WO2009130856A1 - フレキシブル配線ユニットおよび電子機器 - Google Patents
フレキシブル配線ユニットおよび電子機器 Download PDFInfo
- Publication number
- WO2009130856A1 WO2009130856A1 PCT/JP2009/001624 JP2009001624W WO2009130856A1 WO 2009130856 A1 WO2009130856 A1 WO 2009130856A1 JP 2009001624 W JP2009001624 W JP 2009001624W WO 2009130856 A1 WO2009130856 A1 WO 2009130856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flexible
- substrate
- signal wiring
- flexible substrate
- wiring unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/0207—Wire harnesses
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0277—Bendability or stretchability details
- H05K1/028—Bending or folding regions of flexible printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/025—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/118—Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/07—Electric details
- H05K2201/0707—Shielding
- H05K2201/0715—Shielding provided by an outer layer of PCB
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/20—Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
- H05K2201/2009—Reinforced areas, e.g. for a specific part of a flexible printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/20—Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
- H05K2201/2036—Permanent spacer or stand-off in a printed circuit or printed circuit assembly
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
- H05K3/0061—Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
Definitions
- the present invention relates to a flexible wiring unit including a flexible substrate having flexibility in the longitudinal direction, and an electronic apparatus using the flexible wiring unit.
- This type of flexible substrate is widely used for wiring of electronic devices having movable parts.
- Applications of the flexible substrate are diverse, such as an optical head of a disk drive device, a flip-down monitor device, a printer head, a hinged mobile phone and a notebook personal computer.
- FIG. 7 shows a schematic diagram of a disk drive device 1200
- FIG. 8 shows a schematic diagram of a flip-down monitor device 1300.
- a conventional disk drive device one described in Patent Document 1 below is known.
- Patent Document 2 one disclosed in Patent Document 2 below is known.
- the disk drive device 1200 shown in FIG. 7A includes a flexible wiring unit 1100 and a disk drive mechanism 1220 that are set together on a metal base 1210 having a flat upper surface as main parts.
- the flexible wiring unit 1100 includes a head unit 1120, a connection connector 1110, a flexible substrate 1050, and a support member 1061.
- the head unit 1120 reads / writes data from / to the donut-shaped disk 1223 that is rotationally driven by the disk drive mechanism 1220.
- the connection connector 1110 electrically connects an external device (not shown) and the flexible wiring unit 1100.
- a flexible flexible substrate 1050 connects the head unit 1120 and the connection connector 1110.
- the support member 1061 is a member that fixes the base end portion of the flexible substrate 1050 and the connection connector 1110 to the metal base 1210. In general, the flexible substrate 1050 and the support member 1061 are fixed by an adhesive layer 1130.
- the support member 1061 is made of a non-conductive material such as PET (Polyethylene Terephthalate), polyimide, or glass epoxy, and has a predetermined plate thickness.
- the disk drive mechanism 1220 includes a disk holding unit 1222 that holds the disk 1223 and a drive motor 1221 that drives the disk holding unit 1222 to rotate about its axis.
- the support member 1061 is disposed in the vicinity of the drive motor 1221, and the connection connector 1110 is fixed to the support member 1061 toward the drive motor 1221.
- the head unit 1120 is provided at the tip of the flexible substrate 1050 and is guided to a predetermined position with respect to the track by a head moving mechanism (not shown).
- a head moving mechanism not shown.
- the head unit 1120 accesses the track on the inner circumference side of the disk 1223 as shown in FIG. 5A
- the head unit 1120 is moved to the rear side (right side in the figure) of the flexible wiring unit 1100 by the head moving mechanism.
- the head moving mechanism guides the head unit 1120 above the connection connector 1110, whereby the head unit 1120 accesses a desired track.
- the flexible substrate 1050 is curved to form a U-shape that lies sideways.
- the flexible substrate 1050 has a signal wiring 1030 sandwiched between opposed front and back insulating layers 1020 and 1040, and an optional other layer such as a shield layer 1010 is laminated on the upper surface thereof as shown in FIG. It becomes.
- the front and back insulating layers 1020 and 1040 have the same thickness.
- the flexible substrate 1050 balances predetermined flexibility and rigidity. Therefore, when the head unit 1120 is positioned above the support member 1061, particularly above the connection connector 1110 as shown in FIG. 7A, the flexible flexible substrate 1050 that has been laid down and deformed into a U-shape has a metal base. It is in a state of floating in the air without contacting with 1210. At this time, of the length of the flexible substrate 1050 in the front-rear direction, the portion facing the metal base 1210 is very small.
- FIG. 7B shows a state where the flexible substrate 1050 is deformed from a U shape to a J shape.
- the metal base 1210 and the length in the front-rear direction thereof are compared with the U-shape as shown in FIG.
- the length of the opposing part becomes long.
- FIG. 8 shows a state in which the monitor 1330 of the flip-down monitor device 1300 is stored in a concave metal base 1310 that constitutes a part of the ceiling of the automobile.
- FIG. 5B shows the flip-down monitor device 1300 in a use state in which the monitor 1330 rotates around the hinge 1333 in the clockwise direction in the drawing and the display screen 1332 is exposed.
- the monitor 1330 generally includes a display screen 1332 and a driver circuit unit 1331 that drives the display screen 1332 for each pixel mounted on a metal housing 1335. Signal exchange between the driver circuit unit 1331 and an external device (not shown) is performed via the flexible wiring unit 1100.
- a wiring hole 1334 is provided in the metal casing 1335, and the driver circuit portion 1331 disposed inside the metal casing 1335 is connected to the external device by the flexible substrate 1050.
- the flexible wiring unit 1100 includes a flexible substrate 1050 and a support member 1061 that fixes the base end portion of the flexible substrate 1050 to the metal base 1310.
- the flexible substrate 1050 transmits an output signal received from an external device arranged on the back side of the ceiling of the automobile (the upper surface side of the metal base 1310) to the driver circuit unit 1331.
- the flexible flexible substrate 1050 is deformed following the opening and closing of the monitor 1330.
- the flexible substrate 1050 is swelled in the middle due to the shortened path length, and a part of the flexible substrate 1050 is pressed against the metal base 1310 as shown in FIG.
- the longitudinal length of the flexible substrate 1050 facing the metal base 1210 changes.
- the flexible substrate 1050 is pressed against the metal base 1210.
- the distance from the surface of the metal base 1210 to the signal wiring 1030 is from the lower surface of the shield layer 1010 to the signal wiring 1030. It is equivalent to the distance. That is, when the head unit 1120 moves from the rear side to the front side, the signal wiring 1030 and the metal base 1210 are in a very close state. Then, the electrostatic capacitance between the conductive signal wiring included in the flexible substrate 1050 and the metal base 1210 increases, and the characteristic impedance Z 0 of the flexible substrate 1050 generally decreases.
- the monitor 1330 When the monitor 1330 is opened and the flexible substrate 1050 is pressed against the metal base 1310 to reduce the distance between the signal wiring 1030 and the metal base 1310, the capacitance between the two increases, and the characteristic impedance Z 0 of the flexible substrate 1050 increases. Generally decreases.
- the flexible substrate is required to match the characteristic impedance with other transmission lines, devices, and electronic devices to which the flexible substrate is connected. This is because when an impedance mismatch occurs between the electronic devices to be connected, the transmitted signal is reflected at the connecting portion, the waveform is disturbed, and the S / N ratio is lowered. For this reason, the characteristic impedance design is applied to the flexible substrate in advance, and it is necessary to avoid as much as possible that the characteristic impedance fluctuates as the positional relationship with the metal base changes.
- the present invention has been made in view of the above problems, that is, an object of the present invention is to provide a flexible wiring unit capable of suppressing fluctuations in characteristic impedance due to movement of the tip of a flexible substrate, and an electronic device using the same. To do.
- the flexible wiring unit of the present invention includes a signal wiring that exchanges signals with an external circuit, a front-side insulating layer and a back-side insulating layer that sandwich the signal wiring, and an upper surface of the front-side insulating layer that is stacked on the signal wiring.
- a conductive shield layer covering at least a portion, and a flexible substrate having flexibility in the longitudinal direction;
- a non-conductive substrate spacer member provided facing the lower surface of the back insulating layer;
- a support member for supporting one end side of the flexible substrate in the longitudinal direction;
- a flexible wiring unit configured such that the other end side in the longitudinal direction of the flexible substrate is movable, The distance (Y) from the back surface of the substrate spacer member to the signal wiring in a state in which the flexible substrate is in contact with the surface of the substrate spacer member is greater than the distance (X) from the bottom surface of the shield layer to the signal wiring. Is also large.
- the flexible substrate is in contact with the surface of the substrate spacer member, in addition to the case where they are in direct contact with each other and the case where they are in contact indirectly through another intervening layer.
- the front / back insulating layer and the shield layer may be formed by laminating a plurality of layers.
- the shield layer the layer closest to the signal wiring
- the distance from the lower surface of the shield layer to the signal wiring is Let X be.
- the support member is non-conductive
- the distance (Z) from the back surface of the support member to the signal wiring may be three times or more the distance (X) from the lower surface of the shield layer to the signal wiring.
- the electronic device of the present invention comprises a metal base, A signal wiring for transmitting / receiving signals to / from an external circuit, a front-side insulating layer and a back-side insulating layer sandwiching the signal wiring, and a conductive layer that is stacked on an upper surface of the front-side insulating layer and covers at least a part of the signal wiring
- a flexible substrate comprising a shield layer and having flexibility in the longitudinal direction;
- a non-conductive substrate spacer member that is provided on the metal base and faces the lower surface of the back-side insulating layer; and a support member that supports one longitudinal end of the flexible substrate;
- the other end side in the longitudinal direction of the flexible substrate is configured to be movable,
- the distance from the metal base to the signal wiring in a state where the flexible substrate is in contact with the surface of the substrate spacer member is larger than the distance from the lower surface of the shield layer to the signal wiring.
- a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
- the front / rear, top / bottom or front / back direction is defined, but this is defined for convenience in order to briefly explain the relative relationship of the components of the present invention.
- the direction at the time of manufacture and use is not limited.
- the flexible wiring unit of the present invention since the fluctuation of the characteristic impedance when the tip of the flexible substrate moves is suppressed, the transmission / reception of signals through the signal wiring is performed with high quality.
- (A) is a cross-sectional schematic diagram which shows the state which the flexible wiring unit of the comparative example 1 contact
- (b) is characteristic impedance of a flexible wiring unit when the line width of signal wiring is changed. It is a figure which shows a simulation result and its approximated curve.
- (A) is a cross-sectional schematic diagram which shows the state which spaced apart the front end side of the flexible wiring unit concerning the comparative example 1 from a metal base
- (b) is the characteristic impedance of the flexible wiring unit at the time of changing the space
- (A) is a cross-sectional schematic diagram which shows the single-piece
- (b) is a simulation result of the characteristic impedance of a flexible wiring unit when the line width of a signal wiring is changed, and its approximation It is a figure which shows a curve.
- (A) is a cross-sectional schematic diagram which shows the state which the flexible wiring unit of the comparative example 2 contact
- (b) is characteristic impedance of the flexible wiring unit when the line width of signal wiring is changed. It is a figure which shows a simulation result and its approximated curve.
- FIG. (A) is a cross-sectional schematic diagram which shows the state which spaced apart the front end side of the flexible wiring unit concerning the comparative example 2 from a metal base
- (b) is the characteristic impedance of the flexible wiring unit at the time of changing the space
- FIG. (A) is a cross-sectional schematic diagram which shows the state which the flexible wiring unit of Example 1 contact
- (b) is characteristic impedance of the flexible wiring unit when the line width of signal wiring is changed. It is a figure which shows a simulation result and its approximated curve.
- FIG. 14 is an enlarged view of FIG. (A) is a cross-sectional schematic diagram which shows the state which the flexible wiring unit of Example 2 contact
- FIG. 1 is a schematic side view showing a flexible wiring unit 100 according to the first embodiment of the present invention. First, an outline of the flexible wiring unit 100 of the present embodiment will be described.
- the flexible wiring unit 100 of the present embodiment includes a signal wiring 30 that exchanges signals with an external circuit (not shown), a front insulating layer 20 and a back insulating layer 40 that sandwich the signal wiring 30, and a front insulating layer 20. And the conductive shield layer 10 that covers at least a part of the signal wiring 30 and is laminated on the upper surface of the flexible substrate 50.
- the flexible substrate 50 has flexibility at least in the longitudinal direction.
- the flexible wiring unit 100 includes a non-conductive substrate spacer member 62 provided to face the lower surface of the back insulating layer 40, and a support member 61 that supports one end of the flexible substrate 50 in the longitudinal direction. The other end side in the longitudinal direction of the flexible substrate 50 is configured to be movable.
- the distance (Y) from the back surface of the substrate spacer member 62 to the signal wiring 30 in a state where the flexible substrate 50 is in contact with the surface of the substrate spacer member 62 is such that the signal wiring 30 from the bottom surface of the shield layer 10. It is characterized by being larger than the distance (X).
- the flexible wiring unit 100 is a unitized wiring assembly including a flexible substrate 50 including signal wirings 30 as a main component.
- the flexible wiring unit 100 of this embodiment is used inside an electronic device and electrically connects electronic components exemplified by a circuit board and a connector.
- the flexible substrate 50 is formed by laminating the shield layer 10, the front side insulating layer 20, the signal wiring 30 and the back side insulating layer 40 in this order.
- the side on which the substrate spacer member 62 is provided facing the flexible substrate 50 corresponds to the lower surface side, and the opposite side corresponds to the upper surface side.
- the back-side insulating layer 40 is formed by combining a base film made of an insulating material such as polyimide and an adhesive layer that joins the base film and the lower surface of the signal wiring 30.
- the thickness of the back-side insulating layer 40 is preferably 5 to 50 ⁇ m from the viewpoint of suitably suppressing fluctuations in characteristic impedance due to movement of the tip of the flexible substrate 50. Also, the thickness of the back side insulating layer 40 is preferably 5 to 35 ⁇ m from the viewpoint of obtaining good flexibility in the flexible substrate 50.
- the signal wiring 30 is a wiring pattern made of a metal foil such as copper and having a thickness of about 1 to 50 ⁇ m. In the present embodiment, the signal wiring 30 is configured as a single layer.
- the front-side insulating layer 20 is formed by combining a film made of an insulating material, like the back-side insulating layer 40, and an adhesive layer that joins the film and the upper surface of the signal wiring 30. From the viewpoint of obtaining good flexibility in the flexible substrate 50, the thickness of the front insulating layer 20 should be within ⁇ 30%, more preferably within ⁇ 10%, relative to the thickness of the back insulating layer 40. preferable.
- the shield layer 10 can be obtained by vacuum-depositing a metal material such as copper, nickel, or silver on one or more layers on the surface of a resin film having a thickness of about 10 to 20 ⁇ m, for example. In addition, it can also be obtained by printing and applying a conductive material to the front insulating layer 20 or another resin film, or attaching a conductive film.
- the shield layer 10 means a conductive layer (conductive layer). Therefore, between the insulating film constituting the front-side insulating layer 20 and the conductive layer, there is a non-conductive adhesive layer that joins both, or another insulating layer exemplified as a protective layer for the conductive layer. In this case, the insulating layer is not included in the shield layer 10. In other words, the thickness of the insulating layer is included in the distance (X) from the lower surface of the shield layer 10 to the signal wiring 30.
- the shield layer 10 is a ground layer for the signal wiring 30. That is, the shield layer 10 is grounded through the connection connector 110 and the like, and protects the signal wiring 30 from electromagnetic noise entering from the outside and suppresses electromagnetic noise radiated from the flexible substrate 50 to the outside.
- the flexible substrate 50 is provided with a head unit 120 on the distal end side and a connection connector 110 on the proximal end side.
- the base end side of the flexible substrate 50 is fixed to the support member 61 by the adhesive layer 130 together with the connection connector 110 over a predetermined length.
- the head unit 120 is driven in the front-rear direction by a head moving mechanism (not shown). That is, the tip of the flexible substrate 50 can be moved by the head moving mechanism.
- the support member 61 and the substrate spacer member 62 are integrally formed to constitute one flat plate member 60.
- the boundary between the support member 61 and the substrate spacer member 62 does not necessarily exist clearly.
- the region where the adhesive layer 130 is applied is referred to as the support member 61, and the region extending in front thereof is referred to as the substrate spacer member 62. Call it.
- the support member 61 and the substrate spacer member 62 are made of a non-conductive material. Resin materials such as PET, polyimide, and glass epoxy can be used from the viewpoints of low conductivity, durability, workability, and the like.
- the support member 61 and the substrate spacer member 62 may be made of the same material or different materials.
- FIG. 1A shows a state in which the head unit 120 moves to the rear, which is the right side in the drawing, and is positioned above the connection connector 110.
- the flexible substrate 50 is laid down in a U shape due to the balance between flexibility and rigidity, and the middle portion in the longitudinal direction is held away from the substrate spacer member 62 upward.
- FIG. 1B shows a state in which the head unit 120 moves forward and leaves the connection connector 110 and the support member 61.
- the flexible substrate 50 is deformed from a U shape to a J shape.
- the intermediate portion of the flexible substrate 50 is pushed down by the bending rigidity as described above, and the back surface of the flexible substrate 50, that is, the bottom surface of the back-side insulating layer 40 comes into contact with the surface of the flat plate member 60.
- the flexible substrate 50 and the surface of the substrate spacer member 62 come into contact with or separate from each other.
- FIG. 3 shows an enlarged view of the distal end portion of the flexible wiring unit 100 (region D indicated by a broken line in FIG. 1B) in a state where the flexible substrate 50 and the substrate spacer member 62 are in contact with each other.
- the distance (Y) from the back surface of the substrate spacer member 62 to the signal wiring 30 in a state where the flexible substrate 50 is in contact with the surface of the substrate spacer member 62 is the lower surface of the shield layer 10. Is larger than the distance (X) from the signal wiring 30 to the signal wiring 30.
- the distance (X) in the thickness direction from the signal wiring 30 to the shield layer 10 corresponds to the thickness of the front insulating layer 20.
- another layer may be provided between the signal wiring 30 and the back side insulating layer 40 or on the lower surface of the back side insulating layer 40. In such a case, the thickness of the other layer is included in the distance Y.
- the thickness of the other layer is included in the distance X.
- the flexible substrate 50 of this embodiment does not include another conductive layer between the signal wiring 30 and the substrate spacer member 62. That is, the flexible substrate 50 has a single layer structure in which the signal wiring 30 is provided in a single layer.
- the fluctuation of the characteristic impedance Z 0 of the flexible wiring unit 100 can be sufficiently suppressed by making the distance Y larger than the distance X.
- the distance Y is more than three times the distance X, and more preferably, the distance Y is more than five times the distance X, whereby fluctuations in the characteristic impedance Z 0 can be more suitably suppressed. It is clear.
- the distance (Z) from the back surface of the support member 61 to the signal wiring 30 is the total thickness of the back-side insulating layer 40, the adhesive layer 130, and the support member 61 in this embodiment. Equivalent to.
- the support member 61 is non-conductive, and the distance (Z) from the back surface of the support member 61 to the signal wiring 30 is the distance from the lower surface of the shield layer 10 to the signal wiring 30. It is more than three times (X).
- the flexible wiring unit 100 is previously individually adjusted to a predetermined characteristic impedance Z 0 in accordance with the attached electronic device (impedance control). Then, the flexible wiring unit 100 of the present embodiment, variations in the characteristic impedance Z 0 when attached to the electronic device is suppressed. Therefore, regardless of whether the base member to which the flexible wiring unit 100 is attached is a metal material or a non-metallic material, the flexible wiring unit 100 of this embodiment maintains the characteristic impedance Z 0 adjusted as a single unit. Can do. For this reason, according to the flexible wiring unit 100 of the present embodiment, impedance mismatch between the flexible substrate 50 and the electronic device is prevented, and the waveform of the transmitted signal is disturbed and the S / N ratio is reduced. There is nothing to do.
- FIG. 4 is a schematic side view showing a disk drive device 200 as an example of an electronic apparatus in which the flexible wiring unit 100 of the present embodiment is installed on a metal base 210. Since the configuration of the disk drive device 200 is the same as that of the conventional disk drive device 1200 shown in FIG. 7 except for the flexible wiring unit 100, repeated description will be omitted.
- the shape of the metal base 210 of the present embodiment is not particularly limited.
- a flat plate shape may be used like this embodiment, and it may have an unevenness
- the surface of the metal base 210 on which the flexible wiring unit 100 is installed may be conductive, or may be provided with an insulating coating or painting.
- FIG. 4A shows a state in which the head unit 120 accesses the track on the inner peripheral side of the disk 223 rotated by the drive motor 221.
- the flexible substrate 50 curved in a U shape is not in contact with the substrate spacer member 62.
- FIG. 4B shows a state in which the head unit 120 moves forward and accesses a track on the outer peripheral side of the disk 223.
- the flexible substrate 50 is deformed into a J shape, and the back-side insulating layer 40 corresponding to the lower surface thereof is in contact with the substrate spacer member 62.
- the flexible substrate 50 does not come into contact with the metal base 210, and the signal wiring 30 is separated from the metal base 210 with a distance Y (see FIG. 3).
- the head unit 120 accesses the track on the inner peripheral side of the disk 223 again, the flexible substrate 50 returns to the U shape and the flexible substrate 50 and the substrate spacer member 62 are separated from each other.
- the base end side of the flexible substrate 50 is fixed to the metal base 210 via the adhesive layer 130 and the support member 61.
- the flexible wiring unit 100 of this embodiment and the disk drive device 200 including the flexible wiring unit 100 will be described.
- the non-conductive substrate spacer member 62 so as to face the lower surface of the signal wiring 30, even when the flexible wiring unit 100 is installed on the metal base 210, the back surface of the flexible substrate 50 contacts the metal base 210. There is no contact. For this reason, a large distance between the metal base 210 and the signal wiring 30 is ensured by the thickness of the substrate spacer member 62.
- the variation factors of the characteristic impedance Z 0 of the flexible wiring unit 100 as described above, the change in capacitance between the metal base 210 and the signal wiring 30 which is installed is dominant.
- the capacitance is approximately the distance between the signal wiring 30 and the substrate spacer member 62. This is inversely proportional to the square of Y. For this reason, increasing the distance Y reduces the capacitance itself, thereby reducing the change in capacitance.
- the front and rear length or change the tip of the flexible substrate 50 is opposed to the metal base 210 to move, even or pressed the lower surface of the substrate the spacer member 62, the characteristic impedance Z 0 of the flexible wiring unit 100 fluctuates Is suppressed.
- the signal level of the signal wiring 30 is stabilized particularly when the shield layer 10 is a ground layer grounded to the ground level as in the present embodiment. To do.
- variations in the characteristic impedance Z 0 of the flexible wiring unit 100 is further suppressed.
- the distance Y is preferable to make the distance Y larger than the distance X as described above, and it can be said that the distances X and Y are the dominant parameters for suppressing the fluctuation of the characteristic impedance Z 0 of the flexible wiring unit 100.
- the distance Y is set to be three times the distance X or more, the effect of suppressing the fluctuation of the characteristic impedance Z 0 of the flexible wiring unit 100 can be further sufficiently improved when the shield layer 10 is a ground layer as in this embodiment. You can enjoy it. Further, by setting this to five times or more, even when the shield layer 10 is not grounded through the connection connector 110 or the like, fluctuations in the characteristic impedance Z 0 of the flexible wiring unit 100 are sufficiently suppressed.
- the flexible substrate 50 has the signal wiring 30 formed in a single layer, and the shield layer 10 is provided only on the upper surface and not on the lower surface. As a result, the flexible substrate 50 can be thinned and good flexibility can be obtained.
- the shield layer 10 can be easily connected to the connection connector 110 to make electrical contact. Further, in the flexible wiring unit 100, the influence of electromagnetic wave noise on the signal wiring 30 is prevented by blocking electromagnetic waves irradiated mainly from the head unit 120 side by the shield layer 10 on the upper surface.
- the connector pad and the contact pad are arranged on the same surface of the flexible substrate 50. This is to facilitate the processing of the flexible substrate 50.
- the connector pad is a pad-shaped connector provided on the surface of the flexible substrate 50 for electrically connecting the signal wiring 30 to the connection connector 110.
- the contact pad is a pad-like connector provided on the surface of the flexible substrate 50 for connecting the signal wiring 30 to the shield layer 10 that is the ground of the signal wiring 30.
- both the shield layer 10 and the connection connector 110 are provided on the upper surface side of the signal wiring 30 and the substrate spacer member 62 is provided on the lower surface side. It can be enjoyed by both the effect of the fluctuation suppressing the 100 characteristic impedance Z 0.
- the shield layer 10 is provided only on the lower surface side of the flexible substrate 50, the signal wiring 30 is exposed to electromagnetic waves, so that the shielding effect is limited and the influence of electromagnetic noise is suppressed. It becomes difficult.
- the shield layer 10 is provided on both sides of the flexible substrate 50, it is necessary to make the line width of the signal wiring 30 extremely narrow when controlling the impedance of the flexible wiring unit 100.
- these problems are solved by providing the shield layer 10 only on the upper surface side of the flexible substrate 50 as in the present embodiment.
- a signal on the other side is provided by a via penetrating the insulating layer. It is preferable to connect the wiring 30 and the connector pad. Thereby, both the signal wirings 30 on both surfaces of the insulating layer can be electrically connected to the connector pads.
- the via generally has a possibility of deteriorating the electrical characteristics of the flexible substrate 50.
- the signal wiring 30 in a single layer as in this embodiment, the occurrence of such a problem is avoided. Is done.
- the flexible wiring unit when a conductive layer such as a shield layer cannot be provided on the lower surface of the flexible substrate 50, the flexible wiring unit depends on the positional relationship between the flexible substrate 50 and the metal base 210 on which the flexible substrate 50 is installed. There has been a problem that the characteristic impedance Z 0 of 100 fluctuates.
- the relationship between the distance X and the distance Y is provided with the substrate spacer member 62 that faces the lower surface of the back insulating layer 40 is in the above predetermined variation of the characteristic impedance Z 0
- the above-described advantages due to the single layer of the signal wiring 30 are enjoyed.
- the support member 61 and the substrate spacer member 62 are integrally formed. Thereby, it is excellent in productivity of both members, and the positioning operation
- FIG. 5 is a schematic side view showing the flexible wiring unit 100 according to the second embodiment of the present invention and a flip-down monitor device 300 as an example of an electronic apparatus in which the flexible wiring unit 100 is installed on a metal base 310. Since the configuration of the flip-down monitor device 300 is the same as that of the conventional flip-down monitor device 1300 shown in FIG. 8 except for the flexible wiring unit 100, repeated description is omitted.
- FIG. 5A shows a state where the monitor 330 is stored in the metal base 310.
- FIG.5 (b) is an enlarged view of the area
- FIG. 5C shows a state in which the monitor 330 is rotated clockwise around the hinge 333 and opened, and the display screen 332 is exposed.
- the distance (Z) from the back surface of the support member 61 (above in FIG. 5B) to the signal wiring 30 at the base end portion of the flexible substrate 50 supported by the support member 61 is the shield layer. 10 or more times the distance (X) from the lower surface (upper surface in FIG. 10) to the signal wiring 30.
- the initial drop of the characteristic impedance Z 0 due to the mounting of the flexible wiring unit 100 to the metal base 310 is suitably restrained.
- the flexible wiring unit 100 of this embodiment is characterized in that two substrate spacer members 62 (substrate spacer members 62 a and 62 b) are provided on a metal base 310.
- a substrate spacer member 62 a is provided on the ceiling surface 312 of the metal base 310 on which the support member 61 that fixes the base end portion of the flexible substrate 50 is mounted.
- the substrate spacer member 62b is provided on the vertical surface 314 of the metal base 310 where the driver circuit portion 331 approaches when the display screen 332 is exposed.
- a plurality of substrate spacer members 62 may be provided.
- the flexible substrate 50 curved in a U shape is not in contact with the substrate spacer members 62a and 62b.
- FIG. 5C when the monitor 330 is opened, the flexible substrate 50 led out from the wiring hole 334 is deformed into an L shape and swells in a direction away from the metal housing 335. It is pressed against the spacer members 62a and 62b.
- the flexible wiring unit 100 of the present embodiment is provided with the non-conductive substrate spacer members 62a and 62b facing the lower surface of the back insulating layer 40, so that the flexible substrate 50 and the metal base 310 are provided. There is no contact. Further, the signal wiring 30 is separated from the metal base 310 with a distance Y (see FIG. 3). Therefore, the characteristic impedance Z 0 of the flexible wiring unit 100 is not changed by the opening / closing operation of the monitor 330, and the output signal sent to the display screen 332 is transmitted through the flexible wiring unit 100 with high quality.
- the lower surface side of the flexible substrate 50 means the metal base 310 side, and does not mean the vertical direction of the gravity direction.
- the flexible substrate 50 and the metal base 310 can be contacted even when the flexible wiring unit 100 of this embodiment is installed on a metal base 310 other than a flat plate. It can be avoided. Thus, according to this embodiment, it is possible to suppress the fluctuation of the characteristic impedance Z 0 of the flexible wiring unit 100.
- FIG. 6 is a schematic side view of a flexible wiring unit 100 according to a third embodiment of the present invention and a flip-down monitor device 300 including the same. The description of the overlapping parts with the second embodiment is omitted.
- one surface (substrate spacer member 62b) of the substrate spacer member 62 divided into a plurality is joined to the lower surface of the flexible substrate 50, and the flexible substrate 50 and the substrate spacer member 62b are connected to each other. Can move together.
- FIG. 4A shows the storage state of the monitor 330.
- the back surface of the substrate spacer member 62b is not in contact with the metal casing 335. Further, the substrate spacer member 62 a provided on the ceiling surface of the metal base 310 and the flexible substrate 50 are not in contact with each other.
- FIG. 4B shows the monitor 330 in an open state. The back surface of the substrate spacer member 62b is in contact with the metal casing 335. The substrate spacer member 62a and the flexible substrate 50 are in contact with each other.
- the substrate spacer members 62a and 62b of the present embodiment are also made of a nonconductive material as in the first and second embodiments. Further, the distance Y from the back surface of the substrate spacer members 62a and 62b to the signal wiring 30 (see FIG. 3) inside the flexible substrate 50 is larger than the distance X from the signal wiring 30 to the shield layer 10 (see FIG. 3). Largely formed.
- the variation in capacitance between the metal housing 335 and the signal wiring 30 is suppressed by the substrate spacer member 62b, and the variation in capacitance between the metal base 310 and the signal wiring 30 is suppressed. It is suppressed by the substrate spacer member 62a.
- the flexible wiring unit 100 can be easily handled by joining a part or all of the substrate spacer member 62 to the back surface of the flexible substrate 50 and integrating them together as in this embodiment. Furthermore, for example, the inner surface of the metal housing 335, to suppress the fluctuation in characteristic impedance Z 0 of the flexible wiring unit 100 even when it is difficult to attach to the side of the metal member to the substrate spacer member 62 fixedly Can do.
- the disk drive device 200 and the flip-down monitor device 300 are examples.
- other electronic devices include a printer head, a hinged cellular phone, a notebook personal computer, a robot, a transportation device, and the like having a metal base and a movable part.
- open / close cellular phones are repeatedly opened and closed on a daily basis, and the opening / closing speed is as fast as about one second.
- the openable mobile phone it can be particularly preferably enjoy the advantages of the present invention the fluctuation of the characteristic impedance Z 0 by contact or non-contact between the flexible substrate 50 and the metal base can be suppressed.
- various functions such as a camera function, a music playback function, and a call function are often realized regardless of whether the phone is in a closed state or an open state.
- the effect of the present invention in which the difference in characteristic impedance Z 0 between the closed state and the open state is reduced can be more suitably enjoyed.
- transformation aspect of the flexible substrate 50 is not restricted to the said U shape, J shape, or L shape.
- the distance Y from the surface of the metal base to the signal wiring is three times the distance X from the lower surface of the shield layer to the signal wiring in any of the devices. It is preferable to set it above, and it is more preferable to set this to 5 times or more.
- the flexible substrate 50 is separated from the substrate spacer member 62 in some cases (FIG. 4A, FIG. 5A, FIG. 6A), and in some cases, the substrate spacer. It is in contact with the member 62 (FIG. 4B, FIG. 5B, FIG. 6B).
- the flexible substrate 50 and the substrate spacer member 62 may always be separated from each other or may always be in contact with each other.
- the flexible substrate 50 and the metal bases 210 and 310 may always be separated from each other via the substrate spacer member 62 and optionally other intervening layers, or may always be connected.
- the flexible substrate 50 may have a multilayer structure including a plurality of signal wirings 30.
- the distance Y from the signal wiring 30 to the back surface of the substrate spacer member 62 or the distance Z from the signal wiring 30 to the back surface of the support member 61 is determined from the signal wiring 30 stacked on the lowermost surface side to the substrate spacer member. 62 or the distance to the back surface of the support member 61 is meant.
- the distance X from the signal wiring 30 to the lower surface of the shield layer 10 means the distance from the signal wiring 30 stacked on the uppermost side to the lower surface of the shield layer 10.
- a non-conductive substrate spacer member provided facing the lower surface of the back insulating layer
- a non-conductive support member that supports one end of the flexible substrate in the longitudinal direction
- a flexible wiring unit configured such that the other end side in the longitudinal direction of the flexible substrate is movable, A flexible wiring unit, wherein a distance (Z) from the back surface of the support member to the signal wiring is at least three times a distance (X) from the lower surface of the shield layer to the signal wiring;
- the distance (Y) from the back surface of the substrate spacer member to the signal wiring in the state where the flexible substrate is in contact with the surface of the substrate spacer member is
- tip moved was performed. From this simulation, it was verified that the distance Y is preferably larger than the distance X, and further that the distance Y is more than 3 times, more preferably more than 5 times the distance X. The following simulation was performed based on typical dimensions and material characteristics of the flexible wiring unit at the present time. Therefore, when the thin film structure is thinned, the signal wiring is miniaturized, and the electrical characteristics of the material are improved in the future, the preferable numerical relationship between the distance X and the distance Y may change.
- the transverse cross section of the flexible wiring units 100 and 1100 means a cross section cut perpendicularly to the longitudinal direction of the flexible substrates 50 and 1050, that is, the extending direction of the signal wirings 30 and 1030.
- This simulation result is obtained by two-dimensionally calculating the characteristic impedance Z 0 in the cross section of the flexible wiring units 100 and 1100 at a predetermined distance from the metal bases 210 and 1210.
- FIG. 9A is a schematic cross-sectional view showing a state in which the flexible wiring unit 1100 of Comparative Example 1 is in contact with the metal base 1210.
- the signal wiring 1030 As the signal wiring 1030, a physical property value of a copper foil having a thickness of 35 ⁇ m was set. In addition, a non-conductive adhesive layer 1032 is provided around the signal wiring 1030. As the front-side insulating layer 1020 (coverlay) and the back-side insulating layer 1040 (base film), the physical property values of a polyimide film having a thickness of 25 ⁇ m were set. And the flexible wiring unit 1100 of this comparative example consists of the flexible substrate 1050 which laminated
- the thickness of the adhesive layer 1032 between the front-side insulating layer 1020 and the signal wiring 1030 and between the back-side insulating layer 1040 and the signal wiring 1030 is 10 ⁇ m.
- the physical properties of stainless steel (SUS) were set. Note that the width dimensions of the front-side insulating layer 1020 and the back-side insulating layer 1040 are always larger than the line width of the signal wiring 1030.
- FIG. 10A is a schematic cross-sectional view showing a state where the distal end side of the flexible wiring unit 1100 according to this comparative example is separated from the metal base 1210.
- the lower part of the figure is a schematic side view of the flexible wiring unit 1100. Accordingly, the upper part of the figure corresponds to an enlarged sectional view of the lower part of the figure as viewed from the right side. As shown in the figure, the distance (gap) between the lower surface of the back insulating layer 1040 and the metal base 1210 is Y1.
- FIG (b) is the line width L of the signal line 1030 and 100 [mu] m, in the case of changing the air gap Y1 to 0 ⁇ 100 mm, a diagram showing the characteristic impedance Z 0 of the flexible wiring unit 1100.
- FIG. 11A is a schematic cross-sectional view of the flexible wiring unit 1100 of the second comparative example.
- the flexible wiring unit 1100 is in a single state sufficiently separated from the metal base.
- the flexible wiring unit 1100 of this comparative example is different from the comparative example 1 only in that the top shield layer 1010 of the front insulating layer 1020 is formed.
- the top shield layer 1010 the physical properties of a silver paste having a thickness of 20 ⁇ m were set.
- FIG. 7B shows a simulation result of the characteristic impedance Z 0 of the flexible wiring unit 1100 when the line width L of the signal wiring 1030 in FIG. 10A is changed from 20 ⁇ m to 100 ⁇ m, and an approximate curve thereof.
- FIG. 12A is a schematic cross-sectional view showing a state in which the flexible wiring unit 1100 of Comparative Example 2 is in contact with the metal base 1210.
- FIG. 13A is a schematic cross-sectional view showing a state where the distal end side of the flexible wiring unit 1100 according to this comparative example is separated from the metal base 1210.
- the lower part of the figure is a schematic side view of the flexible wiring unit 1100. Accordingly, the upper part of the figure corresponds to an enlarged sectional view of the lower part of the figure as viewed from the right side. As illustrated, the distance (gap) between the lower surface of the back insulating layer 1040 and the metal base 1210 is Y2.
- the (b) shows, the line width L of the signal line 1030 and 30 [mu] m, in the case of changing the air gap Y2 to 0 ⁇ 100 mm, a diagram showing the characteristic impedance Z 0 of the flexible wiring unit 1100.
- FIG. 14A is a schematic cross-sectional view illustrating a state in which the flexible wiring unit 100 according to the first embodiment is in contact with the metal base 210.
- the flat plate member 60 (the support member 61 and the substrate spacer member 62) is joined to the lower surface of the back insulating layer 40 via a non-conductive adhesive layer (not shown).
- the flat plate member 60 may be referred to as a reinforcing plate.
- the physical property values of PET were set.
- the characteristic impedance Z 0 of the flexible wiring unit 100 of this example alone was equivalent to that in the case of the comparative example 2 (FIG. 11B).
- FIG. 15A is a schematic cross-sectional view illustrating a state where the distal end side of the flexible wiring unit 100 according to the present embodiment is separated from the metal base 210.
- the lower part of the figure is a schematic side view of the flexible wiring unit 100. Accordingly, the upper part of the figure corresponds to an enlarged sectional view of the lower part of the figure as viewed from the right side. As illustrated, the distance (gap) between the lower surface of the flat plate member 60 and the metal base 210 is Y3.
- FIG (b) is the line width L of the signal line 30 and 37 [mu] m, in the case of changing the air gap Y3 to 0 ⁇ 100 mm, a diagram showing the characteristic impedance Z 0 of the flexible wiring unit 100.
- the flexible wiring unit 100 of the present example has a characteristic impedance Z 0 in a state of being in contact with the metal base 210 (FIG. 14A) and a state of being sufficiently separated (FIG. 15A).
- the fluctuation range was 2 ⁇ .
- the flat base member 60 is interposed between the back-side insulating layer 40 having a predetermined thickness and the metal base 210 so that the distance Z is more than three times the distance X. It can be seen that the difference in the characteristic impedance Z 0 of the flexible wiring unit 100 is suppressed between the state attached to and the single state.
- Comparative Examples 1 and 2 and Example 1 The following knowledge can be obtained from Comparative Examples 1 and 2 and Example 1.
- the characteristic impedance Z 0 of the flexible wiring unit 1100 in contact with the metal base 1210 is seen to be significantly reduced (Comparative Examples 1 and 2) .
- the flat plate member 60 substrate spacer member 62
- Z 0 50 ⁇ characteristics.
- the line width L of the signal wiring 30 for obtaining the impedance was 37 ⁇ m.
- a slight thinning regarding the line width L of the signal line 1030 it can be seen that the characteristic impedance Z 0 at a unit of the flexible wiring unit 100 can be maintained.
- the flat plate member 60 substrate spacer having a predetermined thickness as in the first embodiment. by interposing the member 62), it can be seen that significantly suppress the fluctuation band of the characteristic impedance Z 0.
- the shield layer 10 is provided on the upper surface of the front-side insulating layer 20, and the flat plate member 60 (substrate spacer member 62) is provided between the back-side insulating layer 40 and the metal base 210. 10 can obtain the electromagnetic wave shielding function.
- the desired characteristic impedance Z 0 is realized by the thick signal wiring 30, and the fluctuation of the characteristic impedance Z 0 due to the movement of the tip of the flexible wiring unit 100 is further suppressed.
- a non-conductive material having a dielectric constant similar to air is interposed as the substrate spacer member 62 between the back-side insulating layer 40 and the metal base 210 so that the gap Y2 is about 70 ⁇ m. the variation of the characteristic impedance Z 0 of the unit 100 can be sufficiently suppressed.
- the distance (Y) from the back surface of the substrate spacer member 62 to the signal wiring 30 is 105 ⁇ m including the back-side insulating layer 40 (thickness 25 ⁇ m) and the adhesive layer 32 (thickness 10 ⁇ m).
- the distance (X) from the lower surface of the shield layers 10 and 1010 to the signal wirings 30 and 1030 is 35 ⁇ m as described above. Therefore, according to this embodiment, by a Y ⁇ 3X, it can be said that the can be particularly suitably suppressing the fluctuation in characteristic impedance Z 0 by the movement of the tip of the flexible wiring unit 100.
- FIG. 17A is a schematic cross-sectional view showing a state where the flexible wiring unit 100 of Example 2 is in contact with the metal base 210.
- the flexible wiring unit 100 of the present embodiment is different from the first embodiment only in that the thickness (T) of the flat plate member 60 (reinforcing plate) is changed in a plurality of ways. Also in this embodiment, the distance X from the lower surface of the shield layer 10 to the signal wiring 30 is set to 35 ⁇ m.
- FIG (b) is the simulation result of the characteristic impedance Z 0 in the case of changing the thickness (T) is an integer multiple of the distance (X) of the substrate the spacer member 62 is a diagram showing the approximate curve.
- the characteristic impedance Z 0 is calculated in a state where the flexible wiring unit 100 is in contact with the surface of the metal base 210.
- the line width L of the signal wiring 30 of the present embodiment is 37 ⁇ m.
- T ⁇ X that is, Y ⁇ 2X
- T ⁇ X that is, Y ⁇ 2X
- the flexible wiring unit 100 is flexible when the flexible wiring unit 100 is installed on the metal base 210 and when both are sufficiently separated from each other.
- T ⁇ 2X that is, Y ⁇ 3X
- T ⁇ 4X that is, Y ⁇ 5X
- the variation of the characteristic impedance Z 0 is reduced to an error level or less. It is understood that it can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
従来のディスクドライブ装置の例としては、下記特許文献1に記載のものが知られている。また従来のフリップダウンモニター装置の例としては、下記特許文献2に記載のものが知られている。
フレキシブル配線ユニット1100は、ヘッドユニット1120と、接続コネクタ1110と、フレキシブル基板1050と、支持部材1061とを備えている。ヘッドユニット1120は、ディスク駆動機構1220により回転駆動されるドーナツ状のディスク1223に対してデータの読み書きをする。接続コネクタ1110は、外部機器(図示せず)とフレキシブル配線ユニット1100とを電気的に接続する。可撓性のフレキシブル基板1050は、ヘッドユニット1120と接続コネクタ1110とを接続する。そして、支持部材1061は、フレキシブル基板1050の基端部および接続コネクタ1110を、金属ベース1210に対して固定する部材である。
フレキシブル基板1050と支持部材1061とは接着剤層1130で固着されることが一般的である。支持部材1061はPET(Polyethylene Terephthalate)やポリイミド、ガラスエポキシなどの非導電性材料からなり、所定の板厚に形成されている。
表側および裏側絶縁層1020,1040は同等の厚さとすることが一般的である。
したがって図7(a)のようにヘッドユニット1120が支持部材1061の上方、特に接続コネクタ1110の上方に位置している場合、横倒しU字状に変形した可撓性のフレキシブル基板1050は、金属ベース1210と接触せず宙に浮いた状態となる。このとき、フレキシブル基板1050の前後方向の長さのうち、金属ベース1210と対向している部分は僅かである。
同図(a)は、フリップダウンモニター装置1300のモニター1330が、自動車の天井の一部を構成する凹状の金属ベース1310の内部に格納された状態を示す。
同図(b)は、モニター1330がヒンジ1333を中心に図中時計回りに回転して開き、表示画面1332が露出した使用状態におけるフリップダウンモニター装置1300を示す。
ドライバ回路部1331と外部機器(図示せず)との信号の授受はフレキシブル配線ユニット1100を介して行う。金属筐体1335には配線孔1334が設けられており、金属筐体1335の内部に配置されたドライバ回路部1331と外部機器とをフレキシブル基板1050によって接続している。
フレキシブル基板1050は、自動車の天井裏側(金属ベース1310の上面側)に配置された外部機器から受け取った出力信号をドライバ回路部1331に伝達する。
可撓性のフレキシブル基板1050は、モニター1330の開閉に追随して変形する。フレキシブル基板1050は、上記経路長が短くなったことにより、その中間部が膨出し、同図(b)のように金属ベース1310にその一部が押し付けられる。
すると、フレキシブル基板1050に含まれる導電性の信号配線と金属ベース1210との間の静電容量が増大し、フレキシブル基板1050の特性インピーダンスZ0が一般に低下する。
前記裏側絶縁層の下面に対向して設けられた非導電性の基板スペーサ部材と、
前記フレキシブル基板の長手方向の一端側を支持する支持部材と、
を有し、前記フレキシブル基板の長手方向の他端側が移動可能に構成されたフレキシブル配線ユニットであって、
前記フレキシブル基板が前記基板スペーサ部材の表面に当接した状態における前記基板スペーサ部材の裏面から前記信号配線までの距離(Y)が、前記シールド層の下面から前記信号配線までの距離(X)よりも大きいことを特徴とする。
また上記本発明においては、表側/裏側絶縁層やシールド層が複数の層を積層して構成してもよい。また表側絶縁層の上面に複数の導電性の層が積層されている場合については、このうち信号配線にもっとも近接する層をシールド層と呼称し、当該シールド層の下面から信号配線までの距離をXとする。
前記支持部材の裏面から前記信号配線までの距離(Z)が、前記シールド層の下面から前記信号配線までの距離(X)の三倍以上であってもよい。
外部回路との間で信号を授受する信号配線と、前記信号配線を挟み込む表側絶縁層および裏側絶縁層と、前記表側絶縁層の上面に積層されて前記信号配線の少なくとも一部を覆う導電性のシールド層と、を備え、長手方向に可撓性を有するフレキシブル基板と、
前記金属ベースにともに設けられた、前記裏側絶縁層の下面に対向する非導電性の基板スペーサ部材、および前記フレキシブル基板の長手方向の一端側を支持する支持部材と、
を有し、前記フレキシブル基板の長手方向の他端側が移動可能に構成されるとともに、
前記フレキシブル基板が前記基板スペーサ部材の表面に当接した状態における前記金属ベースから前記信号配線までの距離が、前記シールド層の下面から前記信号配線までの距離よりも大きいことを特徴とする。
図1は本発明の第一実施形態にかかるフレキシブル配線ユニット100を示す模式的な側面図である。
はじめに、本実施形態のフレキシブル配線ユニット100の概要について説明する。
またフレキシブル配線ユニット100は、裏側絶縁層40の下面に対向して設けられた非導電性の基板スペーサ部材62と、フレキシブル基板50の長手方向の一端側を支持する支持部材61とを有し、フレキシブル基板50の長手方向の他端側が移動可能に構成されている。
そしてフレキシブル配線ユニット100は、フレキシブル基板50が基板スペーサ部材62の表面に当接した状態における基板スペーサ部材62の裏面から信号配線30までの距離(Y)が、シールド層10の下面から信号配線30までの距離(X)よりも大きいことを特徴とする。
本実施形態のフレキシブル配線ユニット100は、電子機器の内部で用いられ、回路基板やコネクタに例示される電子部品同士を電気的に接続する。
本実施形態においては、フレキシブル基板50と対向して基板スペーサ部材62の設けられる側が下面側にあたり、その反対側が上面側にあたる。
また本発明において、シールド層10は導電性の層(導電層)を意味する。したがって、表側絶縁層20を構成する絶縁性のフィルムと当該導電層との間に、両者を接合する非導電性の接着層や、導電層の保護層などに例示される他の絶縁層が介在する場合、かかる絶縁層はシールド層10に含めないものとする。言い換えると、かかる絶縁層の厚さは、シールド層10の下面から信号配線30までの距離(X)に含まれるものとする。
そして、フレキシブル基板50と基板スペーサ部材62とが当接した状態における、フレキシブル配線ユニット100の先端部(図1(b)に破線で示す領域D)の拡大図を図3に示す。
また信号配線30からシールド層10までの厚さ方向の距離(X)は、本実施形態の場合、表側絶縁層20の厚さに相当する。
ただし本実施形態に代えて、信号配線30と裏側絶縁層40との間、または裏側絶縁層40の下面に他層を設けてもよい。かかる場合は、当該他層の厚さを上記距離Yに含める。
同様に信号配線30と表側絶縁層20との間、または表側絶縁層20とシールド層10との間に他層を設ける場合は、当該他層の厚さを上記距離Xに含める。
このため、本実施形態のフレキシブル配線ユニット100によれば、フレキシブル基板50と電子機器との間でインピーダンス不整合が生じることが防止され、伝送される信号の波形が乱れてS/N比が低下することがない。
ディスクドライブ装置200の構成は、フレキシブル配線ユニット100を除き図7に示す従来のディスクドライブ装置1200と共通するため、繰り返しの説明は省略する。
図4(b)は、ヘッドユニット120が前方に移動してディスク223の外周側のトラックにアクセスする状態を示している。フレキシブル基板50はJ字状に変形しており、その下面にあたる裏側絶縁層40は、基板スペーサ部材62と当接している。
なお、ヘッドユニット120が再びディスク223の内周側のトラックにアクセスする場合は、フレキシブル基板50はU字状に戻ってフレキシブル基板50と基板スペーサ部材62とは離間する。
この間、フレキシブル基板50の基端側については、接着剤層130および支持部材61を介して金属ベース210に固定された状態にある。
まず、信号配線30の下面に対向して非導電性の基板スペーサ部材62を設けたことにより、フレキシブル配線ユニット100を金属ベース210に設置した場合も、フレキシブル基板50の裏面が金属ベース210と当接することがない。このため、基板スペーサ部材62の厚みによって金属ベース210と信号配線30との距離が大きく確保される。
ここで、上述のようにフレキシブル配線ユニット100の特性インピーダンスZ0の変動要因としては、信号配線30とこれが設置される金属ベース210との間の静電容量の変化が支配的である。そして当該静電容量は、上記のように信号配線30と基板スペーサ部材62との間に他の導電層を備えない本実施形態の場合、近似的に信号配線30と基板スペーサ部材62との距離Yの二乗に反比例することとなる。このため距離Yを大きくすることで当該静電容量自体を小さくし、これにより静電容量の変化を低減している。
したがって、フレキシブル基板50の先端が移動して金属ベース210と対向する前後長が変動したり、その下面が基板スペーサ部材62に押し付けられたりしても、フレキシブル配線ユニット100の特性インピーダンスZ0が変動することが抑えられる。
これにより、フレキシブル配線ユニット100の特性インピーダンスZ0の変動がさらに抑制される。
なお、距離Yを距離Xの三倍以上とすることで、本実施形態のようにシールド層10がグランド層である場合にフレキシブル配線ユニット100の特性インピーダンスZ0の変動抑制の効果を更に十分に享受することができる。またこれを五倍以上とすることで、シールド層10が接続コネクタ110などを通じてアースされていない場合についても、フレキシブル配線ユニット100の特性インピーダンスZ0の変動が十分に抑制される。
ここで、コネクタパッドは、信号配線30を接続コネクタ110に電気的に接続するための、フレキシブル基板50の面上に設けられるパッド状のコネクタである。また、コンタクトパッドは、信号配線30のグランドであるシールド層10に対して信号配線30を接続するための、フレキシブル基板50の面上に設けられるパッド状のコネクタである。
したがって、本実施形態によれば、シールド層10および接続コネクタ110をともに信号配線30の上面側に設け、下面側に基板スペーサ部材62を設けることにより、フレキシブル基板50の加工性と、フレキシブル配線ユニット100の特性インピーダンスZ0の変動抑制の効果とを両立して享受することができる。
これに対し、本実施形態のようにフレキシブル基板50の上面側にのみシールド層10を設けることでこれらの問題が解決される。
図5は、本発明の第二実施形態にかかるフレキシブル配線ユニット100、およびこれを金属ベース310に設置した電子機器の例としてのフリップダウンモニター装置300を示す模式的な側面図である。
フリップダウンモニター装置300の構成は、フレキシブル配線ユニット100を除き図8に示す従来のフリップダウンモニター装置1300と共通するため、繰り返しの説明は省略する。
図5(b)は、図5(a)の破線で示す領域Bの拡大図であり、フレキシブル基板50およびこれを支持する支持部材61を示す。同図では、金属ベース310は図示を省略している。
また図5(c)は、モニター330がヒンジ333まわりに時計回りに回転して開放され、表示画面332が露出した状態を示す。
これにより、フレキシブル配線ユニット100を金属ベース310に取り付けたことによる特性インピーダンスZ0の初期降下が好適に抑制される。
具体的には、フレキシブル基板50の基端部を固定する支持部材61が搭載される金属ベース310の天井面312に、基板スペーサ部材62aが設けられている。一方、金属ベース310のうち表示画面332の露出時にドライバ回路部331が接近する立面314に、基板スペーサ部材62bが設けられている。このように本発明においては、複数の基板スペーサ部材62を備えることとしてもよい。
そして同図(c)に示すように、モニター330の開放状態においては、配線孔334から導出されたフレキシブル基板50はL字状に変形するとともに、金属筐体335より離れる方向に膨出して基板スペーサ部材62a,62bに押し付けられる。
したがってモニター330の開閉動作によってフレキシブル配線ユニット100の特性インピーダンスZ0が変動することがなく、表示画面332に送られる出力信号がフレキシブル配線ユニット100を通じて高品質で伝送される。
なお本実施形態において、フレキシブル基板50の下面側とは金属ベース310の側を意味し、重力方向の上下を意味するものではない。
なお本実施形態の変形例として、立面314をヒンジ333から離れるように湾曲させるなどして、モニター330が開放された状態(図5(c)を参照)において立面314とフレキシブル基板50とが当接しないよう構成してもよい。かかる構成の場合、フレキシブル基板50と立面314とが当接することを防止する基板スペーサ部材62bを不要とすることができる。
図6は本発明の第三実施形態にかかるフレキシブル配線ユニット100およびこれを備えるフリップダウンモニター装置300の模式的な側面図である。上記第二実施形態との重複箇所については説明を省略する。
同図(b)はモニター330の開放状態を示している。基板スペーサ部材62bの裏面が金属筐体335と接触している。また基板スペーサ部材62aとフレキシブル基板50とは互いに接触している。
まず、フレキシブル配線ユニット100が取り付けられる電子機器としては、ディスクドライブ装置200やフリップダウンモニター装置300などは一例である。その他の電子機器の例としては、プリンタヘッド、ヒンジ開閉式の携帯電話機やノート型パソコン、ロボットや輸送機器など、金属ベースおよび可動部をもつものを挙げることができる。
このうち開閉式の携帯電話機は、日常的に繰り返し開閉操作がなされ、かつ開閉速度が一秒程度と高速である。このため、開閉式の携帯電話機においては、フレキシブル基板50と金属ベースとの接触・非接触による特性インピーダンスZ0の変動が抑制される本発明の効果を特に好適に享受することができる。特に近年の開閉式の携帯電話機では、カメラ機能や音楽再生機能、通話機能などの多様な機能が、電話機の閉止状態と開放状態とを問わず実現される場合が多い。かかる携帯電話機については、閉止状態と開放状態の両状態における特性インピーダンスZ0の差異が低減される本発明の効果がさらに好適に享受される。
またフレキシブル基板50の変形態様も上記U字状、J字状、またはL字状などに限られない。
かかる場合、信号配線30から基板スペーサ部材62の裏面までの距離Y、または信号配線30から支持部材61の裏面までの距離Zとは、もっとも下面側に積層された信号配線30から、基板スペーサ部材62または支持部材61の裏面までの距離を意味する。一方、信号配線30からシールド層10の下面までの距離Xとは、もっとも上面側に積層された信号配線30からシールド層10の下面までの距離を意味する。
(1)外部回路との間で信号を授受する信号配線と、前記信号配線を挟み込む表側絶縁層および裏側絶縁層と、前記表側絶縁層の上面に積層されて前記信号配線の少なくとも一部を覆う導電性のシールド層と、を備え、長手方向に可撓性を有するフレキシブル基板と、
前記裏側絶縁層の下面に対向して設けられた非導電性の基板スペーサ部材と、
前記フレキシブル基板の長手方向の一端側を支持する非導電性の支持部材と、
を有し、前記フレキシブル基板の長手方向の他端側が移動可能に構成されたフレキシブル配線ユニットであって、
前記支持部材の裏面から前記信号配線までの距離(Z)が、前記シールド層の下面から前記信号配線までの距離(X)の三倍以上であることを特徴とするフレキシブル配線ユニット;
(2)前記フレキシブル基板が前記基板スペーサ部材の表面に当接した状態における、前記基板スペーサ部材の裏面から前記信号配線までの距離(Y)が、前記シールド層の下面から前記信号配線までの距離(X)よりも大きいことを特徴とする上記(1)に記載のフレキシブル配線ユニット;
(3)前記距離(Y)が、前記距離(X)の三倍以上である上記(2)に記載のフレキシブル配線ユニット;
(4)前記支持部材と前記基板スペーサ部材とが一体に形成されている上記(1)から(3)のいずれかに記載のフレキシブル配線ユニット;
(5)前記フレキシブル基板が、前記信号配線と前記支持部材との間に導電層を備えていないことを特徴とする上記(1)から(4)のいずれかに記載のフレキシブル配線ユニット;
(6)金属ベースと、
外部回路との間で信号を授受する信号配線と、前記信号配線を挟み込む表側絶縁層および裏側絶縁層と、前記表側絶縁層の上面に積層されて前記信号配線の少なくとも一部を覆う導電性のシールド層と、を備え、長手方向に可撓性を有するフレキシブル基板と、
前記金属ベースにともに設けられた、前記裏側絶縁層の下面に対向する非導電性の基板スペーサ部材、および前記フレキシブル基板の長手方向の一端側を支持する非導電性の支持部材と、
を有し、前記フレキシブル基板の長手方向の他端側が移動可能に構成されるとともに、
前記支持部材の裏面から前記信号配線までの距離(Z)が、前記シールド層の下面から前記信号配線までの距離(X)の三倍以上であることを特徴とする電子機器。
以下のシミュレーションは、現時点におけるフレキシブル配線ユニットの代表的な寸法や材料特性に基づいておこなったものである。したがって、将来的に薄膜構造の薄型化や信号配線の微細化、材料の電気的特性の改善などが進んだ場合には、距離Xと距離Yとの好ましい数値関係は変動する可能性がある。しかし、当業者であれば、フレキシブル配線ユニットを構成する各種材料の特性および寸法に基づき、本発明の趣旨の範囲内において、距離Xと距離Yとの好ましい関係を容易に導出することが可能である。
以下、フレキシブル配線ユニット100,1100の横断面とは、フレキシブル基板50,1050の長手方向、すなわち信号配線30,1030の延在方向に対して垂直に切った断面を意味する。
なお、このシミュレーション結果は、金属ベース210,1210と所定の距離にあるフレキシブル配線ユニット100,1100の横断面内における特性インピーダンスZ0を二次元的に算出したものである。
図9(a)は、比較例1のフレキシブル配線ユニット1100が金属ベース1210に当接した状態を示す横断面模式図である。
表側絶縁層1020(カバーレイ)および裏側絶縁層1040(ベースフィルム)としては、それぞれ厚さ25μmのポリイミドフィルムの物性値を設定した。
そして本比較例のフレキシブル配線ユニット1100は、下層から順に裏側絶縁層1040、信号配線1030、表側絶縁層1020を積層したフレキシブル基板1050よりなる。
なお、表側絶縁層1020と信号配線1030との間、および裏側絶縁層1040と信号配線1030との間の接着層1032の厚さは10μmである。
金属ベース1210にはステンレス(SUS)の物性値を設定した。
なお、表側絶縁層1020と裏側絶縁層1040の幅寸法は、信号配線1030の線幅よりも常に大きいものとしている。
図示のように、裏側絶縁層1040の下面と金属ベース1210との距離(空隙)をY1とする。
同図より、本比較例のフレキシブル配線ユニット1100は、金属ベース1210に当接した状態(図9(a))と、十分に離間した状態(図10(a))とで、特性インピーダンスZ0が29Ωも変動している。かかる変動幅は、初期状態(当接状態:Y1=0μm)におけるZ0(34Ω)の85%にあたる。
図11(a)は、比較例2のフレキシブル配線ユニット1100の横断面模式図である。フレキシブル配線ユニット1100は、金属ベースとは十分に乖離した単体の状態にある。
同図(b)に破線で示すように、Z0=50Ωとなる線幅Lは、約42μmであった。
図示のように、裏側絶縁層1040の下面と金属ベース1210との距離(空隙)をY2とする。
同図より、本比較例のフレキシブル配線ユニット1100は、金属ベース1210に当接した状態(図12(a))と、十分に離間した状態(図13(a))とで、特性インピーダンスZ0が10Ωだけ変動している。かかる変動幅は、初期状態(当接状態:Y2=0mm)におけるZ0(40Ω)の25%にあたる。
図14(a)は、実施例1のフレキシブル配線ユニット100が金属ベース210に当接した状態を示す横断面模式図である。
平板部材60としてはPETの物性値を設定した。また、平板部材60と非導電性接着剤層との合計厚さは145μmとした。すなわち、フレキシブル配線ユニット100は、平板部材60の裏面から信号配線30までの距離(Y)が、裏側絶縁層40(25μm)および接着層32(10μm)と合せて180μmである。また、シールド層10の下面から信号配線30までの距離(X)は、表側絶縁層20および接着層32の厚さを合せて35μmである。したがって、本実施例においては、Y=Z≒5Xである。
図示のように、平板部材60の下面と金属ベース210との距離(空隙)をY3とする。
同図より、本実施例のフレキシブル配線ユニット100は、金属ベース210に当接した状態(図14(a))と、十分に離間した状態(図15(a))とにおける特性インピーダンスZ0の変動幅は2Ωであった。かかる変動幅は、初期状態(当接状態:Y3=0mm)におけるZ0(50Ω)に対し、約4%である。
まず、シールド層1010をフレキシブル配線ユニット1100の表面側に設けたことにより、金属ベース1210に当接したフレキシブル配線ユニット1100の特性インピーダンスZ0が大幅に低下することがわかる(比較例1,2)。例えばZ0=50Ωに調整する場合、信号配線1030の線幅Lを42μmから17μmまで細線化する必要があり、加工性および耐久性に問題が生じる。
これに対し、実施例1によれば、所定の厚さの裏側絶縁層40と金属ベース210との間に平板部材60(基板スペーサ部材62)を介在させたことにより、Z0=50Ωの特性インピーダンスを得るための信号配線30の線幅Lが37μmとなった。これにより、実施例1によれば、信号配線1030の線幅Lに関する僅かな細線化によって、フレキシブル配線ユニット100の単体における特性インピーダンスZ0が維持できることがわかる。
図13(b)および図16より、空隙Y2を0mmから0.07mm=70μm程度まで変化させることでZ0が40Ωから45Ωまで急激に増大し、以降は緩やかに増加することがわかる。そして、空隙Y2=0.4mm=400μm程度でZ0=50Ωとなり、以降は空隙Y2=100mmにいたるまで、特性インピーダンスZ0はほとんど変化しないことがわかる。
図17(a)は、実施例2のフレキシブル配線ユニット100が金属ベース210に当接した状態を示す横断面模式図である。
ここで、平板部材60の裏面から信号配線30までの距離(Y)は、平板部材60の板厚(T)と、裏側絶縁層40(厚さ25μm)および接着層32(厚さ10μm)の厚さとを合わせたものに相当する。そして、本実施例では、裏側絶縁層40と接着層32との合計厚さは上記距離Xと等しい。したがって、Y=T+Xの関係が成り立つ。
また、T≧2X、すなわちY≧3Xとすることで、かかる低減効果が顕著となり、さらに、T≧4X、すなわちY≧5Xとすることで、特性インピーダンスZ0の変動を、誤差レベル以下にまで低減可能であることが理解される。
Claims (10)
- 外部回路との間で信号を授受する信号配線と、前記信号配線を挟み込む表側絶縁層および裏側絶縁層と、前記表側絶縁層の上面に積層されて前記信号配線の少なくとも一部を覆う導電性のシールド層と、を備え、長手方向に可撓性を有するフレキシブル基板と、
前記裏側絶縁層の下面に対向して設けられた非導電性の基板スペーサ部材と、
前記フレキシブル基板の長手方向の一端側を支持する支持部材と、
を有し、前記フレキシブル基板の長手方向の他端側が移動可能に構成されたフレキシブル配線ユニットであって、
前記フレキシブル基板が前記基板スペーサ部材の表面に当接した状態における前記基板スペーサ部材の裏面から前記信号配線までの距離(Y)が、前記シールド層の下面から前記信号配線までの距離(X)よりも大きいことを特徴とするフレキシブル配線ユニット。 - 前記シールド層が、前記信号配線に対するグランド層である請求項1に記載のフレキシブル配線ユニット。
- 前記フレキシブル基板が、前記信号配線と前記基板スペーサ部材との間に導電層を備えていないことを特徴とする請求項1または2に記載のフレキシブル配線ユニット。
- 前記距離(Y)が、前記距離(X)の三倍以上である請求項1から3のいずれかに記載のフレキシブル配線ユニット。
- 前記他端側が移動することにより、前記フレキシブル基板と前記基板スペーサ部材の表面とが当接または離反することを特徴とする請求項1から4のいずれかに記載のフレキシブル配線ユニット。
- 前記支持部材と前記基板スペーサ部材とが一体に形成されている請求項1から5のいずれかに記載のフレキシブル配線ユニット。
- 前記基板スペーサ部材の表面が前記フレキシブル基板の下面に接合されており、
前記他端側が移動することにより、前記フレキシブル基板および前記基板スペーサ部材が一体となって移動可能である請求項1から4のいずれかに記載のフレキシブル配線ユニット。 - 前記フレキシブル基板が、前記信号配線を一層のみ有する請求項1から7のいずれかに記載のフレキシブル配線ユニット。
- 前記支持部材が非導電性であって、
前記支持部材の裏面から前記信号配線までの距離(Z)が、前記シールド層の下面から前記信号配線までの前記距離(X)の三倍以上であることを特徴とする請求項1から8のいずれかに記載のフレキシブル配線ユニット。 - 金属ベースと、
外部回路との間で信号を授受する信号配線と、前記信号配線を挟み込む表側絶縁層および裏側絶縁層と、前記表側絶縁層の上面に積層されて前記信号配線の少なくとも一部を覆う導電性のシールド層と、を備え、長手方向に可撓性を有するフレキシブル基板と、
前記金属ベースにともに設けられた、前記裏側絶縁層の下面に対向する非導電性の基板スペーサ部材、および前記フレキシブル基板の長手方向の一端側を支持する支持部材と、
を有し、前記フレキシブル基板の長手方向の他端側が移動可能に構成されるとともに、
前記フレキシブル基板が前記基板スペーサ部材の表面に当接した状態における前記金属ベースから前記信号配線までの距離が、前記シールド層の下面から前記信号配線までの距離よりも大きいことを特徴とする電子機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801137600A CN102007824A (zh) | 2008-04-21 | 2009-04-08 | 挠性布线单元及电子设备 |
US12/935,584 US20110024162A1 (en) | 2008-04-21 | 2009-04-08 | Flexible wiring unit and electronic apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008110767A JP2009266846A (ja) | 2008-04-21 | 2008-04-21 | フレキシブル配線ユニットおよび電子機器 |
JP2008-110768 | 2008-04-21 | ||
JP2008110768A JP2009266847A (ja) | 2008-04-21 | 2008-04-21 | フレキシブル配線ユニットおよび電子機器 |
JP2008-110767 | 2008-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009130856A1 true WO2009130856A1 (ja) | 2009-10-29 |
Family
ID=41216598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001624 WO2009130856A1 (ja) | 2008-04-21 | 2009-04-08 | フレキシブル配線ユニットおよび電子機器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110024162A1 (ja) |
KR (1) | KR20110053922A (ja) |
CN (1) | CN102007824A (ja) |
TW (1) | TW201004503A (ja) |
WO (1) | WO2009130856A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009009631A (ja) * | 2007-06-27 | 2009-01-15 | Sumitomo Bakelite Co Ltd | フレキシブル配線ユニットおよび電子機器 |
JP5586402B2 (ja) * | 2010-09-29 | 2014-09-10 | 富士フイルム株式会社 | 内視鏡装置及びその撮像素子放熱方法 |
JP5813464B2 (ja) * | 2011-11-02 | 2015-11-17 | 日本発條株式会社 | ヘッド・サスペンションの配線構造及び製造方法 |
CA2880652C (en) * | 2012-08-09 | 2021-10-26 | Dalhousie University | Ultrasound endoscope and methods of manufacture thereof |
KR102222680B1 (ko) | 2013-02-01 | 2021-03-03 | 엘지디스플레이 주식회사 | 플렉서블 디스플레이 기판, 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법 |
FR3011326B1 (fr) * | 2013-10-02 | 2016-04-01 | Soc Fr Detecteurs Infrarouges Sofradir | Circuit imprime flexible a faible emissivite |
US20190045620A1 (en) * | 2014-07-09 | 2019-02-07 | Schreiner Group Gmbh & Co. Kg | Sensor device with a flexible electrical conductor structure |
TWI656653B (zh) * | 2014-07-10 | 2019-04-11 | 日商住友電氣工業股份有限公司 | Solar power generation module and solar power generation device |
GB2528290A (en) * | 2014-07-16 | 2016-01-20 | John Leslie Gordon Hardy | Battery management |
JP6578646B2 (ja) * | 2014-10-24 | 2019-09-25 | セイコーエプソン株式会社 | ロボット |
CN107409172B (zh) * | 2015-04-24 | 2020-05-19 | 日立汽车系统株式会社 | 摄像装置 |
KR102436813B1 (ko) * | 2017-12-08 | 2022-08-29 | 삼성디스플레이 주식회사 | 표시 패널 및 그 제조방법 |
US20200367358A1 (en) | 2019-05-13 | 2020-11-19 | Honeywell Federal Manufacturing & Technologies, Llc | Conductive trace interconnection tape |
JP7341967B2 (ja) * | 2020-09-18 | 2023-09-11 | 株式会社東芝 | ディスク装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111049A (ja) * | 1993-10-08 | 1995-04-25 | Sony Corp | フレキシブル・プリント配線接続装置 |
JPH0969284A (ja) * | 1995-08-31 | 1997-03-11 | Mitsumi Electric Co Ltd | 磁気ディスクドライバ |
JP2000269632A (ja) * | 1999-03-17 | 2000-09-29 | Tatsuta Electric Wire & Cable Co Ltd | シールドフレキシブルプリント配線板の製造方法、シールドフレキシブルプリント配線板用補強シールドフィルム及びシールドフレキシブルプリント配線板 |
JP2002100846A (ja) * | 2000-09-25 | 2002-04-05 | Sony Corp | プリント配線基板および光ディスク装置 |
JP2003234550A (ja) * | 2002-02-08 | 2003-08-22 | Mitsumi Electric Co Ltd | フレキシブルプリント回路 |
JP2005109101A (ja) * | 2003-09-30 | 2005-04-21 | Nippon Mektron Ltd | 電磁シールド型可撓性回路基板 |
JP2006319216A (ja) * | 2005-05-13 | 2006-11-24 | Tatsuta System Electronics Kk | シールドフィルム、シールドプリント配線板、シールドフレキシブルプリント配線板、シールドフィルムの製造方法及びシールドプリント配線板の製造方法 |
-
2009
- 2009-04-08 WO PCT/JP2009/001624 patent/WO2009130856A1/ja active Application Filing
- 2009-04-08 CN CN2009801137600A patent/CN102007824A/zh active Pending
- 2009-04-08 KR KR1020107024640A patent/KR20110053922A/ko not_active Application Discontinuation
- 2009-04-08 US US12/935,584 patent/US20110024162A1/en not_active Abandoned
- 2009-04-20 TW TW098112974A patent/TW201004503A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111049A (ja) * | 1993-10-08 | 1995-04-25 | Sony Corp | フレキシブル・プリント配線接続装置 |
JPH0969284A (ja) * | 1995-08-31 | 1997-03-11 | Mitsumi Electric Co Ltd | 磁気ディスクドライバ |
JP2000269632A (ja) * | 1999-03-17 | 2000-09-29 | Tatsuta Electric Wire & Cable Co Ltd | シールドフレキシブルプリント配線板の製造方法、シールドフレキシブルプリント配線板用補強シールドフィルム及びシールドフレキシブルプリント配線板 |
JP2002100846A (ja) * | 2000-09-25 | 2002-04-05 | Sony Corp | プリント配線基板および光ディスク装置 |
JP2003234550A (ja) * | 2002-02-08 | 2003-08-22 | Mitsumi Electric Co Ltd | フレキシブルプリント回路 |
JP2005109101A (ja) * | 2003-09-30 | 2005-04-21 | Nippon Mektron Ltd | 電磁シールド型可撓性回路基板 |
JP2006319216A (ja) * | 2005-05-13 | 2006-11-24 | Tatsuta System Electronics Kk | シールドフィルム、シールドプリント配線板、シールドフレキシブルプリント配線板、シールドフィルムの製造方法及びシールドプリント配線板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102007824A (zh) | 2011-04-06 |
TW201004503A (en) | 2010-01-16 |
KR20110053922A (ko) | 2011-05-24 |
US20110024162A1 (en) | 2011-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009130856A1 (ja) | フレキシブル配線ユニットおよび電子機器 | |
US8428402B2 (en) | Optical transmission module, electronic device, and method for manufacturing optical transmission module | |
WO2021227727A1 (zh) | 显示模组及显示装置 | |
US9131039B2 (en) | Piezoelectric actuator interface and method | |
US9083344B2 (en) | Touch sensor with integrated signal bus extensions | |
JP4552565B2 (ja) | フレキシブル配線基板及び折り畳み式電子機器 | |
US8476532B2 (en) | Multilayer flexible printed circuit board and electronic device | |
JP2009266846A (ja) | フレキシブル配線ユニットおよび電子機器 | |
CN114822234B (zh) | 一种柔性显示模组及其制备方法 | |
US8705908B2 (en) | Optical transmission module, method for manufacturing optical transmission module, and electronic device | |
US9046972B2 (en) | Structure for a tactile display | |
JP2009176901A (ja) | フレキシブル基板、および、電子機器 | |
TW201115596A (en) | Double-side-conducting flexible-circuit flat cable with cluster sections | |
CN111883923A (zh) | 一种柔性射频传输天线及电子设备 | |
KR20150059375A (ko) | 터치센서 모듈 및 그 제조 방법 | |
US11586311B2 (en) | Display panel and displaying device | |
JP2023543040A (ja) | アンテナパッケージ及びそれを含む画像表示装置 | |
JP2009266847A (ja) | フレキシブル配線ユニットおよび電子機器 | |
EP4239458A1 (en) | Digitizer panel and electronic device comprising digitizer panel | |
US10272472B2 (en) | Ultrasonic sensor | |
US9423834B2 (en) | Electronic device with electrical connection device | |
JP2023539239A (ja) | 回路基板、アンテナパッケージ及びディスプレイ装置 | |
CN220208617U (zh) | 软性排线 | |
US20240260242A1 (en) | Anti-magnetic interference component and electronic device | |
US20220305754A1 (en) | Adjusting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980113760.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09733935 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12935584 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107024640 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09733935 Country of ref document: EP Kind code of ref document: A1 |