WO2009122939A1 - 光スイッチ - Google Patents
光スイッチ Download PDFInfo
- Publication number
- WO2009122939A1 WO2009122939A1 PCT/JP2009/055641 JP2009055641W WO2009122939A1 WO 2009122939 A1 WO2009122939 A1 WO 2009122939A1 JP 2009055641 W JP2009055641 W JP 2009055641W WO 2009122939 A1 WO2009122939 A1 WO 2009122939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- electrode
- linear electrodes
- face
- optical switch
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/315—Digital deflection, i.e. optical switching based on the use of controlled internal reflection
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/22—Function characteristic diffractive
Definitions
- the present invention relates to an optical switch that controls application of an electric field to an electro-optic crystal to switch between reflection and transmission of incident light.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2006-293018
- This light modulation device has a resonator structure in which an optical crystal plate made of an electro-optic crystal is sandwiched between a first reflective layer and a second reflective layer.
- First and second electrodes are formed on the surface of the optical crystal plate.
- the first and second electrodes are comb-shaped electrodes in which a plurality of linear electrodes are arranged in parallel at equal intervals, and linear electrodes corresponding to the comb teeth are alternately arranged.
- the incident light is repeatedly reflected inside the resonator (the first reflective layer and the second reflective layer), and then emitted outward from the surface of the first reflective layer.
- an electric field is generated between these electrodes, and the refractive index of the optical crystal plate changes due to the electric field.
- the refractive index of the optical crystal plate changes, the resonance wavelength of the resonator shifts to a longer wavelength side than before the change of the refractive index, and as a result, the reflectance of the resonator changes.
- the intensity of the output light from the resonator is proportional to the reflectance of the resonator. Therefore, the intensity of the output light of the resonator can be changed by applying a voltage between the first and second electrodes to change the reflectance of the resonator. Thereby, light modulation becomes possible.
- the output light of the resonator includes diffused light (diffracted light).
- part of the output light may not be used.
- image light is formed by arranging a light modulation device on an optical path and performing light modulation. When the output light of the light modulation device is diffuse light, a part of the output light is formed. (Diffraction light) is out of the optical path. Light deviating from the optical path does not contribute to image display. In this way, a part of the output light of the optical switch is not used as image light, so that the light use efficiency is lowered.
- An object of the present invention is to provide an optical switch that can solve the above-mentioned problems.
- an optical switch includes an electrode portion including a plurality of linear electrodes arranged in parallel on the same plane inside an electro-optic crystal, and the electrode portion.
- An optical switch in which the state of reflection and transmission with respect to incident light incident on the electro-optic crystal is switched by controlling the voltage supply of An emission end face for emitting the light from the electrode part to the outside of the electro-optic crystal in the transmission state;
- the exit end face is A first end face on which zero-order light that has passed through the electrode portion of the incident light is incident;
- the optical axis of the 0th-order light emitted from the first end face is parallel to the optical axis of the first-order diffracted light emitted from the second end face, and the directions of these optical axes are the same.
- (First embodiment) 1A and 1B are a side view and a top view of an optical switch according to the first embodiment of the present invention.
- the electrode part inside the optical switch is shown in a perspective view.
- the optical switch has a structure in which an optical crystal plate 10 and an optical crystal plate 11 having an electrode portion 13 formed on the surface thereof are laminated.
- the optical crystal plates 10 and 11 are made of a crystal having an electro-optic effect (electro-optic crystal).
- the electrode section 13 is composed of a plurality of linear electrodes 13a and 13b arranged at equal intervals and having a main cross section having the maximum area in the same plane.
- the linear electrodes 13a and 13b are alternately arranged.
- One end of each linear electrode 13 a is connected to each other, and this connection portion is connected to one output line of the voltage control unit 50.
- one end of each linear electrode 13 b is also connected to each other, and this connection portion is connected to the other output line of the voltage control unit 50.
- the number of the linear electrodes 13a and 13b can be set as appropriate. Note that the intervals between the linear electrodes are not only in a state where the distances between the linear electrodes are completely matched, but also in a state where the spacing between the linear electrodes is shifted due to a manufacturing error or the like. Is also included.
- the electrode portion 13 composed of the plurality of linear electrodes may be, for example, a comb electrode.
- the electrode part 13 is comprised from the 1st comb-shaped electrode which consists of several linear electrode 13a, and the 2nd comb-shaped electrode which consists of several linear electrode 13b.
- the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal.
- the voltage control unit 50 supplies a voltage between the linear electrodes 13a and 13b (between the first and second comb electrodes), and its main part includes a power source and a switch circuit.
- the voltage supply between the linear electrodes 13a and 13b is controlled by on / off control of the switch circuit.
- the voltage control unit 50 is provided outside the optical switch.
- the optical switch may have this voltage control unit 50.
- An optical switch is formed by laminating the optical crystal plates 10 and 11 shown in FIGS. 1A and 1B under high temperature and high pressure.
- the optical crystal plates 10 and 11 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 and 11 under high temperature and high pressure, an electro-optical crystal having an electrode portion therein can be formed.
- FIG. 2 schematically shows a refractive index change region formed in the vicinity of the electrode including the linear electrodes 13a and 13b.
- a voltage is applied between the linear electrodes 13a and 13b, an electric field is generated between adjacent linear electrodes, and the refractive index of the crystal in the electrode vicinity region including each linear electrode changes due to the electric field.
- the region where the refractive index has changed is the refractive index changing region 16 shown in FIG.
- Incident light (parallel light flux) is totally reflected at the interface (refractive index interface) between the refractive index changing region 16 and the surrounding crystal region.
- the incident angle of the incident light is desirably set so as to satisfy a condition that allows total reflection at the interface.
- FIG. 2 shows a state in which incident light enters the refractive index change region from the left side toward the drawing and the reflected light goes to the right side.
- Is preferably incident on the refractive index changing region from the front side (or back side) toward the drawing, and the reflected light is directed toward the back side (or front side).
- the electrode when an opaque material is used as the electrode, the electrode itself blocks a part of the incident light, so that the light use efficiency is reduced accordingly.
- the use efficiency of light can be improved by making an electrode into a transparent electrode.
- the refractive index change region 16 When a voltage is applied to the linear electrodes 13 a and 13 b, the refractive index change region 16 is formed, so that incident light is totally reflected at the interface of the refractive index change region 16. On the other hand, when the supply of voltage to the linear electrodes 13a and 13b is stopped, the refractive index changing region 16 is not formed, and the incident light passes through the portions of the linear electrodes 13a and 13b as they are.
- the optical switch can be switched between a first state in which incident light is reflected and a second state in which incident light is transmitted.
- a voltage is applied to the linear electrodes 13a and 13b to form a refractive index change region, and incident light is reflected at the refractive index interface of the refractive index change region.
- the second state voltage supply to the linear electrodes 13a and 13b is stopped. Since the refractive index change due to the electro-optic effect does not occur in the region including the linear electrodes 13a and 13b by stopping the voltage supply, the incident light is transmitted between the linear electrodes 13a and 13b.
- Diffraction occurs when incident light passes between the linear electrodes 13a and 13b.
- the diffracted light from the linear electrodes 13a and 13b is diffused at a certain angle and emitted outward from the end face (exiting face) of the optical switch.
- the end portion on the exit surface side of the optical switch has a prism structure for condensing diffracted light from the linear electrodes 13a and 13b.
- the prism structure is A first end face 1a that intersects perpendicularly to the traveling direction of the incident light (more specifically, the optical axis A of the 0th-order light shown in FIG. 1B), and a second end face located on both sides of the first end face It consists of an end face 1b.
- the angle formed between the second end face 1b and the first end face 1a is such that at least a part of the first-order diffracted light from the linear electrodes 13a and 13b is emitted from the second end face 1b in a direction parallel to the optical axis A. It is an angle. More preferably, the first-order diffracted light from the linear electrodes 13a and 13b is emitted from the second end face 1b while maintaining the beam diameter, and the respective first-order diffracted lights emitted from the second end face 1b.
- the distance between the electrode portion and the first end face 1a and the angle formed between the second end face 1b and the first end face 1a are set so that the axis is parallel to the optical axis A of the zero-order light.
- the optical axis of the first-order diffracted light is an axis passing through the center of a surface (beam cross section) obtained by cutting the first-order diffracted light at a surface perpendicular to the traveling direction.
- the optical axis of the 0th-order light is an axis passing through the center of the surface (beam cross section) obtained by cutting the 0th-order light at a surface perpendicular to the traveling direction.
- the fact that the optical axis of the first-order diffracted light is parallel to the optical axis A of the zero-order light means that the directions (traveling directions) of both optical axes also coincide.
- FIGS. 3A and 3B are views for explaining conditions of the prism structure of the optical switch according to the first embodiment of the present invention.
- the configurations shown in FIGS. 3A and 3B correspond to the configurations shown in FIGS. 1A and 1B, respectively.
- the angle between the optical axis A of the normal to the zero-order light of the second end face 1b and theta o, linear electrodes 13a, the 1-order diffraction angle of the diffracted light caused by 13b and theta d, optical crystal plates 10 and 11 Let n be the refractive index. Let ⁇ m be the critical angle when incident light is totally reflected by the refractive index interface in the refractive index changing region formed in the electro-optic crystal by the application of an electric field.
- the length E l and width E w of the linear electrodes 13a and 13b and the spacing S x between the linear electrodes are set as appropriate.
- Optical path length C l linear electrode 13a, from 13b to the first end face 1a is given by the following equation (1).
- the distance Cy can be expanded as follows.
- the angle ⁇ o formed between the normal line of the first end face 1a and the optical axis A of the 0th-order light when the optical axis B of the 1st-order diffracted light and the optical axis A of the 0th-order light are parallel is expressed by the following equation (3 ).
- the first-order diffracted light from the linear electrodes 13a and 13b is emitted from the second end face 1b while maintaining the beam diameter, and Each optical axis B of the first-order diffracted light emitted from the second end face 1b is parallel to the optical axis A of the zero-order light.
- the 1st-order diffracted light parallel to the 0th-order light not only the 0th-order light but also the 1st-order diffracted light can be used as the output light (parallel light flux) of the optical switch.
- both 0th-order light and 1st-order diffracted light can be used as image light. Thereby, the light utilization efficiency can be improved.
- the first and first when viewed from the Z-axis direction (the electrode surface composed of the plurality of linear electrodes 13a and 13b or the direction perpendicular to the plane including the axes of the emitted first-order diffracted light and zero-order light), the first and first If the distance in the X-axis direction from the center position (optical axis A) to the end of the exit surface composed of the two end surfaces 1a and 1b is equal to or greater than D b (0.5 + cos 2 ⁇ 0 ), the linear electrodes 13a and 13b The first-order diffracted light from is emitted from the second end face 1b.
- the optical switch when the optical switch is formed so as to satisfy the expressions (2) and (3), most of the first-order diffracted light from the linear electrodes 13a and 13b is incident on the second end face 1b, and The optical axes B of the first-order diffracted light emitted from the second end face 1b are parallel to the optical axis A of the zero-order light. Therefore, not only the 0th-order light but also the 1st-order diffracted light can be used, and the light utilization efficiency can be improved.
- the inside of the folded light region and the outside of the 0th-order light region are in contact with each other. If there is a gap between the first-order diffracted light region and the zero-order light region in the cross section of the emitted light beam, the gap portion has a large luminance difference from the surrounding region. For this reason, for example, when image light is formed by optically modulating the emitted light beam, the image quality of the display image based on the image light may deteriorate due to the difference in luminance. By setting the inner side of the first-order diffracted light region and the outer side of the zero-order light region to be in contact with each other, such deterioration in image quality can be suppressed.
- the optical switch may be formed so as to satisfy only the expression (3).
- the distance C y linear electrode 13a, from the center of the 13b to the first end face 1a is not specified. Therefore, in FIG. 3B, the first state where the first and second end faces 1a, 1b are shifted to the linear electrodes 13a, 13b side, or the first and second end faces 1a, 1b are the linear electrodes 13a, The second state shifted to the side opposite to the 13b side is included in the conditions for forming the optical switch.
- the first-order diffracted light from the linear electrodes 13a and 13b is incident on the first and second end faces 1a and 1b in a state where it is not completely separated from the zero-order light. That is, a part of the first-order diffracted light from the linear electrodes 13a and 13b is incident on the first end face 1a. Since the optical axis of the first-order diffracted light emitted from the second end face 1b is parallel to the optical axis A of the zero-order light, it can be used as the output light of the optical switch, and the light utilization efficiency is improved accordingly. be able to. On the other hand, since the first-order diffracted light emitted from the first end face 1a is diffused at a certain angle with respect to the optical axis A of the zero-order light, it is difficult to use it as output light of the optical switch.
- the first-order diffracted light from the linear electrodes 13a and 13b is incident on the second end face 1b in a state of being completely separated from the zero-order light. Since the optical axis of the first-order diffracted light emitted from the second end face 1b is parallel to the optical axis A of the zero-order light, it can be used as the output light of the optical switch, and the light utilization efficiency is improved accordingly. be able to. In this case, however, a gap is generated between the first-order diffracted light region and the zero-order light region.
- FIG. 4A and 4B are a side view and a top view of an optical switch according to the second embodiment of the present invention.
- the electrode part inside the optical switch is shown in a perspective view.
- the optical switch has a structure in which an optical crystal plate 10, an optical crystal plate 11 having an electrode portion 13 formed on the surface, and an optical crystal plate 12 having an electrode portion 14 formed on the surface are stacked.
- the optical crystal plates 10 to 12 are made of a crystal having an electro-optic effect (electro-optic crystal).
- the electrode parts 13 and 14 are arranged in order along the traveling direction of the incident light. That is, the electrode parts 13 and 14 are located on the optical path.
- the electrode unit 13 has the same structure as that of the first embodiment, and includes a plurality of linear electrodes 13a and 13b arranged at equal intervals.
- the electrode unit 14 has the same configuration as the electrode unit 13 and includes a plurality of linear electrodes 14a and 14b arranged at equal intervals.
- the linear electrodes 14a and 14b are alternately arranged. One end of each of the linear electrodes 13 a and 14 a is connected to each other, and this connection portion is connected to one output line of the voltage control unit 50. Similarly, one end of each of the linear electrodes 13 b and 14 b is also connected to each other, and this connection portion is connected to the other output line of the voltage control unit 50.
- the number of the linear electrodes 13a, 13b, 14a, 14b can be set as appropriate.
- the electrode portions 13 and 14 composed of the plurality of linear electrodes may be, for example, comb electrodes.
- the electrode part 13 is comprised from the 1st comb-shaped electrode which consists of several linear electrode 13a, and the 2nd comb-shaped electrode which consists of several linear electrode 13b.
- the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal.
- the electrode part 14 is comprised from the 1st comb electrode which consists of several linear electrode 14a, and the 2nd comb electrode which consists of several linear electrode 14b.
- the linear electrodes are alternately arranged, and the intervals between the linear electrodes are equal.
- Each of the electrode parts 13 and 14 is arrange
- the voltage controller 50 supplies voltages between the linear electrodes 13a and 13b and between the linear electrodes 14a and 14b, respectively.
- the voltage control unit 50 is provided outside the optical switch.
- the optical switch may have this voltage control unit 50.
- An optical switch is formed by bonding the optical crystal plates 10, 11, and 12 shown in FIGS. 4A and 4B at high temperature and high pressure.
- the optical crystal plates 10 to 12 bonded together under high temperature and high pressure can be regarded as one optical crystal (specifically, an electro-optical crystal). That is, by bonding the optical crystal plates 10 to 12 under high temperature and high pressure, an electro-optical crystal having a plurality of electrode portions therein can be formed.
- the refractive index of the crystal in the vicinity of the electrode including the linear electrodes 13a and 13b changes due to the electro-optic effect.
- the refractive index of the crystal in the vicinity of the electrode including the linear electrodes 14a and 14b changes due to the electro-optic effect.
- the electrode portions 13 and 14 are sequentially arranged along a straight line (corresponding to the traveling direction of incident light).
- the position and the longitudinal direction of the linear electrodes 13a and 13b coincide with the position and the longitudinal direction of the linear electrodes 14a and 14b.
- Incident light is totally reflected at the interface (refractive index interface) between the refractive index changing region formed by the electrode portion 13 (or the electrode portion 14) and the surrounding crystal region.
- the incident angle of the incident light is desirably set so as to satisfy a condition that allows total reflection at the interface.
- the switch operation of the optical switch it is possible to switch between a first state in which incident light is reflected and a second state in which incident light is transmitted.
- a voltage is applied to each of the linear electrodes 13a and 13b and the linear electrodes 14a and 14b to form first and second refractive index changing regions, and incident on these refractive index changing regions. Reflects light.
- the second state voltage supply to the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is stopped. By stopping the voltage supply, the refractive index change due to the electro-optic effect does not occur in each region including the linear electrodes 13a and 13b and the linear electrodes 14a and 14b, so that the incident light passes through these regions.
- the interface of the refractive index changing region partially includes a region that does not satisfy the total reflection condition, and a part of the incident light is transmitted through this region.
- the range of the region that does not satisfy the total reflection condition depends on the interval between the linear electrodes and the magnitude of the applied voltage (the magnitude of the electric field).
- incident light is reflected at the interface of the first refractive index change region formed by applying a voltage to the linear electrodes 13a and 13b, and is further applied to the linear electrodes 14a and 14b.
- the light transmitted through the first refractive index change region is reflected at the interface of the second refractive index change region formed by applying a voltage.
- the extinction ratio can be further improved by setting the number of electrode portions (the number of refractive index change regions) formed along the traveling direction of incident light to three or more.
- the number of refractive index changing regions is increased, the number and capacity of the electrodes increase accordingly, which is not desirable from the viewpoint of power saving and miniaturization. It is desirable to determine the number of refractive index changing regions in consideration of the relationship between the extinction ratio and power saving and miniaturization.
- diffraction occurs when incident light passes between the linear electrodes 13a and 13b and between the linear electrodes 14a and 14b.
- the diffracted light from the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is diffused at a certain angle and emitted outward from the end face (exiting surface) of the optical switch.
- the optical switch of the present embodiment is configured such that the first-order diffracted light from the linear electrodes 13a and 13b passes between the linear electrodes 14a and 14b, and the end of the optical switch on the exit surface side is As shown to FIG. 4B, it has the prism structure for condensing the diffracted light from linear electrode 13a, 13b and linear electrode 14a, 14b.
- the prism structure When viewed from a direction perpendicular to the electrode surfaces of the electrode portions 13 and 14 (Z-axis direction in FIGS. 4A and 4B), the prism structure is a traveling direction of incident light (more specifically, 0 shown in FIG. 4B).
- the first end surface 2a intersects perpendicularly to the optical axis A) of the next light, and the second end surface 2b is located on both sides of the first end surface 2a.
- the angle formed between the second end face 2b and the first end face 2a is such that at least part of the first-order diffracted light from the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is from the second end face 2b to the optical axis A.
- the angle is emitted in a parallel direction. More preferably, the first-order diffracted light from the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is emitted from the second end surface 2b while maintaining the beam diameter, and is emitted from the second end surface 2b.
- each optical axis of the first-order diffracted light is parallel to the optical axis A (direction) of the zero-order light.
- the fact that the optical axis of the first-order diffracted light is parallel to the optical axis A of the zero-order light means that the directions (traveling directions) of both optical axes also coincide.
- FIGS. 5A and 5B are schematic diagrams for explaining conditions for forming the electrode portions 13a, 13b, 14a, and 14b at appropriate positions.
- the configurations shown in FIGS. 5A and 5B correspond to the configurations shown in FIGS. 4A and 4B, respectively.
- the refractive index of the electro-optic crystal used for the optical crystal plates 10 to 12 is n, and the electric field generated when a voltage is applied to the electrode part is E.
- n the electric field generated when a voltage is applied to the electrode part
- E the electric field generated when a voltage is applied to the electrode part
- the refractive index change ⁇ n of the electro-optic crystal generated when the electric field E is applied is given by the following formula (5). Where r is the primary electro-optic constant.
- the electro-optic crystal is KTN (potassium niobate tantalate: KTa 1-x Nb x O 3 )
- the refractive index change ⁇ n is given by the following formula (6).
- ⁇ m be the critical angle when the incident light is totally reflected by the refractive index interface of the refractive index changing region formed in the electro-optic crystal by the application of the electric field E.
- ⁇ be the wavelength of the incident light
- D b be the diameter of the incident light.
- the lengths and widths of the linear electrodes 13a, 13b, 14a, and 14b are E 1 and E w , respectively, and the interval between the linear electrodes is S x .
- the Y-axis direction is the longitudinal direction of the linear electrode.
- the interval in the Z-axis direction between the first-stage linear electrodes 13a and 13b and the second-stage linear electrodes 14a and 14b (the thickness of the optical crystal plate 11 as an intermediate layer) is Sz .
- the Z-axis direction is the thickness direction of the optical crystal plate.
- the critical angle ⁇ m , the linear electrode length E l , and the first-order diffraction angle ⁇ d are given by the following equations (7), (8), and (9), respectively.
- optical path length L 1 when the first-order diffracted light from the first-stage linear electrodes 13a, 13b passes between the second-stage linear electrodes 14a, 14b is given by the following equation (10).
- k is a natural number.
- the spacing S y in the Y-axis direction and the spacing S z in the Z-axis direction between the first-stage and second-stage linear electrodes are given by the following equations.
- the first-stage linear electrodes 13a, 13b and the second-stage linear electrodes 14a, 14b so as to satisfy the expressions (13) and (14), the first-stage electrode portions 13a, 13b
- the first-order diffracted light always passes between the linear electrodes of the second-stage electrode portions 14a and 14b.
- the length E l of the left side of the linear electrode may be greater than the value of the right side.
- FIGS. 6A and 6B are views for explaining conditions of the prism structure of the optical switch shown in FIGS. 4A and 4B.
- the configurations shown in FIGS. 6A and 6B correspond to the configurations shown in FIGS. 4A and 4B, respectively.
- the optical switch of the present embodiment condenses the first-order diffracted light from the linear electrodes 13a and 13b in the optical switch of the first embodiment as a prism structure that condenses the first-order diffracted light from the linear electrodes 14a and 14b.
- a prism structure similar to the prism structure is provided. That is, the optical switch of the present embodiment also has a prism structure that satisfies the condition of the above-described expression (3) or the conditions of the expressions (2) and (3).
- the conditions of the prism structure in the optical switch of the present embodiment will be described by replacing the linear electrodes 13a and 13b with the linear electrodes 14a and 14b. Can do.
- the first-order diffracted light from the linear electrodes 13a and 13b is also incident on the second end surface 2b.
- the length of the second end surface 2b in the X-axis direction is defined by the incident range of the first-order diffracted light from the linear electrodes 13a and 13b and the linear electrodes 14a and 14b.
- the distance in the Y-axis direction from the linear electrodes 13a and 13b to the first end surface 2a is (E 1 + S y + C y ), and the first-order diffracted light from the linear electrodes 13a and 13b
- the separation width from the 0th-order light is expressed by the following equation (15 ).
- the distance in the X-axis direction from the center position (optical axis A) to the end of the emission surface including the first and second end surfaces 2a and 2b is expressed by the following equation (16). If it is above, the 1st-order diffracted light from linear electrode 13a, 13b and linear electrode 14a, 14b will be isolate
- the electrode unit 13, so that the first-order diffracted light from the first-stage linear electrodes 13a, 13b passes between the second-stage linear electrodes 14a, 14b. 14 is formed at the optimum position.
- the first-order diffracted light from the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is emitted from the second end face 2b while maintaining the beam diameter, and is emitted from the second end face 2b.
- the distance between the electrode portion 14 and the first end face 2a, and the second end face 2b and the first end face 2a so that each optical axis of the next-order diffracted light is parallel to the optical axis A (direction) of the zero-order light.
- the angle formed by is set. As a result, not only the 0th-order light but also the 1st-order diffracted light can be used, and the light utilization efficiency can be improved.
- the optical switch may be formed so as to satisfy only Expression 3.
- the distance C y linear electrode 14a, from the center of the 14b to the first end surface 2a is not specified. Therefore, in FIG. 6B, the first state where the first and second end faces 2a, 2b are shifted to the linear electrode side, and the first and second end faces 2a, 2b are opposite to the linear electrode side.
- the second state shifted to the side is included in the conditions for forming the optical switch.
- the first-order diffracted light from the linear electrodes 14a and 14b is incident on the first and second end faces 2a and 2b in a state where it is not completely separated from the zero-order light. That is, a part of the first-order diffracted light from the linear electrodes 14a and 14b is incident on the first end face 2a. Since the optical axis of the first-order diffracted light emitted from the second end face 2b is parallel to the optical axis A of the zero-order light, it can be used as output light of the optical switch, and the light utilization efficiency is improved accordingly. be able to. On the other hand, since the first-order diffracted light emitted from the first end face 2a is diffused at a certain angle with respect to the optical axis A of the zero-order light, it is difficult to use it as output light of the optical switch.
- the first-order diffracted light from the linear electrodes 14a and 14b is incident on the second end face 2b in a state of being completely separated from the zero-order light. Since the optical axis of the first-order diffracted light emitted from the second end face 2b is parallel to the optical axis A of the zero-order light, it can be used as output light of the optical switch, and the light utilization efficiency is improved accordingly. be able to. In this case, however, a gap is generated between the first-order diffracted light region and the zero-order light region.
- an electrode composed of the linear electrodes of the electrode portions 13a and 13b.
- the incident direction is a direction along the longitudinal direction of the linear electrode. Specifically, in the schematic diagram shown in FIG. 2, incident light enters the refractive index changing region from the front side (or back side) toward the drawing.
- FIGS. 7A and 7B are schematic views showing the configuration of the optical switch according to the first embodiment of the present invention.
- the configurations shown in FIGS. 7A and 7B correspond to the configurations shown in FIGS. 1A and 1B (or FIGS. 3A and 3B), respectively.
- the optical crystal plates 10 and 11 are made of LN, and the refractive index n is about 2.286.
- the change in refractive index ⁇ n of LN when a voltage of 200 V is applied between the linear electrodes 13a and 13b (when an electric field is applied) is ⁇ 0.01.
- the thicknesses of the optical crystal plates 10 and 11 can be set as appropriate.
- the wavelength ⁇ of incident light is 460 nm.
- the diameter D b of the incident light is 20 [mu] m.
- Both the spacing S x and the width E w of the linear electrodes 13a and 13b are 3 ⁇ m.
- Linear electrode 13a, electrode length E l of 13b is 215 .mu.m.
- the electrode length E l may be greater than 215 .mu.m.
- the first-order diffraction angle ⁇ d of the diffracted light generated at the linear electrodes 13a and 13b is 3.8 °.
- Optical path length C l linear electrode 13a, from 13b to the first end face is 301Myuemu.
- the angle ⁇ 0 formed with the optical axis of the next light is 6.8 °.
- the diameter of the 0th-order light emitted from the first end face 1a is 20 ⁇ m.
- the diameter of the first-order diffracted light emitted from the second end face 1b is 19.7 ⁇ m.
- the center position (light of the exit surface composed of the first and second end faces 1a and 1b)
- the distance in the X-axis direction from the axis A) to the end is 29.7 ⁇ m.
- the optical switch of this embodiment that satisfies the above conditions, most of the first-order diffracted light from the linear electrodes 13a and 13b is incident on the second end face 1b and emitted from the second end face 1b.
- Each optical axis of the first-order diffracted light is parallel to the optical axis of the zero-order light. Therefore, not only the 0th-order light but also the 1st-order diffracted light can be used, and the light utilization efficiency can be improved.
- FIGS. 8A and 8B are schematic views showing the configuration of an optical switch that is a second embodiment of the present invention.
- the configurations shown in FIGS. 8A and 8B correspond to the configurations shown in FIGS. 4A and 4B (or FIGS. 6A and 6B), respectively.
- the optical crystal plates 10 to 12 are made of LN, and the refractive index n is about 2.286.
- the refractive index change ⁇ n of LN when a voltage of 200 V is applied between the linear electrodes 13a and 13b or between the linear electrodes 14a and 14b (when an electric field is applied) is ⁇ 0.01.
- the thicknesses of the optical crystal plates 10 and 11 can be set as appropriate.
- the wavelength ⁇ of incident light is 460 nm.
- the diameter D b of the incident light is 20 [mu] m.
- the spacing S x and the width E w of the linear electrodes 13a, 13b, 14a, 14b are all 3 ⁇ m.
- Linear electrodes 13a, 13b, 14a, the electrode length E l of 14b is 215 .mu.m.
- the electrode length E l may be greater than 215 .mu.m.
- the primary diffraction angle ⁇ d of the diffracted light generated by the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is 3.8 °.
- the critical angle ⁇ m when the incident light is totally reflected by the refractive index interface of the refractive index changing portion of the electro-optic crystal whose refractive index changes due to the application of an electric field by the linear electrodes 13a and 13b and the linear electrodes 14a and 14b is 84.7. °.
- Optical path length C l linear electrode 14a, from 14b to the first end face is 301Myuemu.
- the first-order diffracted light from the first-stage linear electrodes 13a, 13b passes between the second-stage linear electrodes 14a, 14b (specifically, between the four linear electrodes), and, according to the conditions of light use efficiency is high, the first stage of the linear electrodes 13a, 13b and a two-stage linear electrodes 14a, intervals S y in the Y-axis direction 14b is 141 .mu.m.
- the spacing S z in the Z-axis direction between the first-stage linear electrodes 13a, 13b and the second-stage linear electrodes 14a, 14b is 33 ⁇ m.
- the length (light path length) L 1 of the light beam between the first-stage linear electrodes 13a, 13b and the second-stage linear electrodes 14a, 14b is 357 ⁇ m.
- the angle ⁇ 0 formed between the normal line of the first end face 2a and the optical axis of the zero-order light is 6.8 °.
- the diameter of the zero-order light emitted from the first end face 2a is 20 ⁇ m.
- the diameter of the first-order diffracted light emitted from the linear electrodes 13a and 13b emitted from the second end face 2b is 19.7 ⁇ m.
- the center position (light) of the exit surface composed of the first and second end faces 2a and 2b The distance in the X-axis direction from the axis A) to the end is 53.2 ⁇ m.
- the optical switch of this embodiment that satisfies the above conditions, most of the first-order diffracted light from the linear electrodes 13a and 13b and the first-order diffracted light from the linear electrodes 14a and 14b are incident on the second end face 2b. And each optical axis of the 1st-order diffracted light radiate
- At least a part of the first-order diffracted light from the electrode portion is the light of the 0th-order light.
- the light is emitted in the direction along the axis. Therefore, since at least a part of the first-order diffracted light can be used in addition to the zero-order light, the light use efficiency can be improved.
- the optical switch of the present invention can be applied to an optical communication device, an image display device, an image forming device, and the like.
- an image display apparatus and an image forming apparatus will be described as application examples of the optical switch.
- FIG. 9 is a schematic diagram showing an example of an image display device.
- This image display device includes laser light sources 102, 103, 104, collimator lenses 105, 106, 107, reflection mirror 108, dichroic mirrors 109, 110, horizontal scanning mirror 115, vertical scanning mirror 116, and optical switches 118, 119, 120.
- the optical switches 118, 119, and 120 are the optical switches of the present invention.
- a collimator lens 105, an optical switch 118, and a reflection mirror 108 are sequentially arranged in the traveling direction of the laser light from the laser light source 102.
- a parallel light beam from the collimator lens 105 enters the optical switch 118.
- the optical switch 118 operates according to a control signal supplied from a control unit (not shown).
- a control signal supplied from a control unit (not shown).
- a voltage is applied to the electrode portion of the optical switch 118 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 108.
- incident light passes through the optical switch 118 and travels toward the reflection mirror 108.
- the collimator lens 106, the optical switch 119, and the dichroic mirror 109 are sequentially arranged in the traveling direction of the laser light from the laser light source 103.
- a parallel light beam from the collimator lens 106 enters the optical switch 119.
- the optical switch 119 the same operation as that of the optical switch 118 is performed.
- incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 109.
- incident light passes through the optical switch 119 and travels toward the dichroic mirror 109.
- the collimator lens 107, the optical switch 120, and the dichroic mirror 110 are sequentially arranged in the traveling direction of the laser light from the laser light source 104.
- a parallel light beam from the collimator lens 107 enters the optical switch 120.
- the optical switch 120 the same operation as that of the optical switch 118 is performed.
- incident light is reflected in the refractive index change region, and the reflected light deviates from the optical path toward the dichroic mirror 110.
- incident light passes through the optical switch 120 and travels toward the dichroic mirror 110.
- the dichroic mirror 109 is provided at a position where the light beam from the optical switch 119 and the light beam reflected by the reflection mirror 108 intersect.
- the dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 119 and transmits light from the reflection mirror 108.
- the dichroic mirror 110 is provided at a position where the light beam from the optical switch 120 and the light beam from the dichroic mirror 109 intersect.
- the dichroic mirror 109 has a wavelength selection characteristic that reflects light from the optical switch 120 and transmits light from the dichroic mirror 109.
- the horizontal scanning mirror 115 is arranged in the traveling direction of the light beam from the dichroic mirror 110, and its operation is controlled by a horizontal scanning control signal from a control unit (not shown).
- the vertical scanning mirror 116 is disposed in the traveling direction of the light beam from the horizontal scanning mirror 115, and its operation is controlled by a vertical scanning control signal from a control unit (not shown).
- a color image can be displayed on the screen 117 by controlling on / off of the optical switches 118, 119, and 120 and controlling the horizontal scanning mirror 115 and the vertical scanning mirror 116.
- FIG. 10 is a schematic diagram illustrating an example of an image forming apparatus.
- This image forming apparatus includes a housing 200, an f ⁇ lens 223, and a photoreceptor 224.
- a laser light source 202, a collimator lens 205, a reflection mirror 208, a scanning mirror 222, and an optical switch 218 are accommodated in the housing 200.
- the optical switch 218 is the optical switch of the present invention.
- a collimator lens 205, an optical switch 218, and a reflection mirror 208 are sequentially arranged in the traveling direction of the laser light from the laser light source 202.
- a parallel light beam from the collimator lens 205 enters the optical switch 218.
- the optical switch 218 operates in accordance with a control signal supplied from a control unit (not shown).
- a control signal supplied from a control unit (not shown).
- a control signal supplied from a control unit (not shown).
- a voltage is applied to the electrode portion of the optical switch 218 to form a refractive index change region, so that incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 208.
- incident light passes through the optical switch 218 and travels toward the reflection mirror 208.
- the scanning mirror 222 is arranged in the traveling direction of the light beam from the reflection mirror 208, and its operation is controlled by a scanning control signal from a control unit (not shown). Light from the scanning mirror 222 is applied to the photoconductor 224 via the f ⁇ lens 223.
- an image can be formed on the photosensitive member 224.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
電気光学結晶の内部に、同一平面上に平行に配置された複数の線状電極13a、13bからなる電極部13を備え、電極部13への電圧供給を制御することで上記電気光学結晶に入射する入射光に対する反射および透過の状態が切り替わる光スイッチであって、上記透過の状態において電極部13からの光を上記電気光学結晶外へ出射するための出射端面を有する。出射端面は、上記入射光のうち電極部13を通過した0次光が入射する第1の端面1aと、上記入射光が線状電極13a、13b間を通過する際に生じる1次回折光の少なくとも一部が入射する第2の端面1bとを有する。第1の端面1aから出射される0次光の光軸と第2の端面1bから出射される1次回折光の光軸が平行であり、かつ、これら光軸の方向が同じである。
Description
本発明は、電気光学結晶への電界の印加を制御して、入射光に対する反射と透過の状態の切り替えを行う光スイッチに関する。
電気光学効果を利用した光スイッチの一例として、特開2006-293018号公報(以下、特許文献1と記す)に記載の光変調装置がある。この光変調装置は、電気光学結晶よりなる光学結晶板を第1反射層および第2反射層で挟んだ共振器構造を有する。第1および第2の電極が、光学結晶板表面に形成されている。第1および第2の電極は、複数の線状電極が等間隔で平行に配置された櫛形状電極であって、互いの櫛の歯に相当する線状電極が交互に配置されている。
光は、第2反射層側から入射する。入射した光は、共振器内(第1反射層および第2反射層間)で反射を繰り返した後、第1反射層の表面から外部に向けて出射される。第1および第2の電極の間に電圧を印加することで、これら電極間において電界が生じ、その電界により、光学結晶板の屈折率が変化する。光学結晶板の屈折率が変化すると、共振器の共振波長が、屈折率の変化前に比べて長波長側へシフトし、その結果、共振器の反射率が変化する。
共振器の出力光の強度は、共振器の反射率に比例する。したがって、第1および第2の電極間に電圧を印加して、共振器の反射率を変化させることで、共振器の出力光の強度を変化させることができる。これにより、光変調が可能となる。
しかなしながら、特許文献1に記載の光変調装置においては、入射光が櫛形状電極の線状電極間を通過する際に回折が生じる。線状電極間からの回折光は、ある角度で拡散し、共振器内で反射を繰り返した後、第1反射層の表面から外部に向けて出射される。したがって、共振器の出力光は拡散光(回折光)を含む。このように拡散光が出力される光変調装置では、出力光の一部(回折光)を利用できない場合がある。例えば、画像表示装置においては、光変調装置を光路上に配置して光変調を行うことで画像光を形成するが、光変調装置の出力光が拡散光である場合、その出力光の一部(回折光)は光路から外れることになる。光路から外れた光は、画像表示に寄与しない。このように光スイッチの出力光の一部は画像光として利用されないため、光利用効率が低下する。
本発明の目的は、上記課題を解決することのできる光スイッチを提供することにある。
上記目的を達成するために、本発明の一態様による光スイッチは、電気光学結晶の内部に、同一平面上に平行に配置された複数の線状電極からなる電極部を備え、該電極部への電圧供給を制御することで上記電気光学結晶に入射する入射光に対する反射および透過の状態が切り替わる光スイッチであって、
上記透過の状態において上記電極部からの光を上記電気光学結晶外へ出射するための出射端面を有し、
上記出射端面は、
上記入射光のうち上記電極部を通過した0次光が入射する第1の端面と、
上記入射光が上記電極部の線状電極間を通過する際に生じる1次回折光の少なくとも一部が入射する第2の端面と、を有し、
上記第1の端面から出射される0次光の光軸と上記第2の端面から出射される1次回折光の光軸が平行であり、かつ、これら光軸の方向が同じである。
上記透過の状態において上記電極部からの光を上記電気光学結晶外へ出射するための出射端面を有し、
上記出射端面は、
上記入射光のうち上記電極部を通過した0次光が入射する第1の端面と、
上記入射光が上記電極部の線状電極間を通過する際に生じる1次回折光の少なくとも一部が入射する第2の端面と、を有し、
上記第1の端面から出射される0次光の光軸と上記第2の端面から出射される1次回折光の光軸が平行であり、かつ、これら光軸の方向が同じである。
10~12 光学結晶板
13 電極部
13a、13a 線状電極
13 電極部
13a、13a 線状電極
次に、本発明の実施形態について図面を参照して説明する。
(第1の実施形態)
図1Aおよび図1Bは、本発明の第1の実施形態である光スイッチの側面図および上面図である。図1Aおよび図1Bには、光スイッチの内部の電極部が透視図的に示されている。
図1Aおよび図1Bは、本発明の第1の実施形態である光スイッチの側面図および上面図である。図1Aおよび図1Bには、光スイッチの内部の電極部が透視図的に示されている。
図1Aに示すように、光スイッチは、光学結晶板10と、表面に電極部13が形成された光学結晶板11とを積層した構造を有する。光学結晶板10、11は、電気光学効果を有する結晶(電気光学結晶)よりなる。
図1Bに示すように、電極部13は、等間隔に配置され、かつ、面積最大となる主断面が同一平面内に配置された複数の線状電極13a、13bからなる。線状電極13a、13bは、交互に配置されている。各線状電極13aの一端は互いに接続されており、この接続部が電圧制御部50の一方の出力線に接続されている。これと同様に、各線状電極13bの一端も互いに接続されており、この接続部が電圧制御部50の他方の出力線に接続されている。線状電極13a、13bの数は、適宜に設定することができる。なお、線状電極の間隔が等間隔であるとは、各線状電極間の距離が完全に一致している状態だけでなく、製造誤差等により線状電極間の間隔にズレが生じている状態をも含む。
上記の複数の線状電極からなる電極部13は、例えば、櫛形電極であってもよい。この場合、電極部13は、複数の線状電極13aからなる第1の櫛形電極と、複数の線状電極13bからなる第2の櫛形電極とから構成される。第1および第2の櫛形電極は、互いの線状電極が交互に配置され、各線状電極間の間隔は等間隔とされる。
電圧制御部50は、線状電極13a、13b間(第1および第2の櫛形電極間)に電圧を供給するものであって、その主要部は、電源およびスイッチ回路からなる。スイッチ回路のオンオフ制御により、線状電極13a、13b間への電圧供給を制御する。電圧制御部50は、光スイッチの外部に設けられる。なお、光スイッチが、この電圧制御部50を有していてもよい。
図1Aおよび図1Bに示した光学結晶板10、11を高温・高圧下で貼り合わせることで、光スイッチが形成される。高温・高圧下で貼り合わせた光学結晶板10、11は、1つの光学結晶(具体的には、電気光学結晶)と見なすことができる。すなわち、光学結晶板10、11を高温・高圧下で貼り合わせることで、内部に電極部を備える電気光学結晶を形成することができる。
この光スイッチでは、線状電極13a、13b間に電圧を印加すると、電気光学効果により、線状電極13a、13bを含む電極近傍領域の結晶の屈折率が変化する。
図2に、線状電極13a、13bを含む電極近傍領域に形成される屈折率変化領域を模式的に示す。線状電極13a、13b間に電圧を印加すると、隣接する線状電極間において電界が発生し、その電界により、各線状電極を含む電極近傍領域の結晶の屈折率が変化する。この屈折率が変化した領域が、図2に示す屈折率変化領域16である。
入射光(平行光束)は、屈折率変化領域16とその周りの結晶領域との界面(屈折率界面)において全反射する。入射光の入射角度は、この界面における全反射が可能な条件を満たすように設定することが望ましい。
なお、図2では、入射光が図面に向かって左側から屈折率変化領域に入射し、その反射光が右側へ向かう状態が示されているが、光の利用効率をより向上させるため、入射光は、図面に向かって手前側(または奥側)から屈折率変化領域に入射し、その反射光が奥側(または手前側)へ向かうことにすることが望ましい。
また、電極として不透明な材料を用いた場合、電極自身が入射光の一部を遮ることになるため、その分、光の利用効率が低下する。電極を透明電極にすることで、光の利用効率を向上させることができる。
線状電極13a、13bへ電圧を印加した場合は、屈折率変化領域16が形成されるため、入射光は、その屈折率変化領域16の界面で全反射される。一方、線状電極13a、13bへの電圧の供給を停止すると、屈折率変化領域16が形成されず、入射光は、そのまま線状電極13a、13bの部分を透過する。
光スイッチでは、入射光が反射される第1の状態と、入射光が透過する第2の状態との切り替えが可能である。第1の状態では、線状電極13a、13bに電圧を印加して屈折率変化領域を形成し、この屈折率変化領域の屈折率界面にて、入射光を反射する。第2の状態では、線状電極13a、13bへの電圧供給を停止する。電圧供給の停止により、線状電極13a、13bを含む領域において、電気光学効果による屈折率変化を生じなくなるため、入射光は線状電極13a、13b間を透過する。
入射光が線状電極13a、13b間を通過する際に回折が生じる。線状電極13a、13bからの回折光は、ある角度で拡散し、光スイッチの端面(出射面)から外部に向けて出射される。
本実施形態においては、図1Bに示すように、光スイッチの出射面側の端部は、線状電極13a、13bからの回折光を集光するためのプリズム構造を有する。プリズム構造は、電極部13の電極面(光学結晶板11の電極部13が形成された面に平行な面)に垂直な方向(図1Aおよび図1BにおけるZ軸方向)から見た場合に、入射光の進行方向(より具体的には、図1Bに示す0次光の光軸A)に対して垂直に交わる第1の端面1aと、この第1の端面の両側に位置する第2の端面1bからなる。
第2の端面1bと第1の端面1aとのなす角度は、線状電極13a、13bからの1次回折光の少なくとも一部が第2の端面1bから光軸Aと平行な方向に出射される角度とされている。より望ましくは、線状電極13a、13bからの1次回折光がそのビーム径を維持したまま第2の端面1bから出射され、かつ、第2の端面1bから出射された1次回折光のそれぞれの光軸が0次光の光軸Aと平行になるように、電極部と第1の端面1aの距離、および第2の端面1bと第1の端面1aとのなす角度を設定する。ここで、1次回折光の光軸は、1次回折光をその進行方向と垂直に交わる面で切断した面(ビーム断面)の中心を通る軸である。また、0次光の光軸は、0次光をその進行方向と垂直に交わる面で切断した面(ビーム断面)の中心を通る軸である。さらに、1次回折光の光軸が0次光の光軸Aと平行であるとは、両光軸の方向(進行方向)も一致していることを意味する。
図3Aおよび図3Bは、本発明の第1の実施形態である光スイッチのプリズム構造の条件を説明するための図である。図3Aおよび図3Bに示す構成は、図1Aおよび図1Bに示した構成にそれぞれ対応する。
以下、図3Aおよび図3Bを参照して、線状電極13a、13bからの1次回折光を集光するためのプリズム構造の具体的な条件を説明する。
入射光の直径(ビーム径)をDbとし、線状電極13a(または線状電極13b)の長さ方向における中心位置から第1の端面1aまでの距離をCyとする。第2の端面1bの法線と0次光の光軸Aとのなす角をθoとし、線状電極13a、13bで生じる回折光の1次回折角をθdとし、光学結晶板10、11の屈折率をnとする。電界の印加により電気光学結晶中に形成される屈折率変化領域の屈折率界面によって入射光が全反射するときの臨界角をθmとする。線状電極13a、13bの長さEl、幅Ew、線状電極の間隔Sxは、適宜に設定する。
線状電極13a、13bから第1の端面1aまでの光路長Clは、以下の式(1)で与えられる。
なお、第2の端面1bからの1次回折光の出射光径Db1は、以下の式(4)で与えられる。
以上説明したように、式(2)および式(3)を満たすように光スイッチを形成すれば、線状電極13a、13bからの1次回折光のほとんどが第2の端面1bに入射し、かつ、第2の端面1bから出射された1次回折光のそれぞれの光軸Bが0次光の光軸Aと平行になる。したがって、0次光だけでなく、1次回折光も利用することができ、光利用効率を改善することができる。
また、上記の場合、第1および第2の端面1a、1bから出射された光束(1次回折光および0次光)を、その進行方向に対して垂直に交わる平面で切断した断面において、1次回折光の領域の内側と0次光の領域の外側とが接する状態となる。出射光束の断面において、1次回折光の領域と0次光の領域の間に隙間があると、その隙間部分は、周辺領域との輝度差が大きくなる。このため、例えば、出射光束を光変調して画像光を形成する場合に、その輝度差のために、画像光に基づく表示画像の画質が低下する場合がある。1次回折光の領域の内側と0次光の領域の外側とが接する状態とすることで、そのような画質の低下を抑制することができる。
なお、光利用効率の改善という観点からすると、式(3)のみを満たすように光スイッチを形成してもよい。この場合は、線状電極13a、13bの中心位置から第1の端面1aまでの距離Cyは規定されない。このため、図3Bにおいて、第1および第2の端面1a、1bが線状電極13a、13b側へシフトした第1の状態や、第1および第2の端面1a、1bが線状電極13a、13b側とは反対の側へシフトした第2の状態が、光スイッチの形成条件に含まれる。
第1の状態においては、線状電極13a、13bからの1次回折光は、0次光とは完全には分離されていない状態で、第1および第2の端面1a、1bに入射する。すなわち、線状電極13a、13bからの1次回折光の一部が第1の端面1aに入射する。第2の端面1bから出射された1次回折光の光軸は0次光の光軸Aと平行であるので、光スイッチの出力光として利用することができ、その分、光利用効率を改善することができる。一方、第1の端面1aから出射された1次回折光は、0次光の光軸Aに対してある角度で拡散することになるため、光スイッチの出力光として利用することは困難である。
第2の状態においては、線状電極13a、13bからの1次回折光は、0次光と完全に分離した状態で第2の端面1bに入射することになる。第2の端面1bから出射された1次回折光の光軸は0次光の光軸Aと平行であるので、光スイッチの出力光として利用することができ、その分、光利用効率を改善することができる。ただし、この場合は、1次回折光の領域と0次光の領域の間に隙間が生じる。
(第2の実施形態)
図4Aおよび図4Bは、本発明の第2の実施形態である光スイッチの側面図および上面図である。図4Aおよび図4Bには、光スイッチの内部の電極部が透視図的に示されている。
図4Aおよび図4Bは、本発明の第2の実施形態である光スイッチの側面図および上面図である。図4Aおよび図4Bには、光スイッチの内部の電極部が透視図的に示されている。
図4Aに示すように、光スイッチは、光学結晶板10と、表面に電極部13が形成された光学結晶板11と、表面に電極部14が形成された光学結晶板12とを積層した構造を有する。光学結晶板10~12は、電気光学効果を有する結晶(電気光学結晶)よりなる。電極部13、14は、入射光の進行方向に沿って順に配置されている。すなわち、電極部13、14は光路上に位置する。
電極部13は、第1の実施形態のものと同様の構造であって、等間隔に配置された複数の線状電極13a、13bからなる。図4Bに示すように、電極部14も、電極部13と同様の構成であって、等間隔に配置された複数の線状電極14a、14bからなる。線状電極14a、14bは、交互に配置されている。各線状電極13a、14aの一端は互いに接続されており、この接続部が電圧制御部50の一方の出力線に接続されている。これと同様に、各線状電極13b、14bの一端も互いに接続されており、この接続部が電圧制御部50の他方の出力線に接続されている。線状電極13a、13b、14a、14bの数は、適宜に設定することができる。
上記の複数の線状電極からなる電極部13、14は、例えば、櫛形電極であってもよい。この場合、電極部13は、複数の線状電極13aからなる第1の櫛形電極と、複数の線状電極13bからなる第2の櫛形電極とから構成される。第1および第2の櫛形電極は、互いの線状電極が交互に配置され、各線状電極間の間隔は等間隔とされる。これと同様に、電極部14は、複数の線状電極14aからなる第1の櫛形電極と、複数の線状電極14bからなる第2の櫛形電極とから構成される。第1および第2の櫛形電極は、互いの線状電極が交互に配置され、各線状電極間の間隔は等間隔とされる。電極部13、14のそれぞれは、互いの線状電極の長手方向が一致するように配設され、かつ、線状電極により構成される電極面が互いに平行となるように配設されている。
電圧制御部50は、線状電極13a、13b間および線状電極14a、14b間に電圧をそれぞれ供給する。電圧制御部50は、光スイッチの外部に設けられる。なお、光スイッチが、この電圧制御部50を有していてもよい。
図4Aおよび図4Bに示した光学結晶板10、11、12を高温・高圧下で貼り合わせることで、光スイッチが形成される。高温・高圧下で貼り合わせた光学結晶板10~12は、1つの光学結晶(具体的には、電気光学結晶)と見なすことができる。すなわち、光学結晶板10~12を高温・高圧下で貼り合わせることで、内部に複数の電極部を備える電気光学結晶を形成することができる。
この光スイッチでは、線状電極13a、13b間に電圧を印加すると、電気光学効果により、線状電極13a、13bを含む電極近傍領域の結晶の屈折率が変化する。これと同様に、線状電極14a、14b間に電圧を印加すると、電気光学効果により、線状電極14a、14bを含む電極近傍領域の結晶の屈折率が変化する。
図4Aに示したように、電極部13、14は、直線上(入射光の進行方向に対応する)に沿って順次に配置されている。入射光の進行方向に沿って見た場合、線状電極13a、13bの位置および長手方向は、線状電極14a、14bの位置および長手方向と一致する。入射光は、電極部13(または電極部14)により形成される屈折率変化領域とその周りの結晶領域との界面(屈折率界面)において全反射する。入射光の入射角度は、この界面における全反射が可能な条件を満たすように設定することが望ましい。
線状電極13a、13bへ電圧を印加した場合は、第1の屈折率変化領域が形成され、入射光は、その第1の屈折率変化領域の界面で全反射される。一方、線状電極13a、13bへの電圧の供給を停止すると、第1の屈折率変化領域が形成されず、入射光は、そのまま線状電極13a、13bの部分を透過する。これと同様に、線状電極14a、14bへ電圧を印加した場合は、第2の屈折率変化領域が形成され、入射光は、その第2の屈折率変化領域の界面で全反射される。線状電極14a、14bへの電圧の供給を停止すると、第2の屈折率変化領域が形成されず、入射光は、そのまま線状電極14a、14bの部分を透過する。
光スイッチにおけるスイッチ動作では、入射光が反射される第1の状態と、入射光が透過する第2の状態との切り替えが可能である。第1の状態では、線状電極13a、13bおよび線状電極14a、14bのそれぞれに電圧を印加して第1および第2の屈折率変化領域を形成し、これら屈折率変化領域にて、入射光を反射する。第2の状態では、線状電極13a、13bおよび線状電極14a、14bへの電圧供給を停止する。電圧供給の停止により、線状電極13a、13bおよび線状電極14a、14bを含む各領域において、電気光学効果による屈折率変化を生じなくなるため、入射光はこれら領域を透過する。
なお、屈折率変化領域の界面は、部分的に、全反射の条件を満たさない領域を含んでおり、この領域において、入射光の一部が透過する。全反射の条件を満たさない領域の範囲は、線状電極の間隔や印加電圧の大きさ(電界の大きさ)に依存する。
本実施形態の光スイッチにおいては、線状電極13a、13bに電圧を印加することで形成された第1の屈折率変化領域の界面で入射光を反射し、さらに、線状電極14a、14bに電圧を印加することで形成された第2の屈折率変化領域の界面で、第1の屈折率変化領域を透過した光を反射する。これにより、高い消光比を得ることが可能となっている。
入射光の進行方向に沿って形成される電極部の数(屈折率変化領域の数)を3つ以上とすることで、消光比をさらに改善することができる。ただし、屈折率変化領域の数を増大すると、それにともなって電極の数および容量も増えるため、省電力化および小型化の観点からは望ましくない。屈折率変化領域の数は、消光比と省電力化および小型化との関係を考慮して決定することが望ましい。
また、上記のスイッチ動作の第2の状態(透過状態)において、入射光が線状電極13a、13b間および線状電極14a、14b間を通過する際に回折が生じる。線状電極13a、13bおよび線状電極14a、14bからの回折光は、ある角度で拡散し、光スイッチの端面(出射面)から外部に向けて出射される。
本実施形態の光スイッチは、線状電極13a、13bからの1次回折光が線状電極14a、14b間を通過するように構成されており、かつ、光スイッチの出射面側の端部は、図4Bに示すように、線状電極13a、13bおよび線状電極14a、14bからの回折光を集光するためのプリズム構造を有する。
プリズム構造は、電極部13、14の電極面に垂直な方向(図4Aおよび図4BにおけるZ軸方向)から見た場合に、入射光の進行方向(より具体的には、図4Bに示す0次光の光軸A)に対して垂直に交わる第1の端面2aと、この第1の端面2aの両側に位置する第2の端面2bからなる。
第2の端面2bと第1の端面2aとのなす角度は、線状電極13a、13bおよび線状電極14a、14bからの1次回折光の少なくとも一部が第2の端面2bから光軸Aと平行な方向に出射される角度とされている。より望ましくは、線状電極13a、13bおよび線状電極14a、14bからの1次回折光がそのビーム径を維持したまま第2の端面2bから出射され、かつ、第2の端面2bから出射された1次回折光のそれぞれの光軸が0次光の光軸A(方向)と平行になるように、電極部14と第1の端面2aの距離、および第2の端面2bと第1の端面2aとのなす角度を設定する。ここで、1次回折光の光軸が0次光の光軸Aと平行であるとは、両光軸の方向(進行方向)も一致していることを意味する。
以下、電極部の配置およびプリズム構造に関する各条件について具体的に説明する。
まず、線状電極13a、13bからの1次回折光が線状電極14a、14b間を通過する電極部の適正配置の条件について説明する。
図5Aおよび図5Bは、電極部13a、13b、14a、14bを適正な位置に形成するための条件を説明するための模式図である。図5Aおよび図5Bに示す構成は、図4Aおよび図4Bに示した構成にそれぞれ対応する。
光学結晶板10~12に用いる電気光学結晶の屈折率をn、電極部に電圧を印加したときに発生する電界をEとする。電気光学結晶として、例えば、LN(リチウムナイオベート)を用いた場合、電界Eの印加時に生じる電気光学結晶の屈折率変化Δnは、以下の式(5)で与えられる。ただし、rは一次電気光学定数である。
一段目の線状電極13a、13bと二段目の線状電極14a、14bのZ軸方向の間隔(中間層である光学結晶板11の厚さ)をSzとする。ここで、Z軸方向は光学結晶板の厚さ方向である。一段目の線状電極13a、13bと二段目の線状電極14a、14bの間の光線の長さ(光路長)をLlとし、線状電極13a、13bおよび線状電極14a、14bのそれぞれで生じる一次回折角をθdとする。
臨界角θm、線状電極の長さEl、一次回折角θdは、それぞれ以下の式(7)、式(8)、式(9)で与えられる。
次に、プリズム構造に関する条件について具体的に説明する。
図6Aおよび図6Bは、図4Aおよび図4Bに示した光スイッチのプリズム構造の条件を説明するための図である。図6Aおよび図6Bに示す構成は、図4Aおよび図4Bに示した構成にそれぞれ対応する。
以下、図6Aおよび図6Bを参照して、線状電極13a、13bおよび線状電極14a、14bからの1次回折光を集光するためのプリズム構造の具体的な条件を説明する。
本実施形態の光スイッチは、線状電極14a、14bからの1次回折光を集光するプリズム構造として、第1の実施形態の光スイッチにおける線状電極13a、13bからの1次回折光を集光するプリズム構造と同様のプリズム構造を備える。すなわち、本実施形態の光スイッチも、前述の式(3)の条件または式(2)および式(3)の各条件を満たすプリズム構造を有する。第1の実施形態の光スイッチにおけるプリズム構造の条件の説明において、線状電極13a、13bを線状電極14a、14bに置き換えることで、本実施形態の光スイッチにおけるプリズム構造の条件を説明することができる。
また、本実施形態の光スイッチのプリズム構造では、第2の端面2bには、線状電極13a、13bからの1次回折光も入射する。このため、第2の端面2bのX軸方向の長さは、線状電極13a、13bおよび線状電極14a、14bからの1次回折光の入射範囲により規定される。
具体的に説明すると、線状電極13a、13bから第1の端面2aまでのY軸方向における距離は(El+Sy+Cy)であり、線状電極13a、13bからの1次回折光の、0次光からの分離幅(第2の端面から出射された、線状電極13a、13bからの1次回折光の光軸と0次光の光軸Aとの間隔)は、以下の式(15)で与えられる。
また、上記の場合、第1および第2の端面2a、2bから出射された光束(1次回折光および0次光)を、その進行方向に対して垂直に交わる平面で切断した断面において、1次回折光の領域の内側と0次光の領域の外側とが接する状態となる。このように1次回折光の領域の内側と0次光の領域の外側とが接する状態とすることで、第1の実施形態のものと同様、画質の低下を抑制することができる。
なお、光利用効率の改善という観点からすると、式3のみを満たすように光スイッチを形成してもよい。この場合は、線状電極14a、14bの中心位置から第1の端面2aまでの距離Cyは規定されない。このため、図6Bにおいて、第1および第2の端面2a、2bが線状電極側へシフトした第1の状態や、第1および第2の端面2a、2bが線状電極側とは反対の側へシフトした第2の状態が、光スイッチの形成条件に含まれる。
第1の状態においては、線状電極14a、14bからの1次回折光は、0次光とは完全には分離されていない状態で、第1および第2の端面2a、2bに入射する。すなわち、線状電極14a、14bからの1次回折光の一部が第1の端面2aに入射する。第2の端面2bから出射された1次回折光の光軸は0次光の光軸Aと平行であるので、光スイッチの出力光として利用することができ、その分、光利用効率を改善することができる。一方、第1の端面2aから出射された1次回折光は、0次光の光軸Aに対してある角度で拡散することになるため、光スイッチの出力光として利用することは困難である。
第2の状態においては、線状電極14a、14bからの1次回折光は、0次光と完全に分離した状態で第2の端面2bに入射することになる。第2の端面2bから出射された1次回折光の光軸は0次光の光軸Aと平行であるので、光スイッチの出力光として利用することができ、その分、光利用効率を改善することができる。ただし、この場合は、1次回折光の領域と0次光の領域の間に隙間が生じる。
また、一段目の電極部13a、13bからの一次回折光が二段目の電極部14a、14bの線状電極間を通るようにするには、電極部13a、13bの線状電極からなる電極面(または、電極部14a、14bの線状電極からなる電極面)に垂直な方向から電極部を見た場合に、入射方向は、線状電極の長手方向に沿った方向とする。具体的には、図2に示した模式図において、入射光は、図面に向かって手前側(または奥側)から屈折率変化領域に入射する。
次に、上述の第1および第2の実施形態の光スイッチの具体例について説明する。
図7Aおよび図7Bは、本発明の第1の実施例である光スイッチの構成を示す模式図である。図7Aおよび図7Bに示す構成は、図1Aおよび図1B(または図3Aおよび図3B)に示した構成にそれぞれ対応する。
光学結晶板10、11はLNよりなり、その屈折率nは約2.286である。線状電極13a、13b間に電圧200Vを印加したとき(電界印加時)のLNの屈折率変化Δnは-0.01である。なお、光学結晶板10、11の厚さは、適宜に設定可能である。
入射光の波長λは460nmである。入射光の直径Dbは20μmである。線状電極13a、13bの間隔Sxおよび幅Ewはともに3μmである。線状電極13a、13bの電極長Elは215μmである。なお、電極長Elは215μmよりも長くても良い。線状電極13a、13bで生じる回折光の一次回折角θdは3.8°である。線状電極13a、13bから第1の端面までの光路長Clは301μmである。
上記の場合において、光利用効率が高くなる条件によれば、線状電極13a、13bからプリズム構造の第1の端面1aまでの距離Cyは298μmとなり、第1の端面1aの法線と0次光の光軸とのなす角度θ0は、6.8°となる。
第1の端面1aから出射される0次光の直径は20μmである。第2の端面1bから出射される1次回折光の直径はいずれも19.7μmである。Z軸方向(出射された1次回折光および0次光の各軸を含む平面に垂直な方向)から見た場合に、第1および第2の端面1a、1bからなる出射面の中心位置(光軸A)から端部までのX軸方向の距離は、29.7μmである。
以上のような条件を満たす本実施例の光スイッチによれば、線状電極13a、13bからの1次回折光のほとんどが第2の端面1bに入射し、かつ、第2の端面1bから出射された1次回折光のそれぞれの光軸が0次光の光軸と平行になる。したがって、0次光だけでなく、1次回折光も利用することができ、光利用効率を改善することができる。
図8Aおよび図8Bは、本発明の第2の実施例である光スイッチの構成を示す模式図である。図8Aおよび図8Bに示す構成は、図4Aおよび図4B(または図6Aおよび図6B)に示した構成にそれぞれ対応する。
光学結晶板10~12はLNよりなり、その屈折率nは約2.286である。線状電極13a、13b間または線状電極14a、14b間に電圧200Vを印加したとき(電界印加時)のLNの屈折率変化Δnは-0.01である。なお、光学結晶板10、11の厚さは、適宜に設定可能である。
入射光の波長λは460nmである。入射光の直径Dbは20μmである。線状電極13a、13b、14a、14bの間隔Sxおよび幅Ewはともに3μmである。線状電極13a、13b、14a、14bの電極長Elは215μmである。なお、電極長Elは215μmよりも長くても良い。
線状電極13a、13bおよび線状電極14a、14bで生じる回折光の一次回折角θdは3.8°である。線状電極13a、13bおよび線状電極14a、14bによる電界印加によって屈折率が変化する電気光学結晶の屈折率変化部分の屈折率界面によって入射光が全反射するときの臨界角θmは84.7°である。線状電極14a、14bから第1の端面までの光路長Clは301μmである。
上記の場合において、一段目の線状電極13a、13bからの1次回折光が二段目の線状電極14a、14b間(具体的には、4つとなりの線状電極間)を通過し、かつ、光利用効率が高くなる条件によれば、一段目の線状電極13a、13bと二段目の線状電極14a、14bのY軸方向の間隔をSyは141μmである。一段目の線状電極13a、13bと二段目の線状電極14a、14bのZ軸方向の間隔Szは33μmである。一段目の線状電極13a、13bと二段目の線状電極14a、14bの間の光線の長さ(光路長)Llは357μmである。
第1の端面2aの法線と0次光の光軸とのなす角度θ0は、6.8°である。第1の端面2aから出射される0次光の直径は20μmである。第2の端面2bから出射される、線状電極13a、13bからの1次回折光の直径はいずれも19.7μmである。Z軸方向(出射された1次回折光および0次光の各軸を含む平面に垂直な方向)から見た場合に、第1および第2の端面2a、2bからなる出射面の中心位置(光軸A)から端部までのX軸方向の距離は、53.2μmである。
上述のような条件を満たす本実施例の光スイッチによれば、線状電極13a、13bからの1次回折光および線状電極14a、14bからの1次回折光のほとんどが第2の端面2bに入射し、かつ、第2の端面2bから出射された1次回折光のそれぞれの光軸が0次光の光軸と平行になる。したがって、0次光だけでなく、1次回折光も利用することができ、光利用効率を改善することができる。
以上説明した各実施形態の光スイッチによれば、電極部(図1Aに示した電極13または図4Aに示した電極13、14)からの1次回折光の少なくとも一部は、0次光の光軸に沿った方向に出射される。したがって、0次光に加えて、1次回折光の少なくとも一部を利用することができるので、光利用効率を改善することができる。
本発明の光スイッチは、光通信装置、画像表示装置や画像形成装置等に適用することができる。以下に、光スイッチの適用例として、画像表示装置および画像形成装置を説明する。
[画像表示装置]
本発明の光スイッチを備える画像表示装置の構成について説明する。
本発明の光スイッチを備える画像表示装置の構成について説明する。
図9は、画像表示装置の一例を示す模式図である。この画像表示装置は、レーザ光源102、103、104、コリメータレンズ105、106、107、反射ミラー108、ダイクロイックミラー109、110、水平走査ミラー115、垂直走査ミラー116、および光スイッチ118、119、120を収容した筐体100を有する。光スイッチ118、119、120は、本発明の光スイッチである。
レーザ光源102からのレーザ光の進行方向に、コリメータレンズ105、光スイッチ118、および反射ミラー108が順に配置されている。コリメータレンズ105からの平行光束が光スイッチ118に入射する。光スイッチ118は、不図示の制御部から供給される制御信号に応じて動作する。制御信号がオンの期間(電圧供給期間)は、光スイッチ118の電極部に電圧が印加され、屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー108へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ118を透過して反射ミラー108へ向かう。
レーザ光源103からのレーザ光の進行方向に、コリメータレンズ106、光スイッチ119、およびダイクロイックミラー109が順に配置されている。コリメータレンズ106からの平行光束が光スイッチ119に入射する。光スイッチ119においても、光スイッチ118と同様な動作が行われる。制御信号がオンの期間(電圧供給期間)は、屈折率変化領域にて入射光が反射され、その反射光は、ダイクロイックミラー109へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ119を透過してダイクロイックミラー109へ向かう。
レーザ光源104からのレーザ光の進行方向に、コリメータレンズ107、光スイッチ120、およびダイクロイックミラー110が順に配置されている。コリメータレンズ107からの平行光束が光スイッチ120に入射する。光スイッチ120においても、光スイッチ118と同様な動作が行われる。制御信号がオンの期間(電圧供給期間)は、屈折率変化領域にて入射光が反射され、その反射光は、ダイクロイックミラー110へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ120を透過してダイクロイックミラー110へ向かう。
ダイクロイックミラー109は、光スイッチ119からの光束と反射ミラー108にて反射された光束とが交差する位置に設けられている。ダイクロイックミラー109は、光スイッチ119からの光を反射し、反射ミラー108からの光を透過するような波長選択特性を有している。
ダイクロイックミラー110は、光スイッチ120からの光束とダイクロイックミラー109からの光束とが交差する位置に設けられている。ダイクロイックミラー109は、光スイッチ120からの光を反射し、ダイクロイックミラー109からの光を透過するような波長選択特性を有している。
水平走査ミラー115は、ダイクロイックミラー110からの光束の進行方向に配置されており、不図示の制御部からの水平走査制御信号によりその動作が制御される。垂直走査ミラー116は、水平走査ミラー115からの光束の進行方向に配置されており、不図示の制御部からの垂直走査制御信号によりその動作が制御される。
レーザ光源102、103、104として、R、G、Bの3原色に対応する色のレーザ光を出射する光源を用いる。光スイッチ118、119、120をオンオフ制御し、かつ、水平走査ミラー115および垂直走査ミラー116を制御することで、スクリーン117上に、カラー画像を表示することができる。
[画像形成装置]
本発明の光スイッチを備える画像形成装置の構成について説明する。
本発明の光スイッチを備える画像形成装置の構成について説明する。
図10は、画像形成装置の一例を示す模式図である。この画像形成装置は、筐体200、fθレンズ223および感光体224を有する。レーザ光源202、コリメータレンズ205、反射ミラー208、走査ミラー222、および光スイッチ218が、筐体200内に収容されている。光スイッチ218は、本発明の光スイッチである。
レーザ光源202からのレーザ光の進行方向に、コリメータレンズ205、光スイッチ218、および反射ミラー208が順に配置されている。コリメータレンズ205からの平行光束が光スイッチ218に入射する。光スイッチ218は、不図示の制御部から供給される制御信号に応じて動作する。制御信号がオンの期間(電圧供給期間)は、光スイッチ218の電極部に電圧が印加され、屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー208へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ218を透過して反射ミラー208へ向かう。
走査ミラー222は、反射ミラー208からの光束の進行方向に配置されており、不図示の制御部からの走査制御信号によりその動作が制御される。走査ミラー222からの光は、fθレンズ223を介して感光体224に照射される。
光スイッチ218をオンオフ制御し、かつ、走査ミラー222を制御することで、感光体224上に画像を形成するができる。
以上説明した実施形態は、本発明の一例であり、その構成は、発明の趣旨を逸脱しない範囲で適宜に変更することができる。
以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。
この出願は、2008年4月4日に出願された日本出願特願2008-098305を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Claims (9)
- 電気光学結晶の内部に、同一平面上に平行に配置された複数の線状電極からなる電極部を備え、該電極部への電圧供給を制御することで前記電気光学結晶に入射する入射光に対する反射および透過の状態が切り替わる光スイッチであって、
前記透過の状態において前記電極部からの光を前記電気光学結晶外へ出射するための出射端面を有し、
前記出射端面は、
前記入射光のうち前記電極部を通過した0次光が入射する第1の端面と、
前記入射光が前記電極部の線状電極間を通過する際に生じる1次回折光の少なくとも一部が入射する第2の端面と、を有し、
前記第1の端面から出射される0次光の光軸と前記第2の端面から出射される1次回折光の光軸が平行であり、かつ、これら光軸の方向が同じである、光スイッチ。 - 前記複数の線状電極からなる電極面に垂直な方向から見た場合の、前記出射端面における、前記0次光の光軸の位置から端部までの長さが、Db(0.5+cos2θ0)で与えられる値以上である、請求の範囲第3項に記載の光スイッチ。
- 前記電極部は、前記電気光学結晶内部に複数設けられており、
複数の前記電極部のそれぞれは、互いの前記複数の線状電極の長手方向が一致するように配設され、かつ、前記複数の線状電極により構成される電極面が互いに平行となるように配設されており、
複数の前記電極部のうちの隣接する電極部間において、入射光が一方の電極部の線状電極の間を通過する際に生じる一次回折光が、他方の電極部の線状電極の間を通過するように、隣接する前記電極部間の間隔が設定されている、請求の範囲第1項に記載の光スイッチ。 - 前記電極部は、平行に配置され、かつ、面積最大となる主断面が同一平面内に配置された複数の線状電極からなる、請求の範囲第1項から第8項のいずれか1項に記載の光スイッチ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010505626A JP5299421B2 (ja) | 2008-04-04 | 2009-03-23 | 光スイッチ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008098305 | 2008-04-04 | ||
JP2008-098305 | 2008-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009122939A1 true WO2009122939A1 (ja) | 2009-10-08 |
Family
ID=41135320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055641 WO2009122939A1 (ja) | 2008-04-04 | 2009-03-23 | 光スイッチ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5299421B2 (ja) |
WO (1) | WO2009122939A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5878118A (ja) * | 1981-10-08 | 1983-05-11 | ゼロツクス・コ−ポレ−シヨン | 二次元電気光学変調器 |
JPH0396927A (ja) * | 1989-09-08 | 1991-04-22 | Sony Corp | 光導波路型光偏向器 |
JPH04242728A (ja) * | 1990-12-29 | 1992-08-31 | Omron Corp | 光偏向素子の動作方法 |
JP2007065458A (ja) * | 2005-09-01 | 2007-03-15 | Rohm Co Ltd | 光制御装置およびそれを用いた光制御システム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6446733A (en) * | 1987-08-18 | 1989-02-21 | Fujitsu Ltd | Electrooptic element |
CN101681076B (zh) * | 2007-06-19 | 2013-10-30 | 日本电气株式会社 | 光开关 |
JP5187391B2 (ja) * | 2008-04-04 | 2013-04-24 | 日本電気株式会社 | 光スイッチ |
-
2009
- 2009-03-23 WO PCT/JP2009/055641 patent/WO2009122939A1/ja active Application Filing
- 2009-03-23 JP JP2010505626A patent/JP5299421B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5878118A (ja) * | 1981-10-08 | 1983-05-11 | ゼロツクス・コ−ポレ−シヨン | 二次元電気光学変調器 |
JPH0396927A (ja) * | 1989-09-08 | 1991-04-22 | Sony Corp | 光導波路型光偏向器 |
JPH04242728A (ja) * | 1990-12-29 | 1992-08-31 | Omron Corp | 光偏向素子の動作方法 |
JP2007065458A (ja) * | 2005-09-01 | 2007-03-15 | Rohm Co Ltd | 光制御装置およびそれを用いた光制御システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009122939A1 (ja) | 2011-07-28 |
JP5299421B2 (ja) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5887559B2 (ja) | 光偏向器及びこれを用いた液晶表示装置 | |
US20160091772A1 (en) | Optical modulator and image display apparauts | |
KR20160038856A (ko) | 화상 표시 장치 | |
KR101976991B1 (ko) | 웨어러블 디스플레이 장치 | |
CN113075793A (zh) | 显示装置及其操作方法 | |
JP5240195B2 (ja) | 光スイッチ | |
US20210080629A1 (en) | Light source module | |
US20150378151A1 (en) | Image display device and head-mounted display | |
JP2016071260A (ja) | 光変調器および画像表示装置 | |
JP5249009B2 (ja) | 光変調器 | |
JP2003207668A (ja) | 偏波制御回路アレイおよびそれを用いた光回路 | |
JP5299421B2 (ja) | 光スイッチ | |
JP5187391B2 (ja) | 光スイッチ | |
KR100254335B1 (ko) | 액정표시장치 | |
US7817334B2 (en) | Wavelength conversion element, light source device, image display device, and monitor device | |
JP5249008B2 (ja) | 光変調器 | |
TWI793023B (zh) | 波導以及包含其的顯示裝置 | |
JPWO2010071105A1 (ja) | 光スイッチ、画像表示装置、画像形成装置、及び光スイッチの製造方法 | |
JP5168076B2 (ja) | 光スイッチ、光スイッチの製造方法、画像表示装置及び画像形成装置 | |
JP4518988B2 (ja) | 液晶表示装置 | |
TW201935086A (zh) | 可穿戴式圖像顯示裝置 | |
WO2023007753A1 (ja) | 可視光変調素子及びそれを備える光学エンジン | |
WO2009119276A1 (ja) | 電極位置調整方法およびシステム | |
JP2007316365A (ja) | 光偏向器 | |
JP2005266187A (ja) | 波面曲率変調器および画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09726737 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010505626 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09726737 Country of ref document: EP Kind code of ref document: A1 |