WO2009130992A1 - 真空断熱材及びその製造方法 - Google Patents

真空断熱材及びその製造方法 Download PDF

Info

Publication number
WO2009130992A1
WO2009130992A1 PCT/JP2009/057045 JP2009057045W WO2009130992A1 WO 2009130992 A1 WO2009130992 A1 WO 2009130992A1 JP 2009057045 W JP2009057045 W JP 2009057045W WO 2009130992 A1 WO2009130992 A1 WO 2009130992A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
insulating material
heat insulating
filler
fiber array
Prior art date
Application number
PCT/JP2009/057045
Other languages
English (en)
French (fr)
Inventor
大 石田
光太郎 松本
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008111298A external-priority patent/JP2009264409A/ja
Priority claimed from JP2008127151A external-priority patent/JP2009275801A/ja
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Publication of WO2009130992A1 publication Critical patent/WO2009130992A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • B29D2009/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment

Definitions

  • the present invention relates to a vacuum heat insulating material and a manufacturing method thereof, and more particularly, to a configuration of a vacuum heat insulating material using a nonwoven fabric as a filler and a manufacturing method thereof.
  • Vacuum insulation is widely used in products that require heat insulation, such as refrigerators and vending machines.
  • the vacuum heat insulating material has a jacket material whose inside is evacuated, and a high heat insulating effect utilizing vacuum is obtained.
  • the vacuum heat insulating material it is necessary to prevent the outer shell material from being compressed and deformed by atmospheric pressure as much as possible, and a filler is placed inside the outer shell material.
  • the filler functions as a heat medium, even if the inside of the jacket material is evacuated, the heat insulation performance is reduced by heat transfer through the filler. For this reason, in the vacuum heat insulating material, the structure and filling method of the filler are important in determining the heat insulating performance.
  • Patent Document 1 discloses a vacuum heat insulating material using glass fibers as a filler.
  • the vacuum heat insulating material includes a filler in which glass fibers aligned in a predetermined direction and glass fibers aligned in a direction orthogonal to the glass fiber are alternately stacked. Both the two directions in which the glass fibers are aligned are orthogonal to the direction in which heat transfer should be prevented (hereinafter referred to as the heat insulation direction). As a result, heat is prevented from traveling in the direction of heat insulation along the inside of the glass fiber.
  • Patent Document 2 discloses a vacuum heat insulating material using a nonwoven fabric as a filler. Nonwoven fabrics made of plastic fibers are laminated so that the arrangement directions of the fibers intersect. For this reason, like the vacuum heat insulating material described in Patent Document 1, the contact between fibers can be suppressed, and the deterioration of the heat insulating performance due to the filler can be prevented.
  • Patent Document 2 uses plastic fibers, but the specific configuration of the fibers is not clear.
  • the arrangement direction of the fibers is not sufficiently uniform, and often has a partially curved or meandering shape, so that the crossing range (area) of the fibers tends to increase.
  • the fibers themselves are often short, and fiber scraps are likely to be generated in the process up to completion as a vacuum heat insulating material.
  • the fiber waste is sandwiched between the fibers to reduce the heat insulation performance.
  • the technique described in Patent Document 2 is also limited in improving the heat insulation performance.
  • an object of the present invention is to provide a vacuum heat insulating material excellent in heat insulating performance and a method for manufacturing the same.
  • the vacuum heat insulating material is formed by laminating two or more fiber array layers in which continuous long fibers made of a thermoplastic resin are stretched substantially linearly in one direction and arranged, It has a filler in which the long fibers of the fiber array layers adjacent to each other are aligned in a direction intersecting with each other, and a jacket material that surrounds the filler and is evacuated.
  • thermoplastic resin fibers have a lower thermal conductivity coefficient than the glass fiber, and thus it is easy to prevent heat transfer. Since the long fibers are drawn, the fibers are easily aligned in one direction, and are not easily formed into a curved shape or a meandering shape. For this reason, the range of the intersection part of a fiber can be suppressed to the minimum. These contribute to the improvement of heat insulation performance. Further, unlike glass fibers, thermoplastic resin fibers are flexible and are not easily broken, so that they can be handled easily during the manufacturing process.
  • the filler is composed of a plurality of fiber laminates each constituted by a plurality of adjacent fiber array layers, and each of the fiber laminates is a plurality of parallel arrays. It is preferable that at least one pair of adjacent fiber laminates having a concavo-convex shape provided with a groove is laminated so that the position of the groove is shifted with respect to each other in at least one cross section orthogonal to the fiber arrangement layer. At least in the cross section, it is difficult to form a contact between adjacent fiber laminates, and the range of crossing fibers can be further limited. In addition, a vacuum gap is easily formed between the fiber laminates. For these reasons, the heat insulation performance is further enhanced.
  • a method for producing a vacuum heat insulating material is obtained by folding a fiber while melting and extruding a fiber made of a thermoplastic resin so that continuous long fibers are arranged substantially linearly in one direction.
  • the step of forming the filler includes laminating two or more stretched fiber array layers so that the array directions of the long fibers of the adjacent fiber array layers intersect each other.
  • the step of forming the fiber laminate, the step of laminating the fiber laminates to form the filler, and the step of forming the filler include at least a part of the fiber laminate, Giving an uneven shape having a plurality of groove portions arranged in parallel to each other, and at least one pair of fiber laminates provided with the uneven shape in at least one cross section orthogonal to the fiber array layer, the position of the groove portion is And laminating so as to be offset relative to each other.
  • FIG. 2 is a partial detail view of the filler shown in FIG. 1. It is the schematic of the manufacturing apparatus used for preparation of a fiber arrangement
  • FIG. 10A It is a conceptual diagram of the apparatus which provides uneven
  • FIG. 1 is a cross-sectional view of a vacuum heat insulating material according to the first embodiment of the present invention.
  • the vacuum heat insulating material 1 includes a filler 2 and an outer jacket material 3 that surrounds the filler 2 and is evacuated.
  • the jacket material 3 is made of a laminate film having excellent deformability and sealing properties.
  • the heat insulating direction D is the vertical direction in the figure.
  • “Vacuum” includes not only the state in which no gas (air) is present in the jacket material 3 but also the state in which the interior of the jacket material 3 is depressurized with respect to atmospheric pressure.
  • the reason for making the vacuum is to prevent heat transfer in the heat insulation direction D due to gas. Therefore, the lower the internal pressure of the jacket material 3 is generally desirable, but it can be appropriately determined according to the heat insulation performance to be realized. .
  • FIG. 2 is an exploded perspective view of the filler.
  • the filler 2 is formed by laminating a plurality of fiber arrangement layers in which continuous long fibers made of a thermoplastic resin are arranged in a substantially straight line in one direction.
  • four fiber array layers 12A, 12B, 12C, and 12D are shown, but the number of stacked layers can be determined as appropriate, and several tens of layers may be stacked.
  • the fiber array layers 12 ⁇ / b> A, 12 ⁇ / b> B, 12 ⁇ / b> C, 12 ⁇ / b> D are pressed against each other by the atmospheric pressure outside the jacket material 3 to form one filler 2 as a whole.
  • FIG. 3 is an enlarged partial perspective view showing a part of the fiber array layer of the filler. Only the fiber array layers 12A and 12B are shown in the figure, but the other fiber array layers have the same configuration. As shown in the figure, the fiber array layer 12A is an aggregate of a large number of fibers 13A arranged in parallel and in a straight line. Similarly, the fiber array layer 12B is an aggregate of a large number of fibers 13B aligned in parallel and linearly with each other. The fibers 13A and 13B may be folded in the middle or laminated in two or more layers.
  • the fiber array layer 12A can be made from thermoplastic resins such as polyethylene terephthalate, polyethylene, polypropylene, polyester, polyamide, polyvinyl chloride resin, polyurethane, fluorine resin, and modified resins thereof. Resins by wet or dry spinning means such as polyvinyl alcohol resins and polyacrylonitrile resins can also be used. The same applies to the fiber array layer 12B.
  • the diameter of each of the fibers 13A and 13B is preferably in the range of 1 to 20 ⁇ m, and in one embodiment is about 10 ⁇ m.
  • the fiber array layers 12A and 12B are laminated so that the stretching direction 15A of the fibers 13A of the fiber array layer 12A and the stretching direction 15B of the fibers 13B of the fiber array layer 12B are orthogonal to each other.
  • the stretching direction 15C of the fibers 13C of the fiber array layer 12C is orthogonal to the stretching direction 15B of the fibers 13B of the fiber array layer 12B.
  • the extending direction 15D of the fibers 13D of the fiber array layer 12D is orthogonal to the extending direction 15C of the fibers 13C of the fiber array layer 12C.
  • the fiber array layers do not need to be orthogonal to each other between adjacent fiber array layers, and may be sequentially laminated with a certain angle difference.
  • the contact range of fiber arrangement layers can be limited, and heat insulation performance can be improved.
  • the case where the long fibers of the fiber array layers adjacent to each other are aligned in a direction orthogonal to each other is most preferable because the contact range (area) between the fibers is minimized.
  • the fiber array layers 12A, 12B, 12C, and 12D are bonded to each other at a temperature lower than the melting point of the material resin.
  • the thermoplastic resin is a polyethylene terephthalate resin
  • the reason for adopting such a joining method is as follows. Generally, when fiber array layers are joined together, thermocompression bonding or embossing is used. In the former, the fiber array layers are melted or softened at a temperature equal to or higher than the melting point of the material resin, and the fiber array layers are fixed to each other at the contact position. The latter uses the entanglement of fibers caused by plastic deformation due to pressing force.
  • any of these joining methods has a large contact area, and accordingly, the amount of heat transfer in the heat insulation direction D increases, leading to a decrease in heat insulation performance.
  • embossing since a certain area is pressed, almost the entire area subjected to embossing may become a heat transfer path in the heat insulating direction D.
  • the material when heated at a temperature below the melting point, the material does not melt, but a part of the resin whose molecular weight has decreased during the spinning process appears as a paste on the surface of the fiber, and acts as an adhesive. Conceivable. Although this adhesive force is not large, the fiber array layer laminated in the subsequent process does not peel off and is sufficient to maintain the integrity.
  • the fiber array layers After the filling material 2 is sealed in the jacket material 3, the fiber array layers are brought into close contact with each other by the vacuum inside the jacket material 3. Rather, by taking such a joining method, the spread of the contact range between fibers can be prevented, and the heat transfer path in the heat insulation direction D can be suppressed.
  • the inventor compared the filler using the conventional thermocompression bonding with the filler using the present joining method, and confirmed that the filler using the present joining method exhibits better heat insulation performance. .
  • the fibers 13A, 13B, 13C, 13D of the fiber array layers 12A, 12B, 12C, 12D are stretched and arranged in the stretching directions 15A, 15B, 15C, 15D. For this reason, compared with the nonwoven fabric produced using the conventional melt blow method etc., the linearity and directionality (alignment degree) of a fiber are very high. As a result, since the fiber array layers are in contact with each other in an orthogonal direction at almost all intersections, the contact range can be further limited.
  • the filler of the present embodiment is composed of continuous long fibers, there is a low possibility that the fibers will fall off and be sandwiched between the fiber array layers, for example, when encapsulated in the jacket material 3. This further suppresses the movement of heat in the heat insulation direction, leading to further improvement in heat insulation performance.
  • the filler of the present embodiment is formed by stretching, it is inherently thin (thickness is small) compared to conventional fillers. Therefore, the completed vacuum heat insulating material can be thinner than the conventional vacuum heat insulating material. As a result, a further reduction in thickness and weight is achieved. This is a great merit when the vacuum heat insulating material is applied to a product such as an automobile in which weight reduction is particularly required. Furthermore, the feature of being bulky leads to ease of handling such as storage and transportation.
  • a conventional nonwoven fabric has a thickness of about 200 ⁇ m when the basis weight is about 30 g / m 2 , but the filler of this embodiment can be reduced to a thickness of about 100 ⁇ m when the basis weight is about 30 g / m 2 .
  • FIG. 4 shows a schematic view of a production apparatus used for producing a fiber array layer constituting the filler.
  • the fiber array layer manufacturing apparatus 21 includes a spinning unit 22 mainly composed of a meltblown rice 24 and a conveyor 25, and a stretching unit 23 composed of stretching cylinders 26a and 26b, take-up nip rollers 27a and 27b, and the like. ing.
  • the melt blown rice 24 has a large number of nozzles 28 arranged at the tip (lower end) in a direction perpendicular to the paper surface (only one is shown in the figure).
  • a large number of fibers 31 are formed by the molten resin 30 fed from a gear pump (not shown) being extruded from the nozzle 28.
  • Air reservoirs 32a and 32b are provided on both sides of each nozzle 28, respectively.
  • High-pressure heated air heated to a temperature equal to or higher than the melting point of the resin is sent to the air reservoirs 32a and 32b, and is ejected from slits 33a and 33b communicating with the air reservoirs 32a and 32b and opening at the tip of the melt blown die 24.
  • a high-speed air flow substantially parallel to the extrusion direction of the fibers 31 extruded from the nozzle 28 is generated.
  • the fiber 31 extruded from the nozzle 28 is maintained in a meltable state that can be drafted by the high-speed airflow, and the fiber 31 is drafted by the frictional force of the high-speed airflow, thereby reducing the diameter of the fiber 31.
  • the temperature of the high-speed airflow is set to 80 ° C. or higher, desirably 120 ° C. or higher, than the spinning temperature of the fiber 31.
  • the temperature of the fiber 31 immediately after being extruded from the nozzle 28 can be made sufficiently higher than the melting point of the fiber 31 by increasing the temperature of the high-speed airflow. Therefore, the molecular orientation of the fiber 31 can be reduced.
  • it can be refined to a diameter of 10 to 23 ⁇ m by hot air during melt extrusion.
  • a conveyor 25 is disposed below the meltblown rice 24.
  • the conveyor 25 is wound around a conveyor roller 29 and other rollers that are rotated by a driving source (not shown), and the conveyor 25 is driven by the rotation of the conveyor roller 29, so that the fibers extruded from the nozzles 28. 31 is conveyed rightward in the drawing.
  • the fiber 31 flows along a high-speed airflow that is a flow in which high-pressure heated air ejected from the slits 33a and 33b on both sides of the nozzle 28 is merged.
  • the high-speed air current flows in a direction substantially perpendicular to the conveying surface of the conveyor 25 by the high-pressure heated air ejected from the slits 33a and 33b.
  • a spray nozzle 35 is provided between the meltblown rice 24 and the conveyor 25.
  • the spray nozzle 35 sprays mist-like water into a high-speed air stream, whereby the fibers 31 are cooled and rapidly solidified.
  • a plurality of spray nozzles 35 are actually installed, but only one is shown in FIG.
  • the fluid ejected from the spray nozzle 35 is not necessarily required to contain moisture or the like as long as the fiber 31 can be cooled, and may be cold air.
  • An elliptical columnar airflow vibration mechanism 34 is provided in a region where high-speed airflow is generated by the slits 33a and 33b in the vicinity of the melt blown rice 24.
  • the airflow vibration mechanism 34 rotates in the direction of the arrow A around an axis 34a that is substantially orthogonal to the conveyance direction d of the fibers 31 on the conveyor 25, that is, substantially parallel to the width direction of the fiber array layer to be manufactured. Be made.
  • the Coanda effect When a wall exists in the vicinity of a high-speed jet of gas or liquid, the jet tends to flow near the direction along the wall surface, which is called the Coanda effect.
  • the airflow vibration mechanism 34 changes the flow direction of the fibers 31 using this Coanda effect. In the case of FIG.
  • the fibers 31 collected on the conveyor 25 are transported in the transport direction d by the conveyor 25 and nipped between the stretching cylinder 26a and the pressing roller 36 heated to the stretching temperature. Thereafter, the fiber 31 is nipped between the stretching cylinder 26b and the pressing rubber roller 37 and is brought into close contact with the two stretching cylinders 26a and 26b. In this way, the fibers 31 are fed while being in close contact with the drawing cylinders 26a and 26b, so that the fibers 31 become a web in which adjacent fibers 31 are fused while being partially folded in the vertical direction. .
  • the web obtained by being fed while being in close contact with the stretching cylinders 26a and 26b is further taken up by take-up nip rollers 27a and 27b (the take-up nip roller 27b in the subsequent stage is made of rubber).
  • the peripheral speed of the take-up nip rollers 27 a and 27 b is larger than the peripheral speed of the stretching cylinders 26 a and 26 b, whereby the web is stretched in the longitudinal direction and becomes the longitudinally stretched fiber array layer 38.
  • the degree of fiber alignment can be further improved by stretching the spun web in the machine direction.
  • the fibers are stretched to a length of 3 to 10 times to reduce the fiber diameter to about 1 to 20 ⁇ m, and this stretching operation increases the degree of alignment of the fibers. Is possible.
  • the fiber 31 is sufficiently quenched, the fiber 31 having a small stretching stress and a high elongation is formed. This is realized by spraying mist-like water from the spray nozzle 35 as described above and including the mist-like liquid in the high-speed airflow.
  • continuous long fibers are arrayed substantially linearly in one direction.
  • the fiber arrangement layers thus manufactured are sequentially laminated so that the fiber directions are orthogonal to each other. Thereafter, as described above, the fiber array layer is bonded by applying a temperature equal to or lower than the melting point of the material resin. Thereby, the filler 2 mentioned above is completed.
  • the filler 2 created as described above is surrounded by the jacket material 3, the inside of the jacket material is evacuated, and then the jacket material 3 is sealed to complete the vacuum heat insulating material 1.
  • FIG. 5 is a cross-sectional view of a vacuum heat insulating material 1 ′ according to the second embodiment of the present invention.
  • the filler 2 ' is formed by laminating a plurality of fiber laminates (fiber laminates 11A to 11J) in which two or more fiber array layers (described later) are laminated.
  • the number of fiber laminates is not limited to the number shown, and several tens of fiber laminates may be laminated in order to obtain sufficient heat insulation.
  • FIG. 6 is a partially exploded perspective view of the filler shown in FIG.
  • FIG. 7 is a cross-sectional view of the fiber laminate viewed in the direction orthogonal to the plane of FIG.
  • each of the fiber laminates 11A and 11B has four fiber array layers.
  • both of the fiber laminates 11A and 11B have two fiber array layers 12A. 12B and only two fiber array layers 12C and 12D are shown.
  • the number of fiber array layers included in each fiber laminate is arbitrary.
  • the number of fiber array layers constituting the fiber laminate may be different for each fiber laminate.
  • the fiber array layers 12A, 12B, 12C, and 12D are pressed against each other by the atmospheric pressure outside the covering material 3 ', and form part of the filler 2' as a whole.
  • FIG. 8 is a partial perspective view showing an enlarged part of the fiber array layer of the filler. Only the fiber array layers 12A and 12B are shown in the figure, but the other fiber array layers have the same configuration. As shown in the figure, the fiber array layer 12A is an aggregate of a large number of fibers 13A arranged in parallel and in a straight line. Similarly, the fiber array layer 12B is an aggregate of a large number of fibers 13B aligned in parallel and linearly with each other. The fibers 13A and 13B may be folded in the middle or laminated in two or more layers.
  • the material of the fiber array layers 12A and 12B is the same as that of the first embodiment.
  • the diameter of each of the fibers 13A and 13B is preferably in the range of 1 to 20 ⁇ m, and in one embodiment is about 10 ⁇ m.
  • each of the fiber array layers 12A to 12D is formed such that continuous long fibers 13A to 13D made of a thermoplastic resin are arranged in a substantially straight line in one direction.
  • Adjacent fiber arrangement layers 12A and 12B and fiber arrangement layers 12C and 12D are laminated so that the arrangement directions of long fibers are orthogonal to each other.
  • the fiber array layers do not have to be perpendicular to each other between adjacent fiber array layers, and may be sequentially laminated with a certain angle difference.
  • the long fibers of the fiber array layers adjacent to each other need only be aligned in the intersecting direction.
  • the contact range of fiber arrangement layers can be limited, and heat insulation performance can be improved.
  • it is most preferable that the long fibers of the fiber array layers adjacent to each other are aligned in a direction orthogonal to each other because the contact range (area) of the fibers is minimized.
  • the fiber laminate 11A has a concavo-convex shape 17 having a plurality of groove portions 16x and 16y arranged in parallel to each other.
  • the number of grooves is not limited to two.
  • the fiber laminate 11B has a concavo-convex shape 17 'having a plurality of grooves 16x' and 16y 'arranged in parallel to each other.
  • the groove portions 16x and 16y of the fiber laminate 11A and the groove portions 16x 'and 16y' of the fiber laminate 11B are displaced from each other.
  • the groove portions 16x, 16y, 16x ′, and 16y ′ are all arranged parallel to each other in the extending directions 15A and 15C (see FIG.
  • FIG. 9 shows a partial cross-sectional view of the filler according to the first embodiment using a fiber array layer that does not have an uneven shape. When the uneven shape is not provided, almost all the fibers are in contact with the fibers of the adjacent fiber array layer, regardless of the relative positional relationship of the fiber array layers 11A 'and 11B'. In contrast, in the configuration of FIG.
  • the fibers of the fiber array layer 12B of the fiber laminate 11A and the fibers of the fiber array layer 12C of the fiber laminate 11B are in a non-contact state over a wide range, and the heat transfer path is Limited. Further, the gap G is in a vacuum. Due to these factors, the configuration of FIG. 7 can obtain higher heat insulation performance than the configuration of FIG. Furthermore, as shown in FIG. 6, in this embodiment, the fibers of the fiber array layers 12B and 12C are orthogonal to each other, and the contact range of the fibers between the fiber laminates 11A and 11B is minimized.
  • a large heat insulating performance can be obtained by further limiting the contact range between the fiber laminates. Therefore, in order to improve the heat insulation performance, it is effective to increase the number of fiber laminates.
  • the magnitude of the deviation of the fiber array layer is not limited to a distance corresponding to almost half the width of the groove as shown in FIG. 10A and 10B are partial cross-sectional views of the filler when the magnitude of the shift is changed.
  • the size of the deviation is slightly smaller than the case of FIG. 7 as shown in FIG. 10A
  • the contact range between the fibers is equivalent to the case of FIG. 7, and the size of the gap G1 is not much different from the case of FIG. .
  • FIG. 10B when the displacement size s decreases, the contact range between the fibers increases and the size of the gap G2 decreases. However, the contact range between the fibers is still smaller than that in FIG. Thus, even if the magnitude of the shift is not set so strictly, it is possible to sufficiently limit the contact range between the fibers, which is not a great limitation in the manufacturing process.
  • all adjacent fiber laminates have such a concavo-convex structure, but this is not always necessary.
  • the other adjacent fiber laminates have the configuration shown in FIG. 7 or FIGS. 10A and 10B. If it has, the effect of this embodiment can be exhibited.
  • the laminated body should just be laminated
  • the fiber laminates 11A and 11B are bonded to each other at a temperature equal to or lower than the melting point of the material resin.
  • the temperature is desirably 90 ° C. or higher and 160 ° C. or lower. The reason for adopting such a joining method is the same as in the first embodiment.
  • the vacuum heat insulating material 1 ′ of this embodiment can be manufactured as follows. First, each fiber array layer is manufactured in the same manner as in the first embodiment. Next, this fiber array layer is sequentially laminated so that the directions of the fibers are orthogonal to each other, and thermocompression-bonded to form a fiber laminate. Thereafter, as described above, the fiber laminate is joined by applying a temperature equal to or lower than the melting point of the material resin. Under the present circumstances, the above-mentioned uneven
  • At least a pair of fiber laminates provided with uneven shapes are arranged such that the groove portions of one fiber laminate and the groove portions of the other fiber laminate are arranged in parallel with an interval between each other. Laminate.
  • the filler 2 'described above is completed.
  • it can also join by applying the temperature below melting
  • FIG. 11 is a cross-sectional view showing an example of a mechanism for imparting an uneven shape to the fiber laminate.
  • the flat fiber laminate 11 is passed between a pair of stationary forming gears 52 and 53 having a space corresponding to the irregular shape formed therebetween. As a result, the fiber laminate passing through the gap can be plastically deformed to obtain a desired uneven shape.
  • the filler 2 ′ prepared as described above is surrounded by the jacket material 3 ′, and after the inside of the jacket material is evacuated, the jacket material 3 ′ is sealed, whereby the vacuum heat insulating material 1 ′. Is completed.
  • FIG. 12 is a conceptual diagram showing a third embodiment of the present invention.
  • the filler 2 ′′ is composed of a large number of fiber laminates (only the fiber laminates 11A and 11B are shown).
  • Each fiber laminate 11A and 11B is composed of the fiber laminates 11A and 11A of the first and second embodiments, respectively.
  • the fiber arrangement layers 12A to 12D have the same configuration as 11B, and are formed such that continuous long fibers made of a thermoplastic resin are arranged in a substantially straight line in one direction.
  • the fiber array layers 12A and 12B are laminated so that the stretching direction 15A of the fibers 13A of the fiber array layer 12A and the stretching direction 15B of the fibers 13B of the fiber array layer 12B are orthogonal to each other. Similarly, the extending direction 15D of the fibers 13D of the fiber array layer 12D is orthogonal to the extending direction 15C of the fibers 13C of the fiber array layer 12C.
  • the fiber laminate 11A is provided with a concavo-convex structure 117 having grooves 116x and 116y arranged in parallel with the stretching direction 15A.
  • the fiber laminate 11B is provided with a concavo-convex structure 117 'having grooves 116x' and 116y 'arranged in parallel with the stretching direction 15D.
  • the groove portions 116x and 116y and the groove portions 116x 'and 116y' are arranged in a direction orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • the fiber laminate 11A and the fiber laminate 11B have a configuration in which the positions of the groove portions are shifted from each other.
  • the ridges 118x and 118y of the fiber laminate 11A and the grooves 116x ′ and 116y ′ of the fiber laminate 11B are in contact with each other, and gaps (not shown) are provided between the fiber laminates 11A and 11B in other portions. Is formed.
  • the joining range between adjacent fiber laminates 11 ⁇ / b> A and 12 ⁇ / b> B is reduced to a quarter or less.
  • the vacuum heat insulating material according to the present embodiment is a second method except that the fiber laminates are laminated so that the groove portions of one fiber laminate and the groove portions of the other fiber laminate are arranged to cross each other. It can be manufactured in the same procedure as the vacuum heat insulating material of the embodiment.
  • the concave and convex shape of the fiber laminate is a shape in which a groove portion having a flat surface and a ridge portion having a flat surface are periodically repeated in the above embodiment, but as shown in FIGS. 13A to 13C, a sawtooth shape is used.
  • FIGS. 13A to 13C a sawtooth shape is used.
  • FIG. 13A a wave type (FIG. 13B), a sine wave type (FIG. 13C), or the like may be used.
  • a rotating forming gear can be used instead of the stationary forming gear shown in FIG. In that case, it is preferable to let the fiber laminate pass through at a pressing speed larger than the peripheral speed of the formed gear.
  • the aspect of the groove is not limited to the above-described embodiment.
  • the arrangement direction of the grooves may not be parallel to each other.
  • the arrangement direction of the fibers (stretching direction) and the arrangement direction of the grooves need not be in a parallel or orthogonal relationship.
  • the shape of the groove may be not only periodic but also irregular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Abstract

 断熱性能にすぐれた真空断熱材、及びその製造方法を提供する。  真空断熱材1は、熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列した繊維配列層が2層以上積層されて形成され、互いに隣接する繊維配列層の長繊維が互いに交差する方向に整列している充填材2と、充填材2を包囲し、内部が真空にされた外被材3と、を有している。

Description

真空断熱材及びその製造方法
 本発明は、真空断熱材及びその製造方法に関し、特に、不織布を充填材として用いた真空断熱材の構成とその製造方法に関する。
 真空断熱材は、冷蔵庫、自動販売機など断熱性が要求される製品に広範に用いられている。真空断熱材は内部が真空にされた外被材を有しており、真空を利用した高い断熱効果が得られる。真空断熱材では、大気圧による外被材の圧縮変形をできるだけ防止する必要があり、外被材の内部には充填材が入れられている。しかし、充填材は熱の媒体として機能するため、外被材の内部を真空にしても、充填材を介した熱移動により断熱性能が低下する。このため、真空断熱材においては、充填材の構成や充填方法が、断熱性能を左右する上で重要となる。
 特開2006-307921号公報(以下、特許文献1という。)には、ガラス繊維を充填材として利用した真空断熱材が開示されている。この真空断熱材は、所定方向に整列したガラス繊維と、当該ガラス繊維と直交する方向に整列したガラス繊維とが交互に積層された充填材を備えている。ガラス繊維の整列する2つの方向はともに、熱移動を防止すべき方向(以下、断熱方向という。)と直交している。この結果、熱がガラス繊維の内部を辿って断熱方向に伝わることが防止される。一方、外被材の内部は真空にされているため、断熱方向において隣接するガラス繊維は大気圧によって相互に押し付けられ、交差部では接触した状態となる。このため、交差部を介した断熱方向への熱の移動が生じるが、交差部における熱移動量は限られているため、断熱性能の低下を防止することができる。
 特開2006-17151号公報(以下、特許文献2という。)には、不織布を充填材として利用した真空断熱材が開示されている。プラスチック繊維からなる不織布は繊維の配列方向が交差するように積層されている。このため、特許文献1に記載した真空断熱材と同様、繊維同士の接触が抑えられ、充填材による断熱性能の低下を防止することができる。
 特許文献1に記載の技術では、ガラス繊維が高い熱伝導率を有しているだけでなく、ガラス繊維が容易に折損し、折損した破片が断熱方向に隣接するガラス繊維同士の間に挟まるため、断熱方向への熱の移動が生じやすい。このため、特許文献1に記載の技術は、断熱性能の向上に限界がある。また、ガラス繊維は柔軟性に劣り、ハンドリングに難があるという課題もある。
 特許文献2に記載の技術は、プラスチック繊維を用いているが、繊維の具体的な構成については明らかでない。しかし、一般に不織布においては繊維の配列方向は十分に揃っているわけではなく、部分的に湾曲ないし蛇行した形状となっていることが多いため、繊維の交差範囲(面積)が増加しやすい。また、繊維自体も短いことが多く、真空断熱材として完成させるまでの工程で繊維屑が発生しやすい。この繊維屑は、ガラス繊維の場合と同様に、繊維同士の間に挟まって断熱性能を低下させる。以上により、特許文献2に記載の技術も断熱性能の向上には限界がある。
 本発明は、上記の課題に照らし、断熱性能にすぐれた真空断熱材、及びその製造方法を提供することを目的とする。
 本発明の一実施態様によれば、真空断熱材は、熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列した繊維配列層が2層以上積層されて形成され、互いに隣接する繊維配列層の長繊維が互いに交差する方向に整列している充填材と、充填材を包囲し、内部が真空にされた外被材と、を有している。
 このように構成された真空断熱材では、熱可塑性樹脂からなる連続した長繊維を用いているので、真空断熱材として完成させるまでの工程で繊維屑が発生しにくく、隣接する繊維配列層同士の間に繊維屑が挟まれる現象が生じにくい。熱可塑性樹脂の繊維はガラス繊維と比較して熱伝導係数が低いため、熱移動を防止しやすい。長繊維は延伸されているため、繊維が一方向に整列しやすく、湾曲した形状や蛇行した形状になりにくい。このため、繊維の交差部の範囲を最小限に抑えることができる。これらは、断熱性能の向上に寄与する。また、ガラス繊維と異なり熱可塑性樹脂の繊維は柔軟性に富み折損しにくいため、製造工程中のハンドリングも容易である。
 本発明の一実施態様によれば、充填材は、隣接する複数の繊維配列層によって各々が構成される複数の繊維積層体からなり、繊維積層体の各々は、互いに平行に配列された複数の溝部を備えた凹凸形状を有し、隣接する少なくとも一対の繊維積層体は、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層されていることが好ましい。少なくとも上記断面においては、隣接する繊維積層体間に接点が形成されにくくなり、繊維の交差範囲をさらに限定することができる。また、繊維積層体の間に真空の空隙が形成されやすくなる。これらの理由により、断熱性能が一層高まる。
 本発明の別の一実施態様によれば、真空断熱材の製造方法は、熱可塑性樹脂からなる繊維を溶融押出しながら、繊維を折り畳んで、連続した長繊維が一方向に略直線状に配列した繊維配列層を形成する工程と、繊維配列層を長繊維の配列方向に延伸する工程と、延伸された2つ以上の繊維配列層を、互いに隣接する繊維配列層の長繊維が互いに交差する方向に整列するように積層して、充填材を形成する工程と、充填材を外被材で包囲し、外被材の内部を真空にした後、外被材を密封する工程と、を有している。
 本発明の別の一実施態様によれば、充填材を形成する工程は、延伸された2つ以上の繊維配列層を、互いに隣接する繊維配列層の長繊維の配列方向が交差するように積層して、繊維積層体を形成する工程と、繊維積層体同士を積層して充填材を形成する工程と、有し、充填材を形成する工程は、少なくとも一部の繊維積層体の各々に、互いに平行に配列された複数の溝部を有する凹凸形状を付与することと、凹凸形状が付与された少なくとも一対の繊維積層体同士を、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層することと、を含んでいることが望ましい。
 以上説明したように、本発明によれば、断熱性能にすぐれた真空断熱材、及びその製造方法を提供することができる。
本発明の第1の実施形態に係る真空断熱材の断面図である。 図1に示す充填材の分解斜視図である。 図1に示す充填材の部分詳細図である。 繊維配列層の作成に用いられる製造装置の概略図である。 本発明の第2の実施形態に係る真空断熱材の断面図である。 図5に示す充填材の分解斜視図である。 図5に示す充填材の部分断面図である。 図5に示す充填材の部分詳細図である。 第1の実施形態に係る充填材の部分断面図である。 凹凸形状のずれの大きさが図7よりも小さい充填材の部分断面図である。 凹凸形状のずれの大きさが図10Aよりも小さい充填材の部分断面図である。 繊維積層体に凹凸形状を付与する装置の概念図である。 本発明の第3の実施形態に係る真空断熱材に用いられる充填材の分解斜視図である。 凹凸形状の変形例を示す充填材の部分断面図である。 凹凸形状の変形例を示す充填材の部分断面図である。 凹凸形状の変形例を示す充填材の部分断面図である。
 (第1の実施形態)以下、本発明の真空断熱材の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る真空断熱材の断面図である。真空断熱材1は、充填材2と、充填材2を包囲し、内部が真空にされた外被材3と、を有している。外被材3は変形性と密封性に優れたラミネートフィルムからなる。図示の真空断熱材1では、断熱方向Dは図の上下方向である。実際の製品に組み込まれた際には、面M1と面M2の一方が高温側、他方が低温側を向くよう設置される。「真空」とは、外被材3の内部に気体(空気)が全く存在しない状態のほか、外被材3の内部が大気圧に対して減圧された状態も含んでいる。真空にする理由は気体による断熱方向Dの熱移動を防止することにあるため、外被材3の内部圧力は一般的には低いほど望ましいが、実現すべき断熱性能に応じ適宜定めることができる。
 図2は、充填材の分解斜視図である。充填材2は、熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列した繊維配列層を複数枚積層して構成されている。図では4枚の繊維配列層12A,12B,12C,12Dを示しているが、積層する枚数は適宜定めることができ、数十枚が積層されていてもよい。繊維配列層12A,12B,12C,12Dは、外被材3の外部の大気圧によって互いに押し付けられ密着しており、全体として一つの充填材2を形成している。
 図3は、充填材の繊維配列層の一部を拡大して示す部分斜視図である。同図には繊維配列層12A,12Bだけが示されているが、他の繊維配列層も同様の構成となっている。図示するように、繊維配列層12Aは、互いに平行にかつ直線状に整列した多数の繊維13Aの集合体である。同様に、繊維配列層12Bは、互いに平行にかつ直線状に整列した多数の繊維13Bの集合体である。繊維13A,13Bは途中で折り畳まれたり、2層以上積層されたりしている場合もある。
 繊維配列層12Aは、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、ポリ塩化ビニル系樹脂、ポリウレタン、フッ素系樹脂等の熱可塑性樹脂およびこれらの変性樹脂から作成することができる。ポリビニルアルコール系樹脂、ポリアクリルニトリル系樹脂等の湿式または乾式の紡糸手段による樹脂も使用することができる。繊維配列層12Bも同様である。各繊維13A,13Bの直径は1~20μmの範囲が好適であり、一実施例では10μm程度である。
 繊維配列層12A,12Bは、繊維配列層12Aの繊維13Aの延伸方向15Aと繊維配列層12Bの繊維13Bの延伸方向15Bとが互いに直交するように積層されている。繊維配列層12Cの繊維13Cの延伸方向15Cは繊維配列層12Bの繊維13Bの延伸方向15Bと直交している。同様に、繊維配列層12Dの繊維13Dの延伸方向15Dは繊維配列層12Cの繊維13Cの延伸方向15Cと直交している。
 繊維配列層は、繊維の延伸方向が隣接する繊維配列層同士で互いに直交している必要はなく、一定の角度差で順次積層されていてもよい。要するに、本実施形態においては、互いに隣接する繊維配列層の長繊維が互いに交差する方向に整列していればよい。このような構成をとることによって、繊維配列層同士の接触範囲を限定することができ、断熱性能を向上させることができる。しかし、互いに隣接する繊維配列層の長繊維が互いに直交する方向に整列している場合が、繊維同士の接触範囲(面積)が最小になるため、最も好ましい。
 繊維配列層12A,12B,12C,12Dは、材料樹脂の融点以下の温度で相互に接合されている。熱可塑性樹脂がポリエチレンテレフタレート樹脂である場合、この温度は90度以上、160度以下であることが望ましい。このような接合方法を取る理由は以下のとおりである。一般に繊維配列層同士を接合する場合、熱圧着やエンボス加工が用いられる。前者は、材料樹脂の融点以上の温度で繊維配列層を融解または軟化させて、繊維配列層同士を接触位置において固着させるものである。後者は押し付け力による塑性変形から生じる繊維同士の絡みを利用するものである。しかし、これらの接合方法はいずれも接触面積が大きくなり、その分、断熱方向Dにおける熱移動量が増加し、断熱性能の低下につながる。特にエンボス加工の場合、一定の面積を押し付けるため、エンボス加工を受ける範囲のほぼ全域が断熱方向Dにおける熱移動経路となってしまう可能性がある。
 これに対して融点以下の温度で加熱した場合、材料の溶融は生じないが、紡糸過程において分子量の低下した一部の樹脂が繊維の表面に糊状となって現れ、接着の作用を奏すると考えられる。この接着力は大きなものではないが、後工程において積層された繊維配列層が剥離せず、一体性を維持するには十分なものである。充填材2の外被材3への封入後は、繊維配列層同士は外被材3内部の真空によって互いに密着するので、この程度の接着力でも問題はない。むしろ、このような接合方式をとることによって、繊維同士の接触範囲の広がりが防止され、断熱方向Dにおける熱移動経路を抑制することができる。発明者は従来の熱圧着を用いた充填材と、本接合方式を用いた充填材とを比較し、本接合方式を用いた充填材の方が優れた断熱性能を示すことを確認している。
 各繊維配列層12A,12B,12C,12Dの繊維13A,13B,13C,13Dは延伸方向15A,15B,15C,15Dに延伸されて配列している。このため、従来のメルトブロー法等を用いて作成した不織布と比べて、繊維の直線性と方向性(整列度)が極めて高い。この結果、繊維配列層同士はほぼすべての交差部において直交する向きで接触するため、接触範囲を一層限定することができる。
 本実施形態の充填材は、連続した長繊維からなるため、例えば外被材3への封入時などに、繊維が脱落して、繊維配列層の間に挟まれる可能性が低い。これによって、断熱方向への熱の移動がさらに抑制され、断熱性能の一層の向上につながる。
 本実施形態の充填材は延伸して形成されているため、従来の充填材と比べて本来的に嵩薄い(厚さが小さい。)。従って、完成した真空断熱材は従来の真空断熱材よりも薄くてすむ。これによって、一層の薄肉化と軽量化が達成される。このことは、軽量化が特に要求される自動車等の製品に真空断熱材が適用される場合、大きなメリットとなる。さらに、嵩薄いという特徴は、保管、運搬等のハンドリングのしやすさにもつながる。一般に従来の不織布では30g/m程度の目付の場合、200μm程度の厚みであるが、本実施形態の充填材では30g/m程度の目付の場合、100μm程度の厚みに低減できる。
 次に、以上説明した充填材2の製造方法について説明する。図4は、充填材を構成する繊維配列層の作成に用いられる製造装置の概略図を示す。繊維配列層製造装置21は、主にメルトブローンダイス24とコンベア25とで構成される紡糸ユニット22と、延伸シリンダ26a,26b、引取ニップローラ27a,27b等で構成される延伸ユニット23と、を有している。メルトブローンダイス24は、先端(下端)に、紙面に対して垂直な方向に並べられた多数のノズル28を有している(図では1つのみ表示している。)。ギアポンプ(図示せず)から送入された溶融樹脂30がノズル28から押出されることで、多数の繊維31が形成される。各ノズル28の両側にはそれぞれエアー溜32a,32bが設けられている。樹脂の融点以上に加熱された高圧加熱エアーは、これらエアー溜32a,32bに送入され、エアー溜32a,32bと連通してメルトブローンダイス24の先端に開口するスリット33a,33bから噴出される。これにより、ノズル28から押出される繊維31の押出し方向とほぼ平行な高速気流が生じる。この高速気流により、ノズル28から押出された繊維31はドラフト可能な溶融状態に維持され、高速気流の摩擦力により繊維31にドラフトが与えられ、繊維31が細径化される。高速気流の温度は、繊維31の紡糸温度よりも80℃以上、望ましくは120℃以上高くする。メルトブローンダイス24を用いて繊維31を形成する方法では、高速気流の温度を高くすることにより、ノズル28から押出された直後の繊維31の温度を繊維31の融点よりも十分に高くすることができるため、繊維31の分子配向を小さくすることができる。ポリエチレンテレフタレート樹脂の連続繊維を作成する場合は、溶融押出しするときに熱風により10~23μmの直径に細化することができる。
 メルトブローンダイス24の下方にはコンベア25が配置されている。コンベア25は、駆動源(図示せず)により回転されるコンベアローラ29やその他のローラに掛け回されており、コンベアローラ29の回転によりコンベア25を駆動することで、ノズル28から押出された繊維31は図示右方向へ搬送される。
 繊維31は、ノズル28の両側のスリット33a,33bから噴出された高圧加熱エアーが合流した流れである高速気流に沿って流れる。高速気流は、スリット33a,33bから噴出された高圧加熱エアーが合流して、コンベア25の搬送面とほぼ垂直な方向に流れる。
 メルトブローンダイス24とコンベア25との間には、スプレーノズル35が設けられている。スプレーノズル35は、高速気流中へ霧状の水を噴霧するもので、これにより繊維31が冷却され、急速に凝固される。スプレーノズル35は実際には複数個設置されるが、図4では1個のみを示している。スプレーノズル35から噴射される流体は、繊維31を冷却することができるものであれば必ずしも水分等を含む必要はなく、冷エアーであってもよい。
 メルトブローンダイス24の近傍の、スリット33a,33bによる高速気流が発生している領域には、楕円柱状の気流振動機構34が設けられている。気流振動機構34は、コンベア25上での繊維31の搬送方向dとほぼ直交した、すなわち製造すべき繊維配列層の幅方向とほぼ平行に配置された軸34aの周りを、矢印A方向に回転させられる。一般に、気体や液体の高速噴流近傍に壁が存在しているとき、噴流は壁面に沿った方向の近くを流れる傾向があり、これはコアンダ効果といわれる。気流振動機構34は、このコアンダ効果を利用して繊維31の流れの向きを変える。図4の場合、気流振動機構34の楕円形の長軸が高速気流の向き(図面の上下方向)に一致するとき、繊維31はコンベア25に向けてほぼ鉛直に落下する。気流振動機構34が軸34aの周りを90度回転し、気流振動機構34の楕円形の長軸が高速気流の向きと直交するとき、繊維31はコンベア25の搬送方向d(図中右側)に偏位し、偏位量はこのときが最大となる。さらに気流振動機構34が軸34aの周りを回転すると、繊維31のコンベア25への落下位置は搬送方向dに対して前後方向に周期運動する。すなわち、凝固した繊維31は、縦方向に振られながらコンベア25上に集積し、縦方向に部分的に折り畳まれて連続的に捕集され、連続長繊維が形成される。
 コンベア25上に捕集された繊維31は、コンベア25により搬送方向dに搬送され、延伸温度に加熱された延伸シリンダ26aと押えローラ36とにニップされる。その後、繊維31は、延伸シリンダ26bと押えゴムローラ37とにニップされ、2つの延伸シリンダ26a,26bに密着させられる。このように繊維31が延伸シリンダ26a,26bに密着させられながら送られることで、繊維31は、縦方向に部分的に折り畳まれた状態のまま、隣接する繊維31同士が融着したウェブとなる。
 延伸シリンダ26a,26bに密着させられながら送られることにより得られたウェブは、さらに、引取ニップローラ27a,27b(後段の引取ニップローラ27bはゴム製)で引き取られる。引取ニップローラ27a,27bの周速は延伸シリンダ26a,26bの周速よりも大きく、これによりウェブは縦方向に延伸され、縦延伸繊維配列層38となる。このように、紡糸したウェブを縦方向に延伸することにより、繊維の整列度をさらに向上することができる。ポリエチレンテレフタレート樹脂の連続繊維を作成する場合は、3~10倍の長さに繊維を延伸することで、繊維の直径を1~20μm程度まで細化し、この延伸操作によって繊維の整列度を増すことが可能となる。繊維31が十分に急冷されることによって、延伸応力が小さく伸度が大きい繊維31が形成される。これは、上述したようにスプレーノズル35から霧状の水を噴霧し、高速気流に霧状の液体を含ませることによって実現される。以上述べた方法で形成された繊維配列層は、連続した長繊維が一方向に略直線状に配列されている。
 このようにして製造した繊維配列層を、繊維の方向が互いに直交するように順次積層する。その後、上述したように、材料樹脂の融点以下の温度をかけて繊維配列層を接合する。これによって、上述した充填材2が完成する。
 さらに、以上のようにして作成した充填材2を外被材3で包囲し、外被材の内部を真空にした後、外被材3を密封することによって、真空断熱材1が完成する。
 (第2の実施形態)以下、本発明の真空断熱材の第2の実施形態について説明する。図5は、本発明の第2の実施形態に係る真空断熱材1’の断面図である。充填材2’は、繊維配列層(後述)が2層以上積層されてなる繊維積層体が複数枚(繊維積層体11A~11J)積層されて形成されている。繊維積層体の数は図示の数に限定されず、十分な断熱性を得るために、数十枚の繊維積層体が積層されていてもよい。
 図6は、図5に示す充填材の部分分解斜視図である。図7は、図5の紙面直交方向に見た繊維積層体の断面図である。これらの図では、繊維積層体11A,11Bだけを示しているが、他の繊維積層体も同様の構成となっている。また、図7に示すように、繊維積層体11A,11Bは各々、4枚の繊維配列層を有しているが、図6では、繊維積層体11A,11Bとも、2枚の繊維配列層12A,12Bと、2枚の繊維配列層12C,12Dだけを示している。各繊維積層体が有する繊維配列層の数は任意である。充填材2’の繊維配列層の総数を一定とした場合、繊維積層体当たりの繊維配列層が多いと(すなわち、繊維積層体の数が少ないと)製作性が向上し、繊維配列層が少ないと(すなわち、繊維積層体の数が多いと)、後述の理由によって断熱性能が向上する。繊維積層体を構成する繊維配列層の数は、繊維積層体毎に異なっていてもよい。繊維配列層12A,12B,12C,12Dは、外被材3’の外部の大気圧によって互いに押し付けられており、全体として充填材2’の一部を形成している。
 図8は、充填材の繊維配列層の一部を拡大して示す部分斜視図である。同図には繊維配列層12A,12Bだけが示されているが、他の繊維配列層も同様の構成となっている。図示するように、繊維配列層12Aは、互いに平行にかつ直線状に整列した多数の繊維13Aの集合体である。同様に、繊維配列層12Bは、互いに平行にかつ直線状に整列した多数の繊維13Bの集合体である。繊維13A,13Bは途中で折り畳まれたり、2層以上積層されたりしている場合もある。
 繊維配列層12A,12Bの材料は第1の実施形態と同様である。各繊維13A,13Bの直径は1~20μmの範囲が好適であり、一実施例では10μm程度である。
 図6からわかるように、各繊維配列層12A~12Dは、熱可塑性樹脂からなる連続した長繊維13A~13Dが一方向に略直線状に延伸されて配列するように形成されている。隣接する繊維配列層12A,12B同士、及び繊維配列層12C,12D同士では、長繊維の配列方向が直交するように積層されている。しかし、繊維配列層は、繊維の延伸方向が隣接する繊維配列層同士で互いに直交している必要はなく、一定の角度差で順次積層されていてもよい。要するに、各繊維積層体内においては、互いに隣接する繊維配列層の長繊維は交差する方向に整列していればよい。このような構成をとることによって、繊維配列層同士の接触範囲を限定することができ、断熱性能を向上させることができる。しかし、互いに隣接する繊維配列層の長繊維が互いに直交する方向に整列している場合が、繊維同士の接触範囲(面積)が最小となるため、最も好ましい。
 図6,7を参照すると、繊維積層体11Aは、互いに平行に配列された複数の溝部16x,16yを備えた凹凸形状17を有している。溝部の数は2つに限定されない。同様に、繊維積層体11Bは、互いに平行に配列された複数の溝部16x’,16y’を備えた凹凸形状17’を有している。繊維積層体11Aの溝部16x,16yと、繊維積層体11Bの溝部16x’,16y’とは、溝部の位置が互いに対してずれている。具体的には、溝部16x,16y,16x’,16y’はいずれも延伸方向15A,15Cの方向に互いに平行に配列されているが(図6参照)、溝部16x,16yの中心線18x,18yは、溝部16x’,16y’の中心線18x’,18y’に対して、図示の例では溝部の幅のほぼ半値に相当する距離sだけずれている(図7参照)。
 溝部16x,16yと溝部16x’,16y’とが互いにずれている結果、隣接する繊維配列層12B,12Cでは、一部の繊維だけが互いに接触し、残りの繊維は接触していない。繊維が接触していない部分では、繊維積層体11A,11Bの間に空隙Gが形成されている。図9は比較のために、凹凸形状を設けない繊維配列層を用いた、第1の実施形態に係る充填材の部分断面図を示している。凹凸形状を設けない場合は、繊維配列層11A’,11B’をどのような相対位置関係で積層しても、ほぼ全ての繊維が隣接する繊維配列層の繊維と接触する。これに対して、図7の構成では、繊維積層体11Aの繊維配列層12Bと,繊維積層体11Bの繊維配列層12Cの繊維同士が広範囲で非接触な状態となっており、熱移動経路が限定されている。また、空隙Gは真空となっている。これらの要因によって、図7の構成は図9の構成よりも高い断熱性能を得ることができる。さらに、図6に示すように、本実施形態では繊維配列層12B,12Cの繊維同士が直交しており、繊維積層体11A,11B間の繊維の接触範囲が最小化されている。
 このように、本実施形態では繊維積層体同士の接触範囲を一層限定することで大きな断熱性能を得ることができる。従って、断熱性能を向上させるためには繊維積層体の数を増やすことが効果的である。
 なお、充填材2’を外被材3に封入し真空引きする際に、繊維配列層が変形し、図7で示す状態よりも空隙Gが減少し、繊維同士の接触範囲も増加することが考えられるが、その場合でも、全ての繊維が隣接する繊維積層体の繊維と接触することはない。従って、繊維配列層の変形を考慮しても、図9に示す構成よりも良好な断熱性能が得られる。
 繊維配列層のずれの大きさは、図7に示すような、溝部の幅のほぼ半値に相当する距離に限定されない。図10A,10Bは、ずれの大きさが変化した場合の充填材の部分断面図を示している。ずれの大きさが、図10Aに示すように図7の場合よりも若干小さい場合は繊維同士の接触範囲は図7の場合と同等であり、空隙G1の大きさも図7の場合と大差はない。図10Bに示すように、ずれの大きさsが小さくなると、繊維同士の接触範囲は増加し、空隙G2の大きさは縮小するが、依然として図9と比べると繊維同士の接触範囲は小さい。このようにずれの大きさをさほど厳密に設定しなくても繊維同士の接触範囲を十分に限定することは可能であり、製造工程上大きな制約とはならない。
 本実施形態では、すべての隣接する繊維積層体がこのような凹凸構造を備えているが、必ずしもその必要はない。例えば、互いに隣接する一部の繊維積層体が、図9に示すように凹凸構造を備えていない構成であっても、他の隣接する繊維積層体が図7または図10A,10Bに示す構成を有していれば、本実施形態の効果を奏することができる。積層体は、少なくとも一対の繊維積層体が、溝部の位置が互いに対してずれるように積層されていればよい。
 繊維積層体11A,11Bは、材料樹脂の融点以下の温度で相互に接合されている。熱可塑性樹脂がポリエチレンテレフタレート樹脂である場合、この温度は90℃以上、160℃以下であることが望ましい。このような接合方法を取る理由は第1の実施形態と同様である。
 本実施形態により得られるメリットは第1の実施形態と同様であるが、上述した凹凸構造によって、繊維配列層同士の接触範囲をさらに限定することができる。
 本実施形態の真空断熱材1’は、以下のようにして製造できる。まず、第1の実施形態と同様にして各繊維配列層を製造する。次にこの繊維配列層を、繊維の方向が互いに直交するように順次積層し、熱圧着することによって繊維積層体を形成する。その後、上述したように、材料樹脂の融点以下の温度をかけて繊維積層体を接合する。この際、少なくとも一部の繊維積層体の各々にあらかじめ上述の凹凸形状を付与し、凹凸形状が付与された少なくとも一対の繊維積層体同士を、溝部の位置が互いに対してずれるように積層する。具体的には、凹凸形状が付与された少なくとも一対の繊維積層体同士を、一方の繊維積層体の溝部と、他方の繊維積層体の溝部とが互いに間隔をおいて平行に配列されたように積層する。これによって、上述した充填材2’が完成する。なお、各繊維積層体を作成する際には、複数の繊維配列層を熱圧着によって接合する代わりに、材料樹脂の融点以下の温度をかけて接合することもできる。
 凹凸形状の形成方法は公知の技術を用いることができる。図11は、繊維積層体に凹凸形状を付与するための機構の一例を示す断面図である。凹凸形状を相当する空間が間に形成された一対の静止した成形歯車52,53の間を平坦な繊維積層体11を通過させる。これによって、ギャップを通過した繊維積層体が塑性変形して所望の凹凸形状を得ることができる。
 さらに、以上のようにして作成した充填材2’を外被材3’で包囲し、外被材の内部を真空にした後、外被材3’を密封することによって、真空断熱材1’が完成する。
 (第3の実施形態)図12は本発明の第3の実施形態を示す概念図である。充填材2”は、多数の繊維積層体(繊維積層体11A,11Bのみ図示)からなっている。各繊維積層体11A,11Bは各々、第1、第2の実施形態の繊維積層体11A,11Bと同様の構成を有し、各繊維配列層12A~12Dは、熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列するように形成されている。
 繊維配列層12A,12Bは、繊維配列層12Aの繊維13Aの延伸方向15Aと繊維配列層12Bの繊維13Bの延伸方向15Bとが互いに直交するように積層されている。同様に、繊維配列層12Dの繊維13Dの延伸方向15Dは繊維配列層12Cの繊維13Cの延伸方向15Cと直交している。
 繊維積層体11Aには、延伸方向15Aと平行に配列された溝部116x,116yを有する凹凸構造117が設けられている。繊維積層体11Bには、延伸方向15Dと平行に配列された溝部116x’,116y’を有する凹凸構造117’が設けられている。溝部116x,116yと溝部116x’,116y’とは直交する方向に配列されているが、90度以外の角度で交差していても構わない。
 本実施形態においても、第2の実施形態と同様、繊維積層体11Aと繊維積層体11Bとで、溝部の位置が互いに対してずれる構成が得られる。本実施形態では繊維積層体11Aの峰部118x,118yと繊維積層体11Bの溝部116x’,116y’とが当接し、それ以外の部位では繊維積層体11A,11B間に空隙(図示せず)が形成される。図9の構成と比較すると、本実施形態では隣接する繊維積層体11A,12B間の接合範囲は四分の一以下に低減する。これは、上側繊維積層体の溝部と下側繊維積層体の峰部のだけしか当接しないためであり、実際には峰部と溝部を結ぶ斜部も当接しないため、接合範囲はさらに低下する。しかも繊維積層体11A,12Bの間で一種のハニカム構造が構成されるため、真空引きしても空隙Gが維持されやすく、高真空の断熱材への適用に適している。
 本実施形態の真空断熱材は、繊維積層体同士を、一方の繊維積層体の溝部と、他方の繊維積層体の溝部とが交差して配列されるように積層する点を除き、第2の実施形態の真空断熱材と同様の手順で製作することができる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されないことは勿論である。例えば、繊維積層体の凹凸形状は、上記実施形態では平坦面を備える溝部と平坦面を備える峰部とが周期的に繰り返される形状であったが、図13A~13Cに示すように、鋸歯型(図13A)、波型(図13B)、正弦波型(図13C)などであってもかまわない。これらの凹凸形状を成形する場合は、図11に示す静止型の成形歯車の代わりに回転する成形歯車を用いることもできる。その場合は、成形歯車の周速度よりも大きな押込み速度で繊維積層体を通過させることが好ましい。
 上述の第2、第3の実施形態は、いずれも少なくとも一対の繊維積層体が、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層されていることを特徴としている。このような特徴が得られれば、溝部の態様は上述の実施形態に限定されない。例えば、各繊維積層体において、溝の配列方向は互いに平行でなくてもよい。繊維の配列方向(延伸方向)と溝の配列方向は、平行または直交の関係である必要はない。また、溝部の形状は、周期的なものだけでなく不規則的なものでも構わない。

Claims (16)

  1.  熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列した繊維配列層が2層以上積層されて形成され、互いに隣接する前記繊維配列層の前記長繊維が互いに交差する方向に整列している充填材と、
     前記充填材を包囲し、内部が真空にされた外被材と、
     を有する、真空断熱材。
  2.  互いに隣接する前記繊維配列層の前記長繊維は互いに直交する方向に整列している、請求項1に記載の真空断熱材。
  3.  複数の前記繊維配列層は、前記熱可塑性樹脂の融点以下の温度で相互に接合されている、請求項1に記載の真空断熱材。
  4.  前記充填材は、隣接する複数の前記繊維配列層によって各々が構成される複数の繊維積層体からなり、
     前記繊維積層体の各々は、互いに平行に配列された複数の溝部を備えた凹凸形状を有し、
     隣接する少なくとも一対の前記繊維積層体は、前記繊維配列層と直交する少なくとも一つの断面で、前記溝部の位置が互いに対してずれるように積層されている、
     請求項1に記載の真空断熱材。
  5.  隣接する少なくとも一対の前記繊維積層体は、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが互いに間隔をおいて平行に配列されている、請求項4に記載の真空断熱材。
  6.  隣接する少なくとも一対の前記繊維積層体は、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが交差して配列されている、請求項4に記載の真空断熱材。
  7.  前記溝部の位置が互いに対してずれるように積層されている前記一対の繊維積層体は、前記熱可塑性樹脂の融点以下の温度で相互に接合されている、請求項4に記載の真空断熱材。
  8.  熱可塑性樹脂からなる繊維を溶融押出しながら、前記繊維を折り畳んで、連続した長繊維が一方向に略直線状に配列した繊維配列層を形成する工程と、
     前記繊維配列層を前記長繊維の配列方向に延伸する工程と、
     延伸された2つ以上の前記繊維配列層を、互いに隣接する前記繊維配列層の前記長繊維が互いに交差する方向に整列するように積層して、充填材を形成する工程と、
     前記充填材を外被材で包囲し、該外被材の内部を真空にした後、該外被材を密封する工程と、
     を有する、真空断熱材の製造方法。
  9.  前記充填材を形成する工程は、互いに隣接する前記繊維配列層の前記長繊維が互いに直交する方向に整列するように前記繊維配列層を積層することを含む、請求項8に記載の真空断熱材の製造方法。
  10.  前記充填材を形成する工程は、前記繊維配列層を前記熱可塑性樹脂の融点以下の温度で相互に接合することを含む、請求項8に記載の真空断熱材の製造方法。
  11.  前記熱可塑性樹脂はポリエチレンテレフタレート樹脂であり、前記融点以下の温度は90度以上、160度以下である、請求項10に記載の真空断熱材の製造方法。
  12.  前記充填材を形成する工程は、
     延伸された2つ以上の前記繊維配列層を、互いに隣接する前記繊維配列層の前記長繊維の配列方向が交差するように積層して、繊維積層体を形成する工程と、
     前記繊維積層体同士を積層して充填材を形成する工程と、
    を有し、
     前記充填材を形成する工程は、少なくとも一部の前記繊維積層体の各々に、互いに平行に配列された複数の溝部を有する凹凸形状を付与することと、前記凹凸形状が付与された少なくとも一対の前記繊維積層体同士を、前記繊維配列層と直交する少なくとも一つの断面で、前記溝部の位置が互いに対してずれるように積層することと、を含んでいる、請求項8に記載の真空断熱材の製造方法。
  13.  前記充填材を形成する工程は、前記凹凸形状が付与された少なくとも一対の前記繊維積層体同士を、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが互いに間隔をおいて平行に配列されるように積層することを含む、請求項12に記載の真空断熱材の製造方法。
  14.  前記充填材を形成する工程は、前記凹凸形状が付与された少なくとも一対の前記繊維積層体同士を、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが交差して配列されるように積層することを含む、請求項12に記載の真空断熱材の製造方法。
  15.  前記充填材を形成する工程は、前記溝部の位置が互いに対してずれるように積層された前記一対の繊維配列層を、前記熱可塑性樹脂の融点以下の温度で相互に接合することを含む、請求項12に記載の真空断熱材の製造方法。
  16.  前記熱可塑性樹脂はポリエチレンテレフタレート樹脂であり、前記融点以下の温度は90℃以上、160℃以下である、請求項15に記載の真空断熱材の製造方法。
PCT/JP2009/057045 2008-04-22 2009-04-06 真空断熱材及びその製造方法 WO2009130992A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-111298 2008-04-22
JP2008111298A JP2009264409A (ja) 2008-04-22 2008-04-22 真空断熱材、及びその製造方法
JP2008-127151 2008-05-14
JP2008127151A JP2009275801A (ja) 2008-05-14 2008-05-14 真空断熱材、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2009130992A1 true WO2009130992A1 (ja) 2009-10-29

Family

ID=41216729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057045 WO2009130992A1 (ja) 2008-04-22 2009-04-06 真空断熱材及びその製造方法

Country Status (1)

Country Link
WO (1) WO2009130992A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457018A4 (en) * 2016-05-12 2019-03-20 Mitsubishi Electric Corporation VACUUM HEAT-INSULATING MATERIAL AND MANUFACTURING METHOD THEREFOR
CN114311907A (zh) * 2021-12-29 2022-04-12 吉林建筑大学 一种真空绝热板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887320A (ja) * 1981-11-03 1983-05-25 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− ポリエステル共重合体接合用フィラメント
JP2002058604A (ja) * 2000-08-17 2002-02-26 Toray Ind Inc 保温保冷用容器
JP2002333092A (ja) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd 繊維・微粒子複合断熱材
JP2004116593A (ja) * 2002-09-25 2004-04-15 Fuji Electric Systems Co Ltd 多層真空断熱材及びその製造方法
JP2006017151A (ja) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd 真空断熱材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887320A (ja) * 1981-11-03 1983-05-25 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− ポリエステル共重合体接合用フィラメント
JP2002058604A (ja) * 2000-08-17 2002-02-26 Toray Ind Inc 保温保冷用容器
JP2002333092A (ja) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd 繊維・微粒子複合断熱材
JP2004116593A (ja) * 2002-09-25 2004-04-15 Fuji Electric Systems Co Ltd 多層真空断熱材及びその製造方法
JP2006017151A (ja) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd 真空断熱材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457018A4 (en) * 2016-05-12 2019-03-20 Mitsubishi Electric Corporation VACUUM HEAT-INSULATING MATERIAL AND MANUFACTURING METHOD THEREFOR
CN114311907A (zh) * 2021-12-29 2022-04-12 吉林建筑大学 一种真空绝热板及其制备方法

Similar Documents

Publication Publication Date Title
JP2009275801A (ja) 真空断熱材、及びその製造方法
US8911847B2 (en) Vacuum insulation material and manufacturing method thereof
US20080017299A1 (en) Producing Method Of Laminated Filter
JP6666205B2 (ja) 波付複合管の製造方法
JP2010095001A5 (ja)
WO2009130992A1 (ja) 真空断熱材及びその製造方法
JP2021041161A5 (ja)
JP5573915B2 (ja) 段ボールの製造方法及び装置
US10525661B2 (en) Nonwoven fabric and reinforcing laminate
JP2024003233A (ja) 中空構造体
JP6682084B2 (ja) 混繊糸及びその製造方法
JP2009034897A (ja) 繊維積層体、並びに繊維積層体を用いた服飾用芯地、合紙、及び梱包用資材
EP3428332B1 (en) Filament nonwaven fabric having wrinkles and method for manufacturing same
JP2009264409A (ja) 真空断熱材、及びその製造方法
TWI684688B (zh) 網狀不織布、網狀不織布捲繞體、網狀不織布之製造方法、網狀膜、層積體、網狀膜之製造方法
KR940005376A (ko) 액정수지 복합체의 성형방법 및 그 장치
JP2010156066A (ja) 断熱シートの製造装置、及び断熱シートの製造方法
JP7477194B2 (ja) 中空構造体及びその製造方法
JP5060505B2 (ja) 撚糸、糸、及びそれらの製造方法
JP6101072B2 (ja) 緩衝材及び緩衝材の製造方法
JP2011226020A (ja) 不織布、複合不織布、ワイパー、包装材、緩衝材、外傷用医療材、及び不織布の製造方法
JP5674559B2 (ja) 網状体、網状体の製造方法、及び包装袋
JP7333189B2 (ja) 吸音材
JP2008542139A (ja) 帯紙のロール
JP2009270531A (ja) 内燃機関の吸気ダクト及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735884

Country of ref document: EP

Kind code of ref document: A1