため、ガラス部材104,105を破損させ得る入熱過多の状態となるのを回避しつつ、ガラス層103の一部に結晶化部108を確実に形成することができ、また、ガラス部材104とガラス部材105とを確実に溶着することができる。
 本発明は、上述した第1の実施形態に限定されるものではない。
 例えば、結晶化部108が形成される位置(すなわち、レーザ光L2の照射開始位置及び照射終了位置)は、溶着予定領域Rの曲部に限定されず、溶着予定領域Rの直線部であってもよい。更に、溶着予定領域Rは、矩形環状に限定されず、環状であれば、円形環状等であってもよい。
 また、ガラス部材104にガラスフリット102を固着させず、ガラス部材104とガラス部材105との間にガラスフリット102を介在させることで、溶着予定領域Rに沿ってガラス層103を形成してもよい。
[第2の実施形態]
 図7は、本発明に係るガラス溶着方法の第2の実施形態によって製造されたガラス溶着体の斜視図である。図7に示されるように、ガラス溶着体201は、溶着予定領域Rに沿って形成されたガラス層203を介して、ガラス部材(第1のガラス部材)204とガラス部材(第2のガラス部材)205とが溶着されたものである。ガラス部材204,205は、例えば、無アルカリガラスからなる厚さ0.7mmの矩形板状の部材であり、溶着予定領域Rは、ガラス部材204,205の外縁に沿って矩形環状に設定されている。ガラス層203は、例えば、非晶質の低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなり、溶着予定領域Rに沿って矩形環状に形成されている。ガラス層203の4つの曲部203aのそれぞれには、ガラス層203の一部が結晶化されてなる結晶化部208が形成されている。
 次に、上述したガラス溶着体201を製造するためのガラス溶着方法について説明する。
 まず、図8に示されるように、例えば、低融点ガラス(バナジウムリン酸系ガラス、鉛ホウ酸ガラス等)からなる粉末状のガラスフリット202をガラス部材204の表面に固着させ、矩形環状の溶着予定領域Rに沿ってガラス層203を形成する。具体的には、ディスペンサやスクリーン印刷等によって溶着予定領域Rに沿ってフリットペースト(ガラスフリット202、有機溶剤及びバインダを混練したもの)をガラス部材204の表面に塗布した後、フリットペーストが塗布されたガラス部材204を乾燥機内で乾燥させて有機溶剤を除去する。そして、ガラス部材204を加熱炉内で加熱し、バインダを除去した後、更に高温で焼成(仮焼成)してガラスフリット202を溶融・再固化させて、ガラス部材204にガラス層203を形成する。
 なお、図12に示されるように、ガラスフリット202の固着層においては、粉末状のガラスフリット202によって、レーザ光吸収性顔料の吸収特性を上回る光散乱が起こるため、レーザ光の吸収率が低い(可視光では白色に見える)。それに対し、ガラス層203においては、溶融・再固化によって空隙が埋まると共に透明化し、レーザ光吸収性顔料の吸収特性が顕著に現れるため、レーザ光の吸収率が急激に高くなる(可視光では黒色に見える)。
 続いて、図9に示されるように、ガラス層203を介してガラス部材204上にガラス部材205を配置し、ガラス部材204に対してガラス部材205が押圧されるように、ガラス部材204とガラス部材205とを固定する。これにより、ガラス部材204とガラス部材205との間に、矩形環状の溶着予定領域Rに沿ってガラス層203が形成される。
 続いて、図10に示されるように、ガラス層203に集光スポットを合わせて、ガラス層203の各曲部203aにレーザ光(第1のレーザ光)L1を照射することにより、ガラス層203の各曲部203aに結晶化部208を形成する。レーザ光L1は、発振波長940nmの半導体レーザからパルス発振させられ、スポット径1.6mm、レーザパワー40W、照射時間300msecの条件でガラス層203の1つの曲部203aに照射される。これにより、レーザ光の吸収率が高いガラス層203にレーザ光L1が吸収されて、その結果、レーザ光の吸収率が中心部に向かって漸次的に低下する球状の結晶化部208が形成される。
 なお、図12に示されるように、結晶化部208においては、各結晶質の界面や結晶質と非晶質との界面で、レーザ光吸収性顔料の吸収特性を上回る光散乱が起こるため、レーザ光の吸収率が低くなる(可視光では白色に見える)。そして、この結晶化部208においては、レーザ光の吸収率が中心部に向かって漸次的に低下している(可視光では中心部ほど白みを増しているように見える)。
 続いて、図11に示されるように、ガラス層203に集光スポットを合わせて、1つの結晶化部208を照射開始位置及び照射終了位置として溶着予定領域Rに沿ってガラス層203にレーザ光(第2のレーザ光)L2を照射することにより、ガラス部材204とガラス部材205とを溶着して、ガラス溶着体201を得る。レーザ光L2は、発振波長940nmの半導体レーザから連続発振させられ、スポット径1.6mm、レーザパワー40W、スキャン速度(溶着予定領域Rに沿ったレーザ光L2の集光スポットの相対移動速度)10mm/secの条件でガラス層203に照射される。これにより、レーザ光の吸収率が高いガラス層203にレーザ光L2が吸収されて、ガラス層203及びその周辺部分(ガラス部材204,205の表面部分)が溶融・再固化することで、ガラス部材204とガラス部材205とが溶着される。
 以上のガラス溶着方法においては、溶着予定領域Rに沿ってガラス層203にレーザ光L2を照射することにより、ガラス部材204とガラス部材205とを溶着するに際し、予めガラス層203の各曲部203aに結晶化部208を形成する。
 このとき、結晶化部208におけるレーザ光の吸収率がガラス層203におけるレーザ光の吸収率よりも低いため(図12参照)、溶着予定領域Rに沿って結晶化部208からレーザ光L2の集光スポットを移動させた際にはガラス層203が徐々に加熱され、一方、溶着予定領域Rに沿って結晶化部208までレーザ光L2の集光スポットを移動させた際にはガラス層203が徐々に冷却されることになる。ここでは、レーザ光の吸収率が中心部に向かって漸次的に低下するように各結晶化部208が形成されているため、溶着予定領域Rに沿って結晶化部208からレーザ光L2の集光スポットを移動させた際におけるガラス層203の加熱をより一層緩やかに行うことができる。溶着予定領域Rに沿って結晶化部208までレーザ光L2の集光スポットを移動させた際におけるガラス層203の冷却も同様である。
 しかも、結晶化部208の線膨張係数がガラス層203の線膨張係数よりも低く、各結晶化部208においてはガラス部材204とガラス部材205とが強固に溶着されている。そのため、ガラス層203が溶融・膨張している位置であるレーザ光L2の照射位置が結晶化部208に近付いても、結晶化部208において溶着されていたガラス部材204とガラス部材205との剥離が抑制される。
 従って、上述したガラス溶着方法によれば、ガラス層203の各曲部203aが、ガラス部材204,205を破損させ得る入熱過多の状態となるのを回避することができる。なお、結晶化部208を溶着予定領域Rに沿って連続的に形成すると、結晶化部208が形成される際の収縮が急激であるため、ガラス部材204,205を破損させるおそれがある。
 更に、結晶化部208を形成するためのレーザ光L1をパルス発振させ、ガラス部材204とガラス部材205とを溶着するためのレーザ光L2を連続発振させるため、ガラス部材204,205を破損させ得る入熱過多の状態となるのを回避しつつ、ガラス層203の曲部203aに結晶化部208を確実に形成することができ、また、ガラス部材204とガラス部材205とを確実に溶着することができる。
 そして、ガラス溶着体201においては、結晶化部208を介してガラス層203の曲部203aでガラス部材204とガラス部材205とが強固に溶着されているため、応力集中が起こり易い曲部203aでのガラス部材204とガラス部材205との剥離が確実に防止される。
 図13は、照射開始位置から照射終了位置までのレーザ光の照射位置とレーザ光照射時におけるレーザ光の照射位置での温度との関係を示すグラフである。なお、一点鎖線で表された結果は、従来のガラス溶着方法によるものであり、実線で表された結果は、上述したガラス溶着方法によるものである。
 図13に示されるように、従来のガラス溶着方法においては、ガラス層203の曲部203aに、レーザ光の吸収率が低い結晶化部208が形成されていないため、レーザ光L2のスキャン速度が各曲部203aで落ちることもあって、レーザ光L2の照射時に各曲部203aで温度が上昇する。従って、各曲部203aで入熱過多の状態となってガラス部材204,205を破損させるおそれがある。また、レーザ光L2の照射開始位置及び照射終了位置であるガラス層203の曲部203aに、レーザ光の吸収率が低い結晶化部208が形成されていないため、溶着予定領域Rに沿って照射開始位置からレーザ光L2の集光スポットを移動させた際にはガラス層203の温度が急激に上昇し、一方、溶着予定領域Rに沿って照射終了位置までレーザ光L2の集光スポットを移動させた際にはガラス層203の温度が急激に低下する。従って、レーザ光L2の照射開始位置及び照射終了位置を含む部分に残留応力が生じるおそれがある。
 これに対し、上述したガラス溶着方法においては、ガラス層203の曲部203aに、レーザ光の吸収率が低い結晶化部208が形成されているため、レーザ光L2のスキャン速度が各曲部203aで落ちたとしても、レーザ光L2の照射時に各曲部203aでの温度の上昇が抑制される。従って、各曲部203aで入熱過多の状態となってガラス部材204,205を破損させるのを防止することができる。また、レーザ光L2の照射開始位置及び照射終了位置であるガラス層203の曲部203aに、レーザ光の吸収率が低い結晶化部208が形成されているため、溶着予定領域Rに沿って照射開始位置からレーザ光L2の集光スポットを移動させた際にはガラス層203の温度が徐々に上昇し、一方、溶着予定領域Rに沿って照射終了位置までレーザ光L2の集光スポットを移動させた際にはガラス層203の温度が徐々に低下する。従って、レーザ光L2の照射開始位置及び照射終了位置を含む部分に残留応力が生じるのを防止することができる。
 本発明は、上述した第2の実施形態に限定されるものではない。
 例えば、溶着予定領域Rは、矩形環状に限定されず、環状であれば、円形環状等であってもよい。また、ガラス部材204とガラス部材205とを溶着するためのレーザ光L2の照射開始位置及び照射終了位置は、結晶化部208に限定されず、ガラス層203において結晶化部208が形成されていない部分であってもよい。更に、レーザ光L2の照射開始位置及び照射終了位置は、互いに異なる位置であってもよい。
 また、ガラス層203の曲部203aは、折れ曲がったものに限定されず、湾曲しているものであってもよい。曲部203aが湾曲しているものである場合には、図14(a)に示されるように、湾曲部分の中央に結晶化部208を形成してもよいし、図14(b)に示されるように、湾曲部の両端に結晶化部208を形成してもよい。
 また、ガラス部材204とガラス部材205とを溶着するためのレーザ光L2を環状の溶着予定領域Rに沿って照射するに際しては、レーザ光L2を一筆書き的にスキャンしなくてもよい。一例として、ダイシングすることを前提として複数の溶着予定領域Rがマトリックス状に配置されている場合には、図15(a)に示されるように、シングルのレーザ光L2を複数回往復させるようにスキャンしてもよいし、図15(b)に示されるように、マルチのレーザ光L2をそれぞれ1回往復させるようにスキャンしてもよい。
 また、ガラス部材204にガラスフリット202を固着させず、ガラス部材204とガラス部材205との間にガラスフリット202を介在させることで、溶着予定領域Rに沿ってガラス層203を形成してもよい。
 本発明によれば、第1のガラス部材と第2のガラス部材とを確実に溶着することができる。
 101,201…ガラス溶着体、103,203…ガラス層、203a…曲部、104,204…ガラス部材(第1のガラス部材)、105,205…ガラス部材(第2のガラス部材)、108,208…結晶化部、R…溶着予定領域、L1…レーザ光(第1のレーザ光)、L2…レーザ光(第2のレーザ光)。

Claims (4)

  1.  第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法であって、
     前記第1のガラス部材と前記第2のガラス部材との間に、環状の溶着予定領域に沿ってガラス層を形成する工程と、
     前記ガラス層の一部に第1のレーザ光を照射することにより、前記ガラス層に結晶化部を形成する工程と、
     前記結晶化部を照射開始位置及び照射終了位置として前記溶着予定領域に沿って前記ガラス層に第2のレーザ光を照射することにより、前記第1のガラス部材と前記第2のガラス部材とを溶着する工程と、を含むことを特徴とするガラス溶着方法。
  2.  第1のガラス部材と第2のガラス部材とを溶着してガラス溶着体を製造するガラス溶着方法であって、
     前記第1のガラス部材と前記第2のガラス部材との間に、環状の溶着予定領域に沿ってガラス層を形成する工程と、
     前記ガラス層の曲部に第1のレーザ光を照射することにより、前記ガラス層に結晶化部を形成する工程と、
     前記溶着予定領域に沿って前記ガラス層に第2のレーザ光を照射することにより、前記第1のガラス部材と前記第2のガラス部材とを溶着する工程と、を含むことを特徴とするガラス溶着方法。
  3.  前記第2のレーザ光の吸収率が中心部に向かって漸次的に低下するように前記結晶化部を形成することを特徴とする請求項1又は2記載のガラス溶着方法。
  4.  前記第1のレーザ光をパルス発振させ、前記第2のレーザ光を連続発振させることを特徴とする請求項1又は2記載のガラス溶着方法。
PCT/JP2009/057982 2008-04-25 2009-04-22 ガラス溶着方法 WO2009131144A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980114477XA CN102015567B (zh) 2008-04-25 2009-04-22 玻璃熔接方法
US12/989,244 US8490430B2 (en) 2008-04-25 2009-04-22 Process for fusing glass
DE112009000987T DE112009000987T5 (de) 2008-04-25 2009-04-22 Verfahren zum Schmelzen von Glas
KR1020107019662A KR101519693B1 (ko) 2008-04-25 2009-04-22 유리용착방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-115580 2008-04-25
JP2008115580A JP5264266B2 (ja) 2008-04-25 2008-04-25 ガラス溶着方法
JP2008-115583 2008-04-25
JP2008115583A JP5264267B2 (ja) 2008-04-25 2008-04-25 ガラス溶着方法

Publications (1)

Publication Number Publication Date
WO2009131144A1 true WO2009131144A1 (ja) 2009-10-29

Family

ID=41216874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057982 WO2009131144A1 (ja) 2008-04-25 2009-04-22 ガラス溶着方法

Country Status (6)

Country Link
US (1) US8490430B2 (ja)
KR (1) KR101519693B1 (ja)
CN (1) CN102015567B (ja)
DE (1) DE112009000987T5 (ja)
TW (1) TW201004884A (ja)
WO (1) WO2009131144A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077718A1 (ja) * 2010-12-08 2012-06-14 浜松ホトニクス株式会社 ガラス溶着装置及びガラス溶着方法
JP2012121759A (ja) * 2010-12-08 2012-06-28 Hamamatsu Photonics Kk ガラス溶着装置及びガラス溶着方法
CN102666416A (zh) * 2009-11-25 2012-09-12 浜松光子学株式会社 玻璃熔接方法及玻璃层固定方法
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
EP2686722A4 (en) * 2011-01-10 2016-06-08 UNIVERSITé LAVAL DIRECT LASER-ENHANCED CONNECTION BETWEEN OPTICAL COMPONENTS
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
CN115734952A (zh) * 2020-03-02 2023-03-03 西班牙高等科研理事会 玻璃材料的改性方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773848B2 (en) * 2012-01-25 2014-07-08 Apple Inc. Fused glass device housings
JP5882114B2 (ja) * 2012-04-09 2016-03-09 浜松ホトニクス株式会社 ガラス溶着方法
US9534764B2 (en) * 2014-03-26 2017-01-03 Taylor Made Group, Llc Illuminated windshield system
CN104810484B (zh) * 2015-05-07 2017-01-04 合肥鑫晟光电科技有限公司 封装胶、封装方法、显示面板及显示装置
US10629577B2 (en) 2017-03-16 2020-04-21 Invensas Corporation Direct-bonded LED arrays and applications
US11011503B2 (en) * 2017-12-15 2021-05-18 Invensas Bonding Technologies, Inc. Direct-bonded optoelectronic interconnect for high-density integrated photonics
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
FR3089442B1 (fr) * 2018-12-05 2020-12-18 Airbus Operations Sas Procédé d’assemblage d’au moins deux pièces par soudage par transparence, procédé d’assemblage d’une structure primaire d’un mât d’aéronef par soudage par transparence, structure primaire d’un mât d’aéronef ainsi obtenue et aéronef comprenant ladite structure primaire
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120259A (ja) * 1988-10-28 1990-05-08 Toshiba Corp ガラスの封止接合体およびその製造方法
JP2004182567A (ja) * 2002-12-05 2004-07-02 Nippon Sheet Glass Co Ltd 真空ガラスパネルの製造方法、及び該製造方法により製造された真空ガラスパネル
JP2005213125A (ja) * 2004-02-02 2005-08-11 Futaba Corp 電子管と電子管の気密容器の製造方法
JP2006524419A (ja) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371143B2 (en) * 2004-10-20 2008-05-13 Corning Incorporated Optimization of parameters for sealing organic emitting light diode (OLED) displays
JP4612438B2 (ja) * 2005-03-07 2011-01-12 日本電信電話株式会社 サービス提供システムおよびサービス提供装置
KR101457362B1 (ko) * 2007-09-10 2014-11-03 주식회사 동진쎄미켐 유리 프릿 및 이를 이용한 전기소자의 밀봉방법
US7815480B2 (en) * 2007-11-30 2010-10-19 Corning Incorporated Methods and apparatus for packaging electronic components
KR101465478B1 (ko) * 2008-02-18 2014-11-26 삼성디스플레이 주식회사 유기발광 표시장치 및 이의 제조방법
US8147632B2 (en) * 2008-05-30 2012-04-03 Corning Incorporated Controlled atmosphere when sintering a frit to a glass plate
US7992411B2 (en) * 2008-05-30 2011-08-09 Corning Incorporated Method for sintering a frit to a glass plate
JP2010135312A (ja) * 2008-11-04 2010-06-17 Canon Inc 気密容器の製造方法
KR20110087265A (ko) * 2008-11-26 2011-08-02 아사히 가라스 가부시키가이샤 봉착 재료층 부착 유리 부재 및 그것을 사용한 전자 디바이스와 그 제조 방법
CN102066280A (zh) * 2009-07-23 2011-05-18 旭硝子株式会社 带密封材料层的玻璃构件的制造方法及制造装置以及电子器件的制造方法
JP5481172B2 (ja) * 2009-11-25 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
WO2011115266A1 (ja) * 2010-03-19 2011-09-22 旭硝子株式会社 電子デバイスとその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120259A (ja) * 1988-10-28 1990-05-08 Toshiba Corp ガラスの封止接合体およびその製造方法
JP2004182567A (ja) * 2002-12-05 2004-07-02 Nippon Sheet Glass Co Ltd 真空ガラスパネルの製造方法、及び該製造方法により製造された真空ガラスパネル
JP2006524419A (ja) * 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2005213125A (ja) * 2004-02-02 2005-08-11 Futaba Corp 電子管と電子管の気密容器の製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
CN102666416A (zh) * 2009-11-25 2012-09-12 浜松光子学株式会社 玻璃熔接方法及玻璃层固定方法
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
WO2012077718A1 (ja) * 2010-12-08 2012-06-14 浜松ホトニクス株式会社 ガラス溶着装置及びガラス溶着方法
JP2012121759A (ja) * 2010-12-08 2012-06-28 Hamamatsu Photonics Kk ガラス溶着装置及びガラス溶着方法
US9625713B2 (en) 2011-01-10 2017-04-18 UNIVERSITé LAVAL Laser reinforced direct bonding of optical components
EP2686722A4 (en) * 2011-01-10 2016-06-08 UNIVERSITé LAVAL DIRECT LASER-ENHANCED CONNECTION BETWEEN OPTICAL COMPONENTS
CN115734952A (zh) * 2020-03-02 2023-03-03 西班牙高等科研理事会 玻璃材料的改性方法

Also Published As

Publication number Publication date
KR20100135734A (ko) 2010-12-27
CN102015567A (zh) 2011-04-13
US20110113828A1 (en) 2011-05-19
DE112009000987T5 (de) 2011-03-24
US8490430B2 (en) 2013-07-23
KR101519693B1 (ko) 2015-05-12
TW201004884A (en) 2010-02-01
CN102015567B (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2009131144A1 (ja) ガラス溶着方法
KR101747463B1 (ko) 유리 용착 방법
JP5535654B2 (ja) ガラス溶着方法
JP5535653B2 (ja) ガラス溶着方法
JP5567319B2 (ja) ガラス溶着方法及びガラス層定着方法
JP5535591B2 (ja) ガラス層定着方法
JP5140201B2 (ja) ガラス層定着方法
JP5308718B2 (ja) ガラス溶着方法
KR101162902B1 (ko) 유리 용착 방법 및 유리층 정착 방법
WO2009145044A1 (ja) ガラス溶着方法
JP4928483B2 (ja) ガラス溶着方法
JP5264266B2 (ja) ガラス溶着方法
JP5264267B2 (ja) ガラス溶着方法
JP5651327B2 (ja) ガラス溶着方法
JP2012031032A (ja) ガラス溶着方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114477.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019662

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12989244

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009000987

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09735306

Country of ref document: EP

Kind code of ref document: A1