WO2009123218A1 - 電池用セパレータとこれを用いてなる電池 - Google Patents

電池用セパレータとこれを用いてなる電池 Download PDF

Info

Publication number
WO2009123218A1
WO2009123218A1 PCT/JP2009/056720 JP2009056720W WO2009123218A1 WO 2009123218 A1 WO2009123218 A1 WO 2009123218A1 JP 2009056720 W JP2009056720 W JP 2009056720W WO 2009123218 A1 WO2009123218 A1 WO 2009123218A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
separator
polymer
electrode
crosslinked polymer
Prior art date
Application number
PCT/JP2009/056720
Other languages
English (en)
French (fr)
Inventor
俊祐 能見
弘義 武
錦煌 庄
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN2009801118756A priority Critical patent/CN101983444B/zh
Priority to US12/935,735 priority patent/US9142818B2/en
Priority to EP09727986.3A priority patent/EP2262038B1/en
Publication of WO2009123218A1 publication Critical patent/WO2009123218A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a battery separator and a battery using the same, and more specifically, to a battery separator in which a porous polymer layer having a polycarbonate urethane skeleton is supported on a porous substrate, and using such a separator.
  • a battery A battery.
  • lithium ion secondary batteries having high energy density are widely used as power sources for small portable electronic devices such as mobile phones and notebook personal computers.
  • Such a lithium ion secondary battery is obtained by laminating or winding sheet-like positive and negative electrodes and, for example, a polyolefin resin porous film, and charging it into a battery container made of, for example, a metal can. It is manufactured through a process of injecting an electrolytic solution into a battery container, sealing, and sealing.
  • the surface pressure for maintaining the electrical connection between the separator and the electrode cannot be sufficiently applied to the electrode surface as compared with the conventional metal can container. Due to the expansion and contraction of the electrode active material during charging and discharging, the distance between the electrodes partially increases with time, the internal resistance of the battery increases, the battery characteristics deteriorate, and the resistance varies within the battery. However, there arises a problem that the battery characteristics are deteriorated.
  • an electrode and a separator are joined by an adhesive resin layer composed of a mixed phase of an electrolyte solution phase, a polymer gel layer containing an electrolyte solution, and a polymer solid phase.
  • an adhesive resin layer composed of a mixed phase of an electrolyte solution phase, a polymer gel layer containing an electrolyte solution, and a polymer solid phase.
  • the thickness of the adhesive resin layer must be increased, and the electrolytic solution for the adhesive resin Since the amount cannot be increased, the resulting battery has a problem that the internal resistance becomes high and the cycle characteristics and the high rate discharge characteristics cannot be sufficiently obtained.
  • the adhesive strength between the separator and the electrode is lowered when placed in a high temperature environment. There is a risk of causing a short circuit between the electrodes due to contraction.
  • the adhesive resin is swollen by the electrolytic solution.
  • the electrolyte ions are less likely to diffuse into the adhesive resin. Adversely affects properties.
  • porous substrates for battery separators various manufacturing methods are conventionally known for porous substrates for battery separators.
  • a method of manufacturing a sheet made of a polyolefin resin and stretching the sheet at a high magnification is known (for example, see Patent Document 4).
  • the battery separator made of a porous film obtained by stretching at a high magnification in this way is significantly shrunk under a high temperature environment such as when the battery is abnormally heated due to an internal short circuit or the like, and in some cases, There is a problem that it does not function as a partition between electrodes.
  • Patent Document 6 a fluororesin porous layer such as polytetrafluoroethylene resin between the separator and the positive electrode.
  • a fluororesin porous layer such as polytetrafluoroethylene resin between the separator and the positive electrode
  • a method of spraying a polytetrafluoroethylene resin suspension on a separator and drying it is considered preferable.
  • the resulting layer is rich in porosity, it becomes thick and sacrifices battery capacity, and requires a large amount of electrolyte.
  • Japanese Patent Laid-Open No. 09-161814 Japanese Patent Laid-Open No. 11-329439 Japanese Patent Laid-Open No. 10-172606
  • Japanese Patent Laid-Open No. 09-012756 Japanese Patent Laid-Open No. 05-310989 Japanese Patent Laid-Open No. 2007-157459
  • the present invention has been made to solve the above-described various problems in battery separators, and in particular, provides a battery separator having excellent oxidation resistance and adhesion to electrodes. Another object is to provide a battery using such a battery separator.
  • the present invention relates to the following (1) to (9).
  • a battery separator comprising a porous substrate and a layer of a crosslinked polymer supported on at least one surface of the porous substrate,
  • the crosslinked polymer is (A) a reactive polymer having a reactive group containing active hydrogen in the molecule; (B) A battery separator obtained by reaction with a terminal isocyanate group polycarbonate urethane prepolymer.
  • the reactive group containing active hydrogen is at least one selected from a hydroxy group, a carboxyl group, and an amino group.
  • the porous substrate is a polyolefin resin porous film.
  • the battery separator of the present invention has a porous polymer supported on a porous substrate obtained by reacting a reactive polymer having a reactive group containing active hydrogen in the molecule with a terminal isocyanate group polycarbonate urethane prepolymer. can get. Therefore, the crosslinked polymer is excellent in oxidation resistance and further has adhesiveness with the electrode.
  • an electrode is laminated on such a battery separator to form an electrode / separator laminate, which is charged into the battery container, and then a non-aqueous electrolyte is injected into the battery container to form a porous substrate. It is possible to adhere the electrode to the separator by swelling at least a part of the cross-linked polymer in the vicinity of the interface with the electrode and allowing it to penetrate into the electrode active material together with the electrolytic solution, thus having an electrode / separator assembly. A battery can be obtained.
  • the crosslinked polymer since the crosslinked polymer has a crosslinked structure, when it swells in the electrolytic solution, excessive elution and diffusion into the electrolytic solution does not occur and does not adversely affect the electrolytic solution.
  • the crosslinked polymer has a high oxidation resistance because the reactive polymer is crosslinked with a terminal isocyanate group polycarbonate urethane prepolymer and includes a polycarbonate structure. Therefore, the battery separator of the present invention carrying such a cross-linked polymer layer has a high resistance to a highly oxidizing environment at the interface with the positive electrode, and thus has a high energy density and charge / discharge. A battery with excellent characteristics can be provided.
  • porous substrate In the present invention, a porous substrate having a thickness in the range of 3 to 50 ⁇ m is preferably used.
  • the thickness of the porous substrate is less than 3 ⁇ m, the strength is insufficient, and when used as a separator in a battery, the electrode may cause an internal short circuit.
  • the thickness of the porous substrate exceeds 50 ⁇ m, the battery using such a porous substrate as a separator has a too large distance between electrodes, and the internal resistance of the battery becomes excessive.
  • the porous substrate has pores with an average pore diameter of 0.01 to 5 ⁇ m and a porosity of 20 to 95%. In the range of 30 to 90%, and most preferably in the range of 35 to 85%.
  • the porosity is too low, when used as a battery separator, the ion conduction path is reduced, and sufficient battery characteristics cannot be obtained.
  • the porosity is too high, the strength is insufficient when used as a battery separator, and a thick porous substrate must be used to obtain the required strength. Therefore, the internal resistance of the battery becomes high, which is not preferable.
  • a porous substrate having an air permeability of 1500 seconds / 100 cc or less, preferably 1000 seconds / 100 cc or less is used.
  • the strength of the porous substrate is preferably 1 N or more. This is because when the piercing strength is less than 1 N, the porous base material may be broken when a surface pressure is applied between the electrodes, thereby causing an internal short circuit.
  • the porous substrate preferably has a high affinity with a reactive polymer, which will be described later. Therefore, when the porous substrate is made of a material having a low polarity, in order to improve the affinity with the reactive polymer. Further, it is preferable to subject the surface to an appropriate surface hydrophilization treatment such as a corona treatment.
  • the porous base material is not particularly limited as long as it has the above-described characteristics, but from the viewpoint of solvent resistance and strength, from a polyolefin resin such as polyethylene and polypropylene.
  • a porous film is preferred.
  • the polyethylene resin porous film is particularly preferably used. It is done.
  • the polyethylene resin includes not only a homopolymer of ethylene but also a copolymer of ethylene with an ⁇ -olefin such as propylene, butene and hexene.
  • a porous film obtained by using ultrahigh molecular weight polyethylene as the polyethylene is suitably used as the porous substrate.
  • Ultra high molecular weight polyethylene refers to polyethylene having a weight average molecular weight of 500,000 or more, preferably in the range of 500,000 to 3,000,000, and various commercial products can be obtained.
  • a mixture of ultrahigh molecular weight polyethylene and another resin may be used as the porous film.
  • porous films such as polytetrafluoroethylene, polyimide, polyester, polycarbonate, and regenerated cellulose
  • paper in addition to porous films such as polytetrafluoroethylene, polyimide, polyester, polycarbonate, and regenerated cellulose, paper can also be used as a porous substrate.
  • a porous substrate in which inorganic fillers such as titanium oxide, alumina, and kaolinite and mineral fillers such as montmorillonite are dispersed can also be used.
  • the reactive polymer means a polymer having a reactive group containing active hydrogen in the molecule, and the reactive group containing active hydrogen means a group reactive with an isocyanate group by active hydrogen, Examples of such a reactive group include at least one selected from a hydroxy group, a carboxyl group, and an amino group.
  • a crosslinked polymer having a polycarbonate urethane skeleton can be obtained by reacting such a reactive polymer with a terminal isocyanate group polycarbonate urethane prepolymer.
  • the terminal isocyanate group polycarbonate urethane prepolymer can be obtained by a reaction between a polycarbonate diol and a polyfunctional isocyanate.
  • the reactive polymer is preferably a radical obtained by using a radical polymerization initiator and a first radical polymerizable monomer having the reactive group and a second radical polymerizable monomer having no such reactive group. It can be obtained by copolymerization.
  • the radical polymerizable monomer having a reactive group is used in the range of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the total amount of monomers.
  • the radically polymerizable monomer having a reactive group is less than 0.1% by weight in the total monomer amount, the resulting reactive polymer is reacted with a terminal isocyanate group polycarbonate urethane prepolymer described later to form a crosslinked polymer. Even if such a crosslinked polymer is obtained, the insoluble fraction is too small, and when the electrode / separator laminate is immersed in the electrolytic solution, elution and diffusion of the polymer into the electrolytic solution are not sufficiently suppressed, and elution occurs. The amount of diffusion increases.
  • the adhesion between the porous substrate and the electrode cannot be maintained, and the deterioration of the battery may be accelerated by impurities.
  • the amount of the radically polymerizable monomer having a reactive group is more than 10% by weight, even if the resulting crosslinked polymer has too high a crosslinking density, the crosslinked polymer becomes excessively dense and comes into contact with the electrolytic solution. Does not swell sufficiently. As a result, an electrode / separator assembly cannot be obtained, and a battery having excellent characteristics cannot be obtained.
  • Examples of the first radical polymerizable monomer having the reactive group include those in which the reactive group is a carboxyl group, such as (meth) acrylic acid, itaconic acid, maleic acid, and the like.
  • Examples of the hydroxy group include hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, and the like.
  • (Meth) acrylate ethylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, propylene glycol mono (meth) acrylate
  • Poly) alkylene glycol mono (meth) acrylate such as dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, pentapropylene glycol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate And ⁇ -butyrolactone ring-opening adduct.
  • the reactive group that is an amino group include a 1: 1 reaction product of diamine and (meth) acryloyloxyethyl isocyanate.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryloyloxy means acryloyloxy or methacryloyloxy.
  • the second radical polymerizable monomer having no reactive group is preferably represented by the general formula (I)
  • R 1 represents a hydrogen atom or a methyl group
  • A represents an oxyalkylene group having 2 or 3 carbon atoms (preferably an oxyethylene group or an oxypropylene group)
  • R 2 represents 1 to 6 represents an alkyl group or a fluorinated alkyl group having 1 to 6 carbon atoms
  • n represents an integer of 0 to 12.
  • R 3 represents a methyl group or an ethyl group
  • R 4 represents a hydrogen atom or a methyl group.
  • (meth) acrylate represented by the general formula (I) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2,2,2 -Trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate and the like.
  • R 5 represents a hydrogen atom or a methyl group, and n is an integer of 0 to 12.
  • vinyl ester represented by the general formula (II) examples include vinyl acetate and vinyl propionate.
  • the reactive polymer is obtained by radical copolymerization of the first radical polymerizable monomer having a reactive group and the second radical polymerizable monomer having no reactive group using a radical polymerization initiator.
  • This radical copolymerization may be carried out by any polymerization method such as solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, etc., but solution polymerization or suspension polymerization in terms of ease of polymerization, adjustment of molecular weight, post-treatment, etc. Is preferred.
  • the radical polymerization initiator is not particularly limited, and examples thereof include N, N′-azobisisobutyronitrile, dimethyl N, N′-azobis (2-methylpropionate), and benzoyl peroxide. Lauroyl peroxide is used. In this radical copolymerization, a molecular weight modifier such as mercaptan can be used as necessary.
  • the reactive polymer preferably has a weight average molecular weight of 10,000 or more.
  • the weight average molecular weight of the reactive polymer is smaller than 10000, the crosslinked polymer obtained therefrom is difficult to swell in the electrolyte solution, and the characteristics of the obtained battery are deteriorated.
  • the upper limit of the weight average molecular weight of the reactive polymer is not particularly limited, but is about 3 million, preferably 250 so that the cross-linked polymer obtained therefrom can hold the electrolyte as a gel. It is about ten thousand.
  • the reactive polymer preferably has a weight average molecular weight in the range of 100,000 to 2,000,000.
  • the terminal isocyanate group polycarbonate urethane prepolymer (hereinafter, simply referred to as urethane prepolymer) is preferably an aliphatic polycarbonate diol and a polyfunctional isocyanate, the isocyanate group of the polyfunctional isocyanate / hydroxy of the polycarbonate diol.
  • Oligomer obtained by reacting the group in a molar ratio (hereinafter referred to as NCO / OH molar ratio) usually in the range of 1.2 to 3.3, preferably in the range of 1.5 to 2.5. It is.
  • the molecular weight of the urethane prepolymer obtained varies depending on the NCO / OH molar ratio, and when the NCO / OH molar ratio is within the above range, a urethane prepolymer having both ends of the molecule being substantially isocyanate groups is obtained. Can do.
  • the aliphatic polycarbonate diol can be obtained, for example, by a reaction between an aliphatic diol and phosgene, ring-opening polymerization of an alkylene carbonate, or the like.
  • the polycarbonate diol is obtained by the reaction of an aliphatic diol and phosgene, the aliphatic diol to be used is not particularly limited.
  • examples include methylene diol, 1,5-pentamethylene diol, neopentyl glycol, 1,6-hexamethylene diol, and 1,4-cyclohexane diol. These aliphatic diols are used alone or in combination of two or more.
  • the alkylene carbonate to be used is not particularly limited, and examples thereof include ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate and the like. These alkylene carbonates are also used alone or in combination of two or more.
  • the aliphatic polycarbonate diol can also be obtained by reacting the above-described alkylene carbonate or dialkyl carbonate with the aliphatic diol.
  • dialkyl carbonate include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, di-n-butyl carbonate and the like.
  • the aliphatic polycarbonate diol used is preferably of the general formula (III)
  • R represents an aliphatic diol residue having 2 to 6 carbon atoms. It has the repeating unit represented by these. However, in the repeating unit represented by the general formula (III), R may be an aliphatic diol residue having a different carbon number for each repeating unit, that is, an alkylene group.
  • the aliphatic polycarbonate diol used is represented by the general formula (IIIa) and the general formula (IIIb).
  • Ra and Rb both represent an aliphatic diol residue having 2 to 6 carbon atoms, but have different carbon numbers from each other. It may also have a repeating unit represented by:
  • Examples of the aliphatic diol residue having 2 to 6 carbon atoms include, for example, ethylene glycol, 1,3-trimethylene diol, 1,4-tetramethylene diol, 1,5-pentamethylene diol, neodymium, as described above.
  • An aliphatic hydrocarbon group in an aliphatic diol such as pentyl glycol, 1,6-hexamethylene diol, 1,4-cyclohexane diol, etc., preferably a linear or branched alkylene group.
  • polyfunctional isocyanates include phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, and other aromatic, araliphatic, alicyclic, and aliphatic diisocyanates, and trimethylolpropane. So-called isocyanate adducts obtained by adding these diisocyanates to polyols such as are also used.
  • the reactive polymer by reacting the reactive polymer with the urethane prepolymer, the reactive polymer is crosslinked with the prepolymer to obtain a crosslinked polymer having a polycarbonate urethane skeleton.
  • the battery separator according to the present invention is obtained by supporting such a crosslinked polymer layer on the porous substrate. That is, the battery separator according to the present invention includes a porous substrate and a layer of the crosslinked polymer supported on the porous substrate.
  • the cross-linked polymer layer may be supported on at least one surface of the porous base material depending on the intended function of the battery separator.
  • the continuous layer it can be supported in various modes.
  • the reactive polymer and the urethane prepolymer are dissolved in an appropriate solvent such as acetone, ethyl acetate, butyl acetate, toluene, and the obtained solution is used as the porous substrate.
  • an appropriate solvent such as acetone, ethyl acetate, butyl acetate, toluene
  • the obtained solution is used as the porous substrate.
  • a thin layer containing the mixture of the reactive polymer and the urethane prepolymer is formed on the release sheet.
  • This peelable sheet is layered on a porous substrate and heated and pressed to transfer a thin layer composed of a mixture of the reactive polymer and urethane prepolymer onto the porous substrate, and then the reaction on the porous substrate.
  • a thin layer made of a mixture of a functional polymer and a urethane prepolymer may be heated to cause the reactive polymer to react with the urethane prepolymer for crosslinking.
  • heating may be performed at 90 ° C. for 48 hours.
  • a solution containing a reactive polymer and a urethane prepolymer is prepared, and this is heated, so that the crosslinked polymer to be generated is not phase-separated in the solution in advance.
  • a solution is applied to a porous substrate or a peelable sheet, heated to remove the solvent, and further heated to react.
  • the polymer may be reacted with a urethane prepolymer to crosslink.
  • a polypropylene resin sheet is typically preferably used, but is not limited thereto.
  • the ratio of the reactive polymer to the urethane prepolymer used is the ratio of the reactive group in the reactive polymer.
  • the amount of the isocyanate group in the urethane prepolymer and the molecular weight of the reactive polymer and the urethane prepolymer depend on the properties such as the molecular weight of the reactive polymer and the urethane prepolymer. Part range.
  • the ratio of the urethane prepolymer to 100 parts by weight of the reactive polymer is less than 10 parts by weight, the resulting crosslinked polymer does not have satisfactory oxidation resistance.
  • the ratio of the urethane prepolymer to 100 parts by weight of the reactive polymer is more than 150 parts by weight, the crosslinking density of the obtained crosslinked polymer is too high, and a porous substrate carrying such a crosslinked polymer is used as a battery. Even if it is used in the production of the battery, a battery having excellent characteristics cannot be obtained.
  • the amount of the reactive polymer and the urethane prepolymer supported on the porous substrate is determined depending on the type of the reactive polymer and the urethane prepolymer used, and those supported on the porous substrate. Although it depends on the embodiment to be used, it is usually in the range of 0.2 to 5.0 g / m 2 , and preferably in the range of 0.3 to 3.0 g / m 2 .
  • the amount of the crosslinked polymer supported on the porous substrate is too small, the obtained separator does not have sufficient adhesion to the electrode. On the other hand, when the amount is too large, the battery using the obtained separator is deteriorated in characteristics, which is not preferable.
  • the cross-linked polymer obtained by reaction of the reactive polymer with the urethane prepolymer is in the range of 50 to 99% by weight, preferably 60 to 99% by weight, more preferably 70 to 99% by weight.
  • the insoluble fraction refers to the ratio of the crosslinked polymer remaining on the porous substrate after the porous substrate carrying the crosslinked polymer is immersed in ethyl acetate at room temperature for 6 hours with stirring.
  • the electrode / separator laminate can be obtained by temporarily adhering the electrodes to the separator and bonding them together.
  • the electrode that is, the negative electrode and the positive electrode differ depending on the battery, but in general, a sheet in which an active material and, if necessary, a conductive agent are supported on a conductive base material using a resin binder.
  • the shape is used.
  • the electrode / separator laminate may have electrodes laminated on the separator. Therefore, for example, a negative electrode / separator / positive electrode, a negative electrode / separator / positive electrode / separator, or the like is used as the electrode / separator laminate according to the structure or form of the battery.
  • the electrode / separator laminate may be in the form of a sheet or may be wound.
  • the electrode is laminated on the separator or wound and temporarily bonded to obtain an electrode / separator laminate, and then this laminate is charged into a battery container made of a metal tube, a laminate film, etc.
  • a predetermined amount of non-aqueous electrolyte is injected into the battery container, the battery container is sealed and sealed, and the crosslinked polymer supported on the separator is used as an electrode.
  • Porous with a cross-linked polymer by swelling at least a part with an electrolyte near the interface of the electrode and allowing it to penetrate into the gap between the electrode active materials to develop an anchor effect on both the porous substrate and the electrode.
  • An electrode / separator assembly in which an electrode is bonded to a porous substrate can be obtained, and thus a battery having an electrode / separator assembly can be obtained.
  • the crosslinked polymer supported on the porous substrate has a high insoluble content as described above, the electrolyte solution can be used even when immersed in the electrolyte solution during battery production. Elution and diffusion into the inside are suppressed. Therefore, in the production of the battery, the crosslinked polymer is hardly eluted into the electrolyte solution and the battery characteristics are hardly deteriorated.
  • the wettability of the electrode to the electrolytic solution is dramatically improved by the initial charge / discharge.
  • the crosslinked polymer swollen by the electrolytic solution further penetrates into the gaps between the electrode active materials, thereby further strengthening the adhesion between the separator and the electrode.
  • the electrode / separator laminate is charged into the battery container, and after the electrolyte solution is injected into the battery container, the crosslinked polymer and the electrode supported on the porous base material are further heated by heating. It can be adhered.
  • the heating condition depends on the heat resistance and productivity of the material constituting the battery, but it is usually set at a temperature of 40 to 100 ° C. for about 0.5 to 24 hours.
  • the crosslinked polymer functions as an adhesive for bonding the electrode to the separator, and is useful for forming an electrode / separator assembly.
  • the electrode / separator assembly in the battery, it is possible to prevent the electrode from being separated from the separator to expose the electrode, or the separator to contract and the electrode from being exposed.
  • the separator in the battery obtained, is adhered to the electrode, so that, for example, even when the battery is placed in a high temperature environment such as 150 ° C., the separator (strictly, porous The base material) has a small area heat shrinkage rate, usually 20% or less, and preferably 15% or less.
  • the mode in which the layer of the crosslinked polymer is supported on the porous substrate is not particularly limited. Therefore, the cross-linked polymer layer may be supported on the entire surface of the porous substrate, and in some cases, for example, streaks, spots, lattices, stripes, turtle shells Alternatively, a cross-linked polymer layer may be partially supported in a shape or the like. Further, the crosslinkable polymer layer may be supported only on one surface of the porous substrate, or may be supported on both surfaces.
  • the crosslinked polymer has a crosslinked structure formed by crosslinking a reactive polymer using a urethane prepolymer as a crosslinking agent, and has a polycarbonate skeleton. Have sex. Therefore, the separator according to the present invention is useful because it has a function of imparting high oxidation resistance to the porous substrate constituting the separator.
  • the separator substrate is a porous film of a polyolefin resin such as polyethylene or polypropylene, as described above, when the charging voltage is increased, the positive electrode active material has a high oxidation state and a high oxidation reaction. Therefore, the separator is easily damaged and deteriorated.
  • a separator made of a polyolefin resin porous film carrying the cross-linked polymer layer is formed.
  • the separator can have excellent oxidation resistance, and thus a battery having high energy density and excellent charge / discharge characteristics can be obtained.
  • the non-aqueous electrolyte is a solution obtained by dissolving an electrolyte salt in an appropriate organic solvent.
  • the electrolyte salt include alkali metals such as hydrogen, lithium, sodium, and potassium, alkaline earth metals such as calcium and strontium, tertiary or quaternary ammonium salts, and the like as cationic components, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid A salt containing an anionic component of an inorganic acid such as borohydrofluoric acid, hydrofluoric acid, hexafluorophosphoric acid or perchloric acid, or an organic acid such as carboxylic acid, organic sulfonic acid or fluorine-substituted organic sulfonic acid. it can.
  • an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.
  • electrolyte salt having such an alkali metal ion as a cation component include, for example, alkali perchlorate such as lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium tetrafluoroborate, tetra Alkali metal tetrafluoroborate such as sodium fluoroborate and potassium tetrafluoroborate, alkali metal hexafluorophosphate such as lithium hexafluorophosphate and potassium hexafluorophosphate, alkali trifluoroacetate such as lithium trifluoroacetate Mention may be made of metals and alkali metals of trifluoromethane sulfonate such as lithium trifluoromethane sulfonate.
  • lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate or the like is preferably used.
  • any solvent can be used as long as it dissolves the electrolyte salt.
  • the non-aqueous solvent include ethylene carbonate, propylene carbonate, Use cyclic esters such as butylene carbonate and ⁇ -butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate alone or as a mixture of two or more. be able to.
  • Reference example 1 (Preparation of electrode sheet) 85 parts by weight of lithium cobaltate (cell chemical C-10 manufactured by Nippon Chemical Industry Co., Ltd.) as a positive electrode active material and 10 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent and a binder. 5 parts by weight of vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) was mixed, and this was mixed with a slurry using N-methyl-2-pyrrolidone so as to have a solid concentration of 15% by weight. did.
  • lithium cobaltate cell chemical C-10 manufactured by Nippon Chemical Industry Co., Ltd.
  • acetylene black Denki Kagaku Kogyo Co., Ltd.
  • vinylidene fluoride resin KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.
  • the slurry was applied to an aluminum foil (current collector) having a thickness of 20 ⁇ m to a thickness of 200 ⁇ m, vacuum-dried at 80 ° C. for 1 hour, and 120 ° C. for 2 hours, and then pressed by a roll press to obtain a thickness of the active material layer.
  • a positive electrode sheet having a thickness of 100 ⁇ m was prepared.
  • mesocarbon microbeads (MCMB6-28 manufactured by Osaka Gas Chemical Co., Ltd.) as a negative electrode active material
  • a binder 10 parts by weight of vinylidene fluoride resin KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.
  • N-methyl-2-pyrrolidone so as to have a solid concentration of 15% by weight
  • This slurry was applied onto a copper foil (current collector) having a thickness of 20 ⁇ m, applied to a thickness of 200 ⁇ m, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed with a roll press, A negative electrode sheet having an active material layer thickness of 100 ⁇ m was prepared.
  • Coat hanger 15 parts by weight of ultra-high molecular weight polyethylene (melting point: 137 ° C.) with a weight average molecular weight of 1 million and 85 parts by weight of liquid paraffin are mixed uniformly in a slurry, and melt kneaded at a temperature of 170 ° C. with a twin screw extruder. Extruded into a 2 mm thick sheet with a die. The obtained sheet was cooled while taking a roll to obtain a gel sheet having a thickness of 1.3 mm. This gel sheet was simultaneously biaxially stretched 4.5 ⁇ 5 times in the MD direction (machine direction) and the TD direction (width direction) at a temperature of 123 ° C. to obtain a stretched film.
  • the decane After removing liquid paraffin from the stretched film using decane, the decane was dried at room temperature to obtain a porous film.
  • the obtained porous film was heat-treated in air at a temperature of 125 ° C. for 3 minutes to obtain a polyethylene resin porous film.
  • the obtained porous film had a thickness of 16 ⁇ m, a porosity of 39%, an air permeability of 270 seconds / 100 cc, and a puncture strength of 4N.
  • Comparative Example 1 The negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film obtained in Reference Example 2 and the positive electrode sheet obtained in Reference Example 1 were laminated in this order to form an electrode / porous film laminate.
  • the obtained battery was charged and discharged twice at room temperature with a current of 0.2 CmA, and then subjected to an evaluation test for the following three battery characteristics. However, separate batteries were used for the following three battery property evaluation tests.
  • Rate characteristic (%) 2 CmA discharge capacity B / 0.2 CmA discharge capacity A
  • the battery whose rate characteristics were evaluated was subjected to the following area shrinkage measurement of the porous substrate.
  • the test structure is obtained by sandwiching a battery whose rate characteristic, which is an evaluation item of the battery characteristics described above, between a pair of glass plates, and fixing both ends of the pair of glass plates with a polyimide tape so that the distance therebetween is not widened. Assembled.
  • This test structure was put into a dryer at 150 ° C. for 1 hour, allowed to cool, and then the test structure was disassembled, and the resulting electrode / crosslinked polymer-supported porous substrate assembly was used as a porous substrate. Then, this was read with a scanner, and compared with the area of the porous substrate before the test, the area shrinkage ratio of the porous substrate was determined.
  • the battery was continuously charged at a constant current and a constant voltage at a room temperature of a current of 0.2 CmA and a voltage of 4.2 V for 12 hours. Next, in this fully charged state, the battery voltage was measured at a temperature of 80 ° C. after being kept in a constant temperature bath at 80 ° C. for 4 days.
  • Table 1 shows the rate characteristics of the battery, the continuous charge characteristics, and the results of the high-temperature storage test, along with the area shrinkage ratio of the porous substrate in the battery.
  • Reference example 3 (Preparation of reactive polymer) In a 500 mL three-necked flask equipped with a reflux condenser, 84 g of methyl methacrylate, 2.0 g of 4-hydroxybutyl acrylate, 14.0 g of 2-methoxyethyl acrylate, 25 g of ethyl acetate and N, N′-azobisisobutyro Nitrile 0.20 g was charged and stirred and mixed for 30 minutes while introducing nitrogen gas, and then heated to 70 ° C. to initiate radical polymerization. When about 1 hour had elapsed, an increase in the viscosity of the reaction mixture was observed. Thereafter, while adding ethyl acetate to the reaction mixture, the temperature was kept substantially constant, and the polymerization was further continued for 8 hours.
  • reaction mixture was cooled to 40 ° C., ethyl acetate was added, and the mixture was stirred and mixed until the whole became uniform to obtain an ethyl acetate solution (concentration 15% by weight) of the reactive polymer.
  • Comparative Example 2 10 g of the reactive polymer obtained in Reference Example 3 was dissolved in ethyl acetate at room temperature to prepare a 10% by weight reactive polymer solution. To this, 3.14 g of polyfunctional isocyanate (hexamethylene diisocyanate / trimethylolpropane adduct, ethyl acetate solution, solid content 25%, Coronate HL manufactured by Nippon Polyurethane Industry Co., Ltd.) was added and dissolved to dissolve the reactive polymer and polyfunctional isocyanate. A coating solution containing a functional isocyanate was prepared.
  • polyfunctional isocyanate hexamethylene diisocyanate / trimethylolpropane adduct, ethyl acetate solution, solid content 25%, Coronate HL manufactured by Nippon Polyurethane Industry Co., Ltd.
  • the mixture After applying this coating solution on one side of a polypropylene resin sheet using a wire bar, the mixture is heated at 50 ° C. for 5 minutes to volatilize ethyl acetate, and a thin layer composed of a mixture of a reactive polymer and a polyfunctional isocyanate is formed into a propylene resin. Formed on a sheet.
  • This polypropylene resin sheet was laminated so that a thin layer composed of a mixture of a reactive polymer and a polyfunctional isocyanate was in contact with the polyethylene resin porous film obtained in Reference Example 2, and this was heated to a temperature of 125 ° C.
  • a thin layer made of a mixture of a reactive polymer and a polyfunctional isocyanate was transferred to one side of a polyethylene resin porous film by heating and pressing through a laminating roll.
  • a laminate composed of the polyethylene resin porous film having the thin layer and the polypropylene resin sheet is heated at 90 ° C. for 48 hours, the reactive polymer and the polyfunctional isocyanate are reacted, the reactive polymer is crosslinked, and the crosslinking is performed.
  • the polypropylene resin sheet was peeled off to obtain a polyethylene resin porous film having a crosslinked polymer supported on one side.
  • the amount of the crosslinked polymer supported on the polyethylene resin porous film was 0.5 g / m 2 .
  • the weight of the crosslinked polymer on the polyethylene resin porous film is regarded as the weight of a thin layer composed of a mixture of the reactive polymer and the polyfunctional isocyanate formed on the polypropylene resin sheet, and the polyethylene resin porous film
  • the amount of the crosslinked polymer supported on the film was determined as follows. That is, a polypropylene resin sheet having a thin layer made of a mixture of the reactive polymer and polyfunctional isocyanate was cut into a size of 5 cm ⁇ 2 cm, and its weight A was measured.
  • the weight B of the polypropylene resin sheet is measured to support the crosslinked polymer on the polyethylene resin porous film. The amount was calculated from (AB) ⁇ 1000 (g / m 2 ).
  • the negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film carrying the crosslinked polymer, and the positive electrode sheet obtained in Reference Example 1 were arranged in this order so that the crosslinked polymer on the porous film faced the positive electrode sheet.
  • the package was sealed. Thereafter, the battery was charged with a current of 0.2 CmA until reaching 3.5 V, and then charged in a thermostat at 50 ° C. for 24 hours to promote adhesion between the electrode sheet and the separator, thereby obtaining a laminate seal type battery.
  • Reference example 4 (Preparation of reactive polymer) A 500 mL three-necked flask equipped with a reflux condenser was charged with 98 g of methyl methacrylate, 2.0 g of 4-hydroxybutyl acrylate, 25 g of ethyl acetate and 0.20 g of N, N′-azobisisobutyronitrile, and nitrogen gas. Then, the mixture was stirred and mixed for 30 minutes and then heated to 70 ° C. to initiate radical polymerization. After about 2 hours, an increase in the viscosity of the reaction mixture was observed, and then the temperature was kept substantially constant while adding ethyl acetate, and the polymerization was continued for another 8 hours.
  • reaction mixture was cooled to 40 ° C., ethyl acetate was added, and the mixture was heated and stirred until the whole became uniform to obtain a reactive polymer solution (concentration 25% by weight).
  • Example 1 6 g of the reactive polymer obtained in Reference Example 4 was dissolved in toluene at room temperature to prepare 50 g of a reactive polymer solution having a concentration of 12% by weight, and this and a terminal isocyanate group having a concentration of 12% by weight obtained in Reference Example 4 were obtained. 22.5 g of a toluene solution of polycarbonate urethane prepolymer was mixed and stirred. Furthermore, 145 g of toluene was added to the obtained mixed solution to prepare a coating solution having a solid content concentration of 4% by weight.
  • This coating solution is applied to one side of a polypropylene resin sheet using a spin coater, heated at 50 ° C. for 1 hour to evaporate toluene, and a thin layer made of a mixture of a reactive polymer and the urethane prepolymer is formed into a polypropylene resin. Formed on a sheet.
  • This polypropylene resin sheet was laminated so that a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was in contact with the polyethylene resin porous film obtained in Reference Example 2, and this was heated to a temperature of 125 ° C.
  • a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was transferred to one side of a polyethylene resin porous film by heating and pressing through a laminating roll.
  • a laminate composed of the polyethylene resin porous film having the thin layer and the polypropylene resin sheet is heated at 90 ° C. for 48 hours to react the reactive polymer with the urethane prepolymer, to crosslink the reactive polymer, and to insolubilize. After 99% of the crosslinked polymer was obtained, the polypropylene resin sheet was peeled off to obtain a polyethylene resin porous film having the crosslinked polymer supported on one surface at a supported amount of 0.5 g / m 2 .
  • the negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film carrying the crosslinked polymer, and the positive electrode sheet obtained in Reference Example 1 were arranged in this order so that the crosslinked polymer on the porous film faced the positive electrode sheet.
  • the package was sealed.
  • the battery was charged with a current of 0.2 CmA until reaching 3.5 V, and then charged in a thermostat at 50 ° C. for 24 hours to promote the adhesion between the electrode sheet and the polyethylene resin porous film, and the laminate seal type battery was Obtained.
  • Reference Example 5 (Preparation of reactive polymer) A 500 mL three-necked flask equipped with a reflux condenser was charged with 98 g of methyl methacrylate, 2.0 g of 4-hydroxybutyl acrylate, 25 g of ethyl acetate and 0.20 g of N, N′-azobisisobutyronitrile, and nitrogen gas. Then, the mixture was stirred and mixed for 30 minutes and then heated to 70 ° C. to initiate radical polymerization. After about 2 hours, an increase in the viscosity of the reaction mixture was observed, and then the temperature was kept substantially constant while adding ethyl acetate, and the polymerization was continued for 8 hours.
  • reaction mixture was cooled to 40 ° C., ethyl acetate was added, and the mixture was stirred and mixed until the whole became uniform to obtain a reactive polymer solution (concentration 25% by weight).
  • Example 2 6 g of the reactive polymer obtained in Reference Example 5 was dissolved in ethyl acetate at room temperature to prepare 50 g of a reactive polymer solution having a concentration of 12% by weight. To this, a urethane prepolymer having a concentration of 12% by weight obtained in Reference Example 5 was added. 16 g of an ethyl acetate solution of the polymer was added, and the mixture was heated to 80 ° C. with stirring and reacted for 20 hours. Thereafter, the reaction mixture was cooled, and 132 g of ethyl acetate was added thereto to prepare a coating solution having a solid content concentration of 4% by weight.
  • the mixture After applying this coating solution to one side of a polypropylene resin sheet using a spin coater, the mixture is heated at 50 ° C. for 5 minutes to volatilize ethyl acetate, and a thin layer made of a mixture of a reactive polymer and a urethane prepolymer is formed into a polypropylene resin. Formed on a sheet.
  • This polypropylene resin sheet was laminated so that a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was in contact with the polyethylene resin porous film obtained in Reference Example 2, and this was heated to a temperature of 125 ° C.
  • a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was transferred to one side of a polyethylene resin porous film by heating and pressing through a laminating roll.
  • a laminate composed of the polyethylene resin porous film having the thin layer and the polypropylene resin sheet is heated at 90 ° C. for 48 hours to react the reactive polymer with the urethane prepolymer, to crosslink the reactive polymer, and to insolubilize.
  • the polypropylene resin sheet was peeled off to obtain a polyethylene resin porous film carrying the cross-linked polymer on one side at a carrying amount of 0.5 g / m 2 .
  • the negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film carrying the crosslinked polymer, and the positive electrode sheet obtained in Reference Example 1 were arranged in this order so that the crosslinked polymer on the porous film faced the positive electrode sheet.
  • the package was sealed.
  • the battery was charged with a current of 0.2 CmA until reaching 3.5 V, and then charged in a thermostat at 50 ° C. for 24 hours to promote the adhesion between the electrode sheet and the polyethylene resin porous film, and the laminate seal type battery was Obtained.
  • the obtained battery it carried out similarly to the comparative example 1, and shows the result of the rate characteristic of a battery, a continuous charge characteristic, and a high temperature storage test with the area shrinkage rate of a porous base material (polyethylene resin porous film). .
  • Example 3 6.0 g of the reactive polymer obtained in Reference Example 5 was dissolved in ethyl acetate at room temperature to prepare 50 g of a reactive polymer solution having a concentration of 12% by weight. 60 g of an ethyl acetate solution of a urethane prepolymer was added, heated to 80 ° C. with stirring, and reacted for 20 hours. After the obtained reaction mixture was cooled, 220 g of ethyl acetate was added thereto to prepare a coating solution having a solid content concentration of 4% by weight.
  • This coating solution is applied to one side of a polypropylene resin sheet using a spin coater, and then heated at 50 ° C. for 5 minutes to volatilize ethyl acetate. From the reaction product and the reaction product together with the reactive polymer and the urethane prepolymer. A thin layer was formed on a polypropylene resin sheet.
  • the polypropylene resin sheet was laminated so that the thin layer was in contact with the polyethylene resin porous film obtained in Reference Example 2 to form a laminate, and this was heated and pressurized through a laminating roll heated to a temperature of 125 ° C. The thin layer was transferred to one side of a polyethylene resin porous film.
  • a laminate composed of the polyethylene resin porous film having the thin layer and the polypropylene resin sheet is heated at 90 ° C. for 48 hours to react the reactive polymer with the urethane prepolymer, to crosslink the reactive polymer, and to insolubilize.
  • the polypropylene resin sheet was peeled off to obtain a polyethylene resin porous film carrying the cross-linked polymer on one side at a carrying amount of 0.5 g / m 2 .
  • the negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film carrying the crosslinked polymer, and the positive electrode sheet obtained in Reference Example 1 were arranged in this order so that the crosslinked polymer on the porous film faced the positive electrode sheet.
  • the package was sealed. Thereafter, the battery is charged with a current of 0.2 CmA until reaching 3.5 V, and then charged into a thermostat at 50 ° C. for 24 hours to promote the adhesion between the electrode sheet and the polyethylene resin porous film, thereby obtaining a laminated seal type battery. It was.
  • the obtained battery it carried out similarly to the comparative example 1, and shows the result of the rate characteristic of a battery, a continuous charge characteristic, and a high temperature storage test with the area shrinkage rate of a porous base material (polyethylene resin porous film). .
  • reaction mixture was cooled to 40 ° C., ethyl acetate was added, and the mixture was stirred and mixed until the whole became uniform to obtain a reactive polymer solution (concentration 25% by weight).
  • Example 4 9 g of the reactive polymer obtained in Reference Example 6 was dissolved in toluene at room temperature to prepare 90 g of a reactive polymer solution having a concentration of 10% by weight, and 32.4 g of a urethane prepolymer solution having a concentration of 12.5% by weight. Mixed and stirred. Furthermore, 95.1 g of toluene was added to the obtained mixed solution to prepare a coating solution having a solid concentration of 6% by weight.
  • this coating solution After applying this coating solution on one side of a polypropylene resin sheet using a spin coater, it is heated at 50 ° C. for 5 minutes to volatilize toluene, and a thin layer made of a mixture of a reactive polymer and a urethane prepolymer is formed into a polypropylene resin sheet. Formed on top.
  • This polypropylene resin sheet was laminated so that a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was in contact with the polyethylene resin porous film obtained in Reference Example 2, and this was heated to a temperature of 125 ° C.
  • a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was transferred to one side of a polyethylene resin porous film by heating and pressing through a laminating roll.
  • a laminate composed of the polyethylene resin porous film having the thin layer and the polypropylene resin sheet is heated at 90 ° C. for 48 hours to react the reactive polymer with the urethane prepolymer, to crosslink the reactive polymer, and to insolubilize.
  • the polypropylene resin sheet was peeled off to obtain a polyethylene resin porous film carrying the crosslinked polymer on one side at a loading amount of 0.5 g / m 2 .
  • the negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film supporting the crosslinked polymer, and the positive electrode sheet obtained in Reference Example 1 were arranged in this order so that the crosslinked polymer on the porous film faced the positive electrode sheet.
  • the package was sealed.
  • the battery was charged with a current of 0.2 CmA until reaching 3.5 V, and then charged in a thermostat at 50 ° C. for 24 hours to promote the adhesion between the electrode sheet and the polyethylene resin porous film, and the laminate seal type battery was Obtained.
  • the obtained battery it carried out similarly to the comparative example 1, and shows the result of the rate characteristic of a battery, a continuous charge characteristic, and a high temperature storage test with the area shrinkage rate of a porous base material (polyethylene resin porous film). .
  • Reference Example 7 (Preparation of reactive polymer) A 500 mL three-necked flask equipped with a reflux condenser was charged with 98 g of methyl methacrylate, 2.0 g of 4-hydroxybutyl acrylate, 25 g of ethyl acetate and 0.20 g of N, N′-azobisisobutyronitrile, and nitrogen gas. Then, the mixture was stirred and mixed for 30 minutes and then heated to 70 ° C. to initiate radical polymerization. After about 2 hours, an increase in the viscosity of the reaction mixture was observed, and then the temperature was kept substantially constant while adding ethyl acetate, and the polymerization was continued for 8 hours.
  • reaction mixture was cooled to 40 ° C., ethyl acetate was added, and the mixture was stirred and mixed until the whole became uniform to obtain a reactive polymer solution (concentration 25% by weight).
  • Example 5 6 g of the reactive polymer obtained in Reference Example 7 was dissolved in toluene at room temperature to prepare 60 g of a 10% by weight reactive polymer solution, and this was mixed with 48 g of a 12.5% by weight urethane prepolymer solution. , Stirred. Furthermore, 92 g of toluene was added to the obtained mixed solution to prepare a coating solution having a solid concentration of 6% by weight.
  • this coating solution After applying this coating solution on one side of a polypropylene resin sheet using a spin coater, it is heated at 50 ° C. for 5 minutes to volatilize toluene, and a thin layer made of a mixture of a reactive polymer and a urethane prepolymer is formed into a polypropylene resin sheet. Formed on top.
  • This polypropylene resin sheet was laminated so that a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was in contact with the polyethylene resin porous film obtained in Reference Example 2, and this was heated to a temperature of 125 ° C.
  • a thin layer made of a mixture of a reactive polymer and a urethane prepolymer was transferred to one side of a polyethylene resin porous film by heating and pressing through a laminating roll.
  • a laminate composed of the polyethylene resin porous film having the thin layer and the polypropylene resin sheet is heated at 90 ° C. for 48 hours to react the reactive polymer with the urethane prepolymer, to crosslink the reactive polymer, and to insolubilize.
  • the polypropylene resin sheet was peeled off to obtain a polyethylene resin porous film carrying the crosslinked polymer on one side at a loading amount of 0.5 g / m 2 .
  • the negative electrode sheet obtained in Reference Example 1, the polyethylene resin porous film supporting the crosslinked polymer, and the positive electrode sheet obtained in Reference Example 1 were arranged in this order so that the crosslinked polymer on the porous film faced the positive electrode sheet.
  • the package was sealed.
  • the battery was charged with a current of 0.2 CmA until reaching 3.5 V, and then charged in a thermostat at 50 ° C. for 24 hours to promote the adhesion between the electrode sheet and the polyethylene resin porous film, and the laminate seal type battery was Obtained.
  • the obtained battery it carried out similarly to the comparative example 1, and shows the result of the rate characteristic of a battery, a continuous charge characteristic, and a high temperature storage test with the area shrinkage rate of a porous base material (polyethylene resin porous film). .
  • Reference example 1 A polytetrafluoroethylene resin porous film having a porosity of 97% and a thickness of 5 ⁇ m was laminated on one side of the polyethylene resin porous film obtained in Reference Example 2 and supported.
  • the negative electrode sheet obtained in Reference Example 1, the polytetrafluoroethylene resin porous film-carrying polyethylene resin porous film, and the positive electrode sheet obtained in Reference Example 1 on the polyethylene resin porous film. are laminated in this order so as to face the positive electrode sheet to form an electrode / fluororesin porous film-supported polyethylene resin porous film laminate, which is charged into an aluminum laminate package, and has a concentration of 1.4 mol / L.
  • an electrolytic solution composed of a mixed solvent of ethylene carbonate / diethyl carbonate (weight ratio 1/1) in which lithium hexafluorophosphate was dissolved
  • the package was sealed. Thereafter, the battery was charged with a current of 0.20 CmA until reaching 3.5 V to obtain a laminate seal type battery.
  • the battery thus obtained was evaluated for continuous charge characteristics and high-temperature storage characteristics in the same manner as in Comparative Example 1. As shown in Table 1, no increase in current value was observed during continuous charging. Moreover, the voltage after high temperature storage was 4.1V.
  • the crosslinked polymer having a polycarbonate urethane skeleton provided between the positive electrode and the separator does not undergo oxidative deterioration despite the high oxidation reactivity of the positive electrode.
  • the crosslinked polymer functions as a protective layer for the separator, oxidation degradation of the separator can be prevented even when a polyolefin resin porous film is used as the separator.
  • a battery separator having excellent oxidation resistance and adhesion to the electrode is obtained. Further, according to the present invention, a battery using such a battery separator is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 本発明は、多孔質基材、および前記多孔質基材の少なくとも1つの表面に担持された架橋ポリマーの層を含む電池用セパレータであって、前記架橋ポリマーが、(a)分子中に活性水素を含む反応性基を有する反応性ポリマーと、(b)末端イソシアネート基ポリカーボネートウレタンプレポリマーとの反応によって得られる電池用セパレータに関する。

Description

電池用セパレータとこれを用いてなる電池
 本発明は、電池用セパレータとこれを用いてなる電池に関し、詳しくは、ポリカーボネートウレタン骨格を有する架橋ポリマーの層を多孔質基材に担持させてなる電池用セパレータと、このようなセパレータを用いてなる電池に関する。
 近年、携帯電話やノート型パーソナルコンピュータ等の小型の携帯電子機器のための電源として、高エネルギー密度を有するリチウムイオン二次電池が広く用いられている。このようなリチウムイオン二次電池は、シート状の正、負電極と、例えば、ポリオレフィン樹脂多孔質フィルムとを積層し、又は捲回して、例えば、金属缶からなる電池容器に仕込んだ後、この電池容器に電解液を注入し、密封、封口するという工程を経て製造される。
 しかし、近年、上記のような小型の携帯電子機器の一層の小型化、軽量化への要望が非常に強く、そこで、リチウムイオン二次電池についても、更なる薄型化と軽量化が求められており、従来の金属缶容器に代えて、ラミネートフィルム型の電池容器も用いられるようになっている。
 このようなラミネートフィルム型の電池容器によれば、従来の金属缶容器に比べて、セパレータと電極の電気的接続を維持するための面圧を電極面に十分に加えることができないので、電池の充放電時の電極活性物質の膨張収縮によって、電極間距離が経時により部分的に大きくなり、電池の内部抵抗が増大して、電池特性が低下するほか、電池内部で抵抗のばらつきが生じることによっても、電池特性が低下するという問題が生じる。
 また、大面積のシート状電池を製造する場合には、電極間距離を一定に保つことができず、電池内部の抵抗のばらつきによって、電池特性が十分に得られないという問題もあった。
 そこで、従来、このような問題を解決するために、電解液相、電解液を含有する高分子ゲル層及び高分子固相との混合相からなる接着性樹脂層によって電極とセパレータを接合することが提案されている(例えば、特許文献1参照)。また、ポリフッ化ビニリデン樹脂を主成分とするバインダー樹脂溶液をセパレータに塗布した後、これに電極を重ね合わせ、乾燥させて、電極積層体を形成し、この電極積層体を電池容器に仕込んだ後、電池容器に電解液を注入して、セパレータに電極を接着した電池を得ることも提案されている(例えば、特許文献2参照)。
 また、電解液を含浸させたセパレータと正、負の電極を多孔性の接着性樹脂層で接合して、密着させると共に、上記接着性樹脂層中の貫通孔に電解液を保持させて、セパレータに電極を接着した電池とすることも提案されている(例えば、特許文献3参照)。
 しかし、このような方法によれば、セパレータと電極との間に十分な接着力を得るためには、接着性樹脂層の厚さを厚くしなければならず、また、接着性樹脂に対する電解液量を多くできないので、得られる電池においては、内部抵抗が高くなり、サイクル特性や高レート放電特性が十分に得られない問題があった。
 更に、上述したように、セパレータと電極とを接着性樹脂を用いて接着した電池においては、高温環境下に置かれた場合、セパレータと電極との間の接着強度が低下するので、セパレータが熱収縮して、電極間に短絡を生じるおそれがある。また、電池内において、上記接着性樹脂は電解液によって膨潤しているが、電解液に比べれば、電解質イオンは接着性樹脂中に拡散し難いので、接着性樹脂層は内部抵抗が高く、電池特性に有害な影響を与える。
 他方、電池用セパレータのための多孔質基材は、従来、種々の製造方法が知られている。一つの方法として、例えば、ポリオレフィン樹脂からなるシートを製造し、これを高倍率延伸する方法が知られている(例えば、特許文献4参照)。しかし、このように高倍率延伸して得られる多孔質フィルムからなる電池用セパレータは、電池が内部短絡等によって異常昇温した場合のような高温環境下においては、著しく収縮し、場合によっては、電極間の隔壁として機能しなくなるという問題がある。
 そこで、電池の安全性を向上させるために、このような高温環境下での電池用セパレータの熱収縮率の低減が重要な課題とされている。この点に関して、高温環境下での電池用セパレータの熱収縮を抑制するために、例えば、超高分子量ポリエチレンと可塑剤を溶融混練し、ダイスからシート状に押し出した後、可塑剤を抽出、除去して、電池用セパレータに用いる多孔質フィルムを製造する方法も知られている(特許文献5参照)。しかし、この方法によれば、上記の方法と反対に、得られる多孔質フィルムは、延伸を経ていないので、強度において十分でない問題がある。
 更に、最近になって、電池の高容量化の一環として、電池の充電電圧を高める試みも行われているが、他方、そのように充電電圧を高めた場合には、一般に正極活物質として用いられているコバルトやニッケルとリチウムとの複合酸化物から多くの量のリチウムがデインターカレートされて、それら複合酸化物の酸化状態が高くなり、反応性も高くなって、その結果、特に、セパレータが著しく劣化して、電池性能の劣化を招くという問題がある。
 そこで、このような問題を解決するために、セパレータと正極の間にポリテトラフルオロエチレン樹脂のようなフッ素樹脂多孔質層を形成することが提案されている(特許文献6参照)。例えば、ポリテトラフルオロエチレン樹脂多孔質層を形成するには、例えば、ポリテトラフルオロエチレン樹脂懸濁液をセパレータ上に噴霧し、乾燥する方法が好ましいとされているが、このような方法によれば、得られる層は多孔性に富むものの、厚さが大きくなって、電池容量を犠牲にすることとなり、そのうえ、多量の電解液を必要とする。
特開平09-161814号公報 特開平11-329439号公報 特開平10-172606号公報 特開平09-012756号公報 特開平05-310989号公報 特開2007-157459号公報
 本発明は、電池用セパレータにおける上述した種々の問題を解決するためになされたものであって、なかでも、耐酸化性に優れ、そのうえ、電極に接着性を有する電池用セパレータを提供することを目的とし、更に、そのような電池用セパレータを用いてなる電池を提供することを目的とする。
 すなわち、本発明は、以下の(1)~(9)に関する。
(1)多孔質基材、および
前記多孔質基材の少なくとも1つの表面に担持された架橋ポリマーの層
を含む電池用セパレータであって、
前記架橋ポリマーが、
 (a)分子中に活性水素を含む反応性基を有する反応性ポリマーと、
 (b)末端イソシアネート基ポリカーボネートウレタンプレポリマー
との反応によって得られる電池用セパレータ。
(2)活性水素を含む反応性基が、ヒドロキシ基、カルボキシル基及びアミノ基から選ばれる少なくとも1種である(1)に記載の電池用セパレータ。
(3)多孔質基材がポリオレフィン樹脂多孔質フィルムである(1)に記載の電池用セパレータ。
(4)ポリオレフィン樹脂多孔質フィルムがポリエチレン樹脂多孔質フィルムである(3)に記載の電池用セパレータ。
(5)(1)から(4)のいずれかに記載のセパレータ、および
前記セパレータを挟んで積層された正極と負極
を含む電極/セパレータ接合体であって、
架橋ポリマーによって正極と負極の少なくとも一方が多孔質基材に接着されている電極/セパレータ接合体。
(6)(5)に記載の電極/セパレータ接合体を有する電池。
(7)さらに非水電解液を含み、架橋ポリマーの層が少なくとも正極に対面している(6)に記載の電池。
(8)(1)から(4)のいずれかに記載のセパレータを挟んで正極と負極を積層すること、
得られた積層体を電池容器内に仕込んだ後、非水電解液を上記電池容器内に注入すること、および
架橋ポリマーによって正極と負極の少なくとも一方が多孔質基材に接着されてなる電極/セパレータ接合体を形成すること
を含む電池の製造方法。
(9)架橋ポリマーの層が少なくとも正極に対面するようにセパレータを挟んで正極と負極を積層する(8)に記載の電池の製造方法。
 本発明の電池用セパレータは、分子中に活性水素を含む反応性基を有する反応性ポリマーと末端イソシアネート基ポリカーボネートウレタンプレポリマーと反応させて得られる架橋ポリマーの層を多孔質基材に担持させて得られる。そのため、上記架橋ポリマーは、耐酸化性にすぐれ、更に、電極との接着性を有する。
 従って、このような電池用セパレータに電極を積層し、電極/セパレータ積層体とし、これを電池容器内に仕込んだ後、非水電解液を上記電池容器内に注入して、多孔質基材上の上記架橋ポリマーを電極との界面近傍にて少なくとも一部を膨潤させ、電解液と共に電極活物質に侵入させることによって、セパレータに電極を接着させることができ、かくして、電極/セパレータ接合体を有する電池を得ることができる。
 また、上記架橋ポリマーは、架橋構造を有するため、電解液に膨潤する際、電解液中への過度な溶出拡散は起こらず、電解液に有害な影響を与えることはない。
 しかも、上記架橋ポリマーは、反応性ポリマーを末端イソシアネート基ポリカーボネートウレタンプレポリマーにて架橋してなり、ポリカーボネート構造を含むことから、高い耐酸化性を有する。そのため、このような架橋ポリマーの層を担持してなる本発明の電池用セパレータは、正極との界面における高い酸化性環境に対して高い抵抗性を有し、かくして、エネルギー密度が高く、充放電特性にすぐれる電池を与えることができる。
(多孔質基材)
 本発明において、多孔質基材は、厚み3~50μmの範囲のものが好ましく用いられる。多孔質基材の厚みが3μmよりも薄いときは、強度が不十分であって、電池においてセパレータとして用いるとき、電極が内部短絡を起こすおそれがある。他方、多孔質基材の厚みが50μmを越えるときは、そのような多孔質基材をセパレータとして用いる電池は電極間距離が大きすぎて、電池の内部抵抗が過大となる。
 また、多孔質基材は、平均孔径0.01~5μmの細孔を有し、空孔率が20~95%
の範囲のものが用いられ、好ましくは、30~90%、最も好ましくは、35~85%の範囲のものが用いられる。空孔率が余りに低いときは、電池のセパレータとして用いた場合に、イオン伝導経路が少なくなり、十分な電池特性を得ることができない。他方、空孔率が余りに高いときは、電池のセパレータとして用いた場合に、強度が不十分であり、所要の強度を得るためには、多孔質基材として厚いものを用いなければならない。そのため、電池の内部抵抗が高くなるので好ましくない。
 更に、多孔質基材は、1500秒/100cc以下、好ましくは、1000秒/100cc以下の通気度を有するものが用いられる。通気度が高すぎるときは、電池のセパレータとして用いた場合に、イオン伝導性が低く、十分な電池特性を得ることができない。また、多孔質基材の強度は、突刺し強度が1N以上であることが好ましい。突刺し強度が1Nよりも小さいときは、電極間に面圧がかかった際に多孔質基材が破断し、内部短絡を引き起こすおそれがあるからである。
 また、多孔質基材は、後述する反応性ポリマーとの親和性が高いことが好ましく、そこで、多孔質基材が極性の低い材料からなる場合は、反応性ポリマーとの親和性を向上させるために、その表面をコロナ処理等のような適宜の表面親水化処理を施すことが好ましい。
 本発明によれば、多孔質基材は、上述したような特性を有すれば、特に、限定されるものではないが、耐溶剤性や強度を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、加熱されたときに、樹脂が溶融して、細孔が閉塞する性質を有し、その結果、電池に所謂シャットダウン機能を有せしめることができることから、ポリエチレン樹脂多孔質フィルムが特に好適に用いられる。ポリエチレン樹脂には、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα-オレフィンとエチレンとのコポリマーを含むものとする。
 特に、本発明によれば、ポリエチレンとして、超高分子量ポリエチレンを用いて得られる多孔質フィルムが多孔質基材として好適に用いられる。超高分子量ポリエチレンとは、重量平均分子量が50万以上、好ましくは、50万~300万の範囲にあるポリエチレンをいい、種々の市販品を入手することができる。また、超高分子量ポリエチレンの成形加工性や、得られる多孔質フィルムの接着性を高めるために、超高分子量ポリエチレンと他の樹脂との混合物を多孔質フィルムとしてもよい。
 更に、本発明によれば、ポリテトラフルオロエチレンやポリイミド、ポリエステル、ポリカーボネート、再生セルロース等の多孔質フィルムのほか、紙も多孔質基材として用いることができ、また、上記多孔質フィルムにシリカや酸化チタン、アルミナ、カオリナイト等の無機フィラーやモンモリロナイト等の鉱物フィラーを分散させたものも多孔質基材として用いることができる。
(反応性ポリマー)
 本発明において、反応性ポリマーは、分子中に活性水素を含む反応性基を有するポリマーをいい、活性水素を含む反応性基とは、活性水素によってイソシアネート基と反応性を有する基をいい、そのような反応性基として、例えば、ヒドロキシ基、カルボキシル基及びアミノ基から選ばれる少なくとも1種を挙げることができる。
 後述するように、本発明によれば、このような反応性ポリマーを末端イソシアネート基ポリカーボネートウレタンプレポリマーと反応させることによってポリカーボネートウレタン骨格を有する架橋ポリマーを得ることができる。ここに、末端イソシアネート基ポリカーボネートウレタンプレポリマーは、ポリカーボネートジオールと多官能イソシアネートとの反応によって得ることができる。
 上記反応性ポリマーは、好ましくは、上記反応性基を有する第1のラジカル重合性モノマーとそのような反応性基をもたない第2のラジカル重合性モノマーとをラジカル重合開始剤を用いてラジカル共重合させることによって得ることができる。
 反応性基を有するラジカル重合性モノマーは、全モノマー量のうち、0.1~10重量%、好ましくは、0.5~5重量%の範囲で用いられる。全モノマー量のうち、反応性基を有するラジカル重合性モノマーが0.1重量%よりも少ないときは、得られる反応性ポリマーを後述する末端イソシアネート基ポリカーボネートウレタンプレポリマーと反応させて、架橋ポリマーを得ても、そのような架橋ポリマーは不溶分率が小さすぎて、電極/セパレータ積層体を電解液中に浸漬したとき、ポリマーの電解液中への溶出、拡散が十分に抑制されず、溶出拡散量が多くなる。その結果、多孔質基材と電極との間の接着を維持できず、不純物により電池の劣化も加速する虞がある。しかし、反応性基を有するラジカル重合性モノマーが10重量%よりも多いときは、得られる架橋ポリマーの架橋密度が大きすぎて、架橋ポリマーが過度に緻密となって、電解液に接触しても十分に膨潤しない。その結果、電極/セパレータ接合体を得ることができず、特性にすぐれた電池を得ることができない。
 上記反応性基を有する第1のラジカル重合性モノマーとして、反応性基がカルボキシル基であるものとして、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸等を挙げることができ、反応性基がヒドロキシ基であるものとして、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のようなヒドロキシアルキル(メタ)アクリレート、エチレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、ペンタプロピレングリコールモノ(メタ)アクリレート等の(ポリ)アルキレングリコールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートとγ-ブチロラクトン開環付加物等を挙げることができる。また、反応性基がアミノ基であるものとして、例えば、ジアミンと(メタ)アクリロイルオキシエチルイソシアネートとの1:1反応生成物を挙げることができる。
 ここに、(メタ)アクリル酸はアクリル酸又はメタクリル酸を意味し、(メタ)アクリレートはアクリレート又はメタクリレートを意味し、(メタ)アクリロイルオキシはアクリロイルオキシ又はメタアクリロイルオキシを意味する。
 他方、反応性基をもたない第2のラジカル重合性モノマーとしては、好ましくは、一般式(I)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子又はメチル基を示し、Aは炭素原子数2又は3のオキシアルキレン基(好ましくは、オキシエチレン基又はオキシプロピレン基)を示し、Rは炭素原子数1~6のアルキル基又は炭素原子数1~6のフッ化アルキル基を示し、nは0~12の整数を示す。)
で表される(メタ)アクリレートや、一般式(II)
Figure JPOXMLDOC01-appb-C000002
(式中、Rはメチル基又はエチル基を示し、Rは水素原子又はメチル基を示す。)
で表されるビニルエステルを挙げることができる。
 上記一般式(I) で表される(メタ)アクリレートの具体例として、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート等を挙げることができる。
 上記一般式(I) で表される(メタ)アクリレートとしては、上記以外にも、例えば、
Figure JPOXMLDOC01-appb-C000003
(各式中、Rは水素原子又はメチル基を示し、nは0~12の整数である。)
等を挙げることができる。
 また、上記一般式(II)で表されるビニルエステルの具体例として、例えば、酢酸ビニル、プロピオン酸ビニル等を挙げることができる。
 前述したように、反応性ポリマーは、反応性基を有する第1のラジカル重合性モノマーと反応性基をもたない第2のラジカル重合性モノマーをラジカル重合開始剤を用いてラジカル共重合させることによって得ることができる。このラジカル共重合は、溶液重合、塊状重合、懸濁重合、乳化重合等、いずれの重合法によってもよいが、重合の容易さ、分子量の調整、後処理等の点から溶液重合や懸濁重合によるのが好ましい。
 上記ラジカル重合開始剤は、特に、限定されるものではないが、例えば、N,N’-アゾビスイソブチロニトリル、ジメチルN,N’-アゾビス(2-メチルプロピオネート)、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等が用いられる。また、このラジカル共重合において、必要に応じて、メルカプタン等のような分子量調整剤を用いることができる。
 本発明において、反応性ポリマーは、その重量平均分子量が10000以上であることが好ましい。反応性ポリマーの重量平均分子量が10000よりも小さいときは、これより得られる架橋ポリマーが電解液に膨潤し難く、得られる電池の特性を低下させる。他方、反応性ポリマーの重量平均分子量の上限は、特に制限されるものではないが、これより得られる架橋ポリマーが電解液をゲルとして保持し得るように、300万程度であり、好ましくは、250万程度である。特に、本発明によれば、反応性ポリマーは、重量平均分子量が100000~2000000の範囲にあるのが好ましい。
(末端イソシアネート基ポリカーボネートウレタンプレポリマー)
 本発明において、末端イソシアネート基ポリカーボネートウレタンプレポリマー(以下、単に、ウレタンプレポリマーという。)は、好ましくは、脂肪族ポリカーボネートジオールと多官能イソシアネートを、多官能イソシアネートの有するイソシアネート基/ポリカーボネートジオールの有するヒドロキシ基のモル比(以下、NCO/OHモル比という。)を、通常、1.2~3.3の範囲、好ましくは、1.5~2.5の範囲にて反応させることによって得られるオリゴマーである。上記NCO/OHモル比によって、得られるウレタンプレポリマーの分子量が変化するが、NCO/OHモル比を上記範囲とするとき、分子の両末端が実質的にイソシアネート基であるウレタンプレポリマーを得ることができる。
 脂肪族ポリカーボネートジオールは、既によく知られているように、例えば、脂肪族ジオールとホスゲンとの反応や、また、アルキレンカーボネートの開環重合等によって得ることができる。脂肪族ジオールとホスゲンとの反応によって、ポリカーボネートジオールを得る場合、用いる脂肪族ジオールは、特に制限されず、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,4-テトラメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、1,4-シクロヘキサンジオール等を挙げることができる。これら脂肪族ジオールは、単独で、又は2種以上組み合わせて用いられる。
 また、アルキレンカーボネートの開環重合によってポリカーボネートジオールを得る場合、用いるアルキレンカーボネートも特に制限されず、例えば、エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネート等を挙げることができる。これらアルキレンカーボネートも、単独で、又は2種以上混合して用いられる。
 また、脂肪族ポリカーボネートジオールは、上述したようなアルキレンカーボネートやジアルキルカーボネートを上記脂肪族ジオールと反応させることによっても得ることができる。ジアルキルカーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジ-n-ブチルカーボネート等を挙げることができる。
 本発明によれば、用いる脂肪族ポリカーボネートジオールは、好ましくは、一般式(III)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数2~6の脂肪族ジオール残基を示す。)
で表される繰り返し単位を有する。但し、上記一般式(III)で表される繰り返し単位において、Rは繰り返し単位ごとに炭素数が異なる脂肪族ジオール残基、即ち、アルキレン基であってもよい。
 例えば、本発明によれば、用いる脂肪族ポリカーボネートジオールは、一般式(IIIa)と一般式(IIIb)
Figure JPOXMLDOC01-appb-C000005
 (式中、Ra及びRbは共に炭素数2~6の脂肪族ジオール残基を示すが、相互に炭素数が異なる。)
で表される繰り返し単位を有するものでもあってもよい。
 上記炭素数2~6の脂肪族ジオール残基とは、上述したように、例えば、エチレングリコール、1,3-トリメチレンジオール、1,4-テトラメチレンジオール、1,5-ペンタメチレンジオール、ネオペンチルグリコール、1,6-ヘキサメチレンジオール、1,4-シクロヘキサンジオール等の脂肪族ジオールにおける脂肪族炭化水素基であり、好ましくは、直鎖状又は分岐鎖状のアルキレン基である。
 他方、多官能イソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等の芳香族、芳香脂肪族、脂環族、脂肪族のジイソシアネートのほか、トリメチロールプロパンのようなポリオールにこれらのジイソシアネートを付加させてなる所謂イソシアネートアダクト体も用いられる。
(架橋ポリマーと電池用セパレータ)
 本発明によれば、前記反応性ポリマーと上記ウレタンプレポリマーを反応させることによって、反応性ポリマーがこのプレポリマーによって架橋されて、ポリカーボネートウレタン骨格を有する架橋ポリマーを得ることができる。本発明による電池用セパレータは、前記多孔質基材にこのような架橋ポリマーの層を担持させてなるものである。即ち、本発明による電池用セパレータは、多孔質基材とこれに担持された上記架橋ポリマーの層を含む。
 本発明によれば、目的とする電池用セパレータの機能によって、架橋ポリマーの層は、多孔質基材の少なくとも1つの表面に担持させればよく、また、後述するように、架橋ポリマーの層は、連続した層のみならず、種々の態様にて担持させることもできる。
 架橋ポリマーを多孔質基材に担持させるには、例えば、反応性ポリマーとウレタンプレポリマーをアセトン、酢酸エチル、酢酸ブチル、トルエン等の適宜の溶剤に溶解させ、得られた溶液を多孔質基材にキャスティング、スプレー塗布等、適宜の手段にて塗布した後、加熱して、用いた溶剤を除去した後、又は加熱して、用いた溶剤を除去しつつ、反応性ポリマーをウレタンプレポリマーと反応させて、架橋させればよい。
 別の方法として、上記反応性ポリマーとウレタンプレポリマーを含む溶液を剥離性シートに塗布し、乾燥させて、剥離性シート上に反応性ポリマーとウレタンプレポリマーの混合物を含む薄層を形成した後、この剥離性シートを多孔質基材に重ねて加熱加圧し、上記反応性ポリマーとウレタンプレポリマーの混合物からなる薄層を多孔質基材に転写し、その後、多孔質基材上の上記反応性ポリマーとウレタンプレポリマーの混合物からなる薄層を加熱して、反応性ポリマーをウレタンプレポリマーと反応させて、架橋させればよい。いずれの方法においても、反応性ポリマーとウレタンプレポリマーを反応させるためには、例えば、90℃で48時間、加熱すればよい。
 また、上記いずれの方法においても、反応性ポリマーとウレタンプレポリマーを含む溶液を調製し、これを加熱して、生成する架橋ポリマーが溶液中にて相分離しない程度に、予め、反応性ポリマーとウレタンプレポリマーを一部、反応させ、架橋させた後、このような溶液を多孔質基材や剥離性シートに塗付し、加熱して、溶剤を除去し、更に、加熱して、反応性ポリマーをウレタンプレポリマーと反応させて、架橋させてもよい。
 上記剥離性シートとしては、代表的には、ポリプロピレン樹脂シートが好ましく用いられるが、これに限定されず、例えば、ポリエチレンテレフタレート、ポリエチレン、塩化ビニル、エンジニアプラスチック等のシート、紙(特に、樹脂含浸紙)、合成紙、これらの積層体等が用いられる。これらのシートは、必要に応じて、シリコーン系や長鎖アルキル系等の化合物で背面処理されていてもよい。
 反応性ポリマーとウレタンプレポリマーの反応によるポリカーボネートウレタン骨格を有する架橋ポリマーの層を多孔質基材に担持させるに際して、用いる反応性ポリマーとウレタンプレポリマーの割合は、反応性ポリマー中の反応性基の量、ウレタンプレポリマー中のイソシアネート基の量のほか、反応性ポリマーやウレタンプレポリマーの分子量等の性質にもよるが、通常、反応性ポリマー100重量部に対して、ウレタンプレポリマー10~150重量部の範囲である。反応性ポリマー100重量部に対するウレタンプレポリマーの割合が10重量部よりも少ないときは、得られる架橋ポリマーが満足すべき耐酸化性をもたない。他方、反応性ポリマー100重量部に対するウレタンプレポリマーの割合が150重量部よりも多いときは、得られる架橋ポリマーの架橋密度が高すぎて、このような架橋ポリマーを担持した多孔質基材を電池の製造に用いても、特性のすぐれる電池を得ることができない。
 本発明において、多孔質基材への反応性ポリマーとウレタンプレポリマーの担持量、即ち、架橋ポリマーの担持量は、用いる反応性ポリマーとウレタンプレポリマーの種類や、それらを多孔質基材に担持させる態様等にもよるが、通常、0.2~5.0g/m2の範囲であり、好ましくは、0.3~3.0g/m2の範囲である。多孔質基材への架橋ポリマーの担持量が少なすぎるときは、得られるセパレータが電極に対して十分な接着力をもたない。反対に、担持量が多すぎるときは、得られるセパレータを用いてなる電池が特性において低下するので、好ましくない。
 本発明によれば、反応性ポリマーとウレタンプレポリマーとの反応によって得られる架橋ポリマーは、50~99重量%、好ましくは、60~99重量%、更に好ましくは、70~99重量%の範囲の不溶分率を有する。ここに、不溶分率とは、架橋ポリマーを担持させた多孔質基材を酢酸エチルに室温で攪拌下に6時間浸漬した後、多孔質基材上に残存する架橋ポリマーの割合をいう。
(電池)
 上述したようにして得られる本発明によるセパレータに電極を積層し、例えば、本発明によるセパレータを挟んで正極と負極を積層し、必要に応じて、これらを加熱下に加圧して、圧着し、かくして、電極をセパレータに仮接着し、貼り合わせることによって、電極/セパレータ積層体を得ることができる。
 本発明において、電極、即ち、負極と正極は、電池によって相違するが、一般に、導電性基材に活物質と、必要に応じて、導電剤とを樹脂バインダーを用いて、担持させてなるシート状のものが用いられる。
 本発明において、電極/セパレータ積層体は、セパレータに電極が積層されておればよい。従って、電池の構造や形態に応じて、電極/セパレータ積層体として、例えば、負極/セパレータ/正極、負極/セパレータ/正極/セパレータ等が用いられる。また、電極/セパレータ積層体は、シート状でもよく、また、捲回されていてもよい。
 本発明によるセパレータを用いる電池の製造について説明する。上述したように、電極をセパレータに積層し、又は捲回して、仮接着して、電極/セパレータ積層体を得、次いで、この積層体を金属管やラミネートフィルム等からなる電池容器内に仕込み、端子の溶接等が必要な場合にはこれを行った後、この電池容器内に非水電解液を所定量注入し、電池容器を密封、封口して、セパレータに担持させた架橋ポリマーを電極との界面近傍にて少なくともその一部を電解液により膨潤させ、電極活物質間の空隙に侵入させて、多孔質基材と電極の両方に対してアンカー効果を発現させることによって、架橋ポリマーによって多孔質基材に電極が接着された電極/セパレータ接合体を得ることができ、かくして、電極/セパレータ接合体を有する電池を得ることができる。
 本発明によれば、多孔質基材上に担持されている架橋ポリマーは、前述したように、高い不溶分率を有するので、電池の製作に際して、電解液に浸漬されたときにも、電解液中への溶出、拡散は抑制される。従って、電池の製造において、架橋ポリマーが電解液中に溶出して、電池特性を低下させることは殆どない。
 また、一般に、電極の電解液に対する濡れ性は、初期の充放電によって、劇的に向上する。そして、濡れ性の向上と共に、電解液により膨潤した架橋ポリマーも、電極活物質間の空隙に更に侵入して、セパレータ/電極間の接着を一層、強固なものとする。
 本発明によれば、電極/セパレータ積層体を電池容器内に仕込み、電池容器内に電解液を注入した後、加熱することにより、多孔質基材に担持させた架橋ポリマーと電極とを一層、密着させることができる。ここに、上記加熱の条件は、電池を構成する材料の耐熱性や生産性との兼ね合いにもよるが、通常、40~100℃の温度で0.5~24時間程度とすればよい。
 本発明による電池用セパレータにおいて、架橋ポリマーは、上述したように、1つには、電極をセパレータに接着させるための接着剤として機能し、電極/セパレータ接合体を形成するために有用である。このように、電極/セパレータ接合体を形成することによって、電池において、電極とセパレータがずれて電極が露出したり、セパレータが収縮して電極が露出したりすることを抑制することができる。
 特に、本発明によれば、得られる電池において、セパレータは電極に接着されており、従って、例えば、電池が150℃のような高温環境下に置かれても、セパレータ(厳密には、多孔質基材)は面積熱収縮率が小さく、通常、20%以下であり、好ましくは、15%以下である。
 このように、本発明によれば、架橋ポリマーは接着剤としての機能を満足する限り、多孔質基材に架橋ポリマーの層を担持させる態様は特に制限されることがない。従って、架橋ポリマーの層を多孔質基材の表面全体に担持させてもよく、また、場合によっては、部分的に、即ち、例えば、筋状、斑点状、格子目状、縞状、亀甲模様状等に部分的に架橋ポリマーの層を担持させてもよい。更に、架橋性ポリマーの層は、多孔質基材の一方の表面にのみ担持させてもよく、また、両方の表面に担持させてもよい。
 更に、本発明による電池用セパレータにおいて、架橋ポリマーは、前述したように、ウレタンプレポリマーを架橋剤として反応性ポリマーを架橋してなる架橋構造を有し、ポリカーボネート骨格を有することから、高い耐酸化性を有する。従って、本発明によるセパレータは、1つには、これを構成する多孔質基材に高い耐酸化性を与える機能を有し、有用である。特に、セパレータ基材がポリエチレンやポリプロピレンのようなポリオレフィン樹脂の多孔質フィルムである場合には、前述したように、充電電圧を高くするとき、正極活物質が高い酸化状態を有し、高い酸化反応性を有するために、セパレータが損傷し、劣化しやすい。しかし、このような場合にも、前記架橋ポリマーの層を担持したポリオレフィン樹脂多孔質フィルムからなるセパレータをその架橋ポリマーの層が正極側に位置するように電極/セパレータ接合体を形成することによって、セパレータにすぐれた耐酸化性を有せしめることができ、かくして、エネルギー密度が高く、充放電特性にすぐれる電池を得ることができる。
 上記非水電解液は、電解質塩を適宜の有機溶媒に溶解してなる溶液である。上記電解質塩としては、水素、リチウム、ナトリウム、カリウム等アルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、ヘキサフルオロリン酸、過塩素酸等の無機酸、カルボン酸、有機スルホン酸又はフッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。
 このようなアルカリ金属イオンをカチオン成分とする電解質塩の具体例としては、例えば、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム等の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム等のテトラフルオロホウ酸アルカリ金属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸カリウム等のへキサフルオロリン酸アルカリ金属、トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカリ金属、トリフルオロメタンスルホン酸リチウム等のトリフルオロメタンスルホン酸アルカリ金属を挙げることができる。
 特に、本発明に従って、リチウムイオン二次電池を得る場合には、電解質塩としては、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム等が好適に用いられる。
 更に、本発明において用いる上記電解質塩のための溶媒としては、上記電解質塩を溶解するものであればどのようなものでも用いることができるが、非水系の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン等の環状エステル類や、テトラヒドロフラン、ジメトキシエタン等のエーテル類や、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類を単独で、又は2種以上の混合物として用いることができる。
 以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、多孔質基材の物性と電池特性は以下のようにして評価した。
(多孔質基材の厚み)
 1/10000mmシックネスゲージによる測定と多孔質基材の断面の10000倍走査型電子頭微鏡写真に基づいて求めた。
(多孔質基材の空孔率)
 多孔質基材の単位面積S(cm2)当たりの重量W(g)、平均厚みt(cm)及び多孔質基材を構成する樹脂の密度d(g/cm3)から下式にて算出した。
      空孔率(%)=(1-(W/S/t/d))×100
(多孔質基材の通気度)
 JIS P 8117に準拠して求めた。
(多孔質基材の突き刺し強度)
 カトーテック(株)製圧縮試験磯KES-G5を用いて、多孔質基材の突き刺し試験を行った。測定により得られた荷重変位曲線から最大荷重を読みとり、突き刺し強度とした。針は直径1.0mm、先端の曲率半径0.5mmのものを用いて、2cm/秒の速度で行った。
(架橋ポリマーの不溶分率)
 既知の量Aの架橋ポリマーを担持した多孔質基材を秤量して、その重量Bを測定した。次に、この架橋ポリマー担持多孔質基材を酢酸エチルに室温で6時間浸漬した後、風乾した。その後、このように処理した架橋ポリマー担持多孔質基材を秤量して、その重量Cを測定した。架橋ポリマーの不溶分率は次式にて算出した。
     不溶分率(%)=((A-(B-C))/A)×100
参考例1
(電極シートの調製)
 正極活物質であるコバルト酸リチウム(日本化学工業(株)製セルシードC-10)85重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)5重量部を混合し、これを固形分濃度15重量%となるように、N-メチル-2-ピロリドンを用いてスラリーとした。このスラリーを厚み20μmのアルミニウム箔(集電体)上に厚み200μmに塗布し、80℃で1時間、120℃で2時間真空乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの正極シートを調製した。
 また、負極活物質であるメソカーボンマイクロビーズ(大阪ガスケミカル(株)製MCMB6-28)80重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)10重量部を混合し、これを固形分濃度15重量%となるように、N-メチル-2-ピロリドンを用いてスラリーとした。このスラリーを厚み20μmの銅箔(集電体)上に塗工して厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの負極シートを調製した。
参考例2
(ポリエチレン樹脂多孔質フィルムの作製)
 重量平均分子量100万の超高分子量ポリエチレン(融点137℃)15重量部と流動パラフィン85重量部をスラリー状に均一に混合し、170℃の温度で二軸押出機にて溶解混練し、コートハンガーダイスにて厚さ2mmのシートに押出した。得られたシートをロール引取しながら冷却して、厚さ1.3mmのゲルシートを得た。このゲルシートを温度123℃でMD方向(機械方向)とTD方向(幅方向)に4.5×5倍に同時二軸延伸して、延伸フィルムを得た。
 デカンを用いて上記延伸フィルムから流動パラフィンを脱溶媒した後、室温でデカンを乾燥させて、多孔質フィルムを得た。得られた多孔質フィルムを空気中、温度125℃で3分間熱処理して、ポリエチレン樹脂多孔質フィルムを得た。得られた多孔質フィルムは、厚さ16μm、空孔率39%、通気度270秒/100cc、突き刺し強度4Nであった。
比較例1
 前記参考例1で得た負極シート、前記参考例2で得たポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートをこの順序で積層して、電極/多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電して、ラミネートシール型電池を得た。
(電池特性の評価)
 得られた電池について、室温で0.2CmAの電流で2回充放電を行なった後、この電池を下記の3項目の電池特性の評価試験に供した。但し、下記3項目の電池特性の評価試験には、それぞれ別個の電池を用いた。
(レート特性)
 電池を0.2CmAで充電し、続いて、0.2CmAで放電して、0.2CmA放電容量Aを求めた。続いて、0.2CmAで充電した後、2CmAで放電して、2CmA放電容量Bを求めた。次式に基づいて、レート特性を算出した。
   レート特性(%)=2CmA放電容量B/0.2CmA放電容量A
 このように、レート特性を評価した電池を下記の多孔質基材の面積収縮率測定に供した。
(多孔質基材の面積収縮率の測定)
 上述した電池特性の評価項目であるレート特性を測定した電池を一対のガラス板の間に挟み、その間の距離が広がらないように上記一対のガラス板の両端をポリイミドテープにて固定して、試験構造物を組み立てた。この試験構造物を150℃の乾燥機に1時間投入した後、放冷し、次いで、試験構造物を分解して、得られた電極/架橋ポリマー担持多孔質基材接合体から多孔質基材を剥がし、これをスキャナーで読み込んで、試験前の多孔質基材の面積と比較して、多孔質基材の面積収縮率を求めた。
(連続充電特性)
 電池を温度60℃の恒温槽に入れ、電流0.2CmA、電圧4.25Vの定電流定電圧充電を行なった。0.2CmAの電流での充電において、電池電圧が4.25Vに達すると、電流値が減衰するが、このように、一旦、減少した電流値は、再度、上昇する現象が観測される。この現象は高電圧で活性の高い正極近傍で何らかの化学反応が起こっていることを示唆していると考えられるので、セパレータの耐酸化性を評価する指標として、上述した充電における電流挙動を7日間観測した。この観測において、電流値の上昇が観測された場合、試験の開始から上記電流値の上昇が観測されるまでの時間を計測し、7日間の観測において、上記電流値の増大が観測されなかった場合は「増大なし」とした。
(高温保存試験)
 電池を室温にて電流0.2CmA、電圧4.2Vの定電流定電圧充電を12時間続けて行なった。次いで、この満充電状態のまま、80℃の恒温槽中に4日間保持した後、温度80℃で電池電圧を測定した。
 電池における多孔質基材の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
参考例3
(反応性ポリマーの調製)
 還流冷却管を備えた500mL容量の3つ口フラスコにメチルメタクリレート84g、4-ヒドロキシブチルアクリレート2.0g、2-メトキシエチルアクリレート14.0g、酢酸エチル25g及びN,N’-アゾビスイソブチロニトリル0.20gを仕込み、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル重合を開始した。約1時間経過したとき、反応混合物の粘度の上昇認められた。この後、反応混合物に酢酸エチルを追加しながら、温度をほぼ一定に保ち、更に、8時間重合を続けた。
 反応終了後、得られた反応混合物を40℃まで冷却し、酢酸エチルを加え、全体が均一になるまで攪拌混合して、反応性ポリマーの酢酸エチル溶液(濃度15重量%)を得た。
 次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、ヘプタン600mL中に投入し、ポリマーを析出させた。ポリマーを濾別し、ヘプタンによる洗浄を数回繰り返し、空気中で乾燥させた後、更に、デシケータ中で6時間、真空乾燥して、反応性ポリマーを白色粉末として得た。
比較例2
 参考例3で得られた反応性ポリマー10gを酢酸エチルに室温で溶解させ、10重量%濃度の反応性ポリマー溶液を調製した。これに多官能イソシアネート(ヘキサメチレンジイソシアネート/トリメチロールプロパンアダクト体、酢酸エチル溶液、固形分25%、日本ポリウレタン工業(株)製コロネートHL)3.14gを加え、溶解させて、反応性ポリマーと多官能イソシアネートを含む塗工液を調製した。
 この塗工液をポリプロピレン樹脂シートの片面にワイヤーバーを用いて塗布した後、50℃で5分間加熱して酢酸エチルを揮発させ、反応性ポリマーと多官能イソシアネートの混合物からなる薄層をプロピレン樹脂シート上に形成した。
 このポリプロピレン樹脂シートを反応性ポリマーと多官能イソシアネートの混合物からなる薄層が参考例2で得られたポリエチレン樹脂多孔質フィルムに接触するように重ねて積層物とし、これを温度125℃に加熱したラミネートロールに通して加熱加圧して、反応性ポリマーと多官能イソシアネートの混合物からなる薄層をポリエチレン樹脂多孔質フィルムの片面に転写した。
 次いで、上記薄層を有するポリエチレン樹脂多孔質フィルムとポリプロピレン樹脂シートからなる積層物を90℃で48時間加熱し、反応性ポリマーと多官能イソシアネートを反応させ、上記反応性ポリマーを架橋させて、架橋ポリマーとした後、ポリプロピレン樹脂シートを剥がして、片面に架橋ポリマーを担持させたポリエチレン樹脂多孔質フィルムを得た。このポリエチレン樹脂多孔質フィルム上の架橋ポリマーの担持量は0.5g/m2であった。
 但し、便宜上、ポリエチレン樹脂多孔質フィルム上の架橋ポリマーの重量は、上記ポリプロピレン樹脂シート上に形成した反応性ポリマーと多官能イソシアネートの混合物からなる薄層の重量であるとみなして、ポリエチレン樹脂多孔質フィルム上の架橋ポリマーの担持量を次のようにして求めた。即ち、前記反応性ポリマーと多官能イソシアネートの混合物からなる薄層を形成したポリプロピレン樹脂シートを5cm×2cmの大きさに切り出し、その重量Aを測定した。次いで、ポリプロピレン樹脂シート上の前記反応性ポリマーと多官能イソシアネートの混合物からなる薄層を完全に除去した後、ポリプロピレン樹脂シートの重量Bを測定して、ポリエチレン樹脂多孔質フィルム上の架橋ポリマーの担持量を(A-B)×1000(g/m2)から計算した。
 前記参考例1で得た負極シート、上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートを多孔質フィルム上の架橋ポリマーが正極シートに対面するようにこの順序に積層して、電極/架橋ポリマー担持したポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電した後、50℃の恒温機に24時間投入して、電極シートとセパレータの接着を促進して、ラミネートシール型電池を得た。
 得られた電池について、比較例1と同様にして、多孔質基材の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
参考例4
(反応性ポリマーの調製)
 還流冷却管を備えた500mL容量の3つ口フラスコにメチルメタクリレート98g、4-ヒドロキシブチルアクリレート2.0g、酢酸エチル25g及びN,N’-アゾビスイソブチロニトリル0.20gを仕込み、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル重合を開始した。約2時間経過したとき、反応混合物の粘度の上昇が認められ、その後、酢酸エチルを追加しながら、温度をほぼ一定に保ち、更に、8時間重合を続けた。
 反応終了後、得られた反応混合物を40℃まで冷却し、酢酸エチルを加えた後、全体が均一になるまで加熱攪拌混合して、反応性ポリマー溶液(濃度25重量%)を得た。
 次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、ヘプタン600mL中に投入し、ポリマーを析出させた。ポリマーを濾別し、ヘプタンによる洗浄を数回繰り返し、空気中で乾燥させた後、更に、デシケータ中で6時間、真空乾燥して、反応性ポリマーを白色粉末として得た。
(末端イソシアネート基ポリカーボネートウレタンプレポリマーの調製)
 還流冷却管を備えた300mL容量の3つ口フラスコに窒素ガスを導入しながら、ポリヘキサメチレンカーボネートジオール(日本ポリウレタン工業(株)製ニッポラン980R)18.5gとトルエン25.2gを投入し、攪拌、溶解させた後、ポリヘキサメチレンジイソシアネート(日本ポリウレタン工業(株)製HDI)4.98gとトルエン9.98gを混合した溶液を混合した。均一に攪拌混合した後、60℃に加熱し、15時間反応させた。室温に冷却し、更に、トルエン136.98gを加え、12重量%濃度の末端イソシアネート基ポリカーボネートウレタンプレポリマーのトルエン溶液を得た。
実施例1
 参考例4で得られた反応性ポリマー6gを室温でトルエンに溶解させ、12重量%濃度の反応性ポリマー溶液50gを調製し、これと参考例4で得られた12重量%濃度の末端イソシアネート基ポリカーボネートウレタンプレポリマーのトルエン溶液22.5gを混合し、攪拌した。更に、得られた混合溶液にトルエン145gを加えて、固形分濃度4重量%の塗工液を調製した。
 この塗工液をポリプロピレン樹脂シートの片面にスピンコーターを用いて塗布した後、50℃で1時間加熱してトルエンを揮発させ、反応性ポリマーと上記ウレタンプレポリマーの混合物からなる薄層をポリプロピレン樹脂シート上に形成した。
 このポリプロピレン樹脂シートを反応性ポリマーとウレタンプレポリマーの混合物からなる薄層が参考例2で得られたポリエチレン樹脂多孔質フィルムに接触するように重ねて積層物とし、これを温度125℃に加熱したラミネートロールに通して加熱加圧して、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリエチレン樹脂多孔質フィルムの片面に転写した。
 次いで、上記薄層を有するポリエチレン樹脂多孔質フィルムとポリプロピレン樹脂シートからなる積層物を90℃で48時間加熱し、反応性ポリマーとウレタンプレポリマーを反応させ、上記反応性ポリマーを架橋させて、不溶分99%の架橋ポリマーとした後、ポリプロピレン樹脂シートを剥がして、片面に担持量0.5g/m2にて上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルムを得た。
 前記参考例1で得た負極シート、上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートを多孔質フィルム上の架橋ポリマーが正極シートに対面するようにこの順序に積層して、電極/架橋ポリマー担持ポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電した後、50℃の恒温機に24時間投入して、電極シートとポリエチレン樹脂多孔質フィルムの接着を促進し、ラミネートシール型電池を得た。
 得られた電池について、比較例1と同様にして、多孔質基材の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
参考例5
(反応性ポリマーの調製)
 還流冷却管を備えた500mL容量の3つ口フラスコにメチルメタクリレート98g、4-ヒドロキシブチルアクリレート2.0g、酢酸エチル25g及びN,N’-アゾビスイソブチロニトリル0.20gを仕込み、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル重合を開始した。約2時間経過したとき、反応混合物の粘度の上昇が認められ、その後、酢酸エチルを追加しながら温度をほぼ一定に保ち、更に、8時間重合を続けた。
 反応終了後、得られた反応混合物を40℃まで冷却し、酢酸エチルを加えた後、全体が均一になるまで攪拌混合して、反応性ポリマー溶液(濃度25重量%)を得た。
 次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、ヘプタン600mL中に投入し、ポリマーを析出させた。ポリマーを濾別し、ヘプタンによる洗浄を数回繰り返し、空気中で乾燥させた後、更に、デシケータ中で6時間、真空乾燥して、反応性ポリマーを白色粉末として得た。
(末端イソシアネート基ポリカーボネートウレタンプレポリマーの調製)
 還流冷却管を備えた300mL容量の3つ口フラスコに窒素ガスを導入しながら、ポリヘキサメチレンカーボネートジオール(前記ニッポラン980R)20gと酢酸エチル20.94gを投入し、攪拌、溶解させた後、前記と同じ多官能イソシアネート(ヘキサメチレンジイソシアネート/トリメチロールプロパンアダクト体、酢酸エチル溶液、固形分25%、日本ポリウレタン工業(株)製コロネートHL)24.15gを混合した。均一に攪拌した後、60℃に加熱し、15時間反応させた。室温に冷却し、更に、酢酸エチル151.88gを加え、12重量%濃度の末端イソシアネート基ポリカーボネートウレタンプレポリマーの酢酸エチル溶液を得た。
実施例2
 参考例5で得られた反応性ポリマー6gを酢酸エチルに室温で溶解させ、12重量%濃度の反応性ポリマー溶液50gを調製し、これに参考例5で得られた12重量%濃度のウレタンプレポリマーの酢酸エチル溶液16gを加え、攪拌しながら、80℃に加熱し、20時間反応させた。この後、反応混合物を冷却した後、これに酢酸エチル132gを加えて、固形分濃度4重量%の塗工液を調製した。
 この塗工液をポリプロピレン樹脂シートの片面にスピンコーターを用いて塗布した後、50℃で5分間加熱して酢酸エチルを揮発させ、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリプロピレン樹脂シート上に形成した。
 このポリプロピレン樹脂シートを反応性ポリマーとウレタンプレポリマーの混合物からなる薄層が参考例2で得られたポリエチレン樹脂多孔質フィルムに接触するように重ねて積層物とし、これを温度125℃に加熱したラミネートロールに通して加熱加圧して、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリエチレン樹脂多孔質フィルムの片面に転写した。
 次いで、上記薄層を有するポリエチレン樹脂多孔質フィルムとポリプロピレン樹脂シートからなる積層物を90℃で48時間加熱し、反応性ポリマーとウレタンプレポリマーを反応させ、上記反応性ポリマーを架橋させて、不溶分98%の架橋ポリマーとした後、ポリプロピレン樹脂シートを剥がして、片面に担持量0.5g/m2にて上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルムを得た。
 前記参考例1で得た負極シート、上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートを多孔質フィルム上の架橋ポリマーが正極シートに対面するようにこの順序に積層して、電極/架橋ポリマー担持ポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電した後、50℃の恒温機に24時間投入して、電極シートとポリエチレン樹脂多孔質フィルムの接着を促進し、ラミネートシール型電池を得た。
 得られた電池について、比較例1と同様にして、多孔質基材(ポリエチレン樹脂多孔質フィルム)の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
実施例3
 参考例5で得られた反応性ポリマー6.0gを酢酸エチルに室温で溶解させ、12重量%濃度の反応性ポリマー溶液50gを調製し、これに参考例5で得られた12重量%濃度のウレタンプレポリマーの酢酸エチル溶液60gを加え、攪拌しながら、80℃に加熱し、20時間反応させた。得られた反応混合物を冷却した後、これに酢酸エチル220gを加えて、固形分濃度4重量%の塗工液を調製した。
 この塗工液をポリプロピレン樹脂シートの片面にスピンコーターを用いて塗布した後、50℃で5分間加熱して、酢酸エチルを揮発させ、反応性ポリマーと上記ウレタンプレポリマーと共にそれらの反応生成物からなる薄層をポリプロピレン樹脂シート上に形成した。
 このポリプロピレン樹脂シートを上記薄層が参考例2で得られたポリエチレン樹脂多孔質フィルムに接触するように重ねて積層物とし、これを温度125℃に加熱したラミネートロールに通して加熱加圧して、上記薄層をポリエチレン樹脂多孔質フィルムの片面に転写した。
 次いで、上記薄層を有するポリエチレン樹脂多孔質フィルムとポリプロピレン樹脂シートからなる積層物を90℃で48時間加熱し、反応性ポリマーとウレタンプレポリマーを反応させ、上記反応性ポリマーを架橋させて、不溶分98%の架橋ポリマーとした後、ポリプロピレン樹脂シートを剥がして、片面に担持量0.5g/m2にて上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルムを得た。
 前記参考例1で得た負極シート、上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートを多孔質フィルム上の架橋ポリマーが正極シートに対面するようにこの順序に積層して、電極/架橋ポリマー担持ポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電した後、50℃の恒温機に24時間投入して電極シートとポリエチレン樹脂多孔質フィルムの接着を促進し、ラミネートシール型電池を得た。
 得られた電池について、比較例1と同様にして、多孔質基材(ポリエチレン樹脂多孔質フィルム)の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
参考例6
(反応性ポリマーの調製)
 還流冷却管を備えた500mL容量の3つ口フラスコにメチルメタクリレート98g、4-ヒドロキシブチルアクリレート2.0g、酢酸エチル25g及びN,N’-アゾビスイソブチロニトリル0.20gを仕込み、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル重合を開始した。約2時間経過したとき、反応混合物の粘度の上昇が認められ、その後、酢酸エチルを追加しながら温度をほぼ一定に保ち、更に、8時間重合を続けた。
 反応終了後、得られた反応混合物を40℃まで冷却し、酢酸エチルを加えた後、全体が均一になるまで攪拌混合して、反応性ポリマー溶液(濃度25重量%)を得た。
 次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、ヘプタン600mL中に投入し、ポリマーを析出させた。ポリマーを濾別し、ヘプタンによる洗浄を数回繰り返し、空気中で乾燥させた後、更に、デシケータ中で6時間、真空乾燥して、反応性ポリマーを白色粉末として得た。
(末端イソシアネート基ポリカーボネートウレタンプレポリマーの調製)
 還流冷却管を備えた300mL容量の3つ口フラスコに窒素ガスを導入しながら、1分子中に炭素数の異なるアルキレン鎖を有するポリアルキレンカーボネートジオール(旭化成ケミカルズ(株)製デュラノールG3452)18gとトルエン41.68gを投入し、攪拌、溶解させた後、多官能イソシアネート(日本ポリウレタン工業(株)コロネート2770)9.79gを混合した。均一に攪拌混合した後、60℃に加熱し、15時間反応させた。室温に冷却し、更にトルエン152.83gを加え、12.5重量%濃度のウレタンプレポリマー溶液を得た。
実施例4
 参考例6で得られた反応性ポリマー9gを室温でトルエンに溶解させ、10重量%濃度の反応性ポリマー溶液90gを調製し、これと12.5重量%濃度のウレタンプレポリマー溶液32.4gを混合し、攪拌した。更に、得られた混合溶液にトルエン95.1gを加えて、固形分濃度6重量%の塗工液を調製した。
 この塗工液をポリプロピレン樹脂シートの片面にスピンコーターを用いて塗布した後、50℃で5分間加熱してトルエンを揮発させ、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリプロピレン樹脂シート上に形成した。
 このポリプロピレン樹脂シートを反応性ポリマーとウレタンプレポリマーの混合物からなる薄層が参考例2で得られたポリエチレン樹脂多孔質フィルムに接触するように重ねて積層物とし、これを温度125℃に加熱したラミネートロールに通して加熱加圧して、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリエチレン樹脂多孔質フィルムの片面に転写した。
 次いで、上記薄層を有するポリエチレン樹脂多孔質フィルムとポリプロピレン樹脂シートからなる積層物を90℃で48時間加熱し、反応性ポリマーとウレタンプレポリマーを反応させ、上記反応性ポリマーを架橋させて、不溶分率98%の架橋ポリマーとした後、ポリプロピレン樹脂シートを剥がして、片面に担持量0.5g/mにて上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルムを得た。
 前記参考例1で得た負極シート、上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートを多孔質フィルム上の架橋ポリマーが正極シートに対面するようにこの順序に積層して、電極/架橋ポリマー担持ポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電した後、50℃の恒温機に24時間投入して、電極シートとポリエチレン樹脂多孔質フィルムの接着を促進し、ラミネートシール型電池を得た。
 得られた電池について、比較例1と同様にして、多孔質基材(ポリエチレン樹脂多孔質フィルム)の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
参考例7
(反応性ポリマーの調製)
 還流冷却管を備えた500mL容量の3つ口フラスコにメチルメタクリレート98g、4-ヒドロキシブチルアクリレート2.0g、酢酸エチル25g及びN,N’-アゾビスイソブチロニトリル0.20gを仕込み、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル重合を開始した。約2時間経過したとき、反応混合物の粘度の上昇が認められ、その後、酢酸エチルを追加しながら温度をほぼ一定に保ち、更に、8時間重合を続けた。
 反応終了後、得られた反応混合物を40℃まで冷却し、酢酸エチルを加えた後、全体が均一になるまで攪拌混合して、反応性ポリマー溶液(濃度25重量%)を得た。
 次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、ヘプタン600mL中に投入し、ポリマーを析出させた。ポリマーを濾別し、ヘプタンによる洗浄を数回繰り返し、空気中で乾燥させた後、更に、デシケータ中で6時間、真空乾燥して、反応性ポリマーを白色粉末として得た。
(末端イソシアネート基ポリカーボネートウレタンプレポリマーの調製)
 還流冷却管を備えた300mL容量の3つ口フラスコに窒素ガスを導入しながら、1分子中に炭素数の異なるアルキレン鎖を有するポリアルキレンカーボネートジオール(旭化成ケミカルズ(株)製デュラノールG3452)18gとトルエン39.23gを投入し、攪拌、溶解させた後、多官能イソシアネート(日本ポリウレタン工業(株)コロネート2770)8.16gを混合した。均一に攪拌混合した後、60℃に加熱し、15時間反応させた。室温に冷却し、更にトルエン143.86gを加え、12.5重量%濃度のウレタンプレポリマー溶液を得た。 
実施例5
 参考例7で得られた反応性ポリマー6gを室温でトルエンに溶解させ、10重量%濃度の反応性ポリマー溶液60gを調製し、これと12.5重量%濃度のウレタンプレポリマー溶液48gを混合し、攪拌した。更に、得られた混合溶液にトルエン92gを加えて、固形分濃度6重量%の塗工液を調製した。
 この塗工液をポリプロピレン樹脂シートの片面にスピンコーターを用いて塗布した後、50℃で5分間加熱してトルエンを揮発させ、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリプロピレン樹脂シート上に形成した。
 このポリプロピレン樹脂シートを反応性ポリマーとウレタンプレポリマーの混合物からなる薄層が参考例2で得られたポリエチレン樹脂多孔質フィルムに接触するように重ねて積層物とし、これを温度125℃に加熱したラミネートロールに通して加熱加圧して、反応性ポリマーとウレタンプレポリマーの混合物からなる薄層をポリエチレン樹脂多孔質フィルムの片面に転写した。
 次いで、上記薄層を有するポリエチレン樹脂多孔質フィルムとポリプロピレン樹脂シートからなる積層物を90℃で48時間加熱し、反応性ポリマーとウレタンプレポリマーを反応させ、上記反応性ポリマーを架橋させて、不溶分率98%の架橋ポリマーとした後、ポリプロピレン樹脂シートを剥がして、片面に担持量0.5g/mにて上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルムを得た。
 前記参考例1で得た負極シート、上記架橋ポリマーを担持したポリエチレン樹脂多孔質フィルム及び前記参考例1で得た正極シートを多孔質フィルム上の架橋ポリマーが正極シートに対面するようにこの順序に積層して、電極/架橋ポリマー担持ポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.2CmAの電流で3.5Vに達するまで充電した後、50℃の恒温機に24時間投入して、電極シートとポリエチレン樹脂多孔質フィルムの接着を促進し、ラミネートシール型電池を得た。
 得られた電池について、比較例1と同様にして、多孔質基材(ポリエチレン樹脂多孔質フィルム)の面積収縮率と共に、電池のレート特性、連続充電特性及び高温保存試験の結果を表1に示す。
参照例1
 参考例2で得られたポリエチレン樹脂多孔質フィルムの片面に空孔率97%、厚さ5μmのポリテトラフルオロエチレン樹脂多孔質フィルムを積層し、担持させた。
 前記参考例1で得た負極シート、上記ポリテトラフルオロエチレン樹脂多孔質フィルム担持ポリエチレン樹脂多孔質フィルム、および前記参考例1で得た正極シートをポリエチレン樹脂多孔質フィルム上の上記フッ素樹脂多孔質フィルムが正極シ-トに対面するようにこの順序に積層して、電極/フッ素樹脂多孔質フィルム担持ポリエチレン樹脂多孔質フィルム積層体とし、これをアルミニウムラミネートパッケージ内に仕込み、1.4モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/1)混合溶媒からなる電解液を注入した後、パッケージを封口した。この後、0.20CmAの電流で3.5Vに達するまで充電してラミネートシール型電池を得た。
 このようにして得られた電池について、比較例1と同様にして、連続充電特性と高温保存特性を評価した。結果を表1に示すように、連続充電において電流値の増大は認められなかった。また、高温保存後の電圧は4.1Vであった。
Figure JPOXMLDOC01-appb-T000006
 上記表1の結果から明らかなように、実施例1~5の結果は、正極シートとポリエチレン樹脂多孔質フィルムの間にフッ素樹脂多孔質フィルムを設けた参照例1の結果とほぼ同等である。即ち、本発明における架橋ポリマーは、参照例1におけるフッ素樹脂多孔質フィルムとほぼ同等の耐酸化性を有する。
 このように、本発明による電池においては、正極とセパレータとの間に設けたポリカーボネートウレタン骨格を有する架橋ポリマーが正極の高い酸化反応性にもかかわらず、酸化劣化せず、従って、電極/セパレータ間の接着の劣化がなく、架橋ポリマーの分解生成物による電池特性の劣化も起こらない。そのうえ、上記架橋ポリマーは、セパレータの保護層としても機能するので、ポリオレフィン樹脂多孔質フィルムをセパレータとして用いても、それらセパレータの酸化劣化を防止することができる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2008年3月31日付けで出願された日本特許出願(特願2008-094392)に基づいており、その全体が引用により援用される。
 また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明によれば、分子中に活性水素を含む反応性基を有する反応性ポリマーと末端イソシアネート基ポリカーボネートウレタンプレポリマーと反応させて得られる架橋ポリマーの層を多孔質基材に担持させることにより、耐酸化性に優れ、電極に接着性を有する電池用セパレータが得られる。また、本発明によればそのような電池用セパレータを用いてなる電池が提供される。

Claims (9)

  1.  多孔質基材、および
    前記多孔質基材の少なくとも1つの表面に担持された架橋ポリマーの層
    を含む電池用セパレータであって、
    前記架橋ポリマーが、
     (a)分子中に活性水素を含む反応性基を有する反応性ポリマーと、
     (b)末端イソシアネート基ポリカーボネートウレタンプレポリマー
    との反応によって得られる電池用セパレータ。
  2.  活性水素を含む反応性基が、ヒドロキシ基、カルボキシル基及びアミノ基から選ばれる少なくとも1種である請求項1に記載の電池用セパレータ。
  3.  多孔質基材がポリオレフィン樹脂多孔質フィルムである請求項1に記載の電池用セパレータ。
  4.  ポリオレフィン樹脂多孔質フィルムがポリエチレン樹脂多孔質フィルムである請求項3に記載の電池用セパレータ。
  5.  請求項1から4のいずれかに記載のセパレータ、および
    前記セパレータを挟んで積層された正極と負極
    を含む電極/セパレータ接合体であって、
    架橋ポリマーによって正極と負極の少なくとも一方が多孔質基材に接着されている電極/セパレータ接合体。
  6.  請求項5に記載の電極/セパレータ接合体を含む電池。
  7.  さらに非水電解液を含み、架橋ポリマーの層が少なくとも正極に対面している請求項6に記載の電池。
  8.  請求項1から4のいずれかに記載のセパレータを挟んで正極と負極を積層すること、
    得られた積層体を電池容器内に仕込んだ後、非水電解液を上記電池容器内に注入すること、および
    架橋ポリマーによって正極と負極の少なくとも一方が多孔質基材に接着されてなる電極/セパレータ接合体を形成すること
    を含む電池の製造方法。
  9.  架橋ポリマーの層が少なくとも正極に対面するようにセパレータを挟んで正極と負極を積層する請求項8に記載の電池の製造方法。
PCT/JP2009/056720 2008-03-31 2009-03-31 電池用セパレータとこれを用いてなる電池 WO2009123218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801118756A CN101983444B (zh) 2008-03-31 2009-03-31 电池用隔膜和使用所述隔膜的电池
US12/935,735 US9142818B2 (en) 2008-03-31 2009-03-31 Battery separator and battery using the same
EP09727986.3A EP2262038B1 (en) 2008-03-31 2009-03-31 Battery separator and battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-094392 2008-03-31
JP2008094392 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123218A1 true WO2009123218A1 (ja) 2009-10-08

Family

ID=41135586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056720 WO2009123218A1 (ja) 2008-03-31 2009-03-31 電池用セパレータとこれを用いてなる電池

Country Status (6)

Country Link
US (1) US9142818B2 (ja)
EP (1) EP2262038B1 (ja)
JP (1) JP5337550B2 (ja)
KR (1) KR101474591B1 (ja)
CN (1) CN101983444B (ja)
WO (1) WO2009123218A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187237A1 (ja) * 2020-03-17 2021-09-23 第一工業製薬株式会社 二次電池セパレータ用ポリウレタン樹脂水分散体、二次電池セパレータ及び二次電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771621B2 (ja) * 2010-10-27 2015-09-02 株式会社クラレ 非水系電池用セパレータ及びそれを用いた非水系電池、ならびに非水系電池用セパレータの製造方法
WO2013062997A1 (en) 2011-10-28 2013-05-02 Lubrizol Advanced Materials, Inc. Polyurethane-based electrode binder compositions and electrodes thereof for electrochemical cells
JP6105226B2 (ja) * 2012-08-09 2017-03-29 三洋電機株式会社 非水電解質二次電池
WO2014083988A1 (ja) * 2012-11-30 2014-06-05 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US10186716B2 (en) 2014-11-10 2019-01-22 Lanxess Solutions Us Inc. Non-aqueous flow cell comprising a polyurethane separator
EP3218947B1 (en) * 2014-11-10 2018-12-19 LANXESS Solutions US Inc. Energy storage device comprising a polyurethane separator
JP5988344B1 (ja) * 2016-04-20 2016-09-07 第一工業製薬株式会社 二次電池セパレータ用ポリウレタン樹脂水分散体、二次電池セパレータおよび二次電池
CN107611321B (zh) * 2016-07-11 2020-06-12 宁德新能源科技有限公司 隔离膜及二次电池
US9972838B2 (en) 2016-07-29 2018-05-15 Blue Current, Inc. Solid-state ionically conductive composite electrodes
US9926411B1 (en) 2017-03-03 2018-03-27 Blue Current, Inc. Polymerized in-situ hybrid solid ion-conductive compositions
JP7013682B2 (ja) * 2017-06-08 2022-02-01 Dic株式会社 ウレタン(メタ)アクリレート樹脂
KR102136547B1 (ko) * 2017-09-05 2020-07-22 주식회사 엘지화학 전해질 조성물, 전해질 필름, 및 전기변색소자
CN109295512B (zh) * 2018-09-28 2019-05-21 青岛大学 一种含氟封端结构的聚碳酸酯/聚酰亚胺复合纤维膜的制备方法
CN108963169B (zh) * 2018-09-28 2019-05-14 青岛大学 电池用隔膜和使用所述隔膜的电池
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
KR20210006242A (ko) * 2019-07-08 2021-01-18 주식회사 엘지화학 이차전지용 분리막 및 이를 포함하는 이차전지
JPWO2021033589A1 (ja) * 2019-08-20 2021-02-25
US11394054B2 (en) 2019-12-20 2022-07-19 Blue Current, Inc. Polymer microspheres as binders for composite electrolytes
CN115336039A (zh) 2019-12-20 2022-11-11 蓝色电流股份有限公司 具有粘合剂的复合电解质
CN117458084B (zh) * 2023-12-19 2024-03-19 宁德新能源科技有限公司 一种二次电池和电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180395A (ja) * 1997-09-09 1999-03-26 Nitto Denko Corp 多孔質膜および非水電解液電池用セパレータ
JP2004356102A (ja) * 2003-05-28 2004-12-16 Celgard Inc リチウムポリマー電池用の電池セパレータ
JP2006012561A (ja) * 2004-06-24 2006-01-12 Nitto Denko Corp 電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体
JP2007123254A (ja) * 2005-09-29 2007-05-17 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
JP2007157459A (ja) 2005-12-02 2007-06-21 Sony Corp 非水電解質電池
JP2007157569A (ja) * 2005-12-07 2007-06-21 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
JP2007157570A (ja) * 2005-12-07 2007-06-21 Nitto Denko Corp 電池用セパレータのためのポリマー担持多孔質フィルムとそれを用いる電池の製造方法
JP2008094392A (ja) 2006-10-11 2008-04-24 Ti Group Automotive Systems Llc 取付けブラケット
JP2009110683A (ja) * 2007-10-26 2009-05-21 Nitto Denko Corp 電池用セパレータのための反応性ポリマー層担持多孔質フィルムとその利用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (ja) 1992-04-30 1993-11-22 Mitsubishi Kasei Corp ポリエチレン多孔膜
JP3549290B2 (ja) 1995-06-29 2004-08-04 東燃化学株式会社 ポリオレフィン微多孔膜及びその製造方法
JP3416365B2 (ja) 1995-11-30 2003-06-16 三洋電機株式会社 非水電解液電池
JP3225864B2 (ja) 1996-12-04 2001-11-05 三菱電機株式会社 リチウムイオン二次電池及びその製造方法
JPH11329439A (ja) 1998-05-12 1999-11-30 Sony Corp 非水電解液二次電池
JP4412808B2 (ja) * 2000-05-12 2010-02-10 パナソニック株式会社 リチウムポリマー二次電池
JP2002175837A (ja) 2000-12-06 2002-06-21 Nisshinbo Ind Inc 高分子ゲル電解質及び二次電池並びに電気二重層キャパシタ
JP4791087B2 (ja) * 2004-09-30 2011-10-12 日東電工株式会社 反応性ポリマー担持多孔質フィルムとその製法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180395A (ja) * 1997-09-09 1999-03-26 Nitto Denko Corp 多孔質膜および非水電解液電池用セパレータ
JP2004356102A (ja) * 2003-05-28 2004-12-16 Celgard Inc リチウムポリマー電池用の電池セパレータ
JP2006012561A (ja) * 2004-06-24 2006-01-12 Nitto Denko Corp 電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体
JP2007123254A (ja) * 2005-09-29 2007-05-17 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
JP2007157459A (ja) 2005-12-02 2007-06-21 Sony Corp 非水電解質電池
JP2007157569A (ja) * 2005-12-07 2007-06-21 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
JP2007157570A (ja) * 2005-12-07 2007-06-21 Nitto Denko Corp 電池用セパレータのためのポリマー担持多孔質フィルムとそれを用いる電池の製造方法
JP2008094392A (ja) 2006-10-11 2008-04-24 Ti Group Automotive Systems Llc 取付けブラケット
JP2009110683A (ja) * 2007-10-26 2009-05-21 Nitto Denko Corp 電池用セパレータのための反応性ポリマー層担持多孔質フィルムとその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2262038A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187237A1 (ja) * 2020-03-17 2021-09-23 第一工業製薬株式会社 二次電池セパレータ用ポリウレタン樹脂水分散体、二次電池セパレータ及び二次電池

Also Published As

Publication number Publication date
CN101983444A (zh) 2011-03-02
KR20100132965A (ko) 2010-12-20
EP2262038A4 (en) 2011-07-06
EP2262038B1 (en) 2014-06-25
JP2009266812A (ja) 2009-11-12
KR101474591B1 (ko) 2014-12-18
EP2262038A1 (en) 2010-12-15
CN101983444B (zh) 2013-09-11
JP5337550B2 (ja) 2013-11-06
US9142818B2 (en) 2015-09-22
US20110135989A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5337550B2 (ja) 電池用セパレータとこれを用いてなる電池
JP5337549B2 (ja) 電池用セパレータとこれを用いてなる電池
TWI479725B (zh) 分隔器及含有此分隔器之電化學裝置
JP2007123254A (ja) 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
JP2004342572A (ja) 電池用セパレータのための部分架橋接着剤担持多孔質フィルムとその利用
WO2004091014A1 (ja) 電池用セパレータのための接着剤担多孔質フィルムとその利用
JP2009110683A (ja) 電池用セパレータのための反応性ポリマー層担持多孔質フィルムとその利用
JP5260075B2 (ja) 電池用セパレータ用反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体
JP2007157569A (ja) 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
EP2159863A1 (en) Crosslinkable polymer-loaded porous film for battery separator and use thereof
JP5422088B2 (ja) 電池用セパレータとこれを用いてなる電池
JP4564240B2 (ja) 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
JP4456422B2 (ja) 電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体
JP4601338B2 (ja) 電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体
JP2007035542A (ja) 電池用セパレータとこれを用いる電池の製造方法
JP2007035555A (ja) 電池用セパレータとこれを用いる電池の製造方法
JP5680241B2 (ja) 電池用セパレータ
JP2009193743A (ja) 電池用セパレータのための架橋性ポリマー担持多孔質フィルムとそれより得られる電池用セパレータと電極/セパレータ接合体
JP5260073B2 (ja) 電池用セパレータとそれより得られる電極/セパレータ接合体
JP2011192565A (ja) 電池用セパレータ
JP2014135288A (ja) 電池用セパレータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111875.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009727986

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107021895

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12935735

Country of ref document: US