WO2009127721A1 - Procede pour ebavurer un noyau de fonderie en matiere ceramique - Google Patents

Procede pour ebavurer un noyau de fonderie en matiere ceramique Download PDF

Info

Publication number
WO2009127721A1
WO2009127721A1 PCT/EP2009/054591 EP2009054591W WO2009127721A1 WO 2009127721 A1 WO2009127721 A1 WO 2009127721A1 EP 2009054591 W EP2009054591 W EP 2009054591W WO 2009127721 A1 WO2009127721 A1 WO 2009127721A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
deburring
surface portion
ceramic
core
Prior art date
Application number
PCT/EP2009/054591
Other languages
English (en)
Inventor
Christian Defrocourt
Serge Prigent
Daniel Quach
Patrick Wehrer
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to JP2011504476A priority Critical patent/JP5416762B2/ja
Priority to US12/988,447 priority patent/US8490673B2/en
Priority to CA2721449A priority patent/CA2721449C/fr
Priority to EP09732323.2A priority patent/EP2274141B1/fr
Priority to BRPI0910569-7A priority patent/BRPI0910569B1/pt
Priority to RU2010146980/02A priority patent/RU2501639C2/ru
Priority to CN2009801216015A priority patent/CN102056717B/zh
Publication of WO2009127721A1 publication Critical patent/WO2009127721A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/18Apparatus or processes for treating or working the shaped or preshaped articles for removing burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain

Definitions

  • the present invention relates to the finishing of parts obtained by injection of a ceramic paste into a mold formed of the assembly of at least two parts, along a joint plane.
  • the invention relates more particularly to the elimination of burrs in the area of the joint plane of the two parts.
  • the invention relates to ceramic cores used in the manufacture of hollow turbine engine blades by the lost wax foundry technique.
  • foundry cores of a type called “ceramic” is particularly known in certain applications that require the achievement of a set of characteristics and stringent quality criteria such as resistance to high temperatures, lack of reactivity , dimensional stability and good mechanical characteristics.
  • these applications having such requirements there are known aeronautical applications and for example the foundry turbine blades for turbojet engines.
  • the refinement of foundry processes from the foundry known as equiaxed to the foundry by directed solidification or monocrystalline has further increased these requirements for cores whose use and complexity are imposed by the search for high performance for parts to obtain, as is the case for example for hollow vanes with internal cooling.
  • the complex crystalline structure sought in the dawn is not compatible with the burrs on the core. These can become detached during casting and pollute the room by creating inclusions and / or geometric defects. A burr that stays in place creates a crack in the room and therefore a breakaway. The cores must therefore be deburred.
  • a method, for deburring a ceramic casting core obtained by injection of a ceramic paste, said paste comprising a binder with a determined glass transition temperature, in a mold and having at least one a surface portion with a surplus of material forming a flash to be eliminated characterized in that it comprises the following steps: a. arranging and fixing the molded foundry core, before baking, on a support, b. place an elongated milling tool with a helical cutting edge on a tool holder, c. rotating the tool about its axis and bringing the milling tool into contact with said surface portion to be deburred, d. cooling the surface portion to be deburred so as to maintain it at a temperature below said glass transition temperature during the deburring operation.
  • the invention by deburring before firing the foundry core, it avoids the problem of dimensional variation of the core and opens the possibility of carrying out this operation by means of a controller. Automation ensures a better repeatability of deburring from one core to another. This results in a better deburring quality and a reduction in room breakage. Better kernel quality also reduces crack initiation. The result is a reduction in manufacturing cycles, which reduces costs.
  • an angle-propeller milling tool of between 20 and 70 ° and a hemispherical end is used.
  • the cut material is dragged away from the cutting area, reducing the risk of jamming.
  • the cutting parameters are,
  • the cooling is provided by diffusion of a fluid towards the surface portion to be deburred. This is for example air.
  • the method is particularly suitable for deburring ceramic cores of turbomachine blades. It makes it possible in particular to reduce the creep primers of the cast products.
  • a device for finishing ceramic cores of casting parts comprising a support for said core, a mandrel forming a tool-holder rotatable about its axis and at least one nozzle of injection of cooling fluid.
  • FIG. 1 represents the diagram of a turbomachine blade core
  • FIG. 2 represents the core of FIG. 1 at the outlet of the injection mold with the flash to be eliminated
  • FIG. 3 shows a milling cutter during deburring of the core
  • FIG. 4 shows the diagram of a cutter deburring position of a piece of ceramic material
  • FIG. 5 shows a device according to the invention.
  • FIG. 1 represents an exemplary piece consisting of a core element for a hollow turbine engine blade.
  • the envelope of this element 10 has the shape of the internal cavity of the hollow blade once it has been melted.
  • the element 10 comprises an upper portion 10A which will constitute the designated bath part of the blade. This part is separated from the central body 10B by a space which will constitute the transverse upper wall of the hollow blade.
  • This central portion 10B is extended downwardly by the foot 10D which is used for gripping and fixing the core in the shell mold in which the molten metal is cast.
  • the central portion is hollowed out with longitudinal openings 10B 'which will constitute the internal partitions defining the circuit of the cooling fluid to inside the dawn cavity.
  • the part 1OB extends laterally on one side by a part of the trailing edge 1OC finer and having openings 1OC which will constitute partitions between them channels that open along the trailing edge of the blade for evacuation coolant.
  • the core is intended after casting of the metal and its cooling to be removed to release the circulation cavity of the cooling air of the blade.
  • This piece is obtained by injection of a ceramic paste using a press.
  • the paste is obtained by mixing a binder, an organic polymer, and particles of ceramic materials.
  • the mixture is injected by means of injection presses, such as screw injection presses, into a metal injection mold.
  • This mold is formed of an assembly of at least two elements with cavity which are brought into contact with each other along a junction surface which is commonly referred to as joint plane.
  • joint plane a junction surface which is commonly referred to as joint plane.
  • the paste gradually spreads from the inlet to the volume formed by the fingerprints. However material passes and infiltrates between the surfaces of the joint plane. When demolding, this excess material forms the burrs.
  • FIG. 2 shows the appearance of the core of FIG. 1 at the outlet of the injection mold.
  • burr Bl which runs along the contour of the nucleus.
  • Another burr B2 is visible along the inner edges of the recesses 10C in the trailing edge area 1OC.
  • a burr B3 is also seen along the edges of the recesses 10B 'in the area 10B.
  • the rest of the process of manufacturing the core consists, after the injection, to unmold the core, bake it in a furnace at high temperature, then to ensure its finishing and dimensional control.
  • the purpose of the finish is to remove the burrs B1, B2, B3. They can be removed either just after the injection of the mixture, it is a deburring before cooking or after cooking it is then a deburring core in the cooked state.
  • the material is removed before firing, on the part after injection of the polymer-ceramic mixture in order to eliminate said problems related to the deformation of the part during and after firing.
  • the method of the invention defines core cutting parameters taking into account the intrinsic properties of the material thereof.
  • polyethylene glycol for example, has properties that can change in the vicinity of room temperature, in particular it tends to soften. This causes, when attacking the material forming the burr with a conventional milling, stuffing material. This material jam eventually prevents the removal of the burr.
  • FIG. 3 shows the mode of application of the cutter 100 which is guided along the edge of the piece 10 comprising a burr.
  • the material constituting the burr B is cut by the cutting edge 100B in the form of a longitudinal helix. By this helical shape is avoided material jams along the mill 100. The material is removed continuously and the chips removed.
  • the inclination of the helix is defined by a helix angle ⁇ of between 20 and 70 degrees preferably between 35 and 65 degrees.
  • the diameter of the cutter suitable for this operation given the narrow spaces formed by the recesses is between 0.5 and 1 mm.
  • the end of the cutter is preferably hemispherical.
  • the material constituting the flash is maintained at a temperature below the glass transition temperature.
  • One way is to provide nozzles that expel cool air towards the end of the moving cutter.
  • the temperature is maintained between 16 and 26 ° C.
  • the tool is rotated on itself along the burr to be eliminated.
  • the cutting and feed speeds are adapted to the profile. For example they differ between the contour and the pocket of the core or the grooves at the exit of the trailing edge.
  • the illustrative cutting speed is between 5 and 25 m per minute and the feed rate is between 400 and 1800 mm per minute.
  • FIG. 4 shows the relative arrangement of the tool with respect to the part.
  • the piece 10 is fixed on a support 300 so as to make its contour accessible to a cutter 100 itself mounted on a mandrel 200 forming a tool holder.
  • the air injection nozzle 400 or any other suitable cooling fluid is directed on the surface of the portion of the workpiece to be deburred.
  • Figure 5 shows a deburring device.
  • the mandrel 200 is secured to a rotating support 210 which itself can be mounted on a milling machine, not shown, with three axes for example.
  • a fixed plate 220 serves to support the nozzle 400 via a bracket 410 adjustable in position. The plate may have several nozzles as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Milling Processes (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

La présente invention concerne un procédé pour ébavurer un noyau de fonderie (10) en matière céramique obtenue par injection d'une pâte céramique, ladite pâte comprenant un liant de température de transition vitreuse déterminée, dans un moule et présentant au moins une portion de surface avec un surplus de matière formant une bavure (B) à éliminer. Le procédé est caractérisé par le fait qu'il comprend les étapes suivantes : a) disposer et fixer le noyau de fonderie (10) moulé, non cuit, sur un support (300), b) placer un outil de fraisage (100) de forme allongée avec un bord de coupe en hélice sur un porte-outil, c) entraîner en rotation l'outil autour de son axe et mettre en contact l'outil de fraisage avec ladite portion de surface à ébavurer d). refroidir (400) la portion de surface à ébavurer de manière à maintenir le noyau de fonderie à une température inférieure à ladite température de transition vitreuse pendant l'opération d'ébavurage.

Description

PROCEDE POUR EBAVURER UN NOYAU DE FONDERIE EN
MATIERE CERAMIQUE
La présente invention porte sur la finition de pièces obtenues par injection d'une pâte céramique dans un moule formé de l'assemblage d'au moins deux parties, le long d'un plan de joint. L'invention se rapporte plus particulièrement à l'élimination des bavures dans la zone du plan de joint des deux parties. L'invention vise les noyaux céramiques utilisés dans la fabrication des aubes creuses de turbomachines par la technique de fonderie à la cire perdue.
L'utilisation de noyaux de fonderie d'un type dit « céramique » est notamment connue dans certaines applications qui imposent l'obtention d'un ensemble de caractéristiques et de critères sévères de qualité comme la tenue aux hautes températures, l'absence de réactivité, la stabilité dimensionnelle et de bonnes caractéristiques mécaniques. Parmi ces applications présentant de telles exigences, on connaît les applications aéronautiques et par exemple l'obtention en fonderie d'aubes de turbine pour turboréacteurs. Le perfectionnement des procédés de fonderie évoluant de la fonderie connue sous le nom équiaxe à la fonderie par solidification dirigée ou monocristalline a encore accru ces exigences concernant les noyaux dont l'utilisation et la complexité sont imposées par la recherche des hautes performances pour les pièces à obtenir, comme c'est le cas par exemple pour les aubes creuses à refroidissement interne.
La structure cristalline complexe recherchée dans l'aube n'est pas compatible avec les bavures sur le noyau. Celles-ci peuvent se détacher lors de la coulée et venir polluer la pièce en créant des inclusions et/ou des défauts géométriques. Une bavure qui reste en place crée une fissure dans la pièce et par conséquent une amorce de rupture. Les noyaux doivent donc être ébavurés.
Cette opération est classiquement réalisée manuellement après la cuisson. Cependant l'ébavurage manuel des noyaux fins et complexes comme par exemple les noyaux d'aubes mobiles des étages à haute pression HP ou bien les distributeurs fixes HP, est de plus en plus difficile à réaliser de manière précise et répétable. En effet, il faut être capable de réaliser en série ces opérations de haute précision. De plus ces opérations répétées sur noyaux peuvent engendrer chez les opérateurs des troubles musculo- squelettiques (TMS) dommageables pour leur santé. L'ébavurage manuel présente le risque de générer des taux élevés de rebuts avec des défauts tels que les suivants : amorces de criques, casse de noyaux lors de la manutention, manque de répétitivité, écaillage du noyau entraînant des inclusions dans les pièces de métal.
On a cherché à automatiser le procédé d'ébavurage de la pièce après cuisson. Cependant les résultats ne sont pas satisfaisants car la déformation des pièces est mal connue en raison du retrait après cuisson. Ce retrait rend l'ébavurage par usinage très délicat et pouvant difficilement être automatisé.
On résout ce problème avec un procédé, selon l'invention, pour ébavurer un noyau de fonderie en matière céramique obtenue par injection d'une pâte céramique, ladite pâte comprenant un liant de température de transition vitreuse déterminée, dans un moule et présentant au moins une portion de surface avec un surplus de matière formant une bavure à éliminer, caractérisé par le fait qu'il comprend les étapes suivantes : a. disposer et fixer le noyau de fonderie moulé, avant cuisson, sur un support, b. placer un outil de fraisage de forme allongée avec un bord de coupe en hélice sur un porte-outil, c. entraîner en rotation l'outil autour de son axe et mettre en contact l'outil de fraisage avec ladite portion de surface à ébavurer, d. refroidir la portion de surface à ébavurer de manière à la maintenir à une température inférieure à ladite température de transition vitreuse pendant l'opération d'ébavurage.
Grâce à l'invention, en procédant à l'ébavurage avant cuisson du noyau de fonderie, on évite le problème de la variation dimensionnelle du noyau et on ouvre la possibilité de procéder à cette opération au moyen d'un automate. Par l'automatisation on assure une meilleure répétitivité de l'ébavurage d'un noyau à l'autre. Il s'ensuit une meilleure qualité d'ébavurage et une diminution de la casse de pièce. Une meilleure qualité du noyau permet aussi de réduire les amorces de criques. Il s'ensuit une diminution des cycles de fabrication d'où une réduction des coûts.
On utilise avantageusement un outil de fraisage à hélice d'angle compris entre 20 et 70° et à bout hémisphérique. De cette façon on entraîne et on éloigne la matière coupée de la zone de coupe en réduisant les risques de bourrage. Plus particulièrement les paramètres de coupe sont,
- une vitesse de coupe comprise entre 5 et 30 m/min,
- une vitesse d'avance de l'outil comprise entre 300 et 2000 mm/min, et - une vitesse de rotation de l'outil comprise entre 2000 et 15000 tr/min.
Conformément à une autre caractéristique, le refroidissement est assuré par diffusion d'un fluide en direction de la portion de surface à ébavurer. Il s'agit par exemple d'air.
Le procédé convient particulièrement à l'ébavurage de noyaux céramiques d'aubes de turbomachine. Il permet notamment une diminution des amorces de criques des produits coulés.
Pour la mise en œuvre du procédé, on utilise de préférence un dispositif de finition de noyaux céramiques de pièces de fonderie comprenant un support pour ledit noyau, un mandrin formant porte-outil mobile en rotation autour de son axe et au moins une buse d'injection de fluide de refroidissement.
On décrit maintenant le procédé plus en détail en référence aux dessins annexés sur lesquels :
- la figure 1 représente le schéma d'un noyau d'aube de turbomachine, - la figure 2 représente le noyau de la figure 1 en sortie du moule d'injection avec la bavure à éliminer,
- la figure 3 montre une fraise en cours d'ébavurage du noyau,
- la figure 4 représente le schéma d'une fraise en position d'ébavurage d'une pièce en matière céramique, - la figure 5 montre un dispositif conforme à l'invention.
La figure 1 représente un exemple de pièce constitué d'un élément de noyau pour aube creuse de turbomachine. L'enveloppe de cet élément 10 a la forme de la cavité intérieure de l'aube creuse une fois que celle-ci aura été fondue. L'élément 10 comporte une partie supérieure 10A qui constituera la partie désignée baignoire de l'aube. Cette partie est séparée du corps central 10B par un espace qui constituera la paroi supérieure transversale de l'aube creuse. Cette partie centrale 10B est prolongée vers le bas par le pied 10D qui sert à la préhension et la fixation du noyau dans le moule carapace dans lequel est coulé le métal en fusion. La partie centrale est creusée d'ouvertures longitudinales 10B' qui constitueront les cloisons internes définissant le circuit du fluide de refroidissement à l'intérieur de la cavité de l'aube. La partie 1OB se prolonge latéralement d'un côté par une partie du bord de fuite 1OC plus fine et comportant des ouvertures 1OC qui constitueront des cloisons ménageant entre elles des canaux qui débouchent le long du bord de fuite de l'aube pour l'évacuation du fluide de refroidissement. Le noyau est destiné après coulée du métal et son refroidissement à être éliminé pour libérer la cavité de circulation de l'air de refroidissement de l'aube.
Cette pièce, assez complexe, est obtenue par injection d'une pâte céramique à l'aide d'une presse. La pâte est obtenue par mélange d'un liant, un polymère organique, et de particules de matières céramiques. Le mélange est injecté par le moyen de presses d'injection, telles que des presses d'injection à vis, dans un moule d'injection métallique. Ce moule est formé d'un assemblage d'au moins deux éléments avec empreinte qui sont mis en contact l'un avec l'autre le long d'une surface de jonction que l'on désigne communément plan de joint. Par l'injection, la pâte se répand progressivement depuis l'orifice d'entrée dans le volume ménagé par les empreintes. Cependant de la matière passe et s'infiltre entre les surfaces du plan de joint. Au démoulage cette matière en surplus forme les bavures. On a représenté sur la figure 2, l'aspect du noyau de la figure 1 en sortie du moule d'injection. Les zones correspondant aux plans de joint des parties du moule sont prolongées d'une bavure. Par exemple, on voit la bavure Bl qui longe le contour du noyau. Une autre bavure B2 est visible le long des bords internes des évidements 10C dans la zone du bord de fuite 1OC On voit également une bavure B3 le long des bords des évidements 10B' dans la zone 10B.
La suite du procédé de fabrication du noyau consiste, après l'injection, à démouler le noyau, le cuire dans un four à haute température, puis à assurer sa finition et le contrôle dimensionnel.
La finition a pour but d'enlever les bavures Bl, B2, B3. Elles peuvent être enlevées soit juste après l'injection du mélange, il s'agit d'un ébavurage avant cuisson ou bien après la cuisson il s'agit alors d'un ébavurage de noyau à l'état cuit.
L' ébavurage habituellement fait à la main peut générer de nombreux défauts tels que rapportés plus haut.
Des essais d' ébavurage automatique au moyen d'outils de coupe tels que des fraises ont été réalisés sur des noyaux après cuisson. Ils ne donnent pas de résultat concluant en raison notamment du fait que les noyaux à l'état cuit ont de l'un à l'autre des retraits de cuisson différents. La position de l'outil ne peut de ce fait être définie avec précision de façon répétée du fait de l'usure de la fraise due à l'abrasion et à la dureté du noyau à l'état cuit. Il y aurait nécessité de contrôler finement les zones 1OA, 1OB, 1OB', 1OC, 1OC avant ébavurage.
Conformément à l'invention, on enlève la matière avant cuisson, sur la pièce après injection du mélange polymère - céramique afin de supprimer lesdits problèmes liés à la déformation de la pièce pendant et après la cuisson.
Le procédé de l'invention définit des paramètres de coupe du noyau tenant compte des propriétés intrinsèques du matériau de celle ci.
En effet le type de liant polymère que l'on mélange à la céramique, polyéthylène glycol par exemple, présente des propriétés qui peuvent changer au voisinage de la température ambiante, en particulier il a tendance à se ramollir. Cela engendre, lorsqu'on attaque la matière formant la bavure avec une fraise conventionnelle, un bourrage de matière. Ce bourrage de matière finit par empêcher l'enlèvement de la bavure.
Conformément à une caractéristique de l'invention, on utilise une fraise hélicoïdale, c'est-à-dire avec un bord de coupe longitudinal en forme d'hélice.
On a représenté sur la figure 3 le mode d'application de la fraise 100 qui est guidée le long du bord de la pièce 10 comportant une bavure. La matière constituant la bavure B est entamée par le bord coupant 100B en forme d'hélice longitudinale. Par cette forme en hélice on évite les bourrages de matière le long de la fraise 100. La matière est enlevée de manière continue et les copeaux évacués.
L'inclinaison de l'hélice est définie par un angle d'hélice α compris entre 20 et 70 degrés de préférence entre 35 et 65 degrés.
Le diamètre de la fraise convenant à cette opération compte tenu des espaces étroits formés par les évidements est compris entre 0,5 et 1 mm. L'extrémité de la fraise est de préférence hémisphérique.
Conformément à une autre caractéristique de l'invention, on maintient la matière constituant la bavure à une température inférieure à la température de transition vitreuse. Un moyen consiste à ménager des buses expulsant de l'air frais en direction de l'extrémité de la fraise en mouvement. Par exemple pour du PEG la température est maintenue entre 16 et 26°C.
On déplace l'outil mis en rotation sur lui-même le long de la bavure à éliminer. Les vitesses de coupe et d'avance sont adaptées au profil. Par exemple elles diffèrent entre le contour et la poche du noyau ou bien les rainures en sortie du bord de fuite.
La vitesse de coupe à titre d'illustration est comprise entre 5 et 25 m par minute et la vitesse d'avance est comprise entre 400 et 1800 mm par minute.
On a représenté sur la figure 4, la disposition relative de l'outil par rapport à la pièce. La pièce 10 est fixée sur un support 300 de façon à rendre son contour accessible à une fraise 100 elle-même montée sur un mandrin 200 formant porte-outil. La buse 400 d'injection d'air ou tout autre fluide de refroidissement convenable, est dirigée sur la surface de la portion de la pièce à ébavurer.
La figure 5 montre un dispositif d'ébavurage. Le mandrin 200 est solidaire d'un support 210 rotatif qui lui-même peut être monté sur une fraiseuse non représentée, à trois axes par exemple. Une platine 220, fixe, sert de support à la buse 400 par l'intermédiaire d'une potence 410 ajustable en position. La platine est susceptible de comporter plusieurs buses selon les besoins.

Claims

Revendications
1. Procédé pour ébavurer un noyau de fonderie (10) en matière céramique obtenue par injection d'une pâte céramique, ladite pâte comprenant un liant de température de transition vitreuse déterminée, dans un moule et présentant au moins une portion de surface avec un surplus de matière formant une bavure (B) à éliminer, caractérisé par le fait qu'il comprend les étapes suivantes : a. disposer et fixer le noyau de fonderie moulé, non cuit, sur un support (300), b. placer un outil de fraisage (100) de forme allongée avec un bord de coupe en hélice sur un porte outil, c. entraîner en rotation l'outil autour de son axe et mettre en contact l'outil de fraisage avec ladite portion de surface à ébavurer d. refroidir la portion de surface à ébavurer de manière à maintenir la pièce à une température inférieure à ladite température de transition vitreuse pendant l'opération d'ébavurage.
2. Procédé selon la revendication 1, selon lequel on utilise un outil de fraisage (100) à hélice d'angle compris entre 20 et 70° et à bout hémisphérique.
3. Procédé selon la revendication précédente, dont les paramètres de coupe sont une vitesse de coupe comprise entre 5 et 30 m/min, une vitesse d'avance de l'outil comprise entre 300 et 2000 mm/min, et une vitesse de rotation de l'outil comprise entre 2000 et 15000 tr/min.
4. Procédé selon l'une des revendications précédentes dont le refroidissement est assuré par diffusion (400) de fluide en direction de la portion de surface à ébavurer.
5. Procédé selon la revendication précédente dont le fluide de refroidissement est de l'air.
6. Procédé pour ébavurer un noyau céramique d'aube de turbomachine selon l'une des revendications précédentes.
7. Utilisation d'un dispositif de finition de noyaux céramiques de pièces de fonderie pour la mise en œuvre du procédé selon la revendication 1 comprenant un support de noyau de fonderie non cuit, un mandrin formant porte-outil mobile en rotation autour de son axe et une buse d'injection de fluide de refroidissement.
PCT/EP2009/054591 2008-04-18 2009-04-17 Procede pour ebavurer un noyau de fonderie en matiere ceramique WO2009127721A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011504476A JP5416762B2 (ja) 2008-04-18 2009-04-17 セラミック鋳物中子をバリ取りする方法
US12/988,447 US8490673B2 (en) 2008-04-18 2009-04-17 Method for deburring a ceramic foundry core
CA2721449A CA2721449C (fr) 2008-04-18 2009-04-17 Procede pour ebavurer un noyau de fonderie en matiere ceramique
EP09732323.2A EP2274141B1 (fr) 2008-04-18 2009-04-17 Procede pour ebavurer un noyau de fonderie en matiere ceramique et utilisation d'un dispositif pour la mise en oeuvre d'un tel procede
BRPI0910569-7A BRPI0910569B1 (pt) 2008-04-18 2009-04-17 Processo para rebarbar um núcleo de fundição feito de matéria cerâmica de pá de turbomáquina e utilização de um dispositivo de acabamento de núcleos cerâmicos de peças de fundição para a execução de tal processo
RU2010146980/02A RU2501639C2 (ru) 2008-04-18 2009-04-17 Способ удаления заусенцев с литейного стержня из керамического материала
CN2009801216015A CN102056717B (zh) 2008-04-18 2009-04-17 修整陶瓷铸造型芯的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/02179 2008-04-18
FR0802179A FR2930188B1 (fr) 2008-04-18 2008-04-18 Procede pour ebavurer une piece en matiere ceramique.

Publications (1)

Publication Number Publication Date
WO2009127721A1 true WO2009127721A1 (fr) 2009-10-22

Family

ID=40243939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054591 WO2009127721A1 (fr) 2008-04-18 2009-04-17 Procede pour ebavurer un noyau de fonderie en matiere ceramique

Country Status (9)

Country Link
US (1) US8490673B2 (fr)
EP (1) EP2274141B1 (fr)
JP (1) JP5416762B2 (fr)
CN (1) CN102056717B (fr)
BR (1) BRPI0910569B1 (fr)
CA (1) CA2721449C (fr)
FR (1) FR2930188B1 (fr)
RU (1) RU2501639C2 (fr)
WO (1) WO2009127721A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977510A1 (fr) * 2011-07-08 2013-01-11 Snecma Noyau de fonderie, procede de fabrication d'une aube de turbine utilisant un tel noyau.
DE102013013268A1 (de) 2013-08-08 2015-02-12 Technische Hochschule Mittelhessen Verfahren zur Verwertung von Zuckerrübenschnitzel und anderer cellulosehaltiger Biomasse durch Doppelcarbonisierung
CN105234350A (zh) * 2015-11-17 2016-01-13 沈阳明禾石英制品有限责任公司 一种厚大且尺寸突变陶瓷型芯及其制备方法
FR3046736A1 (fr) * 2016-01-15 2017-07-21 Safran Noyau refractaire comprenant un corps principal et une coque
EP3470457A1 (fr) 2017-10-10 2019-04-17 Continental Reifen Deutschland GmbH Mélange de caoutchouc réticulable au soufre, vulcanisation de mélange de caoutchouc et pneumatique pour véhicule

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550760B (zh) * 2014-12-31 2016-07-06 北京钢研高纳科技股份有限公司 一种可溶芯修补方法
CN106514876B (zh) * 2016-09-27 2018-03-09 淮阴工学院 氧化锆陶瓷的切削方法
FR3059259B1 (fr) 2016-11-29 2019-05-10 Jy'nove Procede de fabrication d'un noyau ceramique de fonderie
US10814454B2 (en) 2018-05-24 2020-10-27 General Electric Company Tool guide for tie bar removal from casting cores

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579705A (en) * 1982-11-26 1986-04-01 Tokyo Shibaura Denki Kabushiki Kaisha Process for producing ceramic products
JPH07256544A (ja) * 1994-03-23 1995-10-09 Ngk Insulators Ltd セラミックス製ロータのバリ取り方法及びバリ取り装置
EP0708067A1 (fr) * 1994-10-19 1996-04-24 Ngk Insulators, Ltd. Matériau céramique et procédé et fabrication d'un produit céramique l'utilisant
US20040087256A1 (en) * 2002-11-06 2004-05-06 Schwartz Brian J. Flank superabrasive machining

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268607A (ja) * 1986-05-19 1987-11-21 株式会社東芝 セラミツクスの機械加工方法およびその装置
FR2626794B1 (fr) * 1988-02-10 1993-07-02 Snecma Pate thermoplastique pour la preparation de noyaux de fonderie et procede de preparation desdits noyaux
SU1634506A1 (ru) * 1988-04-18 1991-03-15 Винницкий политехнический институт Устройство дл зачистки керамических изделий
US5465780A (en) * 1993-11-23 1995-11-14 Alliedsignal Inc. Laser machining of ceramic cores
JP2003205495A (ja) * 2002-01-11 2003-07-22 Murata Mfg Co Ltd グリーンシートの積層装置
JP4202665B2 (ja) * 2002-03-27 2008-12-24 日本特殊陶業株式会社 焼成済セラミック成形体の製造方法、及びセラミックヒータの製造方法
FR2878458B1 (fr) * 2004-11-26 2008-07-11 Snecma Moteurs Sa Procede de fabrication de noyaux ceramiques de fonderie pour aubes de turbomachines, outil pour la mise en oeuvre du procede
JP4736578B2 (ja) * 2005-07-11 2011-07-27 Tdk株式会社 グリーンシート積層体切断装置
FR2900850B1 (fr) * 2006-05-10 2009-02-06 Snecma Sa Procede de fabrication de noyaux ceramiques de fonderie pour aubes de turbomachine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579705A (en) * 1982-11-26 1986-04-01 Tokyo Shibaura Denki Kabushiki Kaisha Process for producing ceramic products
JPH07256544A (ja) * 1994-03-23 1995-10-09 Ngk Insulators Ltd セラミックス製ロータのバリ取り方法及びバリ取り装置
EP0708067A1 (fr) * 1994-10-19 1996-04-24 Ngk Insulators, Ltd. Matériau céramique et procédé et fabrication d'un produit céramique l'utilisant
US20040087256A1 (en) * 2002-11-06 2004-05-06 Schwartz Brian J. Flank superabrasive machining

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SP3 INC.: "MACHINING GUIDES FOR DIABIDE CUTTING TOOLS", 31 December 2000 (2000-12-31), XP002537150, Retrieved from the Internet <URL:http://www.sp3cuttingtools.com/pdf/greencrm.pdf> [retrieved on 20090714] *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977510A1 (fr) * 2011-07-08 2013-01-11 Snecma Noyau de fonderie, procede de fabrication d'une aube de turbine utilisant un tel noyau.
DE102013013268A1 (de) 2013-08-08 2015-02-12 Technische Hochschule Mittelhessen Verfahren zur Verwertung von Zuckerrübenschnitzel und anderer cellulosehaltiger Biomasse durch Doppelcarbonisierung
CN105234350A (zh) * 2015-11-17 2016-01-13 沈阳明禾石英制品有限责任公司 一种厚大且尺寸突变陶瓷型芯及其制备方法
CN105234350B (zh) * 2015-11-17 2017-05-03 沈阳明禾石英制品有限责任公司 一种厚大且尺寸突变陶瓷型芯及其制备方法
FR3046736A1 (fr) * 2016-01-15 2017-07-21 Safran Noyau refractaire comprenant un corps principal et une coque
US10654098B2 (en) 2016-01-15 2020-05-19 Safran Refractory core comprising a main body and a shell
EP3470457A1 (fr) 2017-10-10 2019-04-17 Continental Reifen Deutschland GmbH Mélange de caoutchouc réticulable au soufre, vulcanisation de mélange de caoutchouc et pneumatique pour véhicule
WO2019072431A1 (fr) 2017-10-10 2019-04-18 Continental Reifen Deutschland Gmbh Mélange de caoutchouc réticulable au soufre, vulcanisat de ce mélange de caoutchouc et pneu de véhicule

Also Published As

Publication number Publication date
EP2274141B1 (fr) 2015-06-03
RU2010146980A (ru) 2012-05-27
CA2721449A1 (fr) 2009-10-22
FR2930188A1 (fr) 2009-10-23
US20110049748A1 (en) 2011-03-03
JP2011516318A (ja) 2011-05-26
EP2274141A1 (fr) 2011-01-19
RU2501639C2 (ru) 2013-12-20
BRPI0910569B1 (pt) 2019-02-26
CA2721449C (fr) 2016-08-16
US8490673B2 (en) 2013-07-23
BRPI0910569A2 (pt) 2015-09-22
CN102056717B (zh) 2012-10-24
FR2930188B1 (fr) 2013-09-20
CN102056717A (zh) 2011-05-11
JP5416762B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
EP2274141B1 (fr) Procede pour ebavurer un noyau de fonderie en matiere ceramique et utilisation d&#39;un dispositif pour la mise en oeuvre d&#39;un tel procede
US5465780A (en) Laser machining of ceramic cores
EP1361008B1 (fr) Procédé hybride destiné a fabriquer un roue de compresseur en titane
EP1854569B1 (fr) Procédé de fabrication de noyaux céramiques de fonderie pour aubes de turbomachine
JP2011516318A5 (fr)
CA2887335C (fr) Procede de fabrication d&#39;au moins une piece metallique de turbomachine
WO2011015627A1 (fr) Procede optimise de fabrication d&#39;un disque aubage monobloc par jet d&#39;eau abrasif
EP3326734B1 (fr) Procede de fabrication d&#39;un noyau ceramique de fonderie
FR2929164A1 (fr) Procede d&#39;ebavurage d&#39;une piece en matiere ceramique obtenue par injection d&#39;une pate ceramique dans un moule
WO2006024191A1 (fr) Procede et dispositif pour la fabrication d’une piece mecanique, notamment d’une bague de roulement, et piece obtenue selon ce procede
CN113000843A (zh) 内冷却钻头成型工艺
FR2890879A1 (fr) Procede de fabrication de pieces creuses telles que des aubes de turbomachine.
EP2461937A1 (fr) Procede optimise de fabrication d&#39;un disque aubage monobloc par jet d&#39;eau abrasif
EP2257409B1 (fr) Procédé de fabrication d&#39;un disque aubagé monobloc, par decoupe au jet d&#39;eau abrasif
CA2960059C (fr) Procede de production d&#39;un noyau ceramique
FR2970663A1 (fr) Finition par sablage des pieces frittees par fusion laser
JP2005248217A (ja) 生成形体の製造方法、および焼結体の製造方法
WO2023021903A1 (fr) Procédé d&#39;usinage d&#39;alvéole
FR2995305A1 (fr) Procede de fabrication ameliore d&#39;un noyau en ceramique destine a la fabrication d&#39;une aube de module de turbomachine
KR100551204B1 (ko) 섬유강화 복합재료 이탈피 성형체의 정밀 내경 가공장치
CN114178257A (zh) 金刚石涂层刀具精确退涂方法及其退涂装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121601.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2721449

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011504476

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12988447

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009732323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010146980

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0910569

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101018