WO2009128142A1 - 情報記録再生装置 - Google Patents

情報記録再生装置 Download PDF

Info

Publication number
WO2009128142A1
WO2009128142A1 PCT/JP2008/057365 JP2008057365W WO2009128142A1 WO 2009128142 A1 WO2009128142 A1 WO 2009128142A1 JP 2008057365 W JP2008057365 W JP 2008057365W WO 2009128142 A1 WO2009128142 A1 WO 2009128142A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording layer
layer
recording
central portion
reproducing apparatus
Prior art date
Application number
PCT/JP2008/057365
Other languages
English (en)
French (fr)
Inventor
塚本 隆之
親義 鎌田
豪 山口
隆大 平井
伸也 青木
久保 光一
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2008/057365 priority Critical patent/WO2009128142A1/ja
Priority to JP2010508057A priority patent/JP5300839B2/ja
Priority to TW098112393A priority patent/TWI404203B/zh
Publication of WO2009128142A1 publication Critical patent/WO2009128142A1/ja
Priority to US12/889,558 priority patent/US8288748B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode

Definitions

  • the present invention relates to a nonvolatile semiconductor random storage device having a large capacity.
  • NAND flash memory and small HDD hard disk drive
  • a PRAM phase change memory
  • an amorphous state is created by applying a high power pulse to the recording material, and a crystalline state is created by applying a small power pulse to the recording material.
  • Reading is performed by passing a small read current that does not cause writing / erasing to the recording material and measuring the electrical resistance of the recording material.
  • the resistance value of the recording material in the amorphous state is larger than the resistance value of the recording material in the crystalline state, and the difference is about 10 3 .
  • a typical example of a recording material for recording data is nickel oxide, and a high power pulse and a small power pulse are used for writing / erasing as in the case of PRAM.
  • the power consumption at the time of writing / erasing is smaller than that of the PRAM.
  • an information recording / reproducing apparatus having high repetition stability is provided.
  • a recording layer capable of reversibly transitioning between a first state having a low resistance and a second state having a high resistance by a supplied current, and a peripheral portion of the recording layer includes:
  • the information recording / reproducing apparatus is characterized by having a composition different from that of the central portion.
  • an information recording / reproducing apparatus having high repetition stability can be provided.
  • FIG. 1 is a diagram showing an example of an information recording / reproducing apparatus according to the present invention.
  • FIG. 2 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 3 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 4 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 5 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 6 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 7 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 1 is a diagram showing an example of an information recording / reproducing apparatus according to the present invention.
  • FIG. 2 is a diagram showing an example of a cross section of the recording layer according to the present invention.
  • FIG. 3 is a diagram showing an example of
  • FIG. 8 is a diagram showing an example of a recording layer manufacturing method according to the present invention.
  • FIG. 9 is a diagram showing a cross-section in one step of the recording layer manufacturing method according to the present invention.
  • FIG. 10 is a diagram showing a cross-section in one step of the recording layer manufacturing method according to the present invention.
  • FIG. 11 is a diagram showing an example of a plane of the recording layer according to the present invention.
  • FIG. 12 is a diagram showing a semiconductor memory according to an example of the present invention.
  • FIG. 13 is a diagram illustrating an example of a memory cell array structure of a semiconductor memory.
  • FIG. 14 is a diagram illustrating an example of a memory cell array structure of a semiconductor memory.
  • FIG. 15 is a diagram illustrating an example of a memory cell array structure of a semiconductor memory.
  • FIG. 1 shows an example of the structure of a memory cell included in the information recording / reproducing apparatus according to the present invention.
  • 1A and 1B show examples of the planar shape of the memory cell
  • FIG. 1C shows an example of a cross section taken along the line II in FIGS. 1A and 1B. .
  • the recording layer 13 includes a central portion 13A and a peripheral portion 13B.
  • the first and second barrier layers 12 and 14 may be electrode layers.
  • these electrode layers are provided above and below the recording layer 13 and provide electrical connection to the recording layer 13, such as a barrier layer or a conductive layer having a function as a barrier layer. It shall mean that.
  • the rectifying element 11 has a rectifying characteristic and is provided to give directionality to the polarity of the potential difference between the bit line 10 and the word line 15.
  • the first barrier layer 12 and the second barrier layer 14 are provided above and below the recording layer 13 and provide electrical connection to the recording layer 13. Further, the first barrier layer 12 and the second barrier layer 14 may have a function as a barrier layer for preventing diffusion of elements between the recording layer 13 and its upper and lower components, for example. .
  • the rectifying element 14 for example, a Zener diode, a PN junction diode, a Schottky diode, a MIM (metal-insulator-metal) element, or the like can be used. It is desirable that the rectifying element 14 has a resistance value in a non-selected state (off) of 10 times or more of a resistance value in a selected state (on).
  • the central portion 13A of the recording layer is a composite compound having at least two kinds of cation elements, and at least one of the cation elements is deficiently filled with electrons. It is good also as a 1st compound which is a transition element which has an orbit, and the shortest distance between the said adjacent cation elements is 0.32 nm or less.
  • a 1st compound which is a transition element which has an orbit
  • the shortest distance between the said adjacent cation elements is 0.32 nm or less.
  • the peripheral portion 13B of the recording layer is a region in which the amount of one cation element is reduced from the two kinds of cation elements contained in the central portion 13A of the recording layer.
  • a small white circle in the recording layer 13 represents a first cation, and a large white circle represents an anion (oxygen ion).
  • a small black circle represents a second cation.
  • the initial state of the recording layer 13A is an insulator (high resistance state), and for recording, the recording layer 13A is phase-shifted by a potential gradient to make the recording layer 13A conductive (low). Resistance state). This will be described with reference to FIG.
  • bit line 10 is set to a fixed potential (for example, ground potential), a negative potential may be applied to the word line 15.
  • the first cation in the recording layer 13A moves to the second barrier layer 14 (cathode) side, and the first cation in the recording layer (crystal) 13A is relatively relative to the anion. Decrease.
  • the first cations that have moved to the second barrier layer 14 side receive electrons from the second barrier layer 14 and precipitate as metal, thereby forming the metal layer 17.
  • the recording layer 13A In the recording layer 13A, anions become excessive, and as a result, the valence of transition element ions (first cation or second cation) in the recording layer 13A is increased. That is, since the recording layer 13A has electron conductivity due to carrier injection, recording (set operation) is completed.
  • Reproduction can be easily performed by flowing a current pulse through the recording layer 13 and detecting the resistance value of the recording layer 13.
  • the current pulse needs to be a minute value that does not cause a change in resistance of the material constituting the recording layer 13A.
  • the above process is a kind of electrolysis, and an oxidizing agent is generated by electrochemical oxidation on the first barrier layer (anode) 12 side, and a reducing agent is generated by electrochemical reduction on the second barrier layer 14 side. Can be considered.
  • the recording layer 13 is Joule-heated by a large current pulse to promote the oxidation-reduction reaction of the recording layer 13A. Good. That is, the recording layer 13A returns to the insulator due to the residual heat after the interruption of the large current pulse (reset operation).
  • the reset operation can be performed by applying an electric field in the opposite direction to the set time. That is, if the bit line 10 is set to a fixed potential as in the setting, a positive potential may be applied to the word line 15. Then, in addition to the oxidation-reduction reaction by Joule heat, the metal layer in the vicinity of the second barrier layer 14 is oxidized to become the first cation, and returns to the host structure due to the potential gradient in the recording layer 13A. As a result, the transition element ion whose valence has increased is reduced to the same value as before the setting, and thus returns to the initial insulator. In order to apply the reverse electric field, for example, when a pn junction diode is used, Zener breakdown is used.
  • the former can be dealt with by setting the valence of the first cation to 2 or more.
  • the first cation is monovalent such as Li ion
  • sufficient ion migration resistance cannot be obtained in the set state, and the first cation element is immediately transferred from the metal layer 17 to the recording layer 13A. Will return to. In other words, a sufficiently long retention time cannot be obtained.
  • the first cation is trivalent or higher, the voltage required for the set operation increases, and in the worst case, it may cause crystal collapse.
  • the information recording / reproducing apparatus it is preferable for the information recording / reproducing apparatus that the first cation has a valence of two.
  • the layer of the first cation element is disposed in the direction connecting the electrodes.
  • the c-axis is preferably arranged in parallel with the recording layer.
  • the a-axis is arranged in parallel with the recording layer. Preferably it is.
  • the following materials may be mentioned as the first compound that can easily change resistance with low power consumption.
  • a spinel structure represented by A x M y X 4 (0.1 ⁇ x ⁇ 2.2,1.5 ⁇ y ⁇ 2).
  • a and M are different elements, and at least one of them is a transition element having a d orbital incompletely filled with electrons.
  • X is an element containing at least one selected from the group consisting of O (oxygen) and N (nitrogen).
  • A is Na, K, Rb, Be, Mg, Ca, Sr, Ba, Al, Ga, Mn, Fe, Co, Ni, Cu, Zn, S, P, S, Se, Ge, Ag, Au, Cd. , Sn, Sb, Pt, Pd, Hg, Tl, Pb, Bi. At least one element selected from the group.
  • A is preferably at least one element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Zn, Cd, and Hg. This is because, when these elements are used, the ionic radius for maintaining the crystal structure is optimal, and the ion mobility can be sufficiently secured. Further, it becomes easy to control the valence of ions to be divalent.
  • A is more preferably at least one element selected from Zn, Cd, and Hg. This is because the use of these elements facilitates the movement of cations.
  • M is at least one element selected from the group consisting of Al, Ga, Ti, Ge, Sn, V, Cr, Mn, Fe, Co, Ni, Nb, Ta, Mo, W, Re, Ru, and Rh. is there.
  • M is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Al, and Ga. Is preferred. This is because the use of these elements makes it easier to control the electronic state in the crystal.
  • M is more preferably at least one kind of transition element selected from the group of Cr, Mo, W, Mn, and Re (referred to as “group 1” for convenience). This is because when these elements are used, the matrix structure is stably maintained, so that switching can be stably repeated.
  • M includes at least one element selected from the group of Fe, Co, Ni, Al, and Ga in addition to the transition element of group 1. This is because when these elements are used in place of some of the elements of group 1, switching can be repeated more stably by maintaining the host structure more stably.
  • a delafossite structure represented by A x M y X 2 (0.1 ⁇ x ⁇ 1.1,0.9 ⁇ y ⁇ 1.1).
  • a and M are different elements, and at least one of them is a transition element having a d orbital incompletely filled with electrons.
  • X is an element containing at least one selected from the group consisting of O (oxygen) and N (nitrogen).
  • A is at least one element selected from the group of Li, Na, Be, Mg, Ca, Cu, Ag, Au, Pt, Pd, Rh, Hg, and Tl.
  • A is more preferably at least one element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Ag, and Zn. This is because, when these elements are used, the ionic radius for maintaining the crystal structure is optimal, and the ion mobility can be sufficiently secured. Further, it becomes easy to control the coordination number to 2.
  • A is preferably at least one element selected from the group of Cu and Ag. This is because when these elements are used, a delafossite structure can be easily obtained.
  • M is Al, Ga, Sc, In, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb, Lu, Ti, Ge, Sn, V, Cr, Mn , Fe, Co, Ni, Nb, Ta, Mo, W, Ru, Rh, and Pd. More preferably, M is at least one element selected from the group consisting of Y, Sc, V, Cr, Mn, Fe, Co, Ni, Al, and Ga. This is because the use of these elements makes it easier to control the electronic state in the crystal.
  • M is at least one element selected from the group of Fe, Co, and Al. This is because when these elements are used, a delafossite structure can be easily obtained.
  • a wolframite structure represented by A x M y X 4 (0.5 ⁇ x ⁇ 1.1, 0.7 ⁇ y ⁇ 1.1).
  • a and M are different elements, and at least one of them is a transition element having a d orbital incompletely filled with electrons.
  • X is an element containing at least one selected from the group consisting of O (oxygen) and N (nitrogen).
  • A is Na, K, Rb, Be, Mg, Ca, Sr, Ba, Al, Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Si, P, S, Se, Ge , Ag, Au, Cd, Sn, Sb, Pt, Pd, Hg, Tl, Pb, Bi.
  • A is preferably at least one element selected from the group consisting of Ti, V, Mn, Fe, Co, and Ni. This is because, when these elements are used, the ionic radius for maintaining the crystal structure is optimal, and the ion mobility can be sufficiently secured. Further, it becomes easy to control the valence of ions to be divalent.
  • A is more preferably at least one element selected from the group consisting of Mn, Fe, Co, and Ni. This is because the use of these elements can easily cause a resistance change.
  • M is at least one element selected from the group of V, Nb, Ta, Cr, Mn, Mo, W.
  • M is at least one element selected from the group of Cr, Mo, W. This is because when these elements are used, a wolframite structure can be easily obtained.
  • a and M are different elements, and at least one of them is a transition element having a d orbital incompletely filled with electrons.
  • X is an element containing at least one selected from the group consisting of O (oxygen) and N (nitrogen).
  • A is Na, K, Rb, Be, Mg, Ca, Sr, Ba, Al, Ga, Mn, Fe, Co, Ni, Cu, Zn, Si, P, S, Se, Ge, Ag, Au, Cd. , Sn, Sb, Pt, Pd, Hg, Tl, Pb, Bi.
  • A is preferably at least one element selected from the group consisting of Mg, Mn, Fe, Co, Ni and Zn. This is because, when these elements are used, the ionic radius for maintaining the crystal structure is optimal, and the ion mobility can be sufficiently secured. Further, it becomes easy to control the valence of ions to be divalent.
  • A is more preferably at least one element selected from the group of Fe and Ni. This is because when these elements are used, an ilmenite structure can be easily obtained.
  • M is at least one element selected from the group of Al, Ga, Ti, Ge, Sn, V, Cr, Mn, Fe, Co, Ni, Nb, Ta, Mo, W, Re, Ru, and Rh. is there.
  • M is more preferably at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mn, Fe, Co, and Ni. This is because the use of these elements makes it easier to control the electronic state in the crystal.
  • M is preferably at least one element selected from the group of Ti, Zr, Hf, V. This is because when these elements are used, an ilmenite structure can be easily obtained.
  • the barrier layer is required to have a function of preventing reaction with the recording layer, preventing diffusion of constituent elements of the recording layer, and electrically joining the recording layer and the adjacent layer.
  • the electrode layer is preferably formed from a material having no ion conductivity such as Ag or Cu.
  • the main point is to exclude materials having ion conductivity.
  • materials having ion conductivity For example, Ag, Cu, and the like are widely known as materials having ion conductivity.
  • EDX energyersdispersive X-ray fluorescence spectrometer
  • Examples of materials suitably used for the barrier layer include those shown below.
  • ⁇ MN M is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo, and W.
  • N is nitrogen.
  • ⁇ MO x M is selected from the group of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt At least one element.
  • the molar ratio x shall satisfy 1 ⁇ x ⁇ 4.
  • ⁇ AMO 3 A is at least one element selected from the group consisting of La, K, Ca, Sr, Ba, and Ln (Lanthanide).
  • M is selected from the group of Ti, V, Cr, Mn, Fe, Co, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt At least one element.
  • O is oxygen
  • a 2 MO 4 A is at least one element selected from the group of K, Ca, Sr, Ba, and Ln (Lanthanide).
  • M is selected from the group of Ti, V, Cr, Mn, Fe, Co, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt At least one element.
  • O is oxygen
  • the A ions diffuse to the insulating film material 16 side, and the materials contained in the recording layer and the insulating film may diffuse.
  • a barrier layer for preventing diffusion may be provided in advance between the first compound contained in the recording layer and the insulating film.
  • the peripheral portion 13B of the recording layer is formed for such a purpose and preferably has the following characteristics.
  • the A ions When A ions are present in the peripheral portion of the recording layer, the A ions are likely to diffuse into the insulating film material. Therefore, the A ions have a cation ratio with respect to B ions in the peripheral portion of the recording layer, and a cation ratio in the central portion. It is preferable that it is significantly smaller than. In this case, it is preferable that the cation ratio at the central portion of the recording layer is about 1/3 or less because the diffusion of A ions hardly occurs. (See Figure 2) Further, as shown in FIG. 3, the peripheral portion of the recording layer may have a different crystal structure from the central portion of the recording layer.
  • the first compound having a crystal structure in which the diffusion path of A ions is formed in a linear shape is preferable in the central portion of the recording layer, but the crystal structure in which the diffusion path is not formed in a linear shape in the peripheral portion of the recording layer. It is preferable that it is the 3rd compound which has. In this case, the first compound and the third compound may be mixed in the peripheral portion, which is the same as the central portion of the recording layer.
  • the cation volume density of B ions is improved. Since B ions have a higher valence than A ions, they are less likely to diffuse due to repulsion due to Coulomb force. Accordingly, when the volume density of B ions in the peripheral portion increases, atomic mixing is unlikely to occur between the recording layer and the insulating film.
  • the average distance between B ions may be small. This is also because the diffusion of A ions hardly occurs in this case.
  • the A ions are divalent or less and the A ions are likely to diffuse in the central portion of the recording layer, it is preferable that the A ions decrease in the peripheral portion of the recording layer.
  • the B ions are trivalent or more and difficult to diffuse in the central portion of the recording layer, it is preferable that the B ions increase in the peripheral portion of the recording layer.
  • the width of the peripheral portion of the recording layer is preferably about 1 nm to 5 nm.
  • the peripheral portion of the recording layer is 1/3 or less of the central portion of the recording layer. This is because, as a result of considering the change in the diffusion coefficient of A ions and the total amount of A ions, if the amount is 1/3 or less, the diffusion amount of A ions can be kept sufficiently small.
  • the peripheral portion of the recording layer may contain a third cation that is not included in the central portion of the recording layer.
  • the A ions that easily diffuse in the central portion of the recording layer are selected so that the ion radius is optimized and diffusion is likely to occur.
  • ions having a large ion radius are formed as A2 ions in the peripheral portion of the recording layer. If it is included, it becomes possible to prevent the A ions left in the central portion of the recording layer from diffusing into the insulating film material through the peripheral portion of the recording layer.
  • the A2 ion for example, Sr, Ba, Cd, Hg, La (lanthanoid) or the like can be used.
  • the peripheral part of the recording layer has the same crystal structure as the central part of the recording layer and the A2 ion occupies the position occupied by the A ion in the central part of the recording layer, the diffusion of A ions It is possible to cut off the path.
  • the volume of the periphery of the recording layer may change. Therefore, even when the recording layer is etched so as to be flat with the wall surfaces of the first barrier layer and the second barrier layer, the wall surface of the peripheral portion of the recording layer is flat with the wall surfaces of the first barrier layer and the second barrier layer. It may disappear.
  • the edge of the peripheral part of the recording layer is the interface between the B ions contained in the central part of the recording layer and the insulating film material. In general, this interface can be determined with an accuracy of about 1 nm.
  • FIG. 8 is a flowchart for illustrating Manufacturing Method Example 1.
  • 9 and 10 are schematic process cross-sectional views for illustrating Manufacturing Method Example 1. FIG. Hereinafter, a description will be given with reference to FIGS. 9 and 10.
  • a Si substrate protected by a thermal oxide film is planarized by using, for example, CMP (Chemical Mechanical Polishing) to form a substrate 21.
  • CMP Chemical Mechanical Polishing
  • a first wiring 10 (bit line) made of a conductive material is deposited on the substrate 21.
  • a metal such as W, Ta, Al, or Cu or an alloy thereof, a metal silicide, a nitride or carbide such as TiN or WC, or a highly doped silicon layer can be used.
  • the rectifying element 11 is deposited on the first wiring 10.
  • the rectifying element 11 is made of a diode, for example.
  • a semiconductor layer such as Si, Ge, or GaAs is provided.
  • the semiconductor layer is typically a polycrystalline silicon layer, but may be an amorphous layer.
  • a semiconductor layer for example, an n-type semiconductor layer that is lightly doped with a dopant (for example, n-type) opposite to this is provided.
  • a diode layer is formed.
  • a first barrier layer 12 is deposited on the rectifying element 11.
  • the material mentioned above is mentioned.
  • a recording layer 13 is deposited on the first barrier layer 12.
  • various materials can be used as the recording layer 13, but here, for example, the recording layer 13 made of ZnCr 2 O 4 having a spinel structure is deposited.
  • a deposition method for example, using a raw material (target) whose composition is adjusted so that ZnCr 2 O 4 is deposited, a temperature of 300 to 600 ° C., Ar (argon) 95%, O 2 (oxygen) 5% In this atmosphere, RF magnetron sputtering (radio frequency magnetron sputter) is performed to form ZnCr 2 O 4 having a thickness of about 20 nm.
  • the first barrier layer 12 is a layer having large crystal grains and the ratio of the lattice constant of the first barrier layer 12 to the lattice constant of the first compound 12A in the recording layer 13 is close to an integer, the crystal grains It is easy to obtain a large and oriented first compound 12A.
  • (110) -oriented TiN is used as the first barrier layer 12
  • the ratio of the lattice constant to the (110) -oriented spinel structure is almost an integer, so that the recording layer 13 is (110) -oriented.
  • a spinel structure is easily obtained.
  • a second barrier layer 14 is deposited on the recording layer 13.
  • Examples of the material of the second barrier layer 14 include the materials described above.
  • a mask material 18 is deposited on the second barrier layer 14.
  • a noble metal such as Pt can be used.
  • etching is performed along the first direction (X direction) by a pattern having a predetermined dimension, for example, by RIE (Reactive Ion Etching). Etching is performed to the depth of the interface between the substrate 21 and the first wiring 10. In this way, the first wiring 10, the rectifying element 11, the first barrier layer 12, the recording layer 13, and the second barrier layer 14 are patterned.
  • RIE Reactive Ion Etching
  • the processed body is oxidized.
  • the vicinity of the side surface of the recording layer 13 is oxidized.
  • the recording layer 13 when viewed from the X direction, structure 13A of the inner to the recording layer in the main surface: ZnCr has 2 O 4, Cr and Zn in the outer A region consisting of configuration 13B with a reduced ratio to.
  • the oxidation treatment is performed by heating the atmospheric temperature to about 300 degrees, it becomes easy to greatly change the ratio of the number of ions in the outer region, and a region containing a large amount of Cr 2 O 3 is formed.
  • an insulating material is deposited in the space generated by the etching, for example, by CVD (Chemical Vapor Deposition) to form the inter-element insulating layer 16.
  • CVD Chemical Vapor Deposition
  • planarization is performed by CMP, for example, so that the second barrier layer 14 is exposed.
  • a second wiring 15 made of a conductive material is uniformly deposited on the processed body.
  • a metal such as W, Ta, Al, or Cu or an alloy thereof, a metal silicide, a nitride or carbide such as TiN or WC, or a highly doped silicon layer can be used.
  • FIG. 10B corresponds to a cross-sectional view taken along the line AA in FIG.
  • etching is performed, for example, by RIE along the second direction (Y direction) with a pattern having a predetermined dimension. Etching is performed to the depth of the interface between the first wiring 10 and the rectifying element 11. In this manner, the rectifying element 11, the first barrier layer 12, the recording layer 13, the second barrier layer 14, and the second wiring 15 are patterned.
  • the recording layer 13 has the recording layer configuration 13 ⁇ / b> A: ZnCr 2 O 4 on the inner side in the main surface, as viewed from the Y direction, and Zn Cr on the outer side.
  • an insulating material is deposited by, for example, CVD in a space generated by etching, and the inter-element insulating layer 16 is formed. Thereby, the principal part of the cross-point type information recording / reproducing apparatus according to the specific example 1 is formed.
  • FIG. 11 is a plan view of an information recording / reproducing apparatus manufactured by Manufacturing Method Example 1. As shown in FIG. 11, in the information recording / reproducing apparatus, a recording unit is provided at a portion (cross point) where the first wiring 10 and the second wiring 15 intersect. This is a so-called cross-point cell array structure.
  • the recording layer 13 has a portion composed of the recording layer structure 13A on the inner side in the main surface when viewed from the X direction and the Y direction, and the M ions of A ions are relatively formed on the outer side from the structure of the recording layer 13A. It has the structure which has the part which consists of the structure 13B where the ratio with respect to decreased. Thereby, the effect mentioned above is acquired. That is, it becomes possible to cause a resistance change repeatedly and stably.
  • the diffusing first cation (A ion) and the second cation (M ion) constituting the base may be formed of the same element.
  • the valence of A ions needs to be smaller than the valence of M ions. This is a condition for the diffusion of A ions to occur more easily than the diffusion of M ions.
  • a material having a spinel structure represented by A x M y O 4 (0.1 ⁇ x ⁇ 2.2, 1.5 ⁇ y ⁇ 2) can be used as the first compound.
  • a ion and the M ion are one selected from Mn, Fe, and Co
  • a spinel in which the A ion is divalent and the M ion is trivalent can be easily formed.
  • the valence of M ions is on average 3 or more and 4 or less.
  • a part or all of the Mn ions (A ions) in the divalent state are oxidized to change into an ⁇ -Mn 2 O 3 structure. it can.
  • the ratio of the number of Mn ions in the divalent state to the number of Mn ions in the trivalent or higher state is reduced compared to the central region of the recording layer.
  • the average distance between trivalent Mn ions is reduced as compared with the central portion of the recording layer.
  • the width of the peripheral portion of the recording layer is preferably about 1 nm to 5 nm.
  • Hollandite structure ramsdellite structure, anatase structure, brookite structure, pyrolusite structure, ReO3 structure, MoO 1.5 PO 4 structure, TiO 0.5 PO 4 structure, FePO 4 structure, BetaMnO 2 structure, GanmaMnO 2 structure, RamudaMnO 2 structure Or a spinel structure intentionally provided with void sites.
  • first compound layer and the second compound layer may be laminated as shown in FIG.
  • the recording layer 13C made of the second compound having a void site that accommodates the A ions of the recording layer 13A is provided in contact with the first compound, the diffused A ion element tends to exist stably.
  • the power consumption required for resistance change is reduced, and the heat is stable. Can increase the sex.
  • a recording density of Pbpsi (peta bit per square inch) class can be realized, and further, low power consumption can be achieved. .
  • small white circles in the recording layer 13A represent A ions (for example, diffusion ions), small black circles in the recording layer 13A represent M ions (for example, host ions), and Large white circles represent X ions (eg, anions).
  • the white circle in the thick line in the recording layer 13C represents M2 ions (for example, transition element ions), and the shaded circle in the recording layer 13C represents X2 ions (for example, negative ions).
  • the first and second layers 13A and 13C constituting the recording layer 13 may be formed by alternately laminating two or more layers.
  • the A ions that have moved from the first layer 13A containing the first compound are accommodated in the void sites. Accordingly, in the second layer 13C, the valence of a part of A ions or M2 ions decreases, and in the first layer 13A, the valence of A ions or M ions increases. Therefore, at least one of the A ion and the M ion needs to be a transition element having a d orbital in which electrons are incompletely filled so that the valence can be easily changed.
  • the information recording / reproducing apparatus it is preferable for the information recording / reproducing apparatus to reduce the coordination number of A ions (ideally 2 or less) or to reduce the valence to two.
  • the first barrier layer 12 is not easily oxidized and does not have ionic conductivity (for example, electric conduction). It is desirable to use a functional oxide).
  • ionic conductivity for example, electric conduction.
  • a functional oxide The gist of using such a material and preferred examples thereof are as described above.
  • the reset operation may be performed by heating the recording layer 12 and promoting the phenomenon that the A ions stored in the void sites of the second layer 13C return to the first layer 13A.
  • the recording layer 13 can be easily returned to the original high resistance state (insulator) by using Joule heat generated by applying a large current pulse to the recording layer 13 and its residual heat. it can.
  • the reset operation can be performed by applying an electric field in the opposite direction to that at the time of setting.
  • a x M y X 4 (0.1 ⁇ x ⁇ 2.2, 1.5 ⁇ y ⁇ 2) having a structure like the recording portion shown in the first example and the second example.
  • the first compound 13A when the first compound 13A is oriented so that the movement path is arranged in the direction connecting the electrodes, it is preferable because the movement of the A ions in the first compound 13A becomes easy. Further, when the lattice constant of the first compound 13A and the lattice constant of the second compound 13C coincide with each other, even when a material that has a void site and is difficult to form is used, the orientation is easily controlled to form a film. This is preferable because it can be performed.
  • the film thickness of the second compound is preferably 1 nm or more.
  • the number of void sites in the second compound is larger than the number of A ions in the first compound, the resistance change effect of the second compound is reduced, so the number of void sites in the second compound is within the same cross-sectional area.
  • the number of A ions in a certain first compound is preferably the same or less.
  • the film thickness of the second compound should be the same as or smaller than the film thickness of the first compound. Is preferred.
  • a heater layer (a material having a resistivity of about 10 ⁇ 5 ⁇ cm or more) for further promoting the reset operation may be provided on the cathode side.
  • FIG. 12 shows a cross-point type semiconductor memory according to an example of the present invention.
  • bit lines BLi-1, BLi, BLi + 1 extend in the X direction
  • word lines WLj-1, WLj, WLj + 1 extend in the Y direction.
  • bit lines BLi-1, BLi, BLi + 1 is connected to the bit line driver & decoder 31 via a MOS transistor RSW as a selection switch, and one end of the word lines WLj-1, WLj, WLj + 1 is used as a selection switch.
  • the MOS transistor CSW is connected to the word line driver & decoder & read circuit 32.
  • Selection signals Ri-1, Ri, Ri + 1 for selecting one bit line (row) are inputted to the gate of the MOS transistor RSW, and one word line (column) is inputted to the gate of the MOS transistor CSW.
  • the selection signals Ci-1, Ci, Ci + 1 for selecting are input.
  • the memory cell 33 is arranged at the intersection of the bit lines BLi-1, BLi, BLi + 1 and the word lines WLj-1, WLj, WLj + 1. This is a so-called cross-point cell array structure.
  • a diode 34 for preventing a sneak current during recording / reproduction is added to the memory cell 33.
  • FIG. 13 shows the structure of the memory cell array portion of the semiconductor memory of FIG.
  • bit lines BLi-1, BLi, BLi + 1 and word lines WLj-1, WLj, WLj + 1 are arranged, and memory cells 33 and diodes 34 are arranged at intersections of these wirings.
  • cross-point type cell array structure is that it is advantageous for high integration because it is not necessary to individually connect a MOS transistor to the memory cell 33.
  • FIGS. 14 and 15 it is possible to stack the memory cells 33 to make the memory cell array have a three-dimensional structure.
  • the memory cell 33 has a stack structure of a first barrier layer 12, a recording layer 13, and a second barrier layer 14, for example, as shown in FIG.
  • One memory cell 33 stores 1-bit data.
  • a diode 34 is used as the rectifying element 14.
  • bit line BLi is set to a fixed potential (for example, ground potential)
  • a negative potential may be applied to the word line WLj.
  • the first cation is diffused in the recording layer 13 and the anion becomes excessive inside the recording layer 13.
  • the valence of the transition element ions in the recording layer 13 is increased.
  • the recording layer 13 becomes conductive, and the recording (setting operation) ends.
  • the unselected bit lines BLi ⁇ 1, BLi + 1 and the unselected word lines WLj ⁇ 1, WLj + 1 are all biased to the same potential.
  • bit lines BLi ⁇ 1, BLi, and BLi + 1 and all the word lines WLj ⁇ 1, WLj, and WLj + 1 are preferable to precharge all the bit lines BLi ⁇ 1, BLi, and BLi + 1 and all the word lines WLj ⁇ 1, WLj, and WLj + 1 during standby before information recording.
  • the voltage pulse for recording information may be generated by creating a state in which the potential of the bit line BLi is relatively higher than the potential of the word line WLj.
  • Information reproduction is performed by passing a voltage pulse through the memory cell 33 and detecting the resistance value of the memory cell 33.
  • the voltage pulse has a minute amplitude that does not cause a phase change in the material constituting the memory cell 33.
  • the read current generated by the read circuit is passed from the word line WLj to the memory cell 33, and the resistance value of the memory cell 33 is measured by the read circuit.
  • the memory cell 33 may be Joule-heated with a large current pulse to promote the oxidation-reduction reaction of the recording layer 13. That is, the recording layer 13 returns to the insulator due to the residual heat after the association of the large current pulse. (Reset operation) According to such a semiconductor memory, it is possible to realize higher recording density and lower power consumption than current hard disks and flash memories.
  • the example of the present invention is not limited to the above-described embodiment, and can be embodied by modifying each component without departing from the scope of the invention.
  • Various inventions can be configured by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some constituent elements may be deleted from all the constituent elements disclosed in the above-described embodiments, or constituent elements of different embodiments may be appropriately combined.
  • the example of the present invention has a great industrial advantage as a next generation memory having a higher recording density than the current nonvolatile memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 メモリセル動作の低電力化が可能なプログラマブル抵抗メモリ装置を提案する。本発明では、第1の層と、第2の層と、前記第1の層と前記第2の層との間に狭持され、前記第1の層と前記第2の層とを介して供給される電流により、抵抗が低い第1の状態と抵抗が高い第2の状態との間を可逆的に遷移可能な記録層と、を備え、前記記録層の周辺部は、前記記録層の中心部と異なる組成を有することを特徴とする情報記録再生装置とした。

Description

情報記録再生装置
 大容量を有する不揮発性半導体ランダム記憶装置に関する。
 近年、小型携帯機器が世界的に普及し、同時に、高速データ伝送網の大幅な進展に伴い、小型大容量不揮発性メモリの需要が急速に拡大してきている。その中でも、NAND型フラッシュメモリ及び小型HDD(hard disk drive)は、特に、急速な記録密度の進化を遂げ、大きな市場を形成するに至っている。
 一方、記録密度の限界を大幅に超えることを目指した新規メモリのアイデアがいくつか提案されている。
 例えば、PRAM(相変化メモリ)は、記録材料として、アモルファス状態(オフ)と結晶状態(オン)の2つの状態をとることができる材料を使用し、この2つの状態を2値データ“0”,“1”に対応させてデータを記録する、という原理を採用する。
 書き込み/消去に関しては、例えば、大電力パルスを記録材料に印加することによりアモルファス状態を作り、小電力パルスを記録材料に印加することにより結晶状態を作る。
 読み出しに関しては、記録材料に、書き込み/消去が起こらない程度の小さな読み出し電流を流し、記録材料の電気抵抗を測定することにより行う。アモルファス状態の記録材料の抵抗値は、結晶状態の記録材料の抵抗値よりも大きく、その差は、103程度である。
 また、PRAMとは異なるが、これと非常に似た動作原理を有する新規メモリが報告されている(例えば、特開2004-234707号公報を参照)。
 この報告によれば、データを記録する記録材料の代表例は、酸化ニッケルであり、PRAMと同様に、書き込み/消去には、大電力パルスと小電力パルスとを使用する。この場合、PRAMに比べて、書き込み/消去時の消費電力が小さくなる、という利点が報告されている。
 現在までのところ、この新規メモリの動作メカニズムについては解明されていないが、再現性については確認されており、高記録密度化への候補の他の一つとされる。また、動作メカニズムについても、いくつかのグループが解明を試みている。
 本発明の例では、繰り返し安定性の高い情報記録再生装置を提供する。
 本発明では、第1の層と、第2の層と、前記第1の層と前記第2の層との間に狭持され、前記第1の層と前記第2の層とを介して供給される電流により、抵抗が低い第1の状態と抵抗が高い第2の状態との間を可逆的に遷移可能な記録層と、を備え、前記記録層の周辺部は、前記記録層の中心部と異なる組成を有することを特徴とする情報記録再生装置とした。
 本発明の例に拠れば、繰り返し安定性の高い情報記録再生装置を提供できる。
図1は、本発明にかかる情報記録再生装置の一例を示す図である。 図2は、本発明にかかる記録層の断面の一例を示す図である。 図3は、本発明にかかる記録層の断面の一例を示す図である。 図4は、本発明にかかる記録層の断面の一例を示す図である。 図5は、本発明にかかる記録層の断面の一例を示す図である。 図6は、本発明にかかる記録層の断面の一例を示す図である。 図7は、本発明にかかる記録層の断面の一例を示す図である。 図8は、本発明にかかる記録層の製造方法の一例を示す図である。 図9は、本発明にかかる記録層の製造方法の一工程での断面を示す図である。 図10は、本発明にかかる記録層の製造方法の一工程での断面を示す図である。 図11は、本発明にかかる記録層の平面の一例を示す図である。 図12は、本発明の例に関わる半導体メモリを示す図である。 図13は、半導体メモリのメモリセルアレイ構造の例を示す図である。 図14は、半導体メモリのメモリセルアレイ構造の例を示す図である。 図15は、半導体メモリのメモリセルアレイ構造の例を示す図である。
 以下図面を参照しながら、本発明の例を実施するための最良の形態について説明する。
1.構造
 1-1 第1の例
 図1に本発明にかかる情報記録再生装置が有するメモリセルの構造の一例を示す。図1(a)及び(b)はメモリセルの平面形状の例を示し、図1(c)は、図1(a)及び(b)のI-I線に沿う断面の例を示している。
 10はビット線、11は整流素子、12は第1バリア層、13は記録層、14は第2バリア層、15はワード線を示す。これらのメモリセルは絶縁性材料16によって離間される。記録層13は、その中心部13Aと周辺部13Bとからなる。ここで、第1及び第2バリア層12,14は、電極層であってもよい。以下、電極層というときには、この電極層は、記録層13の上下に設けられ、記録層13に対して電気的接続を与えるもの、例えば、バリア層や、バリア層としての機能を有する導電層など、のことをいうものとする。
 整流素子11は、整流特性を有し、ビット線10とワード線15との電位差の極性に方向性を持たせるために設けられる。第1バリア層12および第2バリア層14は記録層13の上下に設けられ、記録層13に対して電気的接続を与える。また、第1バリア層12、第2バリア層14は、例えば、記録層13とその上下の構成要素との間の元素の拡散などを防止するバリア層としての機能を併有していてもよい。
 整流素子14には、例えば、ツェナーダイオード、PN接合ダイオード、ショットキーダイオード、MIM(金属-絶縁体-金属)素子等を用いることができる。整流素子14は、非選択状態(オフ)の抵抗値が選択状態(オン)の抵抗値の10倍以上であるものが望ましい。
 図1に示したメモリセルにおいて、記録層の中心部13Aは、少なくとも2種類の陽イオン元素を有する複合化合物であって、前記陽イオン元素の少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素であり、隣接する前記陽イオン元素間の最短距離は0.32nm以下である第1化合物としてもよい。このような化合物が、スピネル構造、イルメナイト構造、ウルフラマイト構造、デラフォサイト構造を有する場合には、電圧の印加によって抵抗変化が生じやすいため好ましい。
 記録層の周辺部13Bは、後述するように、前記記録層の中心部13Aに含まれる前記2種類の陽イオン元素から1種類の陽イオン元素量が減少した領域である。
 スピネル構造、イルメナイト構造、ウルフラマイト構造、デラフォサイト構造を有する記録層の中心部13Aにおける抵抗変化の原理について図2を用いて説明する。記録層13Aに関して詳細に示す。記録層13内の小さな白丸は、第1陽イオンを表し、大きな白丸は、陰イオン(酸素イオン)を表す。また、小さな黒丸は、第2陽イオンを表す。
 記録層13Aに電圧を印加し、記録層13A内に電位勾配を発生させると、第1陽イオンの一部が結晶中を移動する。そこで、本発明の例では、記録層13Aの初期状態を絶縁体(高抵抗状態)とし、記録に関しては、電位勾配により記録層13Aを相変化させ、記録層13Aに伝導性を持たせる(低抵抗状態)ことにより行う。これを図2を用いて説明する。
 まず、例えば、第2バリア層14の電位が第1バリア層12の電位よりも相対的に低い状態を作る。ビット線10を固定電位(例えば、接地電位)とすれば、ワード線15に負の電位を与えればよい。
 この時、記録層13A内の第1陽イオンの一部が第2バリア層14(陰極)側に移動し、記録層(結晶)13A内の第1陽イオンが陰イオンに対して相対的に減少する。第2バリア層14側に移動した第1陽イオンは、第2バリア層14から電子を受け取り、メタルとして析出するため、メタル層17を形成する。
 記録層13Aの内部では、陰イオンが過剰となり、結果的に、記録層13A内の遷移元素イオン(第1陽イオンあるいは第2陽イオン)の価数を上昇させる。つまり、記録層13Aは、キャリアの注入により電子伝導性を有するようになるため、記録(セット動作)が完了する。
 再生に関しては、電流パルスを記録層13に流し、記録層13の抵抗値を検出することにより容易に行える。但し、電流パルスは、記録層13Aを構成する材料が抵抗変化を起こさない程度の微小な値であることが必要である。
 以上の過程は、一種の電気分解であり、第1バリア層(陽極)12側では、電気化学的酸化により酸化剤が生じ、第2バリア層14側では、電気化学的還元により還元剤が生じた、と考えることができる。
 このため、記録状態(低抵抗状態)を初期状態(高抵抗状態)に戻すには、例えば、記録層13を大電流パルスによりジュール加熱して、記録層13Aの酸化還元反応を促進させればよい。即ち、大電流パルスの遮断後の残留熱により記録層13Aは、絶縁体に戻る(リセット動作)。
 あるいは、セット時とは逆向きの電場を印加することによってもリセット動作は可能である。つまり、セット時と同様にビット線10を固定電位とすれば、ワード線15に正の電位を与えればよい。すると、ジュール熱による酸化還元反応に加えて、第2バリア層14近傍のメタル層が酸化されて第1陽イオンとなり、記録層13A内の電位勾配により、母体構造の中に戻っていく。これにより価数が上昇していた遷移元素イオンはその価数がセット前と同じ値に減少するので、初期の絶縁体へと戻る。逆向きの電場を印加するためには、例えば、pn接合ダイオードを用いた場合には、Zenerブレークダウンを用いる。
 但し、この動作原理を実用化するには、室温でリセット動作が生じないこと(十分に長いリテンション時間の確保)と、リセット動作の消費電力が十分に小さいこととを確認しなければならない。
 前者に対しては、第1陽イオンの価数を2価以上にすることで対応できる。
 仮に、第1陽イオンがLiイオンのような1価であると、セット状態において十分なイオンの移動抵抗が得られず、即座に、第1陽イオン元素は、メタル層17から記録層13A内に戻ってしまう。言い換えれば、十分に長いリテンション時間が得られないということになる。
 また、第1陽イオンが3価以上であると、セット動作に必要とされる電圧が大きくなるため、最悪の場合には、結晶の崩壊を引き起こしかねない。
 従って、第1陽イオンの価数を2価にすることが、情報記録再生装置としては好ましいことになる。
 また、後者に対しては、結晶破壊を引き起こすことなく、記録層(結晶)12内を拡散イオンが移動できるように、第1陽イオン半径を最適化し、移動パスが存在する構造を用いることにより対応できる。そのような記録層13Aとしては、後述する元素及び結晶構造を採用すればよい。
 あるいは、デラフォサイト構造のように配位数が2と小さな陽イオンを第1陽イオンとして用いる場合には、その価数を+1価とし、クーロン反発力を減少させると、第1陽イオンの拡散が容易となり、また、拡散した後の状態を安定に保持することが可能となる。
 前述のように、電圧の印加によって、第1陽イオンの拡散を容易に生ぜしめるためには、電極間を結ぶ方向に第1陽イオン元素の層が配置していることが好ましい。このためには、スピネル構造、イルメナイト構造、デラフォサイト構造では、そのc軸が記録層と平行に配置していることが好ましく、ウルフラマイト構造では、そのa軸が記録層と平行に配置していることが好ましい。
 このように低消費電力で容易に抵抗変化を生じうる第1化合物としては以下の材料が挙げられる。
 例えば、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造である。AとMは、互いに異なる元素であり、少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素である。XはO(酸素)、N(窒素)よりなる群から選択された少なくともいずれかを含む元素である。
 Aは、Na,K,Rb,Be,Mg,Ca,Sr,Ba,Al,Ga,Mn,Fe,Co,Ni,Cu,Zn,S,P,S,Se,Ge,Ag,Au,Cd,Sn,Sb,Pt,Pd,Hg,Tl,Pb,Bi のグループから選択される少なくとも1種類の元素である。
 また、Aは、Mg,Mn,Fe,Co,Ni,Zn,Cd,Hg のグループから選択される少なくとも1種類の元素とするのが好ましい。これらの元素を使用すると、結晶構造を維持するためのイオン半径が最適となり、イオン移動度についても十分に確保できるからである。また、イオンの価数を2価に制御することが容易となる。
 また、Aは、Zn,Cd,Hg から選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、陽イオンの移動が生じやすくなるためである。 
 Mは、Al,Ga,Ti,Ge,Sn,V,Cr,Mn,Fe,Co,Ni,Nb,Ta,Mo,W,Re,Ru,Rh のグループから選択される少なくとも1種類の元素である。
 また、Mは、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Re,Fe,Co,Ni,Al,Ga のグループから選択される少なくとも1種類の元素とするのが好ましい。これらの元素を使用すると、結晶内の電子状態をコントロールし易くなるためである。
 また、Mは、Cr,Mo,W,Mn,Re のグループ(便宜上「グループ1」と称す)から選択される少なくとも1種類の遷移元素とするのがさらに好ましい。これらの元素を使用すると、母体構造が安定に保持されるため、安定にスイッチングを繰り返すことができるからである。
 また、Mは、Fe,Co,Ni,Al,Ga のグループから選択される少なくとも1種類の元素を、前記グループ1の遷移元素に加えて含むことがさらに好ましい。グループ1の元素の一部の代わりにこれらの元素を使用すると、母体構造がより安定に保持されることによって、より安定にスイッチングを繰り返すことができるためである。
 他には、例えば、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造である。AとMは、互いに異なる元素であり、少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素である。XはO(酸素)、N(窒素)よりなる群から選択された少なくともいずれかを含む元素である。
 Aは、Li,Na,Be,Mg,Ca,Cu,Ag,Au,Pt,Pd,Rh,Hg,Tl のグループから選択される少なくとも1種類の元素である。 
 また、Aは、Mg,Mn,Fe,Co,Ni,Cu,Ag,Zn のグループから選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、結晶構造を維持するためのイオン半径が最適となり、イオン移動度についても十分に確保できるからである。また、配位数を2に制御することが容易となる。
 また、Aは、Cu,Ag のグループから選択される少なくとも1種類の元素であることが好ましい。これらの元素を使用すると、容易にデラフォサイト構造をとることができるからである。
 Mは、Al,Ga,Sc,In,Y,La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Tb,Lu,Ti,Ge,Sn,V,Cr,Mn,Fe,Co,Ni,Nb,Ta,Mo,W,Ru,Rh,Pd のグループから選択される少なくとも1種類の元素である。 
 また、Mは、Y,Sc,V,Cr,Mn,Fe,Co,Ni,Al,Ga のグループから選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、結晶内の電子状態をコントロールし易くなるためである。
 また、Mは、Fe,Co,Al のグループから選択される少なくとも1種類の元素とすることがさらに好ましい。これらの元素を使用すると、容易にデラフォサイト構造をとることができるからである。
 他には、例えば、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造である。AとMは、互いに異なる元素であり、少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素である。XはO(酸素)、N(窒素)よりなる群から選択された少なくともいずれかを含む元素である。
 Aは、Na,K,Rb,Be,Mg,Ca,Sr,Ba,Al,Ga,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Si,P,S,Se,Ge,Ag,Au,Cd,Sn,Sb,Pt,Pd,Hg,Tl,Pb,Bi のグループから選択される少なくとも1種類の元素である。 
 また、Aは、Ti,V, Mn,Fe,Co,Ni のグループから選択される少なくとも1種類の元素とするのが好ましい。これらの元素を使用すると、結晶構造を維持するためのイオン半径が最適となり、イオン移動度についても十分に確保できるからである。また、イオンの価数を2価に制御することが容易となる。
 また、Aは、Mn,Fe,Co,Ni のグループから選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、容易に抵抗変化を起こすことができるからである。
 Mは、V,Nb,Ta,Cr,Mn,Mo,W のグループから選択される少なくとも1種類の元素である。
 また、Mは、Cr,Mo,W のグループから選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、容易にウルフラマイト構造をとることができるからである。
 他には、例えば、A(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造である。AとMは、互いに異なる元素であり、少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素である。XはO(酸素)、N(窒素)よりなる群から選択された少なくともいずれかを含む元素である。
 Aは、Na,K,Rb,Be,Mg,Ca,Sr,Ba,Al,Ga,Mn,Fe,Co,Ni,Cu,Zn,Si,P,S,Se,Ge,Ag,Au,Cd,Sn,Sb,Pt,Pd,Hg,Tl,Pb,Bi のグループから選択される少なくとも1種類の元素である。 
 また、Aは、Mg,Mn,Fe,Co,Ni,Zn のグループから選択される少なくとも1種類の元素とするのが好ましい。これらの元素を使用すると、結晶構造を維持するためのイオン半径が最適となり、イオン移動度についても十分に確保できるからである。また、イオンの価数を2価に制御することが容易となる。
 また、Aは、Fe, Niのグループから選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、容易にイルメナイト構造をとることができるからである。
 Mは、Al,Ga,Ti,Ge,Sn,V,Cr,Mn,Fe,Co,Ni,Nb,Ta,Mo,W,Re,Ru,Rh のグループから選択される少なくとも1種類の元素である。
 また、Mは、Ti,Zr,Hf,V,Nb,Ta,Cr,Mn,Fe,Co,Ni のグループから選択される少なくとも1種類の元素とするのがさらに好ましい。これらの元素を使用すると、結晶内の電子状態をコントロールし易くなるためである。
 また、Mは、Ti, Zr, Hf, V のグループから選択される少なくとも1種類の元素とするのが好ましい。これらの元素を使用すると、容易にイルメナイト構造をとることができるからである。
 なお、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造と、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造と、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造と、A(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造と、のモル比x,yに関し、数値範囲の下限は、結晶構造を維持するために設定され、その上限は、結晶内の電子状態をコントロールするために設定される。
 ところで、バリア層には、記録層との反応を防ぐ、記録層の構成元素の拡散を防ぐ、記録層と隣接する層とを電気的に接合する、という機能が求められる。さらに、電極層を構成する元素が記録層内に拡散しないためには、電極層はAgやCuなどのイオン伝導性を有しない材料から形成されているとよい。
 その主旨は、イオン伝導性を有する材料を除くことにある。例えば、イオン伝導性を有する材料としては、Ag, Cuなどが広く知られているが、これら元素を電極材料として用いた場合には、抵抗変化によりこれら元素が記録層内に拡散することが知られているからである。尚、記録層内へのAg, Cuの拡散現象は、EDX (energy dispersive X-ray fluorescence spectrometer: エネルギー分散型蛍光X線)分析などの分析方法によって確認することができる。
 バリア層として好適に用いられる材料としては、以下に示されるものがある。
 ・ MN 
 Mは、Ti, Zr, Hf, V, Nb, Ta, Mo, W のグループから選択される少なくとも1種類の元素である。Nは、窒素である。
 ・ MOx 
 Mは、Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt のグループから選択される少なくとも1種類の元素である。モル比xは、1≦x≦4を満たすものとする。
 ・ AMO3 
 Aは、La, K, Ca, Sr, Ba, Ln(Lanthanide) のグループから選択される少なくとも1種類の元素である。
 Mは、Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt のグループから選択される少なくとも1種類の元素である。
 Oは、酸素である。
 ・ A2MO4 
 Aは、K, Ca, Sr, Ba, Ln(Lanthanide) のグループから選択される少なくとも1種類の元素である。
 Mは、Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt のグループから選択される少なくとも1種類の元素である。
  Oは、酸素である。
 (周辺部)
 然るに、繰り返し抵抗変化を生じさせた場合には、Aイオンが絶縁膜材料16側に拡散し、記録層と絶縁膜に含まれる材料の拡散が生じうる。このような問題を回避するためには、予め記録層に含まれる第1化合物と絶縁膜との間に拡散を防止するバリア層を設ければよい。記録層の周辺部13Bはこのような目的で形成されたものであり、以下のような特徴を持つことが好ましい。
 Aイオンが記録層の周辺部に存在する場合には、Aイオンが絶縁膜材料内に拡散しやすくなるため、Aイオンは記録層の周辺部においてBイオンに対するカチオン比が、中心部におけるカチオン比と比べて大幅に小さくなっていることが好ましい。この場合、記録層の中心部におけるカチオン比の1/3程度以下になると、Aイオンの拡散が生じにくくなるため、好ましい。(図2参照)
 さらに、図3に示すように、記録層の周辺部においては、記録層の中心部と異なる結晶構造を有しても良い。つまり、記録層の中心部では、Aイオンの拡散パスが直線状に形成された結晶構造を有する第1化合物が好ましいが、記録層の周辺部では、拡散パスが直線状に形成されない結晶構造を有する第3化合物であることが好ましい。この場合、周辺部において、記録層の中心部と同じ第1化合物と、第3化合物の混合状態となっていてもかまわない。
 後述のように、素子を高温に保ちながら加工を行った場合には、記録層の周辺部において、Aイオンの混合比が減少し、BイオンとOイオンのみでは結晶状態を維持することが難しいため、通常のBイオンの酸化物が有する結晶系へと変化することがある。例えば、記録層の中心部において、スピネル構造を有するZnCrを第1化合物として用いた場合には、AイオンであるZnイオンが拡散するとCrという化合物が残される。この化合物を500℃程度に保つと、xx構造を有するCrへと変化させることができる。このとき、記録層の周辺部の導電性が、記録層の中心部の導電性と比較して小さい場合には、メモリセル部を流れる全電流が減少するため、低消費電力化が可能となる。
 記録層の周辺部では、Bイオンのカチオン体積密度が向上することが好ましい。Aイオンに比べてBイオンはその価数が大きいため、クーロン力による反発を受けて拡散しにくい。従って、周辺部におけるBイオンの体積密度が上昇した場合には、記録層と絶縁膜間で原子の混合が生じにくい。
 記録層の周辺部では、Bイオン間の平均距離が小さくなっていてもよい。この場合にも、Aイオンの拡散が生じにくくなるためである。
 前述のように、Aイオンが2価以下であってAイオンが記録層の中心部において拡散しやすい場合には、記録層の周辺部でAイオンが減少することが好ましい。また、Bイオンが3価以上であって記録層の中心部において拡散しにくい場合には、記録層の周辺部でBイオンが増加することが好ましい。
 通常のバリア層は1nmから5nm程度であるので、記録層の周辺部の幅も1nmから5nm程度であることが好ましい。
 前述のように、記録層の周辺部において第1化合物と第3化合物の混合状態となっている場合には、上記減少量あるいは増加量を定義することは容易ではない。このため、記録層の周辺部の特定の領域を決めて(例えば記録層端部から3nm幅まで)、その領域内でカチオン比、カチオンの体積密度などを計算し、この値と、記録層の周辺部を除く領域(例えば記録層の中心部)における値とを比較すればよい。カチオン比で考えると、記録層の周辺部では、記録層の中心部の1/3以下であることが好ましい。これは、Aイオンの拡散係数の変化分と、Aイオンの総量をあわせて考慮した結果、1/3以下であれば、Aイオンの拡散量が十分に小さく保てるからである。
 あるいは、記録層の周辺部には、図4に示すように、記録層の中心部には含まれない第3の陽イオンが含まれていても良い。記録層の中心部において拡散しやすいAイオンは、そのイオン半径を最適化し、拡散が生じやすいように選択したが、それとは逆に、A2イオンとしてイオン半径の大きなイオンが記録層の周辺部に含まれている場合には、記録層の中心部に残されたAイオンが記録層の周辺部を通って絶縁膜材料内に拡散することを防ぐことが可能となる。A2イオンとしては、例えば、Sr、Ba、Cd、Hg、La(ランタノイド)などを用いることが可能である。このとき、記録層の周辺部が記録層の中心部と同じ結晶構造を有し、記録層の中心部においてAイオンが占める位置を記録層の周辺部においてA2イオンが占めると、Aイオンの拡散パスを断ち切ることが可能である。
 記録層の周辺部において結晶系の変化が生じる場合には、記録層の周辺部の体積が変化する可能性がある。従って、記録層を第1バリア層および第2バリア層の壁面と平坦になるようにエッチング処理した場合にも記録層の周辺部の壁面は第1バリア層および第2バリア層の壁面と平坦でなくなる場合もある。このとき、記録層の周辺部の端部は記録層の中心部に含まれるBイオンと絶縁膜材料との界面とする。一般に、この界面は1nm程度の精度で決定することが可能である。
 (情報記録再生装置の製造方法)
 次に、具体的1に係るクロスポイント型の情報記録再生装置の製造方法について、図8~図11を参照しつつ説明する。
 図8は、製造方法例1を表すための流れ図である。図9及び図10は、製造方法例1を表すための模式工程断面図である。以下、図9及び図10を参照しつつ説明する。
 まず、図9(a)に表したように、例えば熱酸化膜で保護されたSi基板を、例えばCMP(Chemical Mechanical Polishing:化学機械研磨)を用いて平坦化して、基板21を形成する。
 基板21の上に、導電性材料からなる第1の配線10(ビット線)を堆積する。この導電性材料としては、W、Ta、Al、Cu等の金属もしくはこれらの合金、金属シリサイド、TiN、WC等の窒化物や炭化物、または高ドープのシリコン層などを用いることができる。
 第1の配線10の上に、整流素子11を堆積する。整流素子11は、例えば、ダイオードからなる。この場合、Si、Ge、GaAs等の半導体層が設けられる。半導体層は、典型的には多結晶シリコン層からなるが、アモルファス層でもよい。典型的には、高ドープの半導体層(例えばp型半導体層)を設けた後、これとは逆特性のドーパント(例えばn型)を低ドープした半導体層(例えばn型半導体層)を設けてダイオード層を形成する。
 整流素子11の上に、第1バリア層12を堆積する。例えば前述した材料が挙げられる。
 第1バリア層12の上に、記録層13を堆積する。記録層13としては、前述したように様々な材料を用いることができるが、ここでは、例えばスピネル構造を有するZnCrからなる記録層13を堆積する。堆積方法としては、例えば、ZnCrが堆積されるように組成が調整された原料(ターゲット)を用いて、温度300~600℃、Ar(アルゴン)95%、O(酸素)5%の雰囲気中で、RFマグネトロンスパッタ(radio frequency magnetron sputter)を行い、厚さ約20nmのZnCrを形成することが挙げられる。
 第1バリア層12が結晶粒の大きな層であり、かつ第1バリア層12の格子定数と記録層13中の第1化合物12Aの格子定数との比が整数に近い場合には、結晶粒が大きく、かつ配向した第1化合物12Aを得やすい。例えば、第1バリア層12として(110)配向したTiNを用いた場合には、(110)配向したスピネル構造との格子定数の比はほぼ整数となるので、記録層13として(110)配向したスピネル構造が得られやすい。
 その後、記録層13の上に、第2バリア層14を堆積する。第2バリア層14の材料には、例えば前述した材料が挙げられる。
 その後、第2バリア層14の上に、マスク材18を堆積する。マスク材18の材料には、例えば、Pt等の貴金属を用いることができる。
 その後、図9(b)に表したように、所定の寸法のパターンにより第1の方向(X方向)に沿って、例えばRIE(Reactive Ion Etching:反応性イオンエッチング)によりエッチングを行う。エッチングは、基板21と第1の配線10との界面の深さまで行う。このようにして、第1の配線10、整流素子11、第1バリア層12、記録層13、及び第2バリア層14がパターニングされる。
 その後、この加工体に対して酸化処理を行う。これにより、記録層13の側面近傍が酸化される。この結果、図9(b)に表したように、記録層13は、X方向から見て、主面内において内側に記録層の構成13A:ZnCrを有し、外側においてZnのCrに対する比が減少した構成13Bからなる領域を有する。雰囲気温度を300度程度に加熱して酸化処理を行うと、外側の領域でのイオン数の比を大きく変えることが容易となり、Crを多く含む領域が形成される。
 その後、エッチングにより生じた空間に、例えばCVD(Chemical Vapor Deposition:化学気相堆積)により絶縁性材料を堆積し、素子間絶縁層16を形成する。 
 次に、図10(a)に表したように、第2バリア層14が露出するように、例えばCMPにより平坦化を行う。
 次に、この加工体の上に、導電性材料からなる第2の配線15(ワード線)を一様に堆積する。この導電性材料としては、W、Ta、Al、Cu等の金属もしくはこれらの合金、金属シリサイド、TiN、WC等の窒化物や炭化物、または高ドープのシリコン層などを用いることができる。
 次に、図10(b)を参照しつつ説明する。図10(b)は、図10(a)のA-A線断面図に相当する。
 図10(b)に表したように、所定の寸法のパターンにより第2の方向(Y方向)に沿って、例えばRIEによりエッチングを行う。エッチングは、第1の配線10と整流素子11との界面の深さまで行う。このようにして、整流素子11、第1バリア層12、記録層13、第2バリア層14、及び第2の配線15がパターニングされる。
 次に、この加工体に対して酸化処理を行う。これにより、記録層13の側面近傍が酸化される。この結果、図10(c)に表したように、記録層13は、Y方向から見て、主面内において内側に記録層の構成13A:ZnCrを有し、外側においてZnのCrに対する比が減少した構成13Bからなる領域を有する。雰囲気温度を300度程度に加熱して酸化処理を行うと、外側の領域でのイオン数の比を大きく変えることが容易となり、Crを多く含む領域が形成される。
 その後、エッチングにより生じた空間に、例えばCVDにより絶縁性材料を堆積し、素子間絶縁層16を形成する。これにより、具体的1に係るクロスポイント型の情報記録再生装置の要部が形成される。
 図11は、製造方法例1により作製された情報記録再生装置の平面図である。図11に表したように、本情報記録再生装置では、第1の配線10と第2の配線15とが交叉した部分(クロスポイント)に記録部が設けられている。いわゆるクロスポイント型セルアレイ構造である。
 また、記録層13は、X方向及びY方向から見て、主面内において内側に記録層の構成13Aからなる部分を有し、外側に相対的に記録層13Aの構成からAイオンのMイオンに対する比が減少した構成13Bからなる部分を有する構造になっている。これにより、前述した効果が得られる。すなわち、繰り返し安定に抵抗変化を生じさせることが可能となる。
 1-2 第2の例
 (価数の異なる陽イオン)
 図5に示すように、拡散する第1陽イオン(Aイオン)と母体を構成する第2陽イオン(Mイオン)は同一の元素から形成されても良い。この場合、Aイオンの価数はMイオンの価数よりも小さい必要がある。これは、Aイオンの拡散がMイオンの拡散よりも生じやすいための条件である。
 例えば、第1化合物として、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造を有する材料を用いることができる。AイオンとMイオンが、Mn、Fe、Coから選択される1種である場合には、Aイオンが2価で、Mイオンが3価のスピネルを容易に形成することができる。あるいは、AイオンやMイオンが存在するサイトに欠損サイトがある場合には、Mイオンの価数は平均して3価以上4価以下となる。
 例えば、図9および図10を用いて示したエッチング後の酸化工程において、2価状態にあったMnイオン(Aイオン)の一部あるいは全部が酸化されてα-Mn2O3構造へと変化させることができる。このとき、記録層周辺領域では、記録層中心領域に比べて2価状態にあるMnイオン数の3価以上の状態にあるMnイオン数に対する比が減少する。また、記録層周辺では、記録層の中心部に比べて、3価のMnイオン間の平均距離が減少する。α-Mn2O3構造では、2価のMnイオンが拡散するためのパスをもたないので、記録層を抵抗変化させるために2価のMnイオンを記録層内で拡散させた場合にも、2価のMnイオンが層間絶縁膜内に拡散するのを抑制できる。従って、安定に繰り返し抵抗変化させることが可能となる。
 通常のバリア層は1nmから5nm程度であるので、記録層の周辺部の幅も1nmから5nm程度であることが好ましい。
 1-3 第3の例
 (積層型)
 さらに、図6に示すように、前述した第1陽イオンを収容する空隙サイトを有する第2の化合物からなる層13Cを、第1化合物層13A,13Bに接して設けると、拡散した第1陽イオン元素が安定に存在しやすいので、さらに好ましい。このような目的で好適に用いられる第2化合物層としては、以下のような材料が挙げられる。ホランダイト構造、ラムスデライト構造、アナターゼ構造、ブルッカイト構造、パイロルース構造、ReO3構造、MoO1.5PO構造、TiO0.5PO構造、FePO構造、βMnO構造、γMnO構造、λMnO構造、意図的に空隙サイトを設けたスピネル構造などである。
 さらに、第1化合物層と第2化合物層を積層して、図7に示すようにしてもよい。
 このように、記録層13AのAイオンを収容する空隙サイトを有する第2の化合物からなる記録層13Cを、第1の化合物に接して設けると、拡散したAイオン元素が安定に存在しやすくなる。このような材料の組み合わせを記録層に使用し、第1の層13Aと第2の層13Cと間のイオンの授受を容易にすることにより、抵抗変化に必要な消費電力を小さくし、熱安定性を高めることができる。また、このような材料の組み合わせを記録層に使用することで、原理的には、Pbpsi(peta bit per square inch)級の記録密度を実現することができ、さらに、低消費電力化も達成できる。
 図7に表した記録部において、記録層13A内の小さな白丸はAイオン(例えば、拡散イオン)を、記録層13A内の小さな黒丸はMイオン(例えば、母体イオン)を、記録層13A内の大きな白丸はXイオン(例えば、陰イオン)を表す。また、図7に表した記録部において、記録層13C内の太線の白丸はM2イオン(例えば、遷移元素イオン)を、記録層13C内の網掛けの丸はX2イオン(例えば、陰イオン)を表す。
 なお、図7に例示したように、記録層13を構成する第1及び第2の層13A,13Cは、それぞれ、2層以上の複数層を交互に積層してもよい。
 このような記録部において、第1の層13Aが陽極側、第2の層13Cが陰極側になるようにバリア層12、14に電位を与え、記録層13内に電位勾配を発生させると、第1化合物を含む第1の層13A内のAイオンの一部が結晶中を移動し、陰極側の第2の層13C内に進入する。
 第2の層13Cの結晶中には、Aイオンの空隙サイトがあるため、第1化合物を含む第1の層13Aから移動してきたAイオンは、この空隙サイトに収まる。 
 したがって、第2の層13C内では、AイオンあるいはM2イオンの一部の価数が減少し、第1の層13A内では、AイオンあるいはMイオンの価数が増加する。したがって、Aイオン、あるいはMイオンの少なくとも一方は、その価数が容易に変化できるように、電子が不完全に満たされたd軌道を有する遷移元素である必要がある。
 つまり、初期状態(リセット状態)において、第1及び第2の層13A,13Cが高抵抗状態(絶縁体)であると仮定すれば、第1の層13A内のAイオンの一部が第2の層13C内に移動することにより、第1及び第2の層13A,13Cの結晶中に電導キャリアが発生し、両者は、共に、電気伝導性を有するようになる。
 このように、電流/電圧パルスを記録層13に与えることにより、記録層13の電気抵抗値が小さくなるため、セット動作(記録)が実現される。
 この時、同時に、第1の層13Aから第2の層13Cに向かって電子も移動するが、第2の層13Cの電子のフェルミ準位は、第1の層13Aの電子のフェルミ準位よりも高いため、記録層13のトータルエネルギーとしては、上昇する。
 また、セット動作が完了した後も、このような高いエネルギー状態が継続されるため、記録層13は、自然に、セット状態(低抵抗状態)からリセット状態(高抵抗状態)に戻ってしまう可能性がある。
 しかし、本実施形態の例に係る記録層13を用いれば、このような懸念は回避される。すなわち、セット状態を維持し続けることができる。
 これは、いわゆるイオンの移動抵抗が働いているためである。前述のように、Aイオンの配位数を小さく(理想的には2以下に)する、あるいはその価数を2価にすることが、情報記録再生装置としては好ましい。
 ところで、セット動作が完了した後には、陽極側に酸化剤が生成されるため、この場合にも、第1バリア層12としては、酸化され難く、イオン伝導性を有しない材料(例えば、電気伝導性酸化物)を用いることが望ましい。このような材料を用いる主旨及びその好適な例については前述の通りである。
 リセット動作(消去)は、記録層12を加熱して、上述の第2の層13Cの空隙サイト内に収納されたAイオンが第1の層13A内に戻る、という現象を促進してやればよい。
 具体的には、記録層13に大電流パルスを与えることにより発生するジュール熱とその残留熱とを利用すれば、容易に、記録層13を元の高抵抗状態(絶縁体)に戻すことができる。
 このように、大電流パルスを記録層13に与えることにより、記録層13の電気抵抗値が大きくなるため、リセット動作(消去)が実現される。あるいは、セット時とは逆向きの電場を印加することによってもリセット動作は可能である。
 ここで、低消費電力を実現するには、結晶破壊を引き起こすことなく、結晶内をAイオンが移動できるように、Aイオンのイオン半径を最適化し、移動パスが存在する構造を用いることが重要になる。
 第2化合物13Cとして、上述したような材料及び結晶構造を用いた場合においては、このような条件を満たすことが可能となり、低消費電力を実現するのに有効となる。
 また、第1の例及び第2の例に表した記録部のような構造を有する、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造、またはA(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造、のいずれかの化合物内では、Aイオンの移動が容易に生じるので、第1化合物として用いるのに好適である。
 特に、その移動パスが電極間を結ぶ方向に配置するように、第1化合物13Aが配向している場合には、第1化合物13A内でのAイオンの移動が容易となるので、好ましい。さらに、第1化合物13Aの格子定数と第2化合物13Cの格子定数が一致する場合においては、空隙サイトがあり、成膜しにくい材料を用いた場合においても、容易に配向を制御して成膜することが可能となるので好ましい。
 次に、第2化合物の膜厚の好適な範囲について説明する。
 空隙サイトによるAイオン収納の効果を得るためには、第2化合物の膜厚は、1nm以上の膜厚であることが好ましい。 
 一方、第2化合物の空隙サイト数が第1化合物内のAイオン数よりも大きくなると、第2化合物の抵抗変化効果が小さくなるため、第2化合物内の空隙サイト数は、同じ断面積内にある第1化合物内のAイオン数と同じか、それより少ないことが好ましい。
 第1化合物内のAイオンの密度と第2化合物内の空隙サイトの密度は、概ね同じであるため、第2化合物の膜厚は、第1化合物の膜厚と同程度か、それより小さいことが好ましい。
 陰極側には、一般に、リセット動作をさらに促進するためのヒータ層(抵抗率約10-5Ωcm以上の材料)を設けてもよい。
 また、第2化合物層の周辺部において、第2化合物層の中心部と比較して空隙サイトが少ないと、抵抗変化を繰り返してAイオンの移動をさせた場合に、第2化合物層の側面から層間絶縁膜へのAイオンの拡散をより少なくすることができる。
 3.駆動方法
 図12は、本発明の例に関わるクロスポイント型半導体メモリを示している。
 ビット線BLi-1,BLi,BLi+1は、X方向に延び、ワード線WLj-1,WLj,WLj+1は、Y方向に延びる。
 ビット線BLi-1,BLi,BLi+1の一端は、選択スイッチとしてのMOSトランジスタRSWを経由してビット線ドライバ&デコーダ31に接続され、ワード線WLj-1,WLj,WLj+1の一端は、選択スイッチとしてのMOSトランジスタCSWを経由してワード線ドライバ&デコーダ&読み出し回路32に接続される。
 MOSトランジスタRSWのゲートには、1本のビット線(ロウ)を選択するための選択信号Ri-1,Ri,Ri+1が入力され、MOSトランジスタCSWのゲートには、1本のワード線(カラム)を選択するための選択信号Ci-1,Ci,Ci+1が入力される。
 メモリセル33は、ビット線BLi-1,BLi,BLi+1とワード線WLj-1,WLj,WLj+1との交差部に配置される。いわゆるクロスポイント型セルアレイ構造である。
 メモリセル33には、記録/再生時における回り込み電流(sneak current)を防止するためのダイオード34が付加される。
 図13は、図12の半導体メモリのメモリセルアレイ部の構造を示している。 
 半導体チップ30上には、ビット線BLi-1,BLi,BLi+1とワード線WLj-1,WLj,WLj+1が配置され、これら配線の交差部にメモリセル33及びダイオード34が配置される。
 このようなクロスポイント型セルアレイ構造の特長は、メモリセル33に個別にMOSトランジスタを接続する必要がないため、高集積化に有利な点にある。例えば、図14及び図15に示すように、メモリセル33を積み重ねて、メモリセルアレイを3次元構造にすることも可能である。
 メモリセル33は、例えば、図1に示すように、第1バリア層12、記録層13、第2バリア層14のスタック構造から構成される。1つのメモリセル33により1ビットデータを記憶する。本実施の形態では、整流素子14として、ダイオード34が用いられている。
 続いて記録/再生動作を説明する。
 情報記録(セット動作)は、選択されたメモリセル33に電位勾配を発生させて電流パルスを流せばよいため、例えば、ビット線BLiの電位がワード線WLjの電位よりも相対的に低い状態を作る。ビット線BLiを固定電位(例えば、接地電位)とすれば、ワード線WLjに負の電位を与えればよい。
 この時、記録層13で第1陽イオンの拡散が生じ、記録層13内部で陰イオンが過剰となるので、結果的に、記録層13内の遷移元素イオンの価数を上昇させる。これにより、記録層13は導電性を有するようになるため、記録(セット動作)が終了する。
 なお、情報記録時には、非選択のビット線BLi-1,BLi+1及び非選択のワード線WLj-1,WLj+1については、全て同電位にバイアスしておくことが好ましい。
 また、情報記録前のスタンバイ時には、全てのビット線BLi-1,BLi,BLi+1及び全てのワード線WLj-1,WLj,WLj+1をプリチャージしておくことが好ましい。
 また、情報記録のための電圧パルスは、ビット線BLiの電位がワード線WLjの電位よりも相対的に高い状態を作ることにより発生させてもよい。
 情報再生に関しては、電圧パルスをメモリセル33に流し、そのメモリセル33の抵抗値を検出することにより行う。但し、電圧パルスは、メモリセル33を構成する材料が相変化を起こさない程度の微小な振幅とすることが必要である。
 例えば、読み出し回路により発生した読み出し電流をワード線WLjからメモリセル33に流し、読み出し回路によりメモリセル33の抵抗値を測定する。
 消去(リセット)動作は、メモリセル33を大電流パルスによりジュール加熱して、記録層13の酸化還元反応を促進させればよい。即ち、大電流パルスの社団後の残留熱により、記録層13は、絶縁体に戻る。(リセット動作)
 このような半導体メモリによれば、現在のハードディスクやフラッシュメモリよりも高記録密度及び低消費電力を実現できる。
 4.発明の効果
 本発明の例に拠れば、記録層周辺から陽イオンが拡散するのを防止できるため、繰り返し安定性の高い情報記録再生装置を提供できる。
 本発明の例は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、各構成要素を変形して具体化できる。また、上述の実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を構成できる。例えば、上述の実施形態に開示される全構成要素から幾つかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。
 本発明の例は、現在の不揮発性メモリより大きな記録密度を有する次世代メモリとして産業上のメリットは多大である。

Claims (22)

  1.  第1の層と、
     第2の層と、
     前記第1の層と前記第2の層との間に狭持され、前記第1の層と前記第2の層とを介して供給される電流により、抵抗が低い第1の状態と抵抗が高い第2の状態との間を可逆的に遷移可能な記録層と、
     を備え、
     前記記録層の周辺部は、前記記録層の中心部と異なる組成を有し、前記中心部は、少なくとも2種の陽イオン元素を含み、前記陽イオン元素の元素数比が、前記中心部と前記周辺部で異なることを特徴とする情報記録再生装置。
  2.  前記記録層の中心部に含まれる前記2種類の陽イオン元素のうち1種類の陽イオン元素に関しては、前記周辺部において、前記中心部の陽イオン比の1/3以下であることを特徴とする請求項1に記載の情報記録再生装置。
  3.  前記記録層の周辺部で、前記記録層の中心部よりもその比が増大する陽イオンの体積密度は、前記記録層の周辺部において前記記録層の中心部よりも高いことを特徴とする請求項1に記載の情報記録再生装置。
  4.  前記記録層の周辺部で、前記記録層の中心部よりもその比が増大する陽イオン間の平均距離は、前記記録層の周辺部において前記記録層の中心部よりも小さいことを特徴とする請求項1に記載の情報記録再生装置。
  5.  前記記録層の中心部には、2価である陽イオン元素と3価以上である陽イオン元素を含むことを特徴とする請求項1に記載の情報記録再生装置。
  6.  前記周辺部において、前記中心部の陽イオン比の1/3以下である元素は前記2価の陽イオン元素であることを特徴とする請求項5に記載の情報記録再生装置。
  7.  第1の層と、
     第2の層と、
     前記第1の層と前記第2の層との間に狭持され、前記第1の層と前記第2の層とを介して供給される電流により、抵抗が低い第1の状態と抵抗が高い第2の状態との間を可逆的に遷移可能な記録層と、
     を備え、
     前記記録層の周辺部は、前記記録層の中心部と異なる組成を有し、前記中心部は、少なくとも2種の価数状態を含む陽イオン元素を含み、前記陽イオン元素の価数比が、前記中心部と前記周辺部で異なることを特徴とする請求項1記載の情報記録再生装置。
  8.  前記記録層の周辺部では、2価である陽イオン元素数の3価以上である陽イオン元素数の比が、前記記録層の中心部に対して少ない状態にあることを特徴とする請求項7に記載の情報記録再生装置。
  9.  前記2価である陽イオン元素の前記3価以上である陽イオン元素に対する比が、前記記録層の周辺部において前記記録層の中心部の1/3以下であることを特徴とする請求項8に記載の情報記録再生装置。
  10.  前記記録層の中心部に含まれる前記陽イオン元素の少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素であり、隣接する前記陽イオン元素間の最短距離は0.32nm以下である第1化合物を含む第1の層を有することを特徴とする請求項1に記載の情報記録再生装置。
  11.  前記記録層の中心部に含まれる前記陽イオン元素の少なくともいずれかは電子が不完全に満たされたd軌道を有する遷移元素であり、隣接する前記陽イオン元素間の最短距離は0.32nm以下である第1化合物を含む第1の層を有することを特徴とする請求項7に記載の情報記録再生装置。
  12.  前記第1化合物は、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造、及びA(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造のいずれかを有することを特徴とする請求項10記載の情報記録再生装置。
  13.  前記第1化合物は、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造を有することを特徴とする請求項11記載の情報記録再生装置。
  14.  前記第1化合物はスピネル構造を有し、前記記録層の中心部よりも前記記録層の周辺部で陽イオン元素比が減少するイオン元素は、Zn、Cd、Hgから選択される少なくとも1種であることを特徴とする請求項12に記載の情報記録再生装置。
  15.  前記第1化合物は、スピネル構造を有し、前記記録層の中心部よりも前記記録層の周辺部でイオン元素比が増大するイオン元素は、Cr、Mnから選択される少なくとも1種であることを特徴とする請求項12に記載の情報記録再生装置。
  16.  前記第1化合物は、スピネル構造を有し、前記AおよびMは、Fe、Co、Mnから選択される少なくとも1種であることを特徴とする請求項13に記載の情報記録再生装置。
  17.  前記周辺部の幅は、1nm以上5nm以下であることを特徴とする請求項1に記載の情報記録再生装置。
  18.  前記周辺部の幅は、1nm以上5nm以下であることを特徴とする請求項7に記載の情報記録再生装置。
  19.  前記記録層の周辺部には、前記第1から第4化合物に示すA、M、X以外の元素A2が含まれることを特徴とする請求項12に記載の情報記録再生装置。
  20.  前記記録層の周辺部には、前記第1から第4化合物に示すA、M、X以外の元素A2が含まれることを特徴とする請求項13に記載の情報記録再生装置。
  21.  前期記録層の周辺部は、前記記録層の中心部と同様の結晶構造を有し、前記A2は、前記記録層の中心部におけるAイオンが占める位置に配置されていることを特徴とする請求項19に記載の情報記録再生装置。
  22.  前期記録層の周辺部は、前記記録層の中心部と同様の結晶構造を有し、前記A2は、前記記録層の中心部におけるAイオンが占める位置に配置されていることを特徴とする請求項20に記載の情報記録再生装置。
PCT/JP2008/057365 2008-04-15 2008-04-15 情報記録再生装置 WO2009128142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/057365 WO2009128142A1 (ja) 2008-04-15 2008-04-15 情報記録再生装置
JP2010508057A JP5300839B2 (ja) 2008-04-15 2008-04-15 情報記録再生装置
TW098112393A TWI404203B (zh) 2008-04-15 2009-04-14 Information recording and reproducing device
US12/889,558 US8288748B2 (en) 2008-04-15 2010-09-24 Information recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/057365 WO2009128142A1 (ja) 2008-04-15 2008-04-15 情報記録再生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/889,558 Continuation US8288748B2 (en) 2008-04-15 2010-09-24 Information recording and reproducing device

Publications (1)

Publication Number Publication Date
WO2009128142A1 true WO2009128142A1 (ja) 2009-10-22

Family

ID=41198853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057365 WO2009128142A1 (ja) 2008-04-15 2008-04-15 情報記録再生装置

Country Status (4)

Country Link
US (1) US8288748B2 (ja)
JP (1) JP5300839B2 (ja)
TW (1) TWI404203B (ja)
WO (1) WO2009128142A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450714B2 (en) 2010-03-19 2013-05-28 Kabushiki Kaisha Toshiba Semiconductor memory device including variable resistance element or phase-change element
US8574957B2 (en) 2010-11-12 2013-11-05 Panasonic Corporation Method for manufacturing nonvolatile semiconductor memory element
JP2013541204A (ja) * 2010-09-16 2013-11-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ナノスケールスイッチングデバイス
JP2014528656A (ja) * 2011-10-17 2014-10-27 マイクロン テクノロジー, インク. メモリセルおよびメモリセルアレイ
US8889478B2 (en) 2010-11-19 2014-11-18 Panasonic Corporation Method for manufacturing nonvolatile semiconductor memory element, and nonvolatile semiconductor memory element
EP2549535B1 (en) * 2010-03-19 2015-11-04 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile memory element and production method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830725B2 (en) * 2011-08-15 2014-09-09 International Business Machines Corporation Low temperature BEOL compatible diode having high voltage margins for use in large arrays of electronic components
JP2022112884A (ja) * 2021-01-22 2022-08-03 キオクシア株式会社 半導体記憶装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533118A (ja) * 2004-04-16 2007-11-15 松下電器産業株式会社 可変抵抗を有するメモリデバイス
JP2008503425A (ja) * 2004-06-16 2008-02-07 コーニング インコーポレイテッド ナノ結晶子ガラスセラミックおよびその製造方法
JP2008084512A (ja) * 2005-12-13 2008-04-10 Toshiba Corp 情報記録再生装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004230B1 (ko) * 1984-08-24 1989-10-27 가부시끼가이샤 도오시바 광(光) 디스크 메모리
US4757492A (en) * 1984-12-26 1988-07-12 Kabushiki Kaisha Toshiba Method for recording and reproducing information on or from an optical recording medium
KR100242859B1 (ko) * 1991-06-20 2000-02-01 가나이 쓰도무 광특성 변형방법, 광학장치, 정보기록매체 그리고 정보기록 방법 및 장치
US5889756A (en) * 1996-07-25 1999-03-30 Kabushiki Kaisha Toshiba Phase change optical recording medium
JP4249992B2 (ja) 2002-12-04 2009-04-08 シャープ株式会社 半導体記憶装置及びメモリセルの書き込み並びに消去方法
JP2005122872A (ja) * 2003-09-22 2005-05-12 Ricoh Co Ltd 2層相変化型情報記録媒体及びその記録再生方法
JP2006080259A (ja) 2004-09-09 2006-03-23 Matsushita Electric Ind Co Ltd 抵抗変化素子およびそれを用いた不揮発性メモリ、ならびにこれらの製造方法
US7733684B2 (en) 2005-12-13 2010-06-08 Kabushiki Kaisha Toshiba Data read/write device
WO2009104239A1 (ja) * 2008-02-18 2009-08-27 株式会社 東芝 不揮発性記憶装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533118A (ja) * 2004-04-16 2007-11-15 松下電器産業株式会社 可変抵抗を有するメモリデバイス
JP2008503425A (ja) * 2004-06-16 2008-02-07 コーニング インコーポレイテッド ナノ結晶子ガラスセラミックおよびその製造方法
JP2008084512A (ja) * 2005-12-13 2008-04-10 Toshiba Corp 情報記録再生装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450714B2 (en) 2010-03-19 2013-05-28 Kabushiki Kaisha Toshiba Semiconductor memory device including variable resistance element or phase-change element
EP2549535B1 (en) * 2010-03-19 2015-11-04 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile memory element and production method therefor
JP2013541204A (ja) * 2010-09-16 2013-11-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ナノスケールスイッチングデバイス
US9040948B2 (en) 2010-09-16 2015-05-26 Hewlett-Packard Development Company, L.P. Nanoscale switching device
US8574957B2 (en) 2010-11-12 2013-11-05 Panasonic Corporation Method for manufacturing nonvolatile semiconductor memory element
US8889478B2 (en) 2010-11-19 2014-11-18 Panasonic Corporation Method for manufacturing nonvolatile semiconductor memory element, and nonvolatile semiconductor memory element
JP2014528656A (ja) * 2011-10-17 2014-10-27 マイクロン テクノロジー, インク. メモリセルおよびメモリセルアレイ
US9123888B2 (en) 2011-10-17 2015-09-01 Micron Technology, Inc. Memory cells and memory cell arrays
US9214627B2 (en) 2011-10-17 2015-12-15 Micron Technology, Inc. Memory cell arrays

Also Published As

Publication number Publication date
JPWO2009128142A1 (ja) 2011-08-04
TWI404203B (zh) 2013-08-01
US8288748B2 (en) 2012-10-16
TW201007940A (en) 2010-02-16
US20110062405A1 (en) 2011-03-17
JP5300839B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
US8089796B2 (en) Information recording and reproducing device
JP5300839B2 (ja) 情報記録再生装置
JP4792006B2 (ja) 情報記録再生装置
JP4792007B2 (ja) 情報記録再生装置
JP5175525B2 (ja) 不揮発性半導体記憶装置
JP4791948B2 (ja) 情報記録再生装置
JP5351144B2 (ja) 情報記録再生装置
JP4792010B2 (ja) 情報記録再生装置
TWI395327B (zh) Information recording and reproducing device
JP4792008B2 (ja) 情報記録再生装置
JP4908555B2 (ja) 情報記録再生装置
TW200839765A (en) Information recording/reproducing device
US8416606B2 (en) Information recording and reproducing device
US20100074001A1 (en) Information recording/reproducing device
WO2009116139A1 (ja) 情報記録再生装置
WO2009098734A1 (ja) 情報記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508057

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740451

Country of ref document: EP

Kind code of ref document: A1