WO2009128414A1 - 透明複合材料及びその製造方法 - Google Patents

透明複合材料及びその製造方法 Download PDF

Info

Publication number
WO2009128414A1
WO2009128414A1 PCT/JP2009/057427 JP2009057427W WO2009128414A1 WO 2009128414 A1 WO2009128414 A1 WO 2009128414A1 JP 2009057427 W JP2009057427 W JP 2009057427W WO 2009128414 A1 WO2009128414 A1 WO 2009128414A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
transparent composite
resin
ammonium salt
synthetic smectite
Prior art date
Application number
PCT/JP2009/057427
Other languages
English (en)
French (fr)
Inventor
靖 門脇
島村 顕治
良二 樋田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN2009801113127A priority Critical patent/CN101981071A/zh
Priority to JP2010508197A priority patent/JPWO2009128414A1/ja
Priority to US12/937,844 priority patent/US8163842B2/en
Priority to EP09733354A priority patent/EP2270059A4/en
Publication of WO2009128414A1 publication Critical patent/WO2009128414A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0485Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations
    • C08F299/0492Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters from polyesters with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/44Products obtained from layered base-exchange silicates by ion-exchange with organic compounds such as ammonium, phosphonium or sulfonium compounds or by intercalation of organic compounds, e.g. organoclay material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a transparent composite material and a transparent composite material. More specifically, the present invention relates to a transparent composite material having a low thermal expansion coefficient and a transparent composite material obtained by the method, and its use.
  • glass has been widely used as a display element substrate, a color filter substrate, a solar cell substrate, etc. for liquid crystal display devices and organic EL display devices.
  • plastic materials have been studied as an alternative to glass substrates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.
  • a substrate made of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyolefin, and polyethersulfone has been proposed (for example, Japanese Patent Application Laid-Open No. 2007-268711; Patent Document 1).
  • a plastic substrate for a display is formed by forming a metal oxide such as indium or tin on the plastic by a method such as argon sputtering or ion plating in vacuum when forming a transparent electrode on the substrate. is doing.
  • a metal oxide film is uniformly formed on the plastic surface from a metal oxide deposition source, a high degree of vacuum is required.
  • the present invention provides a method for producing a transparent composite material capable of normally forming a thin film with little outgassing in a vacuum heating atmosphere during the deposition of a conductive thin film, and a transparent composite material obtained by the method. .
  • the inventors of the present invention produced a transparent composite material in which volatile components contained in the material were reduced in advance before vacuum heating.
  • the present inventors have found that the problems occurring in the above can be solved, and have completed the present invention.
  • this invention relates to the manufacturing method of the following transparent composite materials, the transparent composite material obtained by the method, the display apparatus which uses the transparent composite material as a base material, and the board
  • a method for producing a transparent composite material comprising a step and a fourth step of removing an organic volatile component remaining in the cured product.
  • the quaternary organic ammonium salt is lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, trioctyl methyl ammonium salt, distearyl dimethyl ammonium salt, di-cured tallow dimethyl ammonium salt, distearyl dibenzyl ammonium salt, and N- 2.
  • the method for producing a transparent composite material according to 1 above selected from one or more of polyoxyethylene-N-lauryl-N, N-dimethylammonium salt.
  • the method for producing a transparent composite material as described in 1 above which comprises a step of treating the terminal hydroxyl group of the synthetic smectite with a surface modifier before the second step.
  • a transparent composite material having a small amount of volatile components can be obtained by removing volatile components contained in the material in advance, so that a low-resistance conductive thin film can be formed on the surface of the transparent composite material. It is extremely useful as a transparent conductive substrate for materials. Furthermore, according to the present invention, since a transparent sheet having a small thermal expansion coefficient can be provided by taking a specific resin composition, it can be used for flexible displays, solar cells, and the like.
  • Transparent composite material In the transparent composite material of the present invention, synthetic smectite having a number average particle diameter of 10 to 300 nm and an aspect ratio of 10 to 300 is dispersed in a cured resin. Generally, the synthetic smectite can be obtained by mixing with a resin composition and curing.
  • glass cloth, nano silica, and the like are known as fillers that can improve mechanical properties and thermal properties while maintaining the transparency of the resin.
  • glass cloth since the thermal expansion coefficients of resin and glass cloth differ greatly, whitening occurs due to microcracks during heating and cooling, and the transparency of the material is lost.
  • nanosilica when nanosilica is filled, transparency can be maintained with a small amount of addition, but in order to achieve the low thermal expansion coefficient required for applications of display substrates and solar cell substrates, it is necessary to highly fill nanosilica. In this case, transparency cannot be maintained.
  • an allyl ester resin composition and / or a vinyl ester resin composition in which a synthetic smectite having specific properties is dispersed becomes a transparent composite material having an extremely small thermal expansion coefficient.
  • the transparency of the transparent composite material is evaluated by the total light transmittance.
  • the transparent composite material of the present invention has a total light transmittance of 85% or more and a haze value of 5% or less at a thickness of 100 ⁇ m.
  • the total light transmittance is more preferably 90% or more, and the haze value is more preferably 3% or less.
  • the total light transmittance is a value measured according to JIS K-7361-1
  • the haze value is a value measured according to JIS K-7136.
  • the shape of the transparent composite material in the present invention is not limited, but a molded product such as a film, a sheet, or a flat plate is particularly suitable.
  • a film having a thickness of 10 ⁇ m or more and 200 ⁇ m or less is represented as a film
  • a sheet having a thickness of greater than 200 ⁇ m and 5000 ⁇ m or less is represented as a sheet
  • a sheet having a thickness of greater than 5000 ⁇ m is represented as a plate. It is expressed as a sheet.
  • a synthetic smectite having a number average particle diameter of 10 to 300 nm and an aspect ratio of 10 to 300 is organically treated with a quaternary organic ammonium salt and / or a quaternary organic phosphonium salt.
  • a first step of preparing a resin composition containing 10 to 40% by mass of synthetic smectite by mixing the organically treated synthetic smectite and a curable resin, and curing the resin composition And having a third step of obtaining a cured product and a fourth step of removing organic volatile components remaining in the cured product.
  • a specific synthetic smectite is organically treated with a quaternary organic ammonium salt or a quaternary organic phosphonium salt.
  • a commercially available synthetic smectite that has already been organically treated can also be used. That is, the present invention also includes a method for producing a transparent composite material using a commercially available synthetic smectite that has been organically treated.
  • an organically treated synthetic smectite is mixed with a curable resin to prepare a resin composition containing 10 to 40% by mass of the synthetic smectite.
  • a reactive monomer, a curing agent, an additive, and other radical reactive resin components may be contained.
  • (1) a method in which a resin component is dissolved in a solvent and a dispersion in which the synthetic smectite is dispersed in the solvent, and (2) the synthetic smectite is used as a solvent.
  • (3) A method in which a resin component and a synthetic smectite are added and dispersed after dissolving the resin component in a solvent, or (4) a method in which the resin component and the synthetic smectite are dispersed. It can be produced by a method of dissolving and dispersing the mixture obtained by kneading in a solvent.
  • a method of mixing a solution in which the resin component is dissolved in a solvent and a dispersion in which the synthetic smectite is dispersed in the solvent is particularly preferable.
  • the dispersion method is not particularly limited, but the dispersion is performed by using a known method such as a mix rotor, a magnetic stirrer, a homogenizer, a Henschel mixer, a bead mill, an ultra-high pressure atomizer, ultrasonic irradiation, or a combination of these with heating as necessary. It is possible to make it.
  • the resin composition is applied onto the substrate and cured by any one of electron beam (EB) irradiation, ultraviolet (UV) irradiation, and heating.
  • EB electron beam
  • UV ultraviolet
  • the mixed solution of synthetic smectite, resin composition, and solvent is degassed and concentrated by reducing the pressure, and the viscosity of the mixed solution is adjusted to an optimum viscosity for coating.
  • the viscosity of the liquid mixture is not particularly limited, but is preferably a viscosity suitable for the molding method.
  • the viscosity at 25 ° C. is preferably in the range of 0.01 to 1,000 Pa ⁇ s.
  • the direct gravure method, reverse gravure method, and micro gravure method are used on a smooth substrate such as glass, metal, or plastic film.
  • Ordinary industrial methods such as roll coating methods such as the two-roll beat coating method, bottom feed three-reverse coating method, doctor knife method, die coating method, dip coating method, bar coating method and coating methods combining these methods. This can be done by the method used.
  • the roll coating method and the doctor knife method which are methods for applying a force (share) acting in a direction parallel to the substrate so as to orient the synthetic smectite in the plane direction, are preferable.
  • Oriented in the plane direction means that the majority of each layer of the synthetic smectite is oriented so as to be parallel to the substrate surface.
  • the linear expansion coefficient in the plane direction of the transparent sheet can be effectively reduced.
  • the total light transmittance is increased even when the synthetic smectite content is high.
  • the synthetic smectite can be further oriented in the plane direction.
  • the synthetic smectite can be further oriented in the plane direction.
  • a reactive monomer it is preferable to use a reactive monomer with relatively low volatility, use a solvent with high volatility, and dry it under appropriate conditions (temperature, pressure, time, etc.).
  • the method of orienting synthetic smectite in the plane direction by volatilizing the solvent can be used in combination with the roll coating method and / or doctor knife method, but it should be carried out by the method of applying without sharing. You can also.
  • the temperature for volatilizing the solvent is preferably 0 to 200 ° C. A temperature lower than 0 ° C. is not preferable because the volatilization rate is extremely slow. When the temperature is higher than 200 ° C., foaming due to rapid volatilization or boiling of the solvent or gelation of the resin may occur, which may reduce the surface smoothness and increase the haze value. More preferably, it is 10 to 100 ° C.
  • the pressure for volatilizing the solvent is preferably 10 Pa to 1 MPa. If it is less than 10 Pa, bumping may occur, and surface smoothness may decrease and haze value may increase. More preferably, it is 10 to 200 Pa.
  • the time for evaporating the solvent is preferably 1 to 120 minutes.
  • the solvent When the time is less than 1 minute, the solvent cannot be sufficiently volatilized, and bubbles are generated during curing. When it is longer than 120 minutes, productivity is deteriorated, which is not preferable.
  • the solvent When the solvent is volatilized, the solvent may be dried while a gas such as air, nitrogen, argon or carbon dioxide is passed through. These gases may contain a volatile component of the solvent.
  • the gas flow rate when the solvent is volatilized is preferably 0.01 to 200 m / s. If it is slower than 0.01 m / s, the volatile component of the solvent will remain, which is not preferable.
  • the speed is higher than 200 m / s, the coating solution is not uniform, which is not preferable. More preferably, it is 0.1 to 50 m / s.
  • a transparent sheet can be obtained by releasing from the substrate after curing.
  • EB electron beam
  • UV ultraviolet
  • the resin composition before curing in which the synthetic smectite is dispersed and containing a solvent, is applied to a biaxially stretched polyethylene terephthalate film on a flat surface having a smooth surface, for example, by the above method, and then the solvent is volatilized. May be sandwiched between smooth biaxially stretched polyethylene terephthalate films and cured by EB irradiation, UV irradiation, or heating.
  • EB irradiation is more preferable from the viewpoint of curing speed and coloring.
  • the acceleration voltage of the electron beam during EB irradiation is 30 to 500 kV, preferably 50 to 300 kV.
  • the electron beam dose is 1 to 1000 kGy, preferably 10 to 500 kGy.
  • the electron beam accelerating voltage is less than 30 kV, there is a risk of insufficient transmission of the electron beam when the composition is thick, and when it is greater than 500 kV, the economy is poor.
  • a base material since there exists a possibility that a base material may be damaged when electron beam irradiation amount exceeds 1000 kGy, it is unpreferable.
  • the curing temperature is 0 to 150 ° C., preferably 10 to 130 ° C.
  • the UV irradiation time is preferably 0.01 to 10 hours, preferably 0.05 to 1 hour, more preferably 0.1 to 0.5 hours.
  • the UV integrated light amount is 10 to 5000 mJ / cm 2 . If it is less than 10 mJ / cm 2 , curing becomes insufficient, which is not preferable. When it is larger than 5000 mJ / cm 2 , the productivity is deteriorated.
  • the curing temperature is 30 to 160 ° C., preferably 40 to 130 ° C.
  • a method of slowly curing while raising the temperature is preferable, and it is 0.5 to 100 hours, preferably 3 to 50 hours.
  • the curing can proceed completely by after-curing.
  • the transparent sheet may or may not be peeled off from a smooth substrate such as glass, metal or plastic film.
  • the after-curing temperature is 50 to 300 ° C., preferably 80 to 250 ° C.
  • the after-curing time is 0.1 to 10 hours, preferably 0.5 to 5 hours.
  • the after-cure pressure can be carried out in a reduced pressure to pressurized atmosphere of 1.0 ⁇ 10 ⁇ 7 Pa to 1 MPa, preferably 1.0 ⁇ 10 ⁇ 6 Pa to 0.5 MPa.
  • the after-cure atmosphere can be performed in an atmosphere of air, nitrogen, argon, carbon dioxide, or the like, but a nitrogen atmosphere is preferable from the viewpoint of color reduction.
  • a transparent sheet comprising two or more layers
  • the interface between the two sheets may be subjected to a treatment such as a corona treatment or an anchor coat.
  • low molecular weight components such as unreacted monomer, quaternary organic ammonium salt and / or quaternary organic phosphonium, and water contained in the cured product (transparent sheet) by washing with a solvent and / or heating. Remove.
  • the cured product contains low molecular weight components such as unreacted monomer, quaternary organic ammonium salt and / or quaternary organic phosphonium salt, and water.
  • low molecular weight components such as unreacted monomer, quaternary organic ammonium salt and / or quaternary organic phosphonium salt, and water.
  • a method for removing volatile components in the cured product there are a method of washing with a solvent, and a method of vaporizing and removing volatile components by heating. These methods may be performed alone or in combination. Either one may be performed first.
  • the method of removing a volatile component with a solvent refers to a method in which a solvent is infiltrated from the surface of the cured product, and a volatile component that diffuses and elutes from the inside / surface of the solid with the solvent is released from the surface of the cured product and removed.
  • the method of removing the volatile component by heating refers to a method of removing the volatile component by vaporizing on the surface after the cured product is heated and the volatile component in the cured product diffuses and reaches the surface.
  • Solvents for washing with solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, aromatic hydrocarbons such as benzene, toluene, xylene, hydrocarbons such as hexane, cyclohexane, methanol, ethanol, isopropanol, etc. Alcohols, halogenated hydrocarbons such as dichloromethane and trichloromethane, and esters such as ethyl acetate and butyl acetate, but are not limited thereto. In view of cost and extractability, acetone and toluene are particularly preferable. These may be used alone or in combination.
  • the cleaning method in the case of cleaning with a solvent includes, for example, a method of impregnating a cured product in a solvent, a method of spraying a solvent on the surface of the cured product, agglomerating solvent vapor on the surface of the cured product, and flowing a volatile component together with the solvent.
  • the method of leaving etc. are mentioned.
  • the form of the cured product may be a sheet or film.
  • the cured product is too thick, it will take time for the solvent to diffuse into the cured product and be completely volatile components. It takes a long time to remove. In order to extract in a short time, it is desirable that the film is as thin as possible.
  • Solvent cleaning temperature may be above the melting point of the solvent. Cleaning at a high temperature increases the diffusion rate of the solvent in the cured product, and the cleaning rate can be increased accordingly. However, when cleaning at a temperature higher than the boiling point of the solvent, the solvent eventually becomes liquid on the surface of the cured product. Therefore, the cleaning process is performed in a pressurized container at atmospheric pressure or higher, and the equipment cost is increased.
  • the solvent When the volatile component is washed with a solvent, the solvent may remain in the cured product, and it is necessary to add a step of drying the solvent after washing.
  • a drying method a normal method can be used, and a method of blowing hot air on the surface of the cured product, a method of evacuating, or the like can be considered. In either case, the residual solvent can be removed by setting the atmosphere to a temperature and pressure that are easily vaporized by the solvent.
  • the cured product When the cured product is heated to vaporize and remove volatile components, the cured product can be heated in air, under an inert gas, in a vacuum atmosphere, and the volatile components can be vaporized and removed from the cured product.
  • a normal circulation dryer When a volatile component is vaporized and removed in the air, a normal circulation dryer can be used. If there is a risk of coloring the cured product due to oxygen in the air, it can be prevented by heat treatment in an inert gas atmosphere.
  • an inert gas atmosphere As the kind of the inert gas, nitrogen, argon, helium and the like can be considered, and any gas may be used as long as it does not adversely affect the cured product. However, it is desirable to use nitrogen gas from the viewpoint of cost.
  • the heating temperature can be set low by making the heating atmosphere vacuum.
  • the synthetic smectite used in the present invention is not particularly limited as long as it is a synthetic smectite having a number average particle diameter of 10 to 300 nm and an aspect ratio of 10 to 300.
  • the number average particle size needs to be sufficiently smaller than the wavelength of visible light.
  • visible light means light having a wavelength in the range of 400 to 800 nm. Therefore, the number average particle diameter of the synthetic smectite is preferably in the range of 10 to 300 nm, and more preferably in the range of 30 to 200 nm.
  • the number average particle size is less than 10 nm, the linear expansion coefficient in the surface direction of the transparent sheet tends not to be sufficiently small, and when it exceeds 300 nm, those having a particle size overlapping with the visible light wavelength are included. It is not preferable.
  • the aspect ratio is in the range of 10 to 300, and more preferably in the range of 30 to 100.
  • the aspect ratio is preferably 10 or more.
  • the linear expansion coefficient may not be within a predetermined range (preferably 30 ppm / ° C. or less).
  • synthetic smectite having an aspect ratio exceeding 300 is used, the total light transmittance of the transparent sheet may be lowered.
  • the number average particle diameter of the synthetic smectite here refers to the number average particle diameter obtained by a dynamic light scattering method while being dispersed in a solvent.
  • the number average particle diameter by the dynamic light scattering method can be determined by referring to, for example, pages 169 to 179 of “Particle Diameter Measurement Technology” (Edition of Powder Engineering, 1994).
  • Specific examples of the measuring apparatus include a dynamic light scattering type particle size distribution measuring apparatus (for example, LB-550 manufactured by Horiba, Ltd.).
  • the number average particle diameter of the synthetic smectite obtained by the dynamic light scattering method can be considered to be substantially the same as the number average particle diameter of the synthetic smectite after being dispersed in the resin in the present invention.
  • L is the number average particle diameter determined by the dynamic light scattering method in a solvent
  • a is the unit thickness of the synthetic smectite.
  • the unit thickness a is a value that can be calculated by measuring the diffraction peak of synthetic smectite by powder X-ray diffraction.
  • Such a synthetic smectite may be synthesized using a known method (for example, Haruo Shiramizu, “Clay Mineralogy-Fundamentals of Clay Science” Asakura Shoten, 1988, pp. 98-100) or commercially available. Synthetic smectite may be used. As an example of synthetic smectite, synthetic hectorite, synthetic saponite, and synthetic stevensite can be suitably used. Examples of commercially available products include synthetic smectite SWN (synthetic hectorite) manufactured by Corp Chemical Co., and synthetic inorganic polymer smectons manufactured by Kunimine Kogyo Co., Ltd.
  • SWN synthetic smectite
  • Examples include SA (synthetic saponite), synthetic silicate LAPONITE (synthetic hectorite) manufactured by Rockwood, and synthetic magnesium silicate ionite (synthetic stevensite) manufactured by Mizusawa Industries.
  • SA synthetic saponite
  • synthetic silicate LAPONITE synthetic hectorite
  • synthetic magnesium silicate ionite synthetic stevensite manufactured by Mizusawa Industries.
  • synthetic smectite SWN manufactured by Co-op Chemical Co. is more preferable in terms of transparency, cation exchange capacity, and size.
  • synthetic smectite which has been made hydrophobic by quaternary organic ammonium salt and / or quaternary organic phosphonium salt to improve dispersion in the resin.
  • Such chemical treatment involves exchanging exchangeable metal cations such as sodium and calcium existing between the flaky crystal layers of synthetic smectite with various cationic substances such as cationic surfactants. Insertion (intercalation) between smectite crystal layers can be mentioned.
  • the cation exchange capacity of the synthetic smectite in this case is not particularly limited, but is preferably 50 to 1200 meq / 100 g.
  • the cation exchange capacity is less than 50 meq / 100 g, the amount of the cationic substance intercalated between the crystal layers of the synthetic smectite is reduced by the cation exchange. May not be).
  • the cation exchange capacity is larger than 1200 meq / 100 g, the bonding force between the crystal layers of the synthetic smectite becomes too strong, and the crystal flakes may be difficult to peel off.
  • the organic treatment method is also referred to as a cation exchange method using a cationic surfactant, which is particularly effective when the resin component of the transparent composite material has a low polarity, and enhances the affinity between the synthetic smectite and the low polarity resin, Synthetic smectite can be finely dispersed more uniformly in the low polarity resin.
  • a cationic surfactant used here, Since it can fully hydrophobize between the crystal
  • Examples of the quaternary organic ammonium salt include trimethyl alkyl ammonium salt, triethyl alkyl ammonium salt, tributyl alkyl ammonium salt, dimethyl dialkyl ammonium salt, dibutyl dialkyl ammonium salt, methyl benzyl dialkyl ammonium salt, dibenzyl dialkyl ammonium salt, and trialkyl.
  • Fragrance such as methylammonium salt, trialkylethylammonium salt, trialkylbutylammonium salt; benzylmethyl ⁇ 2- [2- (p-1,1,3,3-tetramethylbutylphenoxy) ethoxy] ethyl ⁇ ammonium chloride Quaternary ammonium salts having a ring; quaternary ammonium salts derived from aromatic amines such as trimethylphenylammonium; alkylpyridinium salts, imidazolium salts, etc.
  • Quaternary ammonium salt having a heterocyclic ring dialkyl quaternary ammonium salt having two polyethylene glycol chains, dialkyl quaternary ammonium salt having two polypropylene glycol chains, trialkyl quaternary ammonium salt having one polyethylene glycol chain, polypropylene And trialkyl quaternary ammonium salts having one glycol chain.
  • lauryl trimethyl ammonium salt stearyl trimethyl ammonium salt, trioctyl methyl ammonium salt, distearyl dimethyl ammonium salt, di-cured tallow dimethyl ammonium salt, distearyl dibenzyl ammonium salt, N-polyoxyethylene-N-lauryl-N, N-dimethylammonium salt and the like are preferred.
  • These quaternary organic ammonium salts may be used alone or in combination of two or more.
  • Examples of the quaternary organic phosphonium salt include dodecyltriphenylphosphonium salt, methyltriphenylphosphonium salt, lauryltrimethylphosphonium salt, stearyltrimethylphosphonium salt, trioctylmethylphosphonium salt, distearyldimethylphosphonium salt, distearyldibenzylphosphonium. Examples include salts. These quaternary organic phosphonium salts may be used alone or in combination of two or more.
  • an aliphatic quaternary ammonium salt and / or quaternary phosphonium salt is used.
  • a trialkylmethylammonium salt and a trialkyl quaternary ammonium salt having one polypropylene glycol chain are more preferable.
  • synthetic smectite can be highly dispersed in the resin by using a surface modifier.
  • a surface modifier it is preferable to use an aliphatic surface modifier for a resin containing many aliphatic carbon chains.
  • the synthetic smectite used in the present invention can be organically treated not only between the layers but also the surface. Since the surface of the synthetic smectite has a functional group such as a hydroxyl group, it can be organically treated with a compound having a functional group reactive to the terminal hydroxyl group.
  • the compound having a functional group capable of chemically bonding to the hydroxyl group is not particularly limited, and for example, a silane compound (silane coupling agent), a titanate compound (titanate coupling agent), a glycidyl compound, an isocyanate compound. Etc. These compounds may be used alone or in combination of two or more.
  • silane compounds can be preferably used.
  • the silane compound include vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyldimethylmethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -aminopropyldimethylethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane
  • the content of the synthetic smectite in the transparent composite material is preferably in the range of 10 to 40% by mass, more preferably in the range of 15 to 30% by mass.
  • the content of the synthetic smectite is less than 10% by mass, the average linear expansion coefficient from 50 to 250 ° C. of the transparent composite material is increased, and is higher than 30 ppm / ° C.
  • the content of the synthetic smectite exceeds 40% by mass, it becomes difficult to uniformly disperse the synthetic smectite in the resin, and the mechanical strength of the transparent composite material is lowered, so that it becomes brittle and easily cracked.
  • thermosetting resin composition In the resin composition of the present invention, if the cured product containing synthetic smectite (after the three-dimensional crosslinking reaction) is transparent, the conventional thermosetting resin composition, photocurable resin composition and the like can be cured. A functional resin composition can be used.
  • examples thereof include a resin, a urea resin, a phenol resin, a bismaleimide triazine resin, an alkyd resin, a furan resin, a polyurethane resin, and an aniline resin.
  • a composition containing a radical-reactive three-dimensional cross-linking resin in which a cross-linking reaction proceeds by radical polymerization such as allyl ester resin and vinyl ester resin is preferable.
  • the allyl ester resin contains a compound having an allyl group or a methallyl group (hereinafter, both may be referred to as a (meth) allyl group) and an ester structure. .
  • the compound having a (meth) allyl group and an ester structure is (1) an esterification reaction between a compound containing a (meth) allyl group and a hydroxyl group (herein collectively referred to as allyl alcohol) and a compound containing a carboxyl group, (2) It can be obtained by an esterification reaction between a compound containing a (meth) allyl group and a carboxyl group and a compound containing a hydroxyl group, or (3) an ester exchange reaction between an ester compound consisting of allyl alcohol and dicarboxylic acid and a polyhydric alcohol.
  • the ester compound which consists of allyl alcohol and dicarboxylic acid in (3), following General formula (1) (In the formula, R 1 and R 2 each independently represent an allyl group or a methallyl group, and A 1 represents a dicarboxylic acid having at least one structure of an alicyclic structure, an aromatic ring structure and an aliphatic chain structure. Represents an organic residue derived from it.) And at least one compound selected from the compounds represented by formula (1).
  • This compound may be contained in the allyl ester resin composition of the present invention as a reactive diluent (reactive monomer) as well as a raw material for the allyl ester oligomer described later.
  • a 1 in general formula (1) is preferably the same as A 2 and A 3 in general formulas (2) and (3) described later.
  • an allyl ester compound having an ester structure formed from a polyhydric alcohol and a dicarboxylic acid having an allyl group and / or a methallyl group as a terminal group hereinafter referred to as “allyl ester oligomer”.
  • the following general formula (2) (Wherein R 3 represents an allyl group or a methallyl group, and A 2 represents an organic residue derived from a dicarboxylic acid having at least one of an alicyclic structure, an aromatic ring structure, and an aliphatic chain structure. ) And a group represented by the following general formula (3) (Wherein A 3 represents an organic residue derived from a dicarboxylic acid having at least one of an alicyclic structure, an aromatic ring structure and an aliphatic chain structure, and X is one or more derived from a polyhydric alcohol. Wherein X can have a branched structure having an ester bond and further having the above general formula (2) as a terminal group and the above general formula (3) as a structural unit.
  • the compound which has a structure shown by as a structural unit is preferable.
  • the number of terminal groups represented by the general formula (2) is at least 2 or more, but when X has a branched structure in the general formula (3), the number is 3 or more.
  • R 3 at each end groups there are a plurality each of these R 3 may not necessarily be the same type, some end there in the structure of an allyl group, the other terminal methallyl group It doesn't matter.
  • not all R 3 must be an allyl group or a methallyl group, and a part thereof may be a non-polymerizable group such as a methyl group or an ethyl group as long as the curability is not impaired.
  • a 2 in the general formula (2) is an organic residue derived from a dicarboxylic acid having at least one of an alicyclic structure, an aromatic ring structure, and an aliphatic chain structure. Portion derived from dicarboxylic acid is shown by a carbonyl structure adjacent to A 2. Accordingly, the A 2 portion represents a benzene skeleton or a cyclohexane skeleton. From the viewpoint of transparency, a dicarboxylic acid having an alicyclic structure or an aliphatic chain structure is more preferable than a carboxylic acid having an aromatic structure.
  • the dicarboxylic acid for deriving the A 2 structure is not particularly limited, but terephthalic acid, isophthalic acid, phthalic acid, 1,4-cyclohexanedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2 , 7-Naphthalenedicarboxylic acid, diphenyl-m, m′-dicarboxylic acid, diphenyl-p, p′-dicarboxylic acid, benzophenone-4,4′-dicarboxylic acid, p-phenylenediacetic acid, p-carboxyphenylacetic acid, methyl
  • Examples include terephthalic acid, tetrachlorophthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, 2-methylsuccinic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and endic anhydride.
  • dicarboxylic acids having an aliphatic chain structure or an alicyclic structure are preferable.
  • dicarboxylic acids having an alicyclic structure are more preferable, and examples thereof include 1,4-cyclohexanedicarboxylic acid.
  • the dicarboxylic acid for deriving the A 2 structure if an alicyclic structure such as 1,4-cyclohexanedicarboxylic acid is used, a flexible molded product can be obtained and it can be easily molded into a transparent film or the like. Moreover, the dispersibility of the resin of the inorganic substance on the flat plate is good, and a film with excellent transparency and less coloring can be obtained as compared with the aromatic dicarboxylic acid.
  • At least one structural unit represented by the general formula (3) is necessary in the allyl ester oligomer, but it is possible to obtain a suitable viscosity by repeating this structure to increase the molecular weight of the entire allyl ester oligomer to some extent. Therefore, workability is improved and the toughness of the cured product is also improved. However, if the molecular weight becomes too large, the molecular weight between cross-linking points of the cured product becomes too large, so that the glass transition temperature (Tg) is lowered and the heat resistance may be lowered. It is important to adjust to an appropriate molecular weight according to the application.
  • the allyl ester resin composition contains a synthetic smectite having a number average particle diameter of 10 to 300 nm and an aspect ratio of 10 to 300, so that the glass transition is maintained while maintaining the transparency of the resin composition.
  • temperature (Tg) and a linear expansion coefficient are improved, when the molecular weight of an allyl ester oligomer is small, it exists in the tendency for hardened
  • the oligomer skeleton can be selected without any particular limitation. If a linear oligomer having a large molecular weight is used, a relatively flexible and tough resin tends to be obtained. If a branched oligomer is selected, a resin having high hardness and heat resistance can be obtained. It is also possible to adjust the appropriate flexibility and hardness by mixing both.
  • a 3 in the general formula (3) is an organic residue derived from a dicarboxylic acid having at least one of an alicyclic structure, an aromatic ring structure and an aliphatic chain structure, and its definition and examples of preferred compounds Is the same as A 2 in the general formula (2).
  • X in the general formula (3) represents one or more organic residues derived from a polyhydric alcohol.
  • the polyhydric alcohol is a compound having two or more hydroxyl groups, and preferably a compound having two hydroxyl groups.
  • X itself indicates a skeleton other than the hydroxyl group of the polyhydric alcohol.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6 -Hexanediol, 1,4-cyclohexanedimethanol, diethylene glycol, ethylene oxide adduct of isocyanuric acid, pentaerythritol, tricyclodecane dimethanol, glycerin, trimethylolpropane, ethylene oxide adduct of pentaerythritol, D-sorbitol and hydrogenated bisphenol A etc. are mentioned.
  • the allyl ester oligomer may be a copolymer type.
  • several types of X exist in one allyl ester oligomer.
  • the structure may be such that one of X is a residue derived from propylene glycol and the other X is a residue derived from trimethylolpropane.
  • the allyl ester oligomer will be branched at the trimethylolpropane residue.
  • a 3 may also be present are several types as well.
  • An example of a structural formula in the case where R 3 is an allyl group, A 2 and A 3 are residues derived from isophthalic acid, and X is propylene glycol and trimethylolpropane is shown below.
  • Vinyl ester resin is also called epoxy (meth) acrylate, and is generally (1) an epoxy compound represented by epoxy resin and radically polymerizable such as (meth) acrylic acid.
  • the vinyl ester resin is not particularly limited, but when synthetic smectite is used, a vinyl ester resin synthesized from an aliphatic epoxy compound is preferable, and a vinyl ester resin synthesized from an epoxy compound having an alicyclic structure is more preferable.
  • Examples of the alicyclic epoxy compound include hydrogenated bisphenol A type epoxy resin, 1,2-cyclohexanedicarboxylate diglycidyl, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, Cyclohexane type such as bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3-oxatricyclo [3.2.1.02,4] octane-6-carboxylic acid, 3-oxatricyclo Norbornene type such as [3.2.1.02,4] oct-6-ylmethyl ester, 7-oxabicyclo [4.1.0] heptane-3-carboxylic acid, tricyclo [3.3.1.13 , 7] adamantane type such as decane-1,3-diyl ester.
  • Cyclohexane type such as bis (3,4-epoxy-6-methylcyclohexylmethyl
  • hydrogenated bisphenol A type epoxy resin is more preferable in terms of transparency, toughness, and heat resistance. Moreover, if molecular weight is 800 or more, toughness can further be improved. Even when the raw material epoxy resin has an average molecular weight of less than 500, the molecular weight may be increased by partially using a dicarboxylic acid such as succinic acid, adipic acid, dodecanedicarboxylic acid, or 1,4-cyclohexanedicarboxylic acid.
  • a dicarboxylic acid such as succinic acid, adipic acid, dodecanedicarboxylic acid, or 1,4-cyclohexanedicarboxylic acid.
  • the above epoxy compound and an ethylenically unsaturated compound having a carboxyl group are charged into a reactor, and the reaction is carried out while blowing air.
  • the preferred reaction temperature is 70 to 150 ° C, more preferably 80 to 140 ° C. When it is lower than 70 ° C., the reaction time becomes long and it is not economical. When it is higher than 150 ° C., it often gels.
  • the reaction catalyst may or may not be added, but the addition of the reaction catalyst shortens the reaction time and is economical.
  • Preferred catalysts include tertiary amine compounds, phosphine compounds, onium salts and the like. Specific examples of the tertiary amine compound include dimethylcyclohexylamine, N, N-dimethylpiperazine, and benzyldimethylamine. Examples of the phosphine compound include triphenylphosphine, tolylphosphine, and tricyclohexylphosphine. . Examples of onium salts include quaternary ammonium salts and quaternary phosphonium salts.
  • Examples of quaternary ammonium salts include tetramethylammonium chloride, tetrabutylammonium chloride, tetramethylammonium bromide, tetrabutylammonium bromide, and decyltrimethylammonium.
  • Examples of the quaternary phosphonium salt include tetraphenylphosphonium chloride, benzyltriphenylphosphonium chloride, tetraphenylphosphonium bromide, and tetramethylphosphonium tetraphenylborate.
  • the addition amount of these catalysts is preferably 0.05 to 3 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the ethylenically unsaturated compound having a carboxyl group. If it is less than 0.05 parts by mass, the effect of promoting the reaction does not appear, and if it exceeds 3 parts by mass, the resin is vigorously colored, which is not preferable.
  • curable resins may be used alone or in combination of two or more.
  • a curable resin that does not have an aromatic ring structure is more preferable from the viewpoint that it is compatible with the synthetic smectite and can obtain higher transparency.
  • curable resin refers to the prepolymer state before curing (including oligomers, additives, and monomers) and the cured product.
  • resin composition a case where a prepolymer state before curing is indicated as a “resin composition”.
  • the resin composition prepared in the second step of the present invention is a resin essentially comprising an oligomer component having at least two radical-reactive functional groups such as vinyl groups and allyl groups (herein, it refers to a resin component before curing).
  • an oligomer component having at least two radical-reactive functional groups such as vinyl groups and allyl groups
  • prepolymer or oligomer which may contain a monomer component
  • synthetic smectite having a number average particle diameter of 10 to 300 nm and an aspect ratio of 10 to 300.
  • You may further contain a reactive diluent (reactive monomer), a hardening
  • a solvent that does not participate in the crosslinking reaction may be included for the purpose of reducing the viscosity and improving processability, but it is necessary to finally remove it.
  • a reactive monomer may be added to the resin composition for the purpose of controlling the curing rate, adjusting the viscosity (improving workability), improving the crosslinking density, and adding functions.
  • These reactive monomers are not particularly limited, and various types can be used.
  • a radical polymerizable carbon-carbon double bond such as a vinyl group or an allyl group is used.
  • Monomers having (ethylenically unsaturated groups) are preferred. Examples of such a monomer include a monofunctional monomer having one ethylenically unsaturated group in one molecule and a polyfunctional monomer having two or more ethylenically unsaturated groups in one molecule. Preferred specific examples of these reactive monomers are shown below. “(Meth) acrylate” represents acrylate and methacrylate.
  • Examples of monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) Acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, 4-t-butylcyclohexyl (meth) acrylate, Dicyclopentenyloxymethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxydiethylene
  • Polyfunctional monomers include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (Meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5 -Pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate 1,10-decanediol di (meth) acrylate, dimethyloltri
  • the above reactive monomers can be used singly or in combination of two or more.
  • the amount of the resin component used for these reactive monomers is not particularly limited, but is preferably 30 to 100% by mass of the resin and 0 to 70% by mass of the reactive monomer. When the amount of the reactive monomer used exceeds 70% by mass, the excellent transparency of the resin may not be exhibited, or the mechanical strength derived from the resin may be lowered, which is not preferable.
  • the resin composition is preferably cured by electron beam (EB) irradiation, but can be irradiated by ultraviolet rays (UV) or thermally cured.
  • a curing agent may be used.
  • curing agent which can be used, What is generally used as a hardening
  • the radical polymerization initiator include a photopolymerization initiator, an organic peroxide, and an azo compound.
  • a photopolymerization initiator is particularly preferred from the viewpoint of UV-curing the three-dimensional crosslinkable resin composition of the present invention.
  • Photopolymerization initiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, benzophenone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- ( 2-hydroxyethoxy) -phenyl] -2-hydroxy-2-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) benzyl] phenyl ⁇ -2-methylpropane-1 -One, oxyphenylacetic acid 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, oxyph Nylacetic acid 2- [2-hydroxyethoxy] ethyl ester, phenylglyoxylic
  • organic peroxide known compounds such as dialkyl peroxides, acyl peroxides, hydroperoxides, ketone peroxides, and peroxyesters can be used. Specific examples thereof include diisobutyryl peroxide, cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, 1,1,3 , 3-tetramethylbutyl peroxyneodecanoate, di (4-tert-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexylperoxyneodecanoate, t- Butylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-hexylperoxypivalate, t-butylperoxyp
  • Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl-2,2′-azobis ( 2-methylpropionate), 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis [N- (2- Propenyl) -2-methylpropionamide], 1-[(1-cyano-1-methylethyl) azo] formamide, 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′- And azobis (N-cyclohexyl-2-methylpropionamide).
  • radical polymerization initiators may be used alone or in combination of two or more.
  • the blending amount of these curing agents is not particularly limited, but is preferably 0.1 to 10 parts by weight, and preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the three-dimensional crosslinkable resin composition. It is more preferable.
  • the blending amount of the curing agent is less than 0.1 parts by mass, it is difficult to obtain a sufficient curing rate, and when the blending amount exceeds 10 parts by mass, the final cured product becomes brittle and the mechanical strength is low. May decrease.
  • additives such as an antioxidant, a lubricant, and an ultraviolet absorber can be added to the resin composition as necessary.
  • the antioxidant is not particularly limited, and those generally used can be used. Among them, phenolic antioxidants, amine antioxidants, sulfur antioxidants, phosphorus antioxidants and the like are preferable, phenolic antioxidants and amine antioxidants that are radical chain inhibitors are more preferable, A phenolic antioxidant is particularly preferred.
  • phenolic antioxidants examples include 2,6-di-t-butyl-p-cresol, 4,4-butylidenebis- (6-t-butyl-3-methylphenol), 2,2′-methylenebis (4- Methyl-6-tert-butylphenol), 2,2′-methylenebis- (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-ethylphenol, 1,1,3-tris (2-Methyl-4-hydroxy-5-t-butylphenyl) butane, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, triethylene glycol bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) Propionate], tris (3,5-
  • amine antioxidants include alkyldiphenylamine, N, N′-di-sec-butyl-p-phenylenediamine, N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine, and dialkylhydroxylamine. Is mentioned. Sulfur antioxidants include dilauryl-3,3′-thiodipropionate, ditridecyl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3 ′. -Thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate) and the like.
  • Phosphorus antioxidants include tris [2-[[2,4,8,10-tetra-t-butylbenzo [d, f] [1,3,2] dioxaphosphin-6-yl] oxy. ] Ethyl] amine, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphorous acid, tetrakis (2,4-di-t-butylphenyl) [1,1- Biphenyl] -4,4′-diylbisphonite and the like. These antioxidants may be used alone or in combination of two or more.
  • the lubricant is not particularly limited, and a commonly used lubricant can be used. Among these, metal soap lubricants, fatty acid ester lubricants, aliphatic hydrocarbon lubricants and the like are preferable, and metal soap lubricants are particularly preferable. Examples of the metal soap lubricant include barium stearate, calcium stearate, zinc stearate, magnesium stearate, and aluminum stearate. These may be used as a complex.
  • benzophenone ultraviolet absorbers there is no restriction
  • additives include defoamers, leveling agents, mold release agents, water repellents, flame retardants, low shrinkage agents, crosslinking aids, etc. for the purpose of improving hardness, strength, moldability, durability, and water resistance.
  • the present invention can be used as necessary within a range not impairing the object or effect of the present invention.
  • solvent in order to efficiently delaminate the synthetic smectite and disperse it in the resin composition.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, n-propylbenzene, and isopropylbenzene, acetates such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, acetone, and methyl ethyl ketone.
  • Ketones such as methyl isobutyl ketone, ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane, alcohols such as methanol, ethanol, (iso) propanol and butyl alcohol, halogenated hydrocarbons such as chloroform and methylene chloride And nitrogen-containing solvents such as N, N-dimethylformamide, N-methylpyrrolidone, pyridine and acetonitrile. From the viewpoint of operability, water, alcohols such as methanol, toluene, xylene, and N-methylpyrrolidone are preferable.
  • the ratio of the solvent to the synthetic smectite is about 100 to 10,000 parts by mass, more preferably 200 to 5,000 parts by mass with respect to 100 parts by mass of the synthetic smectite, although it depends on the type of solvent.
  • the ratio of the solvent is less than 100 parts by mass, the composition liquid viscosity of the mixture becomes high and it becomes difficult to mix uniformly.
  • the thermal expansion coefficient was measured in a tensile mode using TMA / SS6100 manufactured by SII Nanotechnology.
  • the film-shaped test piece has a thickness of 100 ⁇ m ⁇ 3 mm ⁇ 12 mm (distance between chucks: 10 mm), tension: 0.001 kgf, and the temperature is raised to 250 ° C. at a temperature rising rate of 5 ° C./min in an atmosphere of 100 mL / min. After that, the sample was allowed to cool to 50 ° C. or less, and the elongation rate of the test piece was measured again at a temperature increase rate of 5 ° C./min up to 50 to 250 ° C.
  • the average thermal expansion coefficient in the plane direction between 50 and 250 ° C. was calculated from the difference in elongation between 50 ° C. and 250 ° C. and the temperature difference (200 ° C.). Moreover, the temperature of the discontinuity point of elongation rate was made into the glass transition temperature (Tg).
  • Total light transmittance The total light transmittance was measured according to JIS K-7361-1 using a fully automatic haze meter TC-H3DPK manufactured by Tokyo Denshoku.
  • Synthesis Example 1 Vinyl ester resin A four-necked flask equipped with a temperature controller, a stirrer, a Dimroth condenser, and an air introduction tube was charged with hydrogenated bisphenol A type epoxy resin ST-4000D (trade name, epoxy equivalent) manufactured by Tohto Kasei Co., Ltd. : 725) 276.3 parts (mass part, the same applies hereinafter), toluene 202.5 parts, 0.19 part of 4-methoxyphenol (MEHQ: hydroquinone monomethyl ether) as a polymerization inhibitor was charged, and dry air was blown in (20 ml / min), the mixture was heated to 80 ° C. and stirred until uniform.
  • hydrogenated bisphenol A type epoxy resin ST-4000D trade name, epoxy equivalent
  • MEHQ 4-methoxyphenol
  • Example 1 585 g of toluene was put in a 1 L polyethylene bottle, and oleophilic synthetic smectite treated with cation exchange with trioctylmethylammonium salt (synthetic smectite STN manufactured by Coop Chemical Co., Ltd .: number average particle diameter 50 nm, aspect ratio 50, inorganic component 71%) 65 g was added little by little while stirring with a stirrer. The bottle was further capped and stirred for 1 day at room temperature with a mix rotor to obtain a smectite dispersion.
  • a toluene solution of oligomer (1) obtained in Synthesis Example 1 (resin amount equivalent to 102.5 g), 18.9 g of methoxypolyethylene glycol # 400 acrylate (trade name: AM-90G) manufactured by Shin-Nakamura Chemical Co., Ltd. And stirred well to obtain a composition (1).
  • the composition (1) was attached to an evaporator and stirred for 10 minutes at 20 kPa at room temperature to adjust the viscosity and remove gas components in the composition.
  • This composition (1) was coated on a PET film (thickness 50 ⁇ m) with a bar coater so that the thickness after drying was 100 ⁇ m. After drying with a hot air dryer at 80 ° C. for 30 minutes to volatilize the toluene solvent, it was further covered with a PET film (thickness 50 ⁇ m) from above. EB curing was performed at an EB irradiation amount of 300 kGy and an acceleration voltage of 200 kV, and the PET films on both sides were peeled off to obtain a sample film (1). The thermal expansion coefficient of this film was 20 ppm / ° C., and Tg was not observed. Further, the total light transmittance was 92%, and the haze was 0.8%.
  • the film was cut into 5 cm squares and impregnated in a vat filled with 500 ml of acetone for 10 hours. After impregnation, the film was taken out and placed in an air circulation dryer at 80 ° C. to dry the solvent. The mass of the film after impregnation and drying with respect to the original film was reduced by 11.3%. Subsequently, when this film was put into a vacuum dryer and heated at 200 ° C. for 1 hour under a reduced pressure of 0.1 kPa or less to evaporate volatile components, the mass loss with respect to the original film remained at 0.7%.
  • Example 2 The sample film (1) used in Example 1 was cut into a 5 cm square and impregnated in a vat filled with 500 ml of toluene for 10 hours. After impregnation, the film was taken out and placed in an air circulation dryer at 80 ° C. to dry the solvent. The mass of the film after solvent impregnation and drying with respect to the original film was reduced by 10.2%. Subsequently, when this film was put into a vacuum dryer and heated at 200 ° C. for 1 hour under a reduced pressure of 0.1 kPa or less to evaporate volatile components, the mass loss relative to the original film remained at 0.9%.
  • Example 3 The sample film (1) used in Example 1 was cut into a 5 cm square, and this film was placed in a vacuum dryer and preheated at 200 ° C. for 1 hour under a reduced pressure of 0.1 kPa or less. The mass of the film after the preheating treatment with respect to the original film was reduced by 6.8%. Subsequently, when this film was again put into a vacuum dryer and heated at 200 ° C. for 1 hour under a reduced pressure of 0.1 kPa or less to evaporate volatile components, the mass loss with respect to the original film was only 0.8%.
  • Comparative Example 1 The sample film (1) used in Example 1 was cut into a 5 cm square, and this film was put into a vacuum dryer without pretreatment (solvent impregnation / drying or preheating treatment) at 200 ° C. under a reduced pressure of 0.1 kPa or less. When the volatile matter was vaporized by heating for 1 hour, the mass decreased by 7.2% with respect to the original film.
  • the film from which the volatile matter has been removed by the pretreatment can suppress the pressure in the vacuum container due to outgas during vacuum heating such as vapor deposition of the conductive thin film, and is very effective in the conductive thin film production process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを4級有機アンモニウム塩及び/または4級有機ホスホニウム塩によって有機化処理する第1の工程と、前記有機化処理された合成スメクタイトと硬化性樹脂を混合し合成スメクタイトを10~40質量%含有する樹脂組成物を調製する第2の工程と、前記樹脂組成物を硬化し硬化物を得る第3の工程と、前記硬化物中に残留する有機揮発成分を除去する第4の工程とを有することを特徴とする透明複合材料の製造方法に関する。この製造方法によれば、導電性薄膜蒸着時等高温・真空下でのアウトガスが少なく、かつ柔軟で低熱膨張係数の透明複合材料が得られる。

Description

透明複合材料及びその製造方法
 本発明は透明複合材料の製造方法及び透明複合材料に関する。さらに詳しくは、柔軟かつ熱膨係数の小さい透明複合材料の製造方法、その方法で得られる透明複合材料、及びその用途に関する。
 従来、液晶表示装置や有機EL表示装置用の表示素子基板、カラーフィルター基板、太陽電池用基板等としては、ガラスが広く用いられている。しかしながらガラス基板は割れやすく、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年その代替としてプラスチック素材が検討されている。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリオレフィン、ポリエーテルスルホンからなる基板が提案されている(例えば、特開2007-268711号公報;特許文献1)。
 これら従来のガラス代替用プラスチック素材は、ガラスに比べ線膨張係数が大きいが、プラスチック素材中に平板状無機物質を分散することにより、線膨張係数が低減することが開示されている。(例えば、特開2008-45121号公報;特許文献2(WO2008/010610))
 従来、ディスプレイ用プラスチック基板では、基板の上に透明電極を形成するときに真空中でインジウムやスズなどの金属酸化物をアルゴンスパッタリング、イオンプレーティング等の方法でプラスチック上に成膜することにより形成している。この際、金属酸化物の蒸着源よりプラスチック表面に金属酸化膜を均一に成膜する際には高い真空度が必要である。また、低い抵抗値の酸化膜を得るためには基板の温度を高くし、酸化膜の結晶化度を高くする必要がある。
 しかしながら、これら従来のガラス代替用プラスチック素材は、高温・真空下で表面上に導電性の薄膜を蒸着する際に材料内部から未反応モノマーやそのほかの低分子量成分が揮発して、蒸着装置内の真空度を低下させ、正常な蒸着を阻害するといった問題があった。そこで、揮発成分の少ないプラスチック素材が求められていた。
特開2007-268711号公報 特開2008-45121号公報
 本発明は導電性薄膜蒸着時等に真空加熱雰囲気下でのアウトガスが少なく、正常に薄膜形成することができる透明複合材料の製造方法、及びその方法で得られる透明複合材料を提供するものである。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、真空加熱前に材料中に含有する揮発成分を予め低減させた透明複合材料を作製することで、従来その後の導電性薄膜蒸着時等に発生していた問題を解消できることを見出し、本発明を完成させるに到った。
 すなわち、本発明は以下の透明複合材料の製造方法、その方法によって得られる透明複合材料、その透明複合材料を基材とする表示装置、及び太陽電池用基板に関する。
[1]数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを4級有機アンモニウム塩及び/または4級有機ホスホニウム塩によって有機化処理する第1の工程と、前記有機化処理された合成スメクタイトと硬化性樹脂を混合し合成スメクタイトを10~40質量%含有する樹脂組成物を調製する第2の工程と、前記樹脂組成物を硬化し硬化物を得る第3の工程と、前記硬化物中に残留する有機揮発成分を除去する第4の工程とを有することを特徴とする透明複合材料の製造方法。
[2]前記有機揮発成分を除去する第4の工程が、溶剤による洗浄及び/または材料の加熱である前記1に記載の透明複合材料の製造方法。
[3]前記材料の加熱雰囲気が空気、不活性ガス、または真空減圧下のいずれかである前記2に記載の透明複合材料の製造方法。
[4]前記合成スメクタイトが、合成ヘクトライト、合成サポナイト、及び合成スティーブンサイトから選択される1種以上である前記1に記載の透明複合材料の製造方法。
[5]前記4級有機アンモニウム塩が、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、及びN-ポリオキシエチレン-N-ラウリル-N,N-ジメチルアンモニウム塩の1種以上から選択される前記1に記載の透明複合材料の製造方法。
[6]前記合成スメクタイトの末端水酸基を表面改質剤によって処理する工程を第2の工程前に有する前記1に記載の透明複合材料の製造方法。
[7]硬化性樹脂がアリルエステル樹脂及び/またはビニルエステル樹脂である前記1に記載の透明複合材料の製造方法。
[8]前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、及びイソシアネート化合物から選択されるものである前記6に記載の透明複合材料の製造方法。
[9]前記樹脂組成物を調製する第2の工程において溶剤をさらに添加する前記1に記載の透明複合材料の製造方法。
[10]前記1乃至9のいずれかに記載の製造方法により製造された透明複合材料。
[11]前記10に記載の透明複合材料を基材とする表示装置。
[12]前記表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである前記11に記載の表示装置。
[13]前記10に記載の透明複合材料を基材とする太陽電池用基板。
 従来のガラス代替用プラスチック素材は、高温・真空下で表面上に導電性の薄膜を蒸着する際に材料内部から未反応モノマーやそのほかの低分子量成分が揮発して、蒸着装置内の真空度を低下させ、正常な蒸着を阻害するといった問題があった。本発明によれば、材料中に含まれる揮発成分を予め除去することにより揮発成分の少ない透明複合材料が得られるので低抵抗の導電性薄膜を透明複合材料表面上に形成することができ、ディスプレイ材料用等の透明導電性基板としてきわめて有用である。また、本発明によれば、特定の樹脂組成をとることで柔軟かつ熱膨張係数の小さな透明シートを提供することができるため、フレキシブルなディスプレイ、太陽電池などへの使用も可能である。
[透明複合材料]
 本発明の透明複合材料は、数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトが樹脂硬化物中に分散しているものである。一般的には前記合成スメクタイトを樹脂組成物と混合し、硬化して得ることができる。
 従来、樹脂の透明性を維持したまま、機械特性及び熱特性を改善することができるフィラーとしては、ガラスクロスやナノシリカ等が知られている。しかし、ガラスクロスの場合には、樹脂とガラスクロスとの熱膨張係数が大きく異なるために、加熱・冷却時のマイクロクラックにより白化し材料の透明性が失われる。また、ナノシリカを充填した場合には、少量の添加では透明性は維持できるものの、ディスプレイ基板や太陽電池用基板の用途に要求される低熱膨張係数を達成するためにはナノシリカを高充填する必要があるので、この場合には透明性を維持することはできない。また、ベントナイト等の天然クレイを充填する場合には、機械物性、熱物性の向上を図ることは可能であるが、天然クレイ結晶内の酸化鉄やクオーツ等の不純物を完全に除去することは不可能であり、機械特性、熱特性、透明性の向上の実現は困難である。
 本発明者らは、特定の性状を有する合成スメクタイトが分散している、アリルエステル樹脂組成物及び/またはビニルエステル樹脂組成物の熱膨張係数が極端に小さい透明複合材料となることを見出した。
 本発明において、透明複合材料の透明性は全光線透過率で評価する。本発明の透明複合材料は、100μm厚での全光線透過率が85%以上、ヘーズ値が5%以下のものをいう。ただし、全光線透過率は90%以上であることがより好ましく、ヘーズ値は3%以下であることがより好ましい。ヘーズ値が5%より大きいと透過光がゆがみ、鮮明さが低減する傾向がある。全光線透過率はJIS K-7361-1、ヘーズ値はJIS K-7136に準拠して測定された値である。
 本発明における透明複合材料は、その形状は限定されないが、フィルム、シート、平板等の形状の成形物が特に好適である。厚みが10μm以上200μm以下のものをフィルム、厚みが200μmより大きく5000μm以下のものをシート、厚みが5000μmより大きいものを板と表現するが、本明細書では、フィルム、シート、板の厚みに拘らずシートと表現する。
[透明複合材料(透明シート)の製造方法]
 本発明の透明複合材料の製造方法は、数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを4級有機アンモニウム塩及び/または4級有機ホスホニウム塩によって有機化処理する第1の工程と、前記有機化処理された合成スメクタイトと硬化性樹脂を混合し合成スメクタイトを10~40質量%含有する樹脂組成物を調製する第2の工程と、前記樹脂組成物を硬化し硬化物を得る第3の工程と、前記硬化物中に残留する有機揮発成分を除去する第4の工程とを有することを特徴とする。
 本発明の透明複合材料の製造方法の第1工程においては、特定の合成スメクタイトを4級有機アンモニウム塩または4級有機ホスホニウム塩によって有機化処理する。なお、本発明においては、すでに有機化処理された市販の合成スメクタイトをも使用することができる。すなわち、本発明は有機化処理された市販の合成スメクタイトを使用する透明複合材料の製造方法をも含む。
 第2工程においては、有機化処理した合成スメクタイトを硬化性樹脂と混合して合成スメクタイトを10~40質量%含有する樹脂組成物を調製する。合成スメクタイト及び硬化性樹脂以外の成分としては、反応性モノマー、硬化剤、添加剤、その他ラジカル反応性の樹脂成分等を含有してもよい。
 合成スメクタイト、樹脂組成物、溶剤の混合は、例えば、(1)樹脂成分を溶剤に溶解させた溶液と合成スメクタイトを溶剤に分散させた分散液とを混合する方法、(2)合成スメクタイトを溶剤に分散させた分散液に樹脂成分を直接添加して溶解させる方法、(3)樹脂成分を溶剤に溶解させた後に合成スメクタイトを加えて分散させる方法、または(4)樹脂成分と合成スメクタイトを加熱混練して得られた混合物を溶媒に溶解させ分散させる方法により製造することができる。この中でも、合成スメクタイトの分散性の観点から、樹脂成分を溶剤に溶解させた溶液と合成スメクタイトを溶剤に分散させた分散液とを混合する方法が特に好ましい。分散方法は特に限定されないが、ミックスローター、マグネティックスターラー、ホモジナイザー、ヘンシェルミキサー、ビーズミル、超高圧微粒化装置、超音波照射等の公知の方法、あるいはこれらに必要に応じて加熱を併用することにより分散させることが可能である。
 次いで、第3工程において、樹脂組成物を基材上に塗布し、電子線(EB)照射、紫外線(UV)照射、加熱のいずれかにより硬化させる。
 合成スメクタイト、樹脂組成物、溶剤の混合液は減圧することにより脱気・濃縮し、混合液の粘度を塗工に最適な粘度に調整する。混合液粘度は特に限定されないが、成形する方法に適した粘度であることが好ましい。例えば、ロールコーティング法及びドクターナイフ法の場合は25℃における粘度が0.01~1,000Pa・sの範囲であることが好ましい。粘度が0.01Pa・sより低い、または1,000Pa・sより高いと作業性が悪くなり好ましくない。常温での粘度が高い場合は混合液の温度を上げて作業性を改善することができる。また、減圧時間が短い場合には、混合液中の気体を十分に除去することができず、塗工、乾燥、硬化時に気泡が発生し平滑な透明シートを作成することが困難となる。
 塗工は、混合液を減圧濃縮することにより脱気及び粘度調整したものを塗工液として用い、ガラス、金属、プラスチックフィルム等の平滑な基材上にダイレクトグラビア法やリバースグラビア法及びマイクログラビア法、2本ロールビートコート法、ボトムフィード3本リバースコート法等のロールコーティング法、及びドクターナイフ法やダイコート法、ディップコート法、バーコーティング法やこれらを組み合わせたコーティング法等の通常工業的に用いられている方法により行うことができる。中でも、合成スメクタイトを面方向に配向させるように基材と平行方向に働く力(シェア)をかける方法であるロールコーティング法及びドクターナイフ法が好ましい。「面方向に配向」とは、合成スメクタイトの各層の大多数が基材表面に対して平行になるように配向していることを意味する。合成スメクタイトが面方向に配向している場合には、透明シートの面方向の線膨張係数を効果的に低減させることができる。また、合成スメクタイトの各層が面方向に配向することにより、合成スメクタイト含有量が多い場合でも全光線透過率が高くなる。
 揮発させることが可能な溶剤を合成スメクタイトの分散及び粘度調整に使用した場合には、合成スメクタイトをさらに面方向に配向させることが可能である。すなわち、合成スメクタイト、樹脂及び溶剤の混合物を基材上に塗布した後、溶剤だけを蒸発させれば塗工液の厚み方向にのみ収縮することになるので、結果的に樹脂中に合成スメクタイトをさらに面方向に配向させることができる。反応性モノマーを使用する場合には、比較的揮発性の低い反応性モノマーを用い、揮発性の高い溶剤を併用し、適切な条件(温度、圧力、時間等)で乾燥させることが好ましい。溶剤を揮発させることにより合成スメクタイトを面方向に配向させる方法は、上記ロールコーティング法及び/またはドクターナイフ法と併用することが可能であるが、シェアをかけずに塗布する方法単独で実施することもできる。
 溶剤を揮発させる温度は、0~200℃が好ましい。0℃未満の場合には、揮発速度が著しく遅いため好ましくない。200℃より高い場合には、溶剤の急激な揮発や沸騰による発泡または樹脂のゲル化が発生し表面平滑性が低下しヘーズ値が上昇する可能性があり好ましくない。より好ましくは10~100℃である。溶剤を揮発させる圧力は、10Pa~1MPaが好ましい。10Pa未満の場合には、突沸が発生する恐れがあり、表面平滑性が低下しヘーズ値が上昇する可能性があり好ましくない。より好ましくは10~200Paである。溶剤を揮発させる時間は1~120分が好ましい。1分未満の場合には、溶剤を十分に揮発させることができず、硬化の際に気泡が発生する。120分より長い場合には、生産性が悪くなるため好ましくない。溶剤を揮発させる場合には、空気、窒素、アルゴン、二酸化炭素等の気体を通気させながら乾燥してもよい。また、これらの気体は溶剤の揮発成分を含んでいてもよい。溶剤を揮発させる際の気体の流速は、0.01~200m/sが好ましい。0.01m/sより遅い場合には、溶剤の揮発分が滞留してしまうため好ましくない。200m/sより速い場合には、塗布液が不均一となるため好ましくない。より好ましくは、0.1~50m/sである。
 その後、ガラス、金属、プラスチックフィルム等の平滑な基材にて挟み、電子線(EB)照射、紫外線(UV)照射、加熱のいずれかにより硬化させ基材から離型することによって透明シートを得ることができる。また、ガラス、金属、プラスチックフィルム等の平滑な基材にて挟まない場合には、不活性ガス(例えば、窒素、アルゴン、二酸化炭素等)雰囲気下、EB照射、UV照射、加熱のいずれかにより硬化させた後に基材から離型することによって透明シートを得ることができる。例えば、合成スメクタイトが分散され、かつ溶剤を含む硬化前の樹脂組成物を、表面が平滑な平面上、例えば、二軸延伸ポリエチレンテレフタレートフィルムに上記方法にて塗布した後、溶剤を揮発させ、表面が平滑な二軸延伸ポリエチレンテレフタレートフィルムで挟み、EB照射、UV照射、加熱のいずれかにより硬化させる方法が挙げられる。硬化方法としては、硬化速度、着色の点からEB照射による硬化がより好ましい。
 EB照射により樹脂組成物を硬化させる場合には、重合開始剤は必要ない。ただし、アフターキュア操作によって硬化を完全にする場合には、熱重合開始剤を併用してもよい。EB照射の時の電子線の加速電圧は30~500kV、好ましくは50~300kVである。また、電子線照射量は、1~1000kGy、好ましくは10~500kGyである。電子線加速電圧が30kV未満の場合には、組成物の厚さが厚い場合に電子線の透過不足が生じる恐れがあり、500kVよりも大きい場合には、経済性が悪くなる。また、電子線照射量は1000kGyを超えると基材を損傷する恐れがあるため好ましくない。
 UV照射により樹脂組成物を硬化させる場合には、硬化温度は0~150℃、好ましくは10~130℃である。また、UV照射時間は、0.01~10時間、好ましくは0.05~1時間、さらに好ましくは0.1~0.5時間かけて硬化するのがよい。UV積算光量は10~5000mJ/cmである。10mJ/cm未満であると硬化が不十分になり好ましくない。5000mJ/cmより大きい場合には生産性が悪くなる。
 加熱により樹脂組成物を硬化させる場合には、硬化温度は30~160℃、好ましくは40~130℃である。また、硬化時の収縮や歪の抑制を考慮すると、昇温しながらゆっくりと硬化する方法が好ましく、0.5~100時間、好ましくは、3~50時間である。
 EB照射、UV照射、加熱のいずれかにより硬化させた樹脂硬化物の硬化が不十分な場合には、アフターキュアによって硬化を完全に進行させることができる。アフターキュアを行う場合には、透明シートをガラス、金属、プラスチックフィルム等の平滑な基材から剥離しても構わないし、剥離しなくてもよい。アフターキュアの温度は50~300℃、好ましくは80~250℃である。アフターキュアの時間は0.1~10時間、好ましくは0.5~5時間である。アフターキュアの圧力は1.0×10-7Pa~1MPaの減圧~加圧雰囲気下で実施することができ、好ましくは1.0×10-6Pa~0.5MPaである。アフターキュアの雰囲気は空気、窒素、アルゴン、二酸化炭素等の雰囲気下で行うことが可能であるが、着色低減の点からは窒素雰囲気下が好ましい。
 二層以上からなる透明シートを製造する場合には、最初に一層を基材上に塗布(及び乾燥)後、その上に他の層を塗布(及び乾燥)を繰り返し、EB照射/UV照射または加熱硬化し基材から剥離する方法、または二枚以上のシートを製造し、その二枚以上のシートをラミネートする方法により製造することができる。なお、二枚以上のフィルムをラミネートする場合は、二枚の界面はコロナ処理やアンカーコート等の処理を施してもよい。
 次いで、第4工程において、溶媒による洗浄及び/または加熱することにより硬化物(透明シート)中に含まれる未反応モノマー、4級有機アンモニウム塩及び/または4級有機ホスホニウム、水等の低分子量成分を除去する。
 硬化物中には未反応モノマー、4級有機アンモニウム塩及び/または4級有機ホスホニウム塩、水等の低分子量成分が含まれる。これらを含む硬化物を高温・真空下に置くとこれらの成分が揮発するので導電性薄膜蒸着等高温・真空下での処理に支障をきたす。そのためこれらの処理をする前に硬化物中の揮発成分を予め低減させておく必要がある。
 硬化物中の揮発成分を除去する方法としては、溶剤で洗浄する方法、加熱して揮発成分を気化させ取り除く方法がある。これらの方法は単独で行っても良いし、併用しても良い。またどちらかを先に行ってもよい。
 溶剤で揮発成分を除去する方法とは、硬化物表面から溶剤を内部に浸透させ、溶剤に伴い固形物内部・表面より拡散し溶出する揮発成分を硬化物表面から放出させ取り除く方法を指す。
 加熱により揮発成分を除去する方法とは、硬化物を加熱し硬化物内の揮発成分が拡散し表面に到達した後、揮発成分が表面で気化することにより取り除く方法を指す。
 溶剤で洗浄する場合の溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン等の炭化水素類、メタノール、エタノール、イソプロパノール等のアルコール類、ジクロロメタン、トリクロロメタン等のハロゲン化炭化水素、酢酸エチル、酢酸ブチル等のエステル類が挙げられるがこれらに限定されるものではない。特にコスト、抽出性から考えてアセトン、トルエンが好ましい。これらは単独で用いても構わないし、混合して使用しても良い。
 溶剤で洗浄する場合の洗浄方法の形態としては、例えば、硬化物を溶剤中に含浸する方法、溶剤を硬化物表面に吹きつける方法、溶剤蒸気を硬化物表面に凝集させ揮発成分を溶剤とともに流し去る方法等が挙げられる。
 溶剤で硬化物を洗浄する場合の硬化物の形態としては、シート状、フィルム状が挙げられるが、あまり硬化物が厚すぎると溶剤が硬化物内部まで拡散するのに時間がかかり完全に揮発成分を除去するためには長時間を要する。短時間で抽出するためにはなるべく薄いフィルム状であることが望ましい。
 また、フィルム状の硬化物を溶剤で洗浄する場合は、カットシート状で一枚ずつ洗浄工程を通過させる方法、ロール状のフィルムをいわゆるロールツーロールで連続的に洗浄工程に通す方法が挙げられる。ロールツーロールで連続的に洗浄すれば、一般的にフィルム単位面積あたりのコストを抑えることが可能である。
 溶剤洗浄の温度としては、溶剤融点以上が考えられる。高温で洗浄したほうが硬化物内の溶剤の拡散速度が高くなり、それだけ洗浄速度も高くすることができるが、溶剤の沸点以上の温度で洗浄する場合、最終的に溶剤は硬化物表面上で液状にしなければならず大気圧以上の加圧容器内での洗浄工程となり設備コストがかかる。
 溶剤で揮発成分を洗浄する場合には硬化物中に溶剤が残留する可能性があり、洗浄後に溶剤を乾燥させる工程を入れる必要がある。乾燥方法としては、通常の方法をとることか可能で、硬化物表面に熱風を吹きつける方法、真空排気する方法などが考えられる。いずれの場合も、雰囲気を溶剤が気化しやすい温度、圧力付近にすることで残留溶剤を取り除くことができる。
 硬化物を加熱して揮発成分を気化させ取り除く場合には、硬化物を空気中、不活性ガス、真空雰囲気下で加熱し、揮発成分を硬化物より気化させ取り除くことができる。
 空気中で揮発成分を気化させて取り除く場合、通常の循環式乾燥機を使用することができる。空気中の酸素により硬化物の着色等の恐れがある場合には、不活性ガス雰囲気下で加熱処理を行えばそれを防ぐことができる。不活性ガスの種類としては、窒素、アルゴン、ヘリウムなどが考えられ、硬化物に悪影響を及ぼさないガスであれば何でも構わない。しかし、コストの点からは窒素ガスを使用することが望ましい。
 大気圧下で揮発成分を除去する場合、高沸点の成分の除去には高温が必要になる。硬化物を著しい高温にした場合も、着色、樹脂の分解といった悪影響が考えられる。この場合、加熱雰囲気を真空にすることで加熱温度を低く設定することができる。
 本発明の透明複合材料に用いられる各成分について、以下に説明する。
[合成スメクタイト]
 本発明に用いられる合成スメクタイトは、数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトであれば特に限定されない。
 本発明に係る透明複合材料から製造した透明複合シートをディスプレイ用基板等に使用する場合、数平均粒径は可視光の波長より十分小さいものである必要がある。なお、ここでいう可視光とは、波長が400~800nmの範囲の光をいう。従って、合成スメクタイトの数平均粒径は10~300nmの範囲が好ましく、30~200nmの範囲がさらに好ましい。数平均粒径が10nm未満の場合は透明シートの面方向の線膨張係数が十分小さくならない傾向があり、300nmを超える場合は可視光波長と重なる粒径のものも含まれるため、透明性の点で好ましくない。また、透明シートの面方向に配向しやすいという観点から、アスペクト比が10~300の範囲であり、30~100の範囲がさらに好ましい。アスペクト比は10以上であることが好ましい。アスペクト比が10未満の合成スメクタイトの場合は、線膨張係数が所定の範囲(好ましくは30ppm/℃以下)とならないおそれがある。一方、アスペクト比が300を超える合成スメクタイトを使用すると、透明シートの全光線透過率が低下するおそれがある。
 なお、ここでいう合成スメクタイトの数平均粒径とは、溶媒中に分散させながら動的光散乱法により求めた数平均粒径を指す。動的光散乱法による数平均粒径は、例えば「粒子径計測技術」(粉体工学会編,1994年)の第169~179頁を参照することにより求めることができる。具体的な測定装置としては、動的光散乱式粒径分布測定装置(例えば、堀場製作所社製,LB-550型)を挙げることができる。前記の動的光散乱法により求めた合成スメクタイトの数平均粒径は、本発明における樹脂中に分散された後の合成スメクタイトの数平均粒径と実質的に同じと考えることができる。
 合成スメクタイトのアスペクト比(Z)は、Z=L/aなる関係で示される。Lは、溶媒中、動的光散乱法により求めた前記の数平均粒径であり、aは、合成スメクタイトの単位厚みである。単位厚みaは、粉末X線回折法によって合成スメクタイトの回折ピークを測定して算出することができる値である。
 このような合成スメクタイトは、公知の方法(例えば、白水晴雄著「粘土鉱物学-粘土科学の基礎」朝倉書店,1988年,第98~100頁)を使用して合成してもよいし、市販の合成スメクタイトを使用してもよい。合成スメクタイトの例としては、合成ヘクトライト、合成サポナイト、合成スティーブンサイトを好適に使用でき、市販品としては例えばコープケミカル社製合成スメクタイトSWN(合成ヘクトライト)、クニミネ工業社製合成無機高分子スメクトンSA(合成サポナイト)、ロックウッド(ROCKWOOD)社製合成珪酸塩LAPONITE(合成ヘクトライト)、水澤工業社製合成ケイ酸マグネシウム塩イオナイト(合成スティーブンサイト)を挙げることができる。これらの中でより好ましいものとしては、透明性、カチオン交換容量、サイズの点でコープケミカル社製合成スメクタイトSWNである。
 本発明では、合成スメクタイトを4級有機アンモニウム塩及び/または4級有機ホスホニウム塩によって疎水化し、樹脂中への分散を向上させたものを使用する。このような化学処理としては、合成スメクタイトの薄片状結晶層間に存在するナトリウムやカルシウム等の交換性金属カチオンを、カチオン性界面活性剤などのようなカチオン性を有する種々の物質と交換し、合成スメクタイトの結晶層間に挿入(インターカレート)することが挙げられる。
 この場合の合成スメクタイトのカチオン交換容量は特に限定されないが、好ましくは50~1200ミリ当量/100gである。カチオン交換容量が50ミリ当量/100g未満の場合には、カチオン交換により合成スメクタイトの結晶層間にインターカレートされるカチオン性物質の量が少なくなるために、結晶層間が充分に非極性化(疎水化)されない場合がある。カチオン交換容量が1200ミリ当量/100gより大きい場合には、合成スメクタイトの結晶層間の結合力が強固になりすぎて、結晶薄片が剥離し難くなることがある。
 前記有機化処理方法は、カチオン性界面活性剤によるカチオン交換法とも言われ、特に透明複合材料の樹脂成分が低極性の場合に有効であり、合成スメクタイトと低極性樹脂との親和性を高め、合成スメクタイトを低極性樹脂中により均一に微分散させることができる。
 ここで用いられるカチオン性界面活性剤としては特に限定されないが、中でも合成スメクタイトの結晶層間を充分に疎水化できることから、炭素数6以上のアルキルアンモニウムイオン塩、芳香族4級アンモニウムイオン塩または複素環4級アンモニウムイオン塩が好適に用いられる。
 前記4級有機アンモニウム塩としては、例えば、トリメチルアルキルアンモニウム塩、トリエチルアルキルアンモニウム塩、トリブチルアルキルアンモニウム塩、ジメチルジアルキルアンモニウム塩、ジブチルジアルキルアンモニウム塩、メチルベンジルジアルキルアンモニウム塩、ジベンジルジアルキルアンモニウム塩、トリアルキルメチルアンモニウム塩、トリアルキルエチルアンモニウム塩、トリアルキルブチルアンモニウム塩;ベンジルメチル{2-[2-(p-1,1,3,3-テトラメチルブチルフェノオキシ)エトキシ]エチル}アンモニウムクロライド等の芳香環を有する4級アンモニウム塩;トリメチルフェニルアンモニウム等の芳香族アミン由来の4級アンモニウム塩;アルキルピリジニウム塩、イミダゾリウム塩等の複素環を有する4級アンモニウム塩;ポリエチレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を2つ有するジアルキル4級アンモニウム塩、ポリエチレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩等が挙げられる。中でも、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、N-ポリオキシエチレン-N-ラウリル-N,N-ジメチルアンモニウム塩等が好適である。これらの4級有機アンモニウム塩は、単独で用いてもよく、2種以上を併用してもよい。
 前記4級有機ホスホニウム塩としては、例えば、ドデシルトリフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、ラウリルトリメチルホスホニウム塩、ステアリルトリメチルホスホニウム塩、トリオクチルメチルホスホニウム塩、ジステアリルジメチルホスホニウム塩、ジステアリルジベンジルホスホニウム塩等が挙げられる。これらの4級有機ホスホニウム塩は、単独で用いてもよく、2種以上を併用してもよい。
 4級有機アンモニウム塩及び/または4級有機ホスホニウム塩を用いて、樹脂中での合成スメクタイトの分散性を向上させるには、脂肪族系の4級アンモニウム塩及び/または4級ホスホニウム塩を用いるのが好ましく、特にトリアルキルメチルアンモニウム塩、ポリプロピレングリコール鎖を1つ有するトリアルキル4級アンモニウム塩がより好ましい。
 さらに、表面改質剤を用いることにより樹脂中に合成スメクタイトを高度に分散させることができる。一般的に脂肪族炭素鎖を多く含む樹脂には脂肪族系の表面改質剤を用いるのが好ましい。
 また、本発明に用いられる合成スメクタイトは層間のみでなく、表面も有機化処理することができる。合成スメクタイトの表面は、水酸基等の官能基があるため、この末端水酸基に対して反応性を有する官能基を有する化合物で有機化処理することができる。上記水酸基と化学結合し得る官能基を有する化合物(表面改質剤)としては特に限定されず、例えば、シラン化合物(シランカップリング剤)、チタネート化合物(チタネートカップリング剤)、グリシジル化合物、イソシアネート化合物等が挙げられる。これらの化合物は、単独で用いてもよく、2種以上を併用してもよい。
 前記化合物の中ではシラン化合物を好ましく使用することができる。シラン化合物の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルジメチルメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルジメチルエトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン等が挙げられる。これらのシラン化合物は、単独で用いてもよく、2種以上を併用してもよい。
 透明複合材料中の合成スメクタイトの含有量は、10~40質量%の範囲が好ましく、15~30質量%の範囲がより好ましい。合成スメクタイトの含有量が10質量%未満の場合は、透明複合材料の50~250℃までの平均線膨張係数が大きくなり、30ppm/℃より大きくなる。また、合成スメクタイトの含有量が40質量%を超えると、合成スメクタイトを樹脂中に均一に分散させることが困難となり、また、透明複合材料の機械強度が低下し脆くて割れやすくなる。
[樹脂組成物]
 本発明の樹脂組成物においては、合成スメクタイトを含んだその硬化物(3次元架橋反応後のもの)が透明であれば、従来の熱硬化性樹脂組成物、光硬化性樹脂組成物等の硬化性樹脂組成物を使用することができる。具体的には、アリルエステル樹脂、ビニルエステル樹脂、架橋型(多官能基を有する)アクリル樹脂、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、メラミン樹脂、ユリア樹脂、フェノール樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、ポリウレタン樹脂、アニリン樹脂等を含む組成物が挙げられる。なかでも、アリルエステル樹脂、ビニルエステル樹脂などのラジカル重合によって架橋反応が進行するラジカル反応性3次元架橋型樹脂を含む組成物が好適である。また、上記硬化性樹脂以外の成分として、後述する反応性モノマー、硬化剤、添加剤、その他ラジカル反応性の樹脂成分等を含有してもよい。
(i)アリルエステル樹脂を含む樹脂組成物
 アリルエステル樹脂は、アリル基またはメタリル基(以降、この両者をあわせて(メタ)アリル基と言う場合がある。)とエステル構造を有する化合物を含有する。
 (メタ)アリル基とエステル構造を有する化合物は、(1)(メタ)アリル基及び水酸基を含む化合物(ここではアリルアルコールと総称する)とカルボキシル基を含む化合物とのエステル化反応、(2)(メタ)アリル基及びカルボキシル基を含む化合物と水酸基を含む化合物とのエステル化反応、または(3)アリルアルコールとジカルボン酸からなるエステル化合物と多価アルコールとのエステル交換反応により得ることができる。
 上記(1)及び(2)中の「カルボキシル基を含む化合物」がジカルボン酸とジオールとのエステルオリゴマーである場合には、末端のみアリルアルコールとのエステルとすることもできる。また、(3)中の「アリルアルコールとジカルボン酸からなるエステル化合物」の具体例としては、下記一般式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立してアリル基またはメタリル基を表し、Aは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基を表す。)
で示される化合物の中から選ばれる少なくとも1種以上の化合物が挙げられる。この化合物は後述するアリルエステルオリゴマーの原料となるほか、反応性希釈剤(反応性モノマー)として本発明のアリルエステル樹脂組成物に含まれてもよい。一般式(1)中のAは後述の一般式(2)及び(3)におけるA、Aと同様のものが好ましい。
 (メタ)アリル基とエステル構造を有する化合物としては、アリル基及び/またはメタリル基を末端基とし、多価アルコールとジカルボン酸とから形成されたエステル構造を有するアリルエステル化合物(以下、これを「アリルエステルオリゴマー」と記載することがある。)であることが好ましい。
 本発明のアリルエステルオリゴマーとしては、下記一般式(2)
Figure JPOXMLDOC01-appb-C000002
(式中、Rはアリル基またはメタリル基を表し、Aは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基を表す。)
で示される基を末端基として有し、かつ下記一般式(3)
Figure JPOXMLDOC01-appb-C000003
(式中、Aは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基を表し、Xは多価アルコールから誘導された一種以上の有機残基を表す。ただし、Xはエステル結合によって、さらに上記一般式(2)を末端基とし、上記一般式(3)を構成単位とする分岐構造を有することができる。)
で示される構造を構成単位として有する化合物が好ましい。
 前記アリルエステルオリゴマーにおいて、一般式(2)で示される末端基の数は少なくとも2個以上であるが、一般式(3)においてXが分岐構造を有する場合には3個以上となる。この場合、各末端基のRも複数個存在することになるが、これらの各Rは必ずしも同じ種類でなくてもよく、ある末端はアリル基、他の末端はメタリル基という構造であっても構わない。また、全てのRがアリル基またはメタリル基でなければならないということはなく、硬化性を損なわない範囲で、その一部がメチル基またはエチル基等の非重合性基であってもよい。
 Aで示される構造についても同様に、各末端基で異なっていてもよい。例えば、ある末端のAはベンゼン環、他方はシクロヘキサン環という構造であってもよい。一般式(2)におけるAは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基である。ジカルボン酸に由来する部分はAに隣接するカルボニル構造で示されている。従って、Aの部分はベンゼン骨格やシクロヘキサン骨格を示す。透明性の点からは、芳香族構造を有するカルボン酸よりも、脂環式構造または脂肪族鎖状構造を有するジカルボン酸がより好ましい。
 A構造を誘導するジカルボン酸としては特に制限はないが、テレフタル酸、イソフタル酸、フタル酸、1,4-シクロヘキサンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニル-m,m’-ジカルボン酸、ジフェニル-p,p’-ジカルボン酸、ベンゾフェノン-4,4’-ジカルボン酸、p-フェニレンジ酢酸、p-カルボキシフェニル酢酸、メチルテレフタル酸、テトラクロルフタル酸、マロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルコハク酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、無水エンディック酸などが挙げられる。これらジカルボン酸の中では、脂肪族鎖状構造または脂環式構造を有するジカルボン酸が好ましく、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルコハク酸、1,4-シクロヘキサンジカルボン酸が挙げられる。さらに脂環式構造を有するジカルボン酸がより好ましく、例えば、1,4-シクロヘキサンジカルボン酸が挙げられる。
 なお、A構造を誘導するジカルボン酸としては、1,4-シクロヘキサンジカルボン酸のような脂環式構造のものを用いると柔軟な成形物が得られ、透明フィルム等に成形しやすくなる。また、平板上無機物質の樹脂の分散性も良好で、芳香族ジカルボン酸と比べ、透明性に優れ、着色の少ないフィルムが得られる。
 前記一般式(3)で示される構造単位は、アリルエステルオリゴマー中に少なくとも1つは必要であるが、この構造を繰り返してアリルエステルオリゴマー全体の分子量をある程度大きくした方が適切な粘度が得られるので作業性が向上し、また硬化物の靭性も向上するので好ましい。しかし、分子量が大きくなりすぎると硬化物の架橋点間分子量が大きくなりすぎるため、ガラス転移温度(Tg)が低下し、耐熱性が低下するおそれもある。用途に応じて適切な分子量に調整することが大切である。
 本発明では、アリルエステル樹脂組成物に数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを含有させることにより、樹脂組成物の透明性を維持したまま、ガラス転移温度(Tg)や線膨張率を向上させるが、アリルエステルオリゴマーの分子量が小さいと硬化物が脆くなる傾向にある。従って、アリルエステル樹脂組成物ではアリルエステルオリゴマーの分子量はやや高めに設定しておくことが望ましく、好ましい重量平均分子量は500~100,000であり、さらに好ましくは1,000~50,000である。
 オリゴマーの骨格としては特に制限無く選択することができる。直鎖状で分子量の大きなオリゴマーを用いると比較的柔軟で靭性の高い樹脂が得られる傾向にあるし、分岐を有するオリゴマーを選択すれば硬度・耐熱性の高い樹脂を得ることが可能である。両方を混合して適度な柔軟性及び硬度を調整することも可能である。
 また、一般式(3)におけるAは脂環式構造、芳香環構造及び脂肪族鎖状構造の少なくとも一種の構造を有するジカルボン酸に由来する有機残基であり、その定義及び好ましい化合物の例は一般式(2)におけるAと同様である。一般式(3)中のXは、多価アルコールから誘導された一種以上の有機残基を表す。多価アルコールとは2個以上の水酸基を有する化合物であり、好ましくは2個の水酸基を有する化合物である。X自体は、多価アルコールの水酸基以外の骨格部分を示す。また、多価アルコール中の水酸基は少なくとも2個が結合していればよいため、原料となる多価アルコールが3価以上、すなわち、水酸基が3個以上のときは、未反応の水酸基が残っていてもよい。
 多価アルコールの具体例としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、イソシアヌル酸のエチレンオキシド付加体、ペンタエリスリトール、トリシクロデカンジメタノール、グリセリン、トリメチロールプロパン、ペンタエリスリトールのエチレンオキシド付加体、D-ソルビトール及び水素化ビスフェノールA等が挙げられる。
 アリルエステルオリゴマー中の一般式(3)で示される構造単位としては、同一の構造単位が繰り返されていてもよいが、異なる構造単位が含まれていてもよい。つまり、アリルエステルオリゴマーは共重合タイプであってもよい。この場合、一つのアリルエステルオリゴマーには数種類のXが存在することになる。例えば、Xの一つがプロピレングリコール由来の残基、もう一つのXがトリメチロールプロパン由来の残基であるというような構造でもよい。この場合、アリルエステルオリゴマーはトリメチロールプロパン残基の部分で枝分かれすることになる。Aも同様にいくつかの種類が存在してもよい。以下にRがアリル基、A,Aがイソフタル酸由来の残基、Xがプロピレングリコールとトリメチロールプロパンの場合の構造式の一例を示す。
Figure JPOXMLDOC01-appb-C000004
(ii)ビニルエステル樹脂を含む樹脂組成物
 ビニルエステル樹脂は、エポキシ(メタ)アクリレートとも呼ばれ、一般に(1)エポキシ樹脂に代表されるエポキシ化合物と、(メタ)アクリル酸等のラジカル重合性の炭素-炭素二重結合(エチレン性不飽和基)を有するカルボキシル化合物のカルボキシル基との開環反応により合成されるエチレン性不飽和基を有する樹脂、または(2)カルボキシル基を持つ化合物と、グリシジル(メタ)アクリレート等の分子内にエポキシ基を持つ重合性不飽和化合物のエポキシ基との開環反応により合成される重合性不飽和基を有する樹脂を指す。詳しくは「ポリエステル樹脂ハンドブック」,日刊工業新聞社,1988年発行,第336~357頁などに記載されている。このビニルエステル樹脂は公知の方法により製造することができる。
 ビニルエステル樹脂は特に限定されないが、合成スメクタイトを使用する場合は脂肪族エポキシ化合物から合成されるビニルエステル樹脂が好ましく、脂環式構造を有するエポキシ化合物から合成されるビニルエステル樹脂がより好ましい。前記脂環式エポキシ化合物の例としては、水素化ビスフェノールA型エポキシ樹脂、1,2-シクロへキサンジカルボン酸ジグリシジル、3,4-エポキシシクロへキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等のシクロへキサン型、3-オキサトリシクロ[3.2.1.02,4]オクタン-6-カルボン酸,3-オキサトリシクロ[3.2.1.02,4]オクト-6-イルメチルエステル等のノルボルネン型、7-オキサビシクロ[4.1.0]ヘプタン-3-カルボン酸,トリシクロ[3.3.1.13,7]デカン-1,3-ジイルエステル等のアダマンタン型等が挙げられる。これらの中で透明性、靭性、耐熱性の点から水素化ビスフェノールA型エポキシ樹脂がより好ましい。また、分子量が800以上であれば、靭性をさらに向上することができる。原料のエポキシ樹脂の平均分子量が500未満の場合でも、コハク酸、アジピン酸、ドデカンジカルボン酸、1,4-シクロヘキサンジカルボン酸のようなジカルボン酸を一部用いて分子量を大きくしても構わない。
 ビニルエステル樹脂の製造は、上記エポキシ化合物と、カルボキシル基を有するエチレン性不飽和化合物を反応器に仕込み、空気を吹き込みながら反応を行う。好ましい反応温度は70~150℃であり、より好ましくは80~140℃である。70℃より低い場合には、反応時間が長くなり経済的ではない。150℃より高い場合には、ゲル化する場合が多い。
 反応触媒は加えても加えなくてもよいが、加えた方が反応時間は短くなり、経済的である。好ましい触媒としては三級アミン系化合物、ホスフィン化合物、オニウム塩等が挙げられる。三級アミン系化合物の具体例としては、ジメチルシクロヘキシルアミン、N,N-ジメチルピペラジン、ベンジルジメチルアミン等が挙げられ、ホスフィン系化合物としてはトリフェニルホスフィン、トリトリルホスフィン、トリシクロヘキシルホスフィン等が挙げられる。またオニウム塩としては、4級アンモニウム塩や4級ホスホニウム塩等が挙げられ、4級アンモニウム塩としては、テトラメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、デシルトリメチルアンモニウムクロライド等が挙げられ、4級ホスホニウム塩としては、テトラフェニルホスホニウムクロライド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、テトラメチルホスホニウムテトラフェニルボレート等を挙げることができる。これら触媒の添加量は、エポキシ樹脂とカルボキシル基を有するエチレン性不飽和化合物の総和100質量部に対し0.05~3質量部が好ましく、より好ましくは0.1~2質量部である。0.05質量部未満では反応の促進の効果が現れず、3質量部を超えると樹脂の着色が激しくなり、好ましくない。
 これらの硬化性樹脂は、単独で用いてもよく、2種以上を併用してもよい。
 ただし、合成スメクタイトとのなじみがよく、より高い透明性が得られるという点では芳香環構造を有しない硬化性樹脂がより好ましい。
 なお、一般的に、「硬化性樹脂」というと硬化する前のプレポリマー状態(オリゴマーや添加剤、モノマーを含む)を指す場合とその硬化物を示す場合の二通りの場合があるが、本明細書中では硬化する前のプレポリマー状態を示す場合を「樹脂組成物」と表現している。
 本発明の第2工程で調製する樹脂組成物は、ビニル基、アリル基のようなラジカル反応性官能基を少なくとも2つ以上有するオリゴマー成分を必須とする樹脂(ここでは硬化前の樹脂成分をいう。プレポリマー、オリゴマーともいう。モノマー成分が含まれていてもよい。)、数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを含む。必要に応じて反応性希釈剤(反応性モノマー)、硬化剤(ラジカル重合開始剤)や各種添加剤をさらに含んでもよい。また、樹脂組成物の時点では粘度を下げて加工性を改善する目的で架橋反応に関与しない溶剤を含んでいてもよいが、最終的には除去する必要がある。
[反応性モノマー]
 本発明では、樹脂組成物に、硬化速度のコントロール、粘度調整(作業性の改善)、架橋密度の向上、機能付加等を目的として反応性モノマーを加えることもできる。これらの反応性モノマーとしては特に制限はなく、種々のものが使用できるが、3次元架橋型樹脂組成物と反応させるためにはビニル基、アリル基等のラジカル重合性の炭素-炭素二重結合(エチレン性不飽和基)を有するモノマーが好ましい。このようなモノマーとして一分子中に一個のエチレン性不飽和基を有する単官能モノマー、一分子中に二個以上のエチレン性不飽和基を有する多官能モノマーが挙げられる。これら反応性モノマーの好ましい具体例を以下に示す。なお、「(メタ)アクリレート」はアクリレート及びメタクリレートを表す。
 単官能モノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、4-t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニルオキシメチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、1-ナフチル(メタ)アクリレート、フルオロフェニル(メタ)アクリレート、クロロフェニル(メタ)アクリレート、シアノフェニル(メタ)アクリレート、メトキシフェニル(メタ)アクリレート及びビフェニル(メタ)アクリレート等の芳香族(メタ)アクリレート;フルオロメチル(メタ)アクリレート、クロロメチル(メタ)アクリレート等のハロアルキル(メタ)アクリレート;グリシジル(メタ)アクリレート、アルキルアミノ(メタ)アクリレート、シアノアクリル酸エステル等の(メタ)アクリレート化合物;アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-ε-カプロラクタム、N-ビニルピロリドン、1-ビニルイミダゾール、N-ビニルカルバゾール、N-ビニルモルホリン、N-ビニルピリジン、アクリロイルモルホリン等の含窒素モノマー;スチレン、α-メチルスチレン、クロロスチレン、スチレンスルホン酸、4-ヒドロキシスチレン及びビニルトルエン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等が挙げられる。
 多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ポリブタジエンジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシフェニル)プロパン及び2,2-ビス(4-(ω-(メタ)アクリロイロキシポリエトキシ)フェニル)プロパン、ビスフェノールAのエチレンオキサイド付加物のジ(メタ)アクリレート等のジ(メタ)アクリレート;トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンのエチレンオキサイド付加物のトリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能の架橋性モノマー;ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールのエチレンオキサイド付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の多官能アクリレート、フタル酸ジアリル、イソフタル酸ジアリル、イソフタル酸ジメタリル、テレフタル酸ジアリル、トリメリット酸トリアリル、2,6-ナフタレンジカルボン酸ジアリル、1,5-ナフタレンジカルボン酸ジアリル、1,4-キシレンジカルボン酸アリル及び4,4’-ジフェニルジカルボン酸ジアリル等の芳香族カルボン酸ジアリル類、シクロヘキサンジカルボン酸ジアリル、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、ジアリルクロレンデート等のアリル化合物が挙げられる。
 上記の反応性モノマーは、1種を単独で、または2種以上組み合わせて用いることができる。これらの反応性モノマーの樹脂成分の使用量には特に制限はないが、前記樹脂30~100質量%、反応性モノマー0~70質量%であることが好ましい。反応性モノマーの使用量が70質量%を超えると樹脂の優れた透明性が発現されなかったり、樹脂由来の機械的強度が低下する場合があり好ましくない。
[硬化剤]
 樹脂組成物の硬化は、電子線(EB)照射による硬化が好ましいが、紫外線(UV)照射または熱硬化することも可能である。UVまたは熱硬化させる場合には、硬化剤を使用してもよい。使用できる硬化剤としては特に制限はなく、一般に重合性樹脂の硬化剤として用いられているものを用いることができる。中でも、(メタ)アクリロイルオキシ基の重合開始の点からラジカル重合開始剤を添加することが望ましい。ラジカル重合開始剤としては、光重合開始剤、有機過酸化物、アゾ化合物等が挙げられる。本発明の3次元架橋型樹脂組成物をUV硬化させる点からは光重合開始剤が特に好ましい。
 光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、オキシフェニルアセチックアシッド2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル、オキシフェニルアセチックアシッド2-[2-ヒドロキシエトキシ]エチルエステル、フェニルグリオキシリックアシッドメチルエステル、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イルフェニル)ブタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、ヨードニウム,(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヘキサフルオロホスフェート(1-)、エチル-4-ジメチルアミノベンゾエート、2-エチルヘキシル-4-ジメチルアミノベンゾエート、及び2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。
 また、有機過酸化物としては、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステル等の公知のものが使用可能である。その具体例としては、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジ(3,5,5-トリメチルヘキサノイルパーオキサイド、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジサッシニックアシッドパーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ(3-メチルベンゾイル)パーオキサイド、ベンゾイル(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス[4,4-ジ(t-ブチルパーオキシ)シクロヘキシル]プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、ジ(t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ(t-ヘキシル)パーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキシド、及びt-ブチルハイドロパーオキサイド等が挙げられる。
 アゾ化合物としては、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等が挙げられる。
 これらのラジカル重合開始剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの硬化剤の配合量には特に制限はないが、3次元架橋型樹脂組成物100質量部に対し、0.1~10質量部配合することが好ましく、0.5~5質量部配合することがより好ましい。硬化剤の配合量が0.1質量部より少ないと十分な硬化速度を得ることが困難であり、また配合量が10質量部を超えると、最終的な硬化物が脆くなり、機械的強度が低下する場合がある。
[添加剤]
 本発明では、樹脂組成物に酸化防止剤、滑剤、紫外線吸収剤などの種々の添加剤を必要に応じて添加することができる。
 酸化防止剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、フェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等が好ましく、ラジカル連鎖禁止剤であるフェノール系酸化防止剤やアミン系酸化防止剤がより好ましく、フェノール系酸化防止剤が特に好ましい。フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール、4,4-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチル-4-エチルフェノール、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト]メタン、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネ-ト]、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4-チオビス-(6-t-ブチル-3-メチルフェノール)、3,9-ビス[2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)]プロピオニルオキシ]-1,1’-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド]等が挙げられる。アミン系酸化防止剤としては、アルキルジフェニルアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、N-フェニル-N’-1,3-ジメチルブチル-p-フェニレンジアミン、ジアルキルヒドロキシルアミン等が挙げられる。イオウ系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジトリデシル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネ-ト、ジステアリル-3,3’-チオジプロピオネ-ト、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネ-ト)等が挙げられる。リン系酸化防止剤としては、トリス[2-[[2,4,8,10-テトラ-t-ブチルベンゾ[d,f][1,3,2]ジオキサフォスフェフィン-6-イル]オキシ]エチル]アミン、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4-ジ-t-ブチルフェニル)[1,1-ビフェニル]-4,4’-ジイルビスフォナイト等が挙げられる。これらの酸化防止剤は1種でもよく、2種以上を組み合わせて用いてもよい。
 滑剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、金属石鹸系滑剤、脂肪酸エステル系滑剤、脂肪族炭化水素系滑剤などが好ましく、金属石鹸系滑剤が特に好ましい。金属石鹸系滑剤としては、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、及びステアリン酸アルミニウム等が挙げられる。これらは複合体として用いてもよい。
 紫外線吸収剤としては、特に制限はなく、一般に用いられているものを用いることができる。中でも、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤が好ましく、特にベンゾフェノン系紫外線吸収剤が好ましい。ベンゾフェノン系紫外線吸収剤としては、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-ブチルフェニル)ベンゾトリアゾール、及び2-(2-ヒドロキシ-3’-t-ブチルフェニル)ベンゾトリアゾールなどが挙げられる。
 その他の添加剤として硬度、強度、成形性、耐久性、耐水性を改良する目的で、消泡剤、レベリング剤、離型剤、撥水剤、難燃剤、低収縮剤、架橋助剤なども本発明の目的、または効果を阻害しない範囲で必要に応じて使用することができる。
[溶剤]
 本発明においては、合成スメクタイトを効率的に層剥離させ、樹脂組成物中に分散させるために溶剤を使用することが好ましい。溶剤としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、n-プロピルベンゼン、イソプロピルベンゼン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、メタノール、エタノール、(イソ)プロパノール、ブチルアルコール等のアルコール類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、N,N-ジメチルホルムアミド、N-メチルピロリドン、ピリジン、アセトニトリル等の含窒素系溶剤等が挙げられる。好ましくは、操作性の観点から水、メタノール等のアルコール類、トルエン、キシレン、N-メチルピロリドンが挙げられる。
 溶剤の合成スメクタイトに対する比率は、溶剤の種類にもよるが、合成スメクタイト100質量部に対して100~10,000質量部程度であり、より好ましくは200~5,000質量部である。溶剤の比率が100質量部よりも少ないと混合物の組成液粘度が高くなり均一に混合することが困難になる。
 以下、合成例、実施例及び比較例を挙げ本発明を説明するが、本発明はこれらの記載により何らかの限定を受けるものではない。
[熱膨張係数、Tgの測定]
 熱膨張係数は、エスアイアイ・ナノテクノロジー社製TMA/SS6100を使用し、引張モードで測定を行った。フィルム状試験片は、厚さ100μm×3mm×12mm(チャック間距離10mm)、張力:0.001kgfとし、窒素を100mL/minの雰囲気下で昇温速度5℃/minで250℃まで温度を上げた後、50℃以下まで放冷し、再度、昇温速度5℃/minで50~250℃までの間で、試験片の伸長率を測定した。50℃と250℃との伸長率差と温度差(200℃)とから50~250℃の間の面方向の平均熱膨張係数を計算した。また、伸長率の不連続点の温度をガラス転移温度(Tg)とした。
[全光線透過率]
 全光線透過率は、東京電色社製全自動ヘーズメーターTC-H3DPKを使用し、JIS K-7361-1に準拠して測定した。
[ヘーズ]
 ヘーズ値は、東京電色社製全自動ヘーズメーターTC-H3DPKを使用し、JIS K-7136に準拠して測定した。
合成例1:ビニルエステル樹脂
 温度調節器、撹拌装置、ジムロート冷却管、空気導入管を付した四つ口フラスコに、東都化成社製水添ビスフェノールA型エポキシ樹脂 ST-4000D(商品名、エポキシ当量:725)276.3部(質量部,以下同じ)、トルエン202.5部、重合禁止剤として4-メトキシフェノール(MEHQ:ハイドロキノンモノメチルエーテル)を0.19部仕込み、乾燥空気を吹き込み(20ml/min)ながら80℃に昇温し均一になるまで撹拌した。均一になったところでクラレ社製アクリル酸27.5部、触媒として塩化ベンジルトリフェニルホスホニウム(北興化学工業社製、商品名TPP-ZC)を1.24部加え110℃で温度調整しながら7時間反応させ、酸価が7.8mgKOH/gのところで終了し、オリゴマー(1)(トルエン溶液)を得た。
実施例1:
 1Lポリエチレンボトルにトルエン585gを入れ、そこにトリオクチルメチルアンモニウム塩でカチオン交換処理された親油性合成スメクタイト(コープケミカル社製合成スメクタイトSTN:数平均粒子径50nm、アスペクト比50、無機成分71%)65gをスターラーで撹拌しつつ少量ずつ加えた。さらにボトルにふたをし、ミックスローターにて室温下、1日間撹拌し、スメクタイト分散液を得た。このスメクタイト分散液に合成例1で得たオリゴマー(1)のトルエン溶液(樹脂量換算102.5g分)、新中村化学社製メトキシポリエチレングリコール#400アクリレート(商品名:AM-90G)18.9gを加え、十分撹拌し組成物(1)とした。組成物(1)をエバポレーターに取り付け、室温下20kPaにて10分間撹拌し、粘度調整及び組成物中のガス成分を除去した。
 この組成物(1)をバーコーターにてPETフィルム(厚さ50μm)上に乾燥後の厚みが100μmになるように塗布した。80℃の熱風乾燥機で30分間乾燥させ、溶剤のトルエンを揮発させた後、さらに上からPETフィルム(厚さ50μm)でカバーした。EB照射量300kGy、加速電圧200kVにてEB硬化し、両面のPETフィルムを剥離し、サンプルフィルム(1)を得た。このフィルムの熱膨張係数は20ppm/℃であり、Tgは観測されなかった。また、全光線透過率は92%であり、ヘーズは0.8%であった。
 このフィルムを5cm角に切り取り500mlのアセトンで満たしたバットの中に10時間含浸した。含浸後フィルムを取り出し、80℃の空気循環式乾燥機に入れ溶剤を乾燥させた。元のフィルムに対して溶剤含浸・乾燥後のフィルムはその質量が11.3%減少していた。続いてこのフィルムを真空乾燥機に入れ0.1kPa以下の減圧下で200℃で1時間加熱し揮発分を気化させたところ、元フィルムに対する質量減少は0.7%に留まった。
実施例2:
 実施例1で使用したサンプルフィルム(1)を5cm角に切り取り、500mlのトルエンで満たしたバットの中に10時間含浸した。含浸後フィルムを取り出し、80℃の空気循環式乾燥機に入れ溶剤を乾燥させた。元のフィルムに対して溶剤含浸・乾燥後のフィルムはその質量が10.2%減少していた。続いてこのフィルムを真空乾燥機に入れ0.1kPa以下の減圧下で200℃で1時間加熱し揮発分を気化させたところ、元フィルムに対する質量減少は0.9%に留まった。
実施例3:
 実施例1で使用したサンプルフィルム(1)を5cm角に切り取り、このフィルムを真空乾燥機中に置き、0.1kPa以下の減圧下、200℃で一時間予備加熱処理した。元のフィルムに対して予備加熱処理後のフィルムはその質量が6.8%減少していた。続いてこのフィルムを再度真空乾燥機に入れ0.1kPa以下の減圧下で200℃で1時間加熱し揮発分を気化させたところ、元フィルムに対する質量減少は0.8%に留まった。
比較例1:
 実施例1で使用したサンプルフィルム(1)を5cm角に切り取り、このフィルムを前処理(溶剤含浸・乾燥または予備加熱処理)なしで真空乾燥機に入れ0.1kPa以下の減圧下で200℃で1時間加熱し揮発分を気化させたところ、質量が元フィルムに対して7.2%減少した。
 前処理として溶剤含浸・乾燥または予備加熱処理した実施例1~3のフィルムは、前処理により揮発分が除去され、その後の真空減圧処理での揮発分は1%以下と少ないのに対し、前処理をしない比較例1のフィルムでは真空減圧処理で7.2%と多くの揮発分が発生している。
 前処理により揮発分の取り除かれたフィルムは、導電性薄膜の蒸着処理などの真空加熱時にアウトガスによる真空容器内の圧力を抑制することができ、導電性薄膜作成工程上非常に有効である。
Figure JPOXMLDOC01-appb-T000005

Claims (13)

  1.  数平均粒径が10~300nmであり、アスペクト比が10~300である合成スメクタイトを4級有機アンモニウム塩及び/または4級有機ホスホニウム塩によって有機化処理する第1の工程と、前記有機化処理された合成スメクタイトと硬化性樹脂を混合し合成スメクタイトを10~40質量%含有する樹脂組成物を調製する第2の工程と、前記樹脂組成物を硬化し硬化物を得る第3の工程と、前記硬化物中に残留する有機揮発成分を除去する第4の工程とを有することを特徴とする透明複合材料の製造方法。
  2.  前記有機揮発成分を除去する第4の工程が、溶剤による洗浄及び/または材料の加熱である請求項1に記載の透明複合材料の製造方法。
  3.  前記材料の加熱を空気または不活性ガスの雰囲気下、あるいは真空減圧下のいずれかで行う請求項2に記載の透明複合材料の製造方法。
  4.  前記合成スメクタイトが、合成ヘクトライト、合成サポナイト、及び合成スティーブンサイトから選択される1種以上である請求項1に記載の透明複合材料の製造方法。
  5.  前記4級有機アンモニウム塩が、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、及びN-ポリオキシエチレン-N-ラウリル-N,N-ジメチルアンモニウム塩の1種以上から選択される請求項1に記載の透明複合材料の製造方法。
  6.  前記合成スメクタイトの末端水酸基を表面改質剤によって処理する工程を第2の工程前に有する請求項1に記載の透明複合材料の製造方法。
  7.  硬化性樹脂がアリルエステル樹脂及び/またはビニルエステル樹脂である請求項1に記載の透明複合材料の製造方法。
  8.  前記表面改質剤が、シランカップリング剤、チタネートカップリング剤、グリシジル化合物、及びイソシアネート化合物から選択されるものである請求項6に記載の透明複合材料の製造方法。
  9.  前記樹脂組成物を調製する第2の工程において溶剤をさらに添加する請求項1に記載の透明複合材料の製造方法。
  10.  請求項1乃至9のいずれかに記載の製造方法により製造された透明複合材料。
  11.  請求項10に記載の透明複合材料を基材とする表示装置。
  12.  前記表示装置が、液晶ディスプレイ、有機ELディスプレイ、または電子ペーパーである請求項11に記載の表示装置。
  13.  請求項10に記載の透明複合材料を基材とする太陽電池用基板。
PCT/JP2009/057427 2008-04-14 2009-04-13 透明複合材料及びその製造方法 WO2009128414A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801113127A CN101981071A (zh) 2008-04-14 2009-04-13 透明复合材料及其制造方法
JP2010508197A JPWO2009128414A1 (ja) 2008-04-14 2009-04-13 透明複合材料及びその製造方法
US12/937,844 US8163842B2 (en) 2008-04-14 2009-04-13 Transparent composite material and process for producing the same
EP09733354A EP2270059A4 (en) 2008-04-14 2009-04-13 TRANSPARENT COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008104768 2008-04-14
JP2008-104768 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128414A1 true WO2009128414A1 (ja) 2009-10-22

Family

ID=41199106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057427 WO2009128414A1 (ja) 2008-04-14 2009-04-13 透明複合材料及びその製造方法

Country Status (7)

Country Link
US (1) US8163842B2 (ja)
EP (1) EP2270059A4 (ja)
JP (1) JPWO2009128414A1 (ja)
KR (1) KR20110003473A (ja)
CN (1) CN101981071A (ja)
TW (1) TW201005016A (ja)
WO (1) WO2009128414A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228656A (ja) * 2011-06-28 2013-11-07 Mitsubishi Rayon Co Ltd 光学フィルム、光学シート、面発光体及び光学シートの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788723B (zh) * 2014-02-27 2015-06-24 新疆大学 改性皂石、聚乳酸/黄腐植酸季铵盐改性皂石复合材料及其制备方法和制品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109526A (ja) * 1998-10-09 2000-04-18 Showa Highpolymer Co Ltd 人造大理石用樹脂組成物及びそれを用いた人造大理石成形品
JP2007118579A (ja) * 2005-09-27 2007-05-17 Fujifilm Corp 平版印刷版原版および平版印刷方法
JP2007182519A (ja) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd アンチブロッキング性光硬化性樹脂組成物、それを基材上に被覆硬化したアンチブロッキング性構造体およびその製法
JP2007268711A (ja) 2006-03-30 2007-10-18 Teijin Dupont Films Japan Ltd フレキシブルディスプレイ基板用積層ポリエステルフィルム
WO2008010610A1 (en) 2006-07-21 2008-01-24 Showa Denko K.K. Transparent composite material
JP2008045121A (ja) 2006-07-21 2008-02-28 Showa Denko Kk 透明複合材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874728A (en) * 1987-03-26 1989-10-17 United Catalyst Inc. Organophilic clay modified with silane compounds
WO2003018477A1 (en) * 2001-08-24 2003-03-06 Southern Clay Products, Inc. Methods for making synthetic smectites
KR100704320B1 (ko) * 2002-02-06 2007-04-10 세키스이가가쿠 고교가부시키가이샤 수지 조성물
CN1914239B (zh) * 2004-01-30 2010-05-05 新日铁化学株式会社 固化性树脂组合物
US7704671B2 (en) * 2005-09-27 2010-04-27 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109526A (ja) * 1998-10-09 2000-04-18 Showa Highpolymer Co Ltd 人造大理石用樹脂組成物及びそれを用いた人造大理石成形品
JP2007118579A (ja) * 2005-09-27 2007-05-17 Fujifilm Corp 平版印刷版原版および平版印刷方法
JP2007182519A (ja) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd アンチブロッキング性光硬化性樹脂組成物、それを基材上に被覆硬化したアンチブロッキング性構造体およびその製法
JP2007268711A (ja) 2006-03-30 2007-10-18 Teijin Dupont Films Japan Ltd フレキシブルディスプレイ基板用積層ポリエステルフィルム
WO2008010610A1 (en) 2006-07-21 2008-01-24 Showa Denko K.K. Transparent composite material
JP2008045121A (ja) 2006-07-21 2008-02-28 Showa Denko Kk 透明複合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Particle Diameter Measuring Techniques", 1994, THE SOCIETY OF POWDER TECHNOLOGY, JAPAN, article "Ryushi-kei Keisoku Gijutsu", pages: 169 - 179
"Polyester Jushi Handbook", 1988, NIKKAN KOGYO SHIMBUN, LTD., pages: 336 - 357
HARUO SHIROZU: "Clay Mineralogy, Basis of Clay Science", 1988, ASAKURA PUBLISHING CO., LTD., article "Nendokobutsu-gaku, Nendo Kagaku no Kiso", pages: 98 - 100

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228656A (ja) * 2011-06-28 2013-11-07 Mitsubishi Rayon Co Ltd 光学フィルム、光学シート、面発光体及び光学シートの製造方法

Also Published As

Publication number Publication date
KR20110003473A (ko) 2011-01-12
EP2270059A4 (en) 2011-06-29
US8163842B2 (en) 2012-04-24
CN101981071A (zh) 2011-02-23
TW201005016A (en) 2010-02-01
US20110040015A1 (en) 2011-02-17
JPWO2009128414A1 (ja) 2011-08-04
EP2270059A1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5186556B2 (ja) 硬化フィルム及びその製造方法
US8518524B2 (en) Transparent composite material
JP5075849B2 (ja) 透明複合材料
WO2010110406A1 (ja) 透明複合材料
JP2015044905A (ja) 樹脂組成物、透明フィルム、その製造方法及び用途
JP2008045121A (ja) 透明複合材料
WO2009128414A1 (ja) 透明複合材料及びその製造方法
WO2010110407A1 (ja) 透明複合材料
JP2013237734A (ja) 透明複合材料及び透明フィルムの製造方法
JP2013049792A (ja) 透明複合材料及び透明フィルムの製造方法
JP2009129802A (ja) 透明導電性基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111312.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508197

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020575

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12937844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009733354

Country of ref document: EP