WO2009122653A1 - 軟窒化クランクシャフト用素材及びその製造方法 - Google Patents

軟窒化クランクシャフト用素材及びその製造方法 Download PDF

Info

Publication number
WO2009122653A1
WO2009122653A1 PCT/JP2009/000820 JP2009000820W WO2009122653A1 WO 2009122653 A1 WO2009122653 A1 WO 2009122653A1 JP 2009000820 W JP2009000820 W JP 2009000820W WO 2009122653 A1 WO2009122653 A1 WO 2009122653A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
crankshaft
soft nitriding
normalizing
temperature
Prior art date
Application number
PCT/JP2009/000820
Other languages
English (en)
French (fr)
Inventor
諏方悟
川口大二
村上敦
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US12/922,247 priority Critical patent/US8808469B2/en
Priority to EP09727864.2A priority patent/EP2264204B1/en
Publication of WO2009122653A1 publication Critical patent/WO2009122653A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/08Making machine elements axles or shafts crankshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/74Ferrous alloys, e.g. steel alloys with manganese as the next major constituent

Definitions

  • the present invention relates to a material for nitrocarburized crankshaft subjected to soft nitriding as a surface treatment and a method for manufacturing the same.
  • non-heat treated steel has been widely applied as a material for machine structural parts.
  • V vanadium
  • V which is added in a small amount, forms fine carbides and contributes to increasing the strength of parts.
  • crankshafts as machine structural parts are subjected to soft nitriding treatment such as salt bath nitriding treatment, gas soft nitriding treatment, ion nitriding treatment, etc. after the above machining for the purpose of increasing wear resistance and fatigue strength.
  • soft nitriding treatment such as salt bath nitriding treatment, gas soft nitriding treatment, ion nitriding treatment, etc. after the above machining for the purpose of increasing wear resistance and fatigue strength.
  • nitrocarburizing is known to produce a small amount of strain after heat treatment, but when manufacturing a crankshaft, in order to improve accuracy, strain for correcting the inevitable bending caused by nitrocarburizing Straightening is performed.
  • non-tempered steel that has undergone soft nitriding has lower strain correction capability than tempered steel that has undergone soft nitriding, and fatigue strength is likely to decrease due to the effects of stress strain generated on the surface during strain correction processing. There was a problem. Accordingly, various proposals have been made to improve the strain correction ability and fatigue strength of non-heat treated steel (see, for example, Patent Document 1). JP 2007-231302 A
  • the present invention provides a nitrocarburized crank capable of further improving productivity by further improving the strength of non-tempered steel subjected to nitrocarburizing treatment and the strain correction ability at the time of strain correction processing. It aims at providing the raw material for shafts, and its manufacturing method.
  • the soft nitrided crankshaft material of the present invention is, in mass%, C: 0.35 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.2%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.05 to 0.6%, V: 0.01 to 0.40%, S: 0.04 to 0.1%, s-Al: 0.001 to 0.01%, Ca: 0.0005 to 0.02%, N: 0.001 to 0.04% ,
  • Each component was adjusted so that .07 x Si + 0.16 x Mn + 0.19 x Cu + 0.17 x Ni + 0.2 x Cr + [V] would satisfy 0.58 to 0.89%, and the structure after hot forging and normalizing treatment was ferrite + Made of pearlite
  • crankshaft material subjected to soft nitriding should be subjected to normalization at a temperature within the temperature range of 780 ° C to 850 ° C after hot forging. It is possible to maintain a high strain correction capability in the strain correction processing for correcting the bending due to the nitriding treatment. That is, by setting the temperature in the normalizing process to 850 ° C. or less, the hardness is excessively increased during the normalizing process, so that the distortion correction ability is not lowered, and the temperature of the normalizing process is set to 780 ° C. or higher.
  • the soft nitriding process is performed under the conditions of the processing temperature of 500 to 650 ° C and the processing time of 1 to 5 hours. It is good also as what is subjected to distortion correction processing.
  • the strength is sufficiently increased by performing the nitrocarburizing treatment and the strain correction processing is performed in a state where the strain correcting ability is high, the strain is easily corrected by the strain correcting processing after the nitrocarburizing processing. Higher-accuracy crankshafts can be manufactured with higher yields.
  • the hot forged material After performing hot forging, the hot forged material is normalized in the temperature range of 780 ° C to 850 ° C.
  • the processing temperature is 500 to 650 ° C and the processing time is 1 to 5 hours.
  • the crankshaft material subjected to soft nitriding should be subjected to normalization at a temperature within the temperature range of 780 ° C to 850 ° C after hot forging. It is possible to maintain a high strain correction capability in the strain correction processing for correcting the bending due to the nitriding treatment.
  • the temperature in the normalizing process is set to 850 ° C. or less.
  • the hardness is excessively increased during the normalizing process, so that the distortion correction ability is not lowered, and the temperature of the normalizing process is set to 780 ° C. or higher.
  • a material for a nitrocarburized crankshaft that has both high fatigue strength and high strain correction ability, can further improve yield in strain correction processing, and can further improve productivity. it can.
  • distortion can be easily corrected by distortion correction after soft nitriding, and a higher-accuracy crankshaft can be manufactured with a high yield.
  • FIG. 1 is a chart showing the distortion correcting ability of a nitrocarburized crankshaft material to which the present invention is applied.
  • FIG. 2 is a chart showing the blade wearability of the nitrocarburized crankshaft material.
  • FIG. 3 is a chart showing the fatigue strength of the nitrocarburized crankshaft material.
  • the material for nitrocarburized crankshaft to which the present invention is applied is in mass%, C: 0.35-0.55%, Si: 0.05-0.5%, Mn: 0.6-1.2%, Cu: 0.01-0.5%, Ni: 0.01-0.5 %, Cr: 0.05 to 0.6%, V: 0.01 to 0.40%, S: 0.04 to 0.1%, s-Al: 0.001 to 0.01%, Ca: 0.0005 to 0.02%, N: 0.001 to 0.04%, balance Fe and inevitable
  • V 0.35-0.55%
  • Si 0.17 ⁇
  • Mn 0.6-1.2%
  • Cu 0.01-0.5%
  • Ni 0.01-0.5 %
  • Cr 0.05 to 0.6%
  • V 0.01 to 0.40%
  • S 0.04 to 0.1%
  • s-Al 0.001 to 0.01%
  • Ca 0.0005 to 0.02%
  • N 0.001 to 0.04%
  • balance Fe and inevitable When the amount of V that can be dissolved in austenite during normal heating is [V
  • V which affects the carbon equivalent C [eq.] Is defined not by the amount of addition to steel but by the amount of solid solution [V] in ⁇ (austenite). This is because only the V, which precipitates fine carbides and nitrides by subsequent cooling, acts to increase the hardness of the steel, that is, directly affects the fatigue strength of the crankshaft.
  • the structure of the nitrocarburized crankshaft material is considered as follows.
  • -Cracks occur in the compound layer on the surface at the initial stage when distortion is small, and when the distortion increases, cracks occur in one unit of pearlite grains (hereinafter referred to as pearlite blocks) in contact with the compound layer.
  • pearlite blocks one unit of pearlite grains
  • the crack generated in the pearlite block of one unit becomes an initial crack, and the crack progresses further in the ferrite or pearlite inside, which impairs the endurance fatigue life of the crankshaft. Therefore, the smaller the size of one unit of pearlite block in contact with the compound layer, the shorter the initial crack length, and the shorter the initial crack length, the less likely the crack progresses.
  • Non-tempered steel containing nitrocarburized crankshaft materials is usually heated to 1200 ° C or higher and then forged at 950 ° C or higher and allowed to cool as it is, so the structure is the first to precipitate along the old austenite grain boundaries. It consists of a mixed structure of precipitated ferrite and the remaining pearlite, while tempered steel is heated and cooled to a temperature range near 800 ° C, so the prior austenite grains become fine without coarsening, and fine ferrite And pearlite mixed structure.
  • Non-tempered steel containing nitrocarburized crankshaft material has larger prior austenite grains and higher hardenability compared to tempered steel, so ferrite transformation is suppressed and ferrite hardly precipitates. Tends to be perlite. -Therefore, the size of the pearlite block is likely to be larger than that of the tempered steel, and this causes a reduction in distortion correction ability.
  • a pearlite block that is generated by performing a normalization process when producing a material for a nitrocarburized crankshaft to refine crystal grains.
  • the size is reduced and uniformly dispersed.
  • this normalization treatment at a treatment temperature range of 780 ° C. to 850 ° C., it is possible to improve the strain correction ability and further increase the fatigue strength.
  • the normalization temperature is 780 ° C or higher, the effect of hot forging, which is a pre-working process, is removed by austenite transformation, crystal grains are refined, and V is dissolved to increase hardness and fatigue. The strength can be further increased.
  • the hardness can be increased within a range that does not cause a decrease in the strain straightening ability (also called bend straightening) after the soft nitriding treatment, and the straightening process. Sometimes the possibility of cracking is very low. Thereby, it is possible to further improve the production efficiency by improving the yield.
  • the normalizing process is a process of heating to a temperature higher than the material transformation point Ac3 by about 50 ° C. to obtain a uniform austenite structure and then allowing to cool in the atmosphere. By performing such treatment, it can be expected that (1) the metal structure of the forged product is refined, the mechanical properties are improved, and (2) the machinability is improved.
  • the temperature of the Ac3 transformation point is expressed by the equation Ac3 (°C): 854-180 ⁇ (% C) -14 ⁇ (% Mn) + 44 ⁇ (% Si) -17.8 ⁇ (% Ni) -1.7 ⁇ (% Cr) (1)
  • the lower limit of the normalizing temperature in the present embodiment is preferably 780 ° C., which is 50 ° C. added to the lower limit (730 ° C.) of the Ac3 point in the material of the present embodiment.
  • C 0.35-0.55% C is added for the purpose of improving the strength, the content is preferably 0.35% or more in order to obtain the required strength improvement, and does not exceed 0.55% so as not to cause deterioration of machinability and toughness.
  • Si 0.05-0.5% Si is an element to be included for the purpose of deoxidation and strengthening of pro-eutectoid ferrite. These effects can be obtained, and 0.05 to 0.5% is preferable as a content that does not cause a decrease in hot workability and toughness. is there.
  • Mn 0.6-1.2%
  • Mn is an element that is included as an effective element for effectively increasing the internal hardness of mechanical parts using the above materials, and for the purpose of improving toughness, in order to obtain the necessary hardness and toughness.
  • the content is preferably 1.2% or less so that bainite is generated after hot working or during normalization and the toughness is not lowered.
  • Mn is an important element for producing sulfide together with S described below, and is an effective element for improving machinability.
  • S: 0.04-0.1% S is an element effective for improving machinability, and the content is preferably 0.04% or more in order to obtain the necessary machinability, while reducing hot workability and fatigue strength.
  • the content is preferably 0.1% or less.
  • Ni 0.01-0.5%
  • the content is preferably 0.01% or more.
  • increasing the Cu content to 0.5% and Ni content to more than 0.5% not only saturates the effect, but also increases the cost of machine parts from an economic point of view, so the content must be 0.5% or less. Is preferred.
  • Cr 0.05-0.6% Cr is an effective element for effectively increasing the internal hardness of machine parts using the above materials, and is an element to be included for improving toughness.
  • the content is 0.05 to obtain the required toughness. % Or more is preferable.
  • bainite is generated by air cooling after hot working and the toughness is reduced, and further, fine nitride is precipitated in the nitride layer during soft nitriding due to the influence of Cr. Since it does not increase the hardness and reduce the distortion correction ability, it is preferably 0.6% or less.
  • Ca 0.0005 to 0.02% Ca is present in the sulfide as CaS to form a protective film on the tool during turning, and to be included in order to greatly improve the tool life. If it is 0.0005% or more, its effect can be obtained. If the content is 0.02% or less, it is preferable because high melting point CaS is not formed and the nozzle is not blocked during casting.
  • s-Al 0.001 to 0.01%
  • s-Al is used as a deoxidizing element when melting steel.
  • the content should be at least 0.001%. Also, if the content is more than 0.01%, fine nitride is deposited on the nitrided layer during soft nitriding to increase the hardness, so 0.01% or less to avoid deterioration of strain correction ability due to excessive addition It is preferable that
  • N 0.001 to 0.04% N is an element contained to prevent crystal grain coarsening. If the content is 0.001% or more, the effect of preventing crystal grain coarsening is obtained, while the content is 0.04%. Even if it is more, the effect is saturated, so 0.04% or less is preferable.
  • V 0.01 to 0.40%
  • V is an element to be included for increasing the strength by precipitating carbonitride finely during cooling after hot working, and the effect is obtained if it is 0.01% or more, and even if it exceeds 0.40%, the effect is obtained.
  • the content is preferably 0.40% or less because the effect is saturated and not only economically disadvantageous, but also reduces the distortion correction ability.
  • Table 1 14 types of materials shown in the following Table 1 are used as examples. Each of these materials has a composition defined in the present invention.
  • [V] and C [eq.] Indicate values when heated to 800 ° C. in the normalization treatment.
  • crankshaft having a size and shape of ⁇ 50 ⁇ 1000 mm.
  • This crankshaft was subjected to normalization treatment at various temperatures in the range of 750 ° C to 1000 ° C. In this normalization treatment, the temperature was kept at the above temperature for 60 minutes and then allowed to cool to room temperature.
  • crankshaft was subjected to a salt bath soft nitriding treatment using a salt bath agent (a mixed salt containing sodium cyanate (NaCNO), potassium cyanate (KCNO), etc.).
  • a salt bath agent a mixed salt containing sodium cyanate (NaCNO), potassium cyanate (KCNO), etc.
  • the salt bath soft nitriding temperature was 580 ° C. and the time was 100 minutes.
  • ⁇ Machinability> After melting the steels of the respective compositions, hot forging into a crankshaft shape at a temperature of 1200 ° C., and then performing a normalization treatment at the above temperature, a test piece was prepared. The test piece was subjected to gun drilling, and the degree of wear of the cutting tool accompanying this drilling was evaluated as an index of machinability. The cutting was performed using a cemented carbide gun drill with a diameter of 5.4 mm and the cutting conditions were as follows. Rotation speed: 4300r.pm (rev / min) Feed: 0.06mm / rotation Hole depth: 67mm ⁇ Fatigue strength> A practical crankshaft prepared in the same manner as the evaluation of strain correction ability was prepared and a rotating bending fatigue test was conducted. In this test, the maximum load load was changed in various ways, and the maximum load load that did not cause fracture at 10 million rotations was determined as the fatigue strength.
  • FIG. 1 is a chart showing the distortion correcting ability of a nitrocarburized crankshaft material.
  • the vertical axis represents the amount of strain ( ⁇ m) after the occurrence of cracks as an index of strain correction ability
  • the horizontal axis represents the temperature condition of the normalization treatment.
  • the distortion correction ability tends to be higher as the normalization temperature is lower.
  • the temperature of the normalizing treatment is 850 ° C. or lower
  • a better distortion correction ability than the reference value (25 ⁇ m) set as a preferred distortion correction ability can be obtained. This is considered to be due to the fact that the higher the temperature during the normalizing treatment, the more the solid solution of V advances and the hardness is increased. Further, even when the temperature of the normalizing treatment was less than 800 ° C., the distortion correcting ability did not fall below the reference value.
  • FIG. 2 is a chart showing the blade wearability of the nitrocarburized crankshaft material.
  • the vertical axis represents the degree of wear of the cutting tool
  • the horizontal axis represents the temperature condition of the normalizing treatment.
  • the normalization temperature exceeds 880 ° C.
  • the wear of the cutting tool exceeds a preferable reference value. Therefore, if the normalization temperature is 850 ° C. or less as in the present invention, preferable machinability is achieved. As a result, it was revealed that the machinability did not exceed the standard value.
  • the reference value is, for example, 0.3 mm.
  • FIG. 3 is a chart showing the fatigue strength of the nitrocarburized crankshaft material.
  • the vertical axis represents the above-described maximum load load (MPa) as an index indicating fatigue strength
  • the horizontal axis represents the temperature condition of the normalizing treatment.
  • MPa maximum load load
  • FIG. 3 it was revealed that the higher the normalization temperature, the higher the fatigue strength. This seems to be due to the fact that the higher the temperature during the normalizing treatment, the more the V is dissolved and the hardness is increased. The fatigue strength did not fall below the preferred reference value in the entire range where the normalization temperature was 780 ° C. or higher and 1000 ° C. or lower.
  • the hot forging material is normalized in the temperature range of 780 ° C to 850 ° C, so that the structure of ferrite + pearlite is obtained.
  • the processing temperature is 500 to 650 ° C and the processing time is 1 to 5 hours.
  • Soft nitriding with When the distortion correction process is performed to correct the bending caused by the soft nitriding, the temperature during the normalizing process is set within a range of 780 ° C to 850 ° C to ensure good fatigue strength.
  • the present invention is not limited to this.
  • gas soft nitriding treatment, ion nitriding treatment, etc. can of course be performed, and conditions for the soft nitriding treatment are arbitrary.
  • the conditions during melting, hot forging, and machining of the material can be changed as appropriate.
  • the nitrocarburized crankshaft material of the present invention can be applied to crankshafts of various internal combustion engines used for automobiles, motorcycles, and other applications, and the applications are not limited at all.
  • the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 軟窒化クランクシャフト用素材の強度および歪矯正能のさらなる向上を図る。  軟窒化クランクシャフト用素材を、所定の質量%のC,Si,Mn,Cu,Ni:,Cr,V,S,s-Al,Ca,N,残部Fe及び不可避的不純物を含む組成を有するフェライト+パーライトの組織を有するものとし、上記組成を有する鋼を溶製した後に熱間鍛造を行い、その後に当該熱間鍛造材に対して処理温度780°C~850°Cの温度範囲で焼準処理が施され、軟窒化処理による曲がりを矯正する歪矯正加工が後に施されるものとする。

Description

軟窒化クランクシャフト用素材及びその製造方法
 本発明は、表面処理としての軟窒化処理が施される軟窒化クランクシャフト用素材及びその製造方法に関する。
 従来、機械構造部品の素材として、非調質鋼が広く適用されるようになっている。例えば、V(バナジウム)が添加された非調質鋼では、微量に添加されているVが微細な炭化物を形成し、部品の高強度化に寄与する。
 例えば、機械構造部品としてのクランクシャフトには、耐摩耗性や疲労強度を高める目的で、上記の機械加工後に塩浴窒化処理,ガス軟窒化処理,イオン窒化処理等の軟窒化処理が施されることがある。一般に、軟窒化処理は熱処理後の歪み発生量が小さいことが知られているが、クランクシャフトの製造時には、より精度を高めるため、軟窒化処理により不可避的に生じた曲がりを矯正するための歪矯正加工が施される。ところが、軟窒化処理された非調質鋼は、軟窒化処理された調質鋼に比べて歪矯正能が低く、また、歪矯正加工時に表面に生じる応力歪みの影響で疲労強度が低下し易いという問題があった。そこで、非調質鋼における歪矯正能及び疲労強度の向上を図るべく、種々の提案がなされている(例えば、特許文献1参照)。
特開2007-231302号公報
 クランクシャフトのように高い精度と強度が求められる部材においては、歪矯正能が少なからず生産性に影響するため、歪矯正能のさらなる向上が期待されており、疲労強度においても同様の期待がある。
 そこで本発明は、軟窒化処理される非調質鋼の強度および歪矯正加工の際の歪矯正能のさらなる向上を図ることにより、より一層の生産性の向上を図ることが可能な軟窒化クランクシャフト用素材及びその製造方法を提供することを目的とする。
 上記課題を解決するため、本発明の軟窒化クランクシャフト用素材は、質量%で、C:0.35~0.55%,Si:0.05~0.5%,Mn:0.6~1.2%,Cu:0.01~0.5%,Ni:0.01~0.5%,Cr:0.05~0.6%,V:0.01~0.40%,S:0.04~0.1%,s-Al:0.001~0.01%,Ca:0.0005~0.02%,N:0.001~0.04%,残部Fe及び不可避的不純物からなる組成を有するとともに、焼準加熱時のオーステナイト中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]が0.58~0.89%を満たすように各成分が調整され、熱間鍛造及び焼準処理後の組織がフェライト+パーライトである軟窒化クランクシャフト用素材からなり、上記組成を有する鋼を溶製した後に熱間鍛造を行い、その後に当該熱間鍛造材に対して処理温度780℃~850℃の温度範囲で焼準処理が施され、軟窒化処理による曲がりを矯正する歪矯正加工が後に施されること、を特徴とする。
 この場合、軟窒化処理が施されるクランクシャフト用の素材を、熱間鍛造の後に、780℃~850℃の温度範囲に含まれる温度で焼準処理が施されるものとすることで、軟窒化処理による曲がりを矯正する歪矯正加工における歪矯正能を高く保つことができる。すなわち、焼準処理における温度を850℃以下とすることで、焼準処理時に硬度が過度に高められることで歪矯正能を低下させることがなく、また、焼準処理の温度を780℃以上とすることで、前工程としての熱間鍛造の影響を確実に排除するとともに、好ましい硬度を確保して疲労強度を高めることができる。これにより、高い疲労強度と高い歪矯正能とを合わせ持ち、歪矯正加工における歩留まりをさらに向上させ、より一層の生産性の向上を図ることが可能な軟窒化クランクシャフト用素材を提供できる。
 上記構成において、処理温度780℃~850℃の温度範囲で焼準処理が施された後、処理温度500~650℃,処理時間1~5時間の条件で軟窒化処理が施され、その後に上記歪矯正加工が施されるものとしてもよい。
 この場合、軟窒化処理を行うことで十分に強度が高められ、かつ、歪矯正能が高い状態で歪矯正加工が施されるので、軟窒化処理後の歪矯正加工により歪みを容易に矯正し、より高精度のクランクシャフトを高い歩留まりで製造できる。
 また、本発明の軟窒化クランクシャフト用素材の製造方法は、質量%で、C:0.35~0.55%,Si:0.05~0.5%,Mn:0.6~1.2%,Cu:0.01~0.5%,Ni:0.01~0.5%,Cr:0.05~0.6%,V:0.01~0.40%,S:0.04~0.1%,s-Al:0.001~0.01%,Ca:0.0005~0.02%,N:0.001~0.04%,残部Fe及び不可避的不純物からなる組成を有するとともに、焼準加熱時のオーステナイト中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]が0.58~0.89%を満たすように各成分が調整されて成る材料を溶製し、溶製した上記材料の熱間鍛造を行い、その後に当該熱間鍛造材を処理温度780℃~850℃の温度範囲で焼準処理することによりフェライト+パーライトの組織として、処理温度500~650℃,処理時間1~5時間の条件で軟窒化処理を行い、この軟窒化処理による曲がりを矯正する歪矯正加工を施すこと、を特徴とする。
 この場合、軟窒化処理が施されるクランクシャフト用の素材を、熱間鍛造の後に、780℃~850℃の温度範囲に含まれる温度で焼準処理が施されるものとすることで、軟窒化処理による曲がりを矯正する歪矯正加工における歪矯正能を高く保つことができる。すなわち、焼準処理における温度を850℃以下とすることで、焼準処理時に硬度が過度に高められることで歪矯正能を低下させることがなく、また、焼準処理の温度を780℃以上とすることで、前工程としての熱間鍛造の影響を確実に排除するとともに、好ましい硬度を確保して疲労強度を高めることができる。これにより、高い疲労強度と高い歪矯正能とを合わせ持ち、歪矯正加工における歩留まりをさらに向上させ、より一層の生産性の向上を図ることが可能な軟窒化クランクシャフト用素材を製造できる。
 本発明によれば、高い疲労強度と高い歪矯正能とを合わせ持ち、歪矯正加工における歩留まりをさらに向上させ、より一層の生産性の向上を図ることが可能な軟窒化クランクシャフト用素材を提供できる。また、軟窒化処理後の歪矯正加工により歪みを容易に矯正し、より高精度のクランクシャフトを高い歩留まりで製造できる。
図1は、本発明を適用した軟窒化クランクシャフト用素材の歪矯正能を示す図表である。 図2は、軟窒化クランクシャフト用素材の刃具摩耗性を示す図表である。 図3は、軟窒化クランクシャフト用素材の疲労強度を示す図表である。
 次に本発明の実施形態を以下に説明する。
 本発明を適用した軟窒化クランクシャフト用素材は、質量%で、C:0.35~0.55%,Si:0.05~0.5%,Mn:0.6~1.2%,Cu:0.01~0.5%,Ni:0.01~0.5%,Cr:0.05~0.6%,V:0.01~0.40%,S:0.04~0.1%,s-Al:0.001~0.01%,Ca:0.0005~0.02%,N:0.001~0.04%,残部Fe及び不可避的不純物からなる組成を有するとともに、焼準加熱時のオーステナイト中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]が0.58~0.89%を満たすように各成分が調整されたものである。
 Vを含む非調質鋼から成る軟窒化クランクシャフト用素材に対して軟窒化処理後に歪矯正時に亀裂が発生し易い原因は、軟窒化処理の際にVが表層に硬い窒化物を形成して鋼の表層を硬くすることにある。Vが硬い炭化物を微細に析出することで鋼が硬く高強度となり、クランクシャフトの耐久疲労特性(疲労強度)が高まるが、その一方で、軟窒化処理後の歪矯正加工では、鋼が硬いほど歪矯正に必要な荷重が高くなり、発生する応力が高くなるので、亀裂が発生し易くなる。
 そこで、焼準加熱時のオーステナイト(γ)中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、
 C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]
で表される炭素当量C[eq.]を0.58~0.89%とすることによって、即ち炭素当量C[eq.]がそのような値となるように各成分を調整することによって、必要な硬さが得られるとともに歪矯正加工後においてもクランクシャフトが良好な疲労強度を実現できる。すなわち、C[eq.]が0.58%以上であれば軟窒化処理後の硬度が高く、所望の疲労強度が得られるので好ましく、C[eq.]が0.89%以下であれば、軟窒化処理後の硬度が硬くなり過ぎず、歪矯正能が損なわれず、さらに必要な被削性が保持されるので、好ましい。
 ここで、炭素当量C[eq.]を左右するVを単なる鋼への添加量ではなく、γ(オーステナイト)中への固溶量[V]で規定しているのは、γ中に固溶したVだけが、その後の冷却によって微細な炭化物や窒化物を析出し、鋼の硬さを高めるよう作用し、即ちクランクシャフトとしての疲労強度を直接左右するためである。
 また、軟窒化クランクシャフト用素材の組織については、以下のように考察される。
・歪矯正加工時の歪みの小さい初期において表面の化合物層に亀裂が発生し、歪みが増加すると化合物層に接した1単位のパーライト粒(以下パーライトブロックと言う)に亀裂が発生し、更に歪みが増加するとその1単位のパーライトブロックに生じた亀裂を初期亀裂として、より内部のフェライト又はパーライトに亀裂が進行し、これがクランクシャフトの耐久疲労寿命を損なう。
・従って化合物層に接した1単位のパーライトブロックの大きさが小さいほど初期亀裂の長さが短くなり、そしてその初期亀裂の長さが短いほど亀裂の進行が起り難い。
・そのため、歪矯正能を向上させるためには、パーライトブロックの大きさを小さくする必要がある。
・軟窒化クランクシャフト用素材を含む非調質鋼は通常1200℃以上に加熱後950℃以上で鍛造を終了し、そのまま放冷却されるため、その組織は旧オーステナイト粒界に沿って析出する初析フェライトと残りの部分からなるパーライトの混合組織から構成され、一方調質鋼は800℃付近の温度領域に加熱し冷却されるため、旧オーステナイト粒は粗大化せずに微細となり、微細なフェライトとパーライトの混合組織から構成されたものとなる。
・軟窒化クランクシャフト用素材を含む非調質鋼は調質鋼と比較して旧オーステナイト粒が大きく、焼入性が大きいためにフェライト変態が抑制されてフェライトが析出し難く、オーステナイトの大部分がパーライトとなり易い。
・そのためパーライトブロックの大きさが調質鋼より大きくなり易く、これが歪矯正能を低下させる原因となる。
 そこで、本実施形態においては、上記素材の歪矯正能を高めるべく、軟窒化クランクシャフト用素材を製造するに際して焼準(焼ならし)処理を施し、結晶粒を微細化して、生成するパーライトブロックの大きさを微細化し、且つ均一分散させる。
 特に、この焼準処理を、処理温度780℃~850℃の温度範囲で行うことにより、歪矯正能が高められる上、疲労強度をより一層高めることが可能となる。
 焼準処理の処理温度を780℃以上とすると、オーステナイト変態により前加工である熱間鍛造の影響を除去し、結晶粒の微細化を図るとともに、Vを固溶させることで硬度を高め、疲労強度をより一層高めることができる。その一方で、焼準処理の温度を850℃以下とすることにより、軟窒化処理後の歪矯正能(曲げ矯正性ともいう)の低下を招かない範囲で硬度を高めることができ、歪矯正加工時に亀裂を生じる可能性が極めて低くなる。これにより、歩留まりの向上等による生産効率のさらなる向上を図ることができる。
 焼準温度の下限を780℃とした点について詳述する。
 焼準処理は、材料の変態点であるAc3を約50℃上回る温度に加熱して均一なオーステナイト組織にした後、大気中で放冷する処理であることが一般的に知られている。このような処理を行うことによって、(1)鍛造品の金属組織の微細化、機械的性質の改善、(2)切削性の向上等、を実現することが期待できる。
 ところで、Ac3変態点の温度は、式
Ac3(℃):854-180×(%C)-14×(%Mn)+44×(%Si)-17.8×(%Ni)-1.7×(%Cr) …(1)
により求められることが知られており、本実施形態における材料では、730℃~804℃の範囲内にAc3点が存在することになる。従って、本実施形態における焼準温度の下限は、本実施形態の材料におけるAc3点の下限(730℃)に50℃を加えた780℃とすることが、好ましい。
 また、上記素材の組成に関する限定理由は、以下に詳述する通りである。
 C:0.35~0.55%
 Cは強度の向上を目的として添加され、必要な強度の向上を得るために含有量が0.35%以上であることが好ましく、被削性及び靭性の低下を招かないために0.55%を超えないことが好ましい。
 Si:0.05~0.5%
 Siは脱酸及び初析フェライトの強化を目的として含有させる元素であり、これらの効果を得ることができ、熱間加工性及び靭性の低下を招かない含有量として、0.05~0.5%が好適である。
 Mn:0.6~1.2%
 Mnは、上記素材を用いた機械部品の内部の硬さを効果的に高めるための有効な元素として、また、靭性を向上させる目的で含有させる元素であり、必要な硬さ及び靭性を得るために0.6%以上であることが好ましく、熱間加工後や焼準時にベイナイトが生成して靭性が低下しないように、その含有量を1.2%以下とすることが好ましい。
 また、Mnは次に述べるSとともに硫化物を生成するために重要な元素であり、被削性を向上させるために有効な元素である。
 S:0.04~0.1%
 Sは被削性を向上させるために有効な元素で、必要な被削性を得るために含有量が0.04%以上であることが好ましく、その一方で、熱間加工性や疲れ強度を低下させたり、Caと高融点のCaSを形成して鋳造時にノズルを閉塞させたりしないように、その含有量が0.1%以下であることが好ましい。
 Cu:0.01~0.5%
 Ni:0.01~0.5%
 Cu,Niともに、上記素材を用いた機械部品の内部の硬さを効果的に高めるための有効な元素として、また靭性を向上させることを目的として含有させる元素である。これらの効果を得るために含有量が0.01%以上であることが好ましい。一方、Cuを0.5%,Niを0.5%より多くしてもその効果が飽和するばかりでなく、経済的な観点からも機械部品のコスト高となるため、その含有量が0.5%以下であることが好ましい。
 Cr:0.05~0.6%
 Crは上記素材を用いた機械部品の内部の硬さを効果的に高めるための有効なものであり、また靭性を向上させるために含有させる元素で、必要な靭性を得るために含有量は0.05%以上であることが好ましい。一方、含有量が0.6%以下であれば、熱間加工後の空冷でベイナイトが生成して靭性が低下したり、更にCrの影響により軟窒化処理時に窒化層に微細な窒化物が析出して硬さを増加させて歪矯正能を低下させたりすることがないので、0.6%以下であることが好ましい。
 Ca:0.0005~0.02%
 Caは硫化物中にCaSとして存在させることにより旋削加工時に工具に保護膜を形成させ、工具寿命を大幅に向上させるために含有させる元素で、0.0005%以上であればその効果が得られ、その含有量が0.02%以下であれば、高融点のCaSを形成して鋳造時にノズルを閉塞させることがないので好適である。
 s-Al:0.001~0.01%
 s-AlはSiと同様に鋼を溶製する際に脱酸元素として用いる。
 その含有量は少なくても0.001%以上必要である。また、その含有量が0.01%より多いと軟窒化処理時に窒化層に微細な窒化物を析出させ硬さを増加させるので、過度の添加による歪矯正能の低下を回避するために、0.01%以下であることが好ましい。
 N:0.001~0.04%
 Nは結晶粒の粗大化を防止するために含まれる元素であり、その含有量が0.001%以上であれば、結晶粒の粗大化を防止する効果が得られ、その一方で含有量が0.04%より多くてもその効果が飽和するので、0.04%以下であることが好ましい。
 V:0.01~0.40%
 Vは熱間加工後の冷却中に炭窒化物を微細に析出させて強度を高くするために含有させる元素で、0.01%以上であればその効果が得られ、0.40%より多くしてもその効果が飽和して経済的に不利になるばかりでなく歪矯正能を低下させてしまうため、その含有量は0.40%以下であることが好ましい。
 上記の素材として、本実施形態では、次の表1に示す14種類の材料を例として用いた。これらの材料は、いずれも、本発明に規定された組成からなる。なお、表1において、[V],C[eq.]は、焼準処理で800℃に加熱した場合の値を記載している。
Figure JPOXMLDOC01-appb-T000001
 本実施形態では、表1に示す化学組成の鋼を溶製した後、1200℃の温度で熱間鍛造を行い、寸法,形状がφ50×1000mmのクランクシャフトを得た。
 このクランクシャフトに、セ氏750℃~1000℃の範囲における様々な温度において焼準処理を行った。この焼準処理では、上記温度でそれぞれ60分間加熱保持した後室温まで放冷する条件とした。
 続いて、上記クランクシャフトに、塩浴剤(シアン酸ソーダ(NaCNO)、シアン酸カリ(KCNO)等を含む混合塩)を用いて塩浴軟窒化処理を施した。この塩浴軟窒化処理の温度は580℃、時間は100分とした。
 そして、歪矯正能、切削性、及び疲労強度の各特性を評価した。これらの具体的な評価方法は下記の通りである。
<歪矯正能>
 上記各組成の鋼を溶製した後、1200℃の温度でクランクシャフトの形状に熱間鍛造し、その後上記の温度で焼準処理を施し、この焼準処理の後でガンドリル穴あけを含む機械加工を行い、機械加工後に、塩浴軟窒化処理(580℃×100分)を施して、実用クランクシャフトとした。
 得られたクランクシャフトを、両端ジャーナル部を支点間距離400mmにて支えながら、中央ジャーナル部に集中荷重を加えることにより3点曲げ試験を行った。
 この試験において、中央ジャーナル部に亀裂が発生するまで荷重を加え、除荷後の最大歪み量(振れ変化量)をそのクランクシャフトの歪矯正能として求めた。
<切削性>
 上記各組成の鋼を溶製した後、1200℃の温度でクランクシャフトの形状に熱間鍛造した後、上記の温度で焼準処理を施すことで試験片を作成した。この試験片に対し、ガンドリル穴あけ加工を施し、この穴明け加工に伴う刃具の摩耗の程度を切削性の指標として評価した。
 尚、切削には、直径5.4mmの超硬合金製ガンドリルを用い、切削条件は以下の通りとした。
 回転速度:4300r.p.m.(回転/分)
 送り:0.06mm/回転
 穴深さ:67mm
<疲労強度>
 歪矯正能の評価と同様に作成した実用クランクシャフトを用意して、回転曲げ疲労試験を実施した。この試験は最大負荷荷重を種々に変えて行い、回転1000万回にて破壊を生じない最大負荷荷重を疲労強度として求めた。
 図1は、軟窒化クランクシャフト用素材の歪矯正能を示す図表である。
 この図1において、縦軸は、歪矯正能の指標としての亀裂発生後の歪み量(μm)であり、横軸は、焼準処理の温度条件である。
 図1に示すように、焼準温度が低いほど歪矯正能が高い傾向が現れた。詳細には、焼準処理の温度が850℃以下であれば、好ましい歪矯正能として設定された基準値(25μm)よりも良好な歪矯正能が得られることが明らかになった。これは、焼準処理時の温度が高いほどVの固溶が進んで硬度が高められることによると考えられる。また、焼準処理の温度が800℃未満であっても、歪矯正能が基準値を下回ることはなかった。
 図2は、軟窒化クランクシャフト用素材の刃具摩耗性を示す図表である。
 図2において縦軸は刃具の摩耗の程度を示し、横軸は焼準処理の温度条件である。
 この図2に示すように、焼準温度が低いほど刃具の摩耗が小さい、すなわち切削性が良いことが明らかになった。焼準温度が880℃を超える程度で、刃具の摩耗が、好ましいとされる基準値を超えてしまうので、本発明のように、焼準処理の温度を850℃以下とすれば、好ましい切削性の基準値を満たすことが明らかになり、焼準処理の温度が800℃未満となっても、切削性が基準値を超えることはなかった。ここで、基準値は、例えば0.3mmである。
 図3は、軟窒化クランクシャフト用素材の疲労強度を示す図表である。
 図3において縦軸は疲労強度を示す指標としての上述した最大負荷荷重(MPa)であり、横軸は焼準処理の温度条件である。
 この図3に示すように、焼準温度が高いほど疲労強度が高いことが明らかになった。これは、焼準処理時の温度が高いほどVの固溶が進んで硬度が高められることによると思われる。焼準温度が780℃以上となり、1000℃以下となる範囲の全体において、疲労強度が好ましい基準値を下回ることはなかった。
 このように、質量%で、C:0.35~0.55%,Si:0.05~0.5%,Mn:0.6~1.2%,Cu:0.01~0.5%,Ni:0.01~0.5%,Cr:0.05~0.6%,V:0.01~0.40%,S:0.04~0.1%,s-Al:0.001~0.01%,Ca:0.0005~0.02%,N:0.001~0.04%,残部Fe及び不可避的不純物からなる組成を有するとともに、焼準加熱時のオーステナイト中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]が0.58~0.89%を満たすように各成分が調整されて成る軟窒化クランクシャフト用素材を用い、この素材を溶製し、溶製した上記材料の熱間鍛造を行い、その後に当該熱間鍛造材を処理温度780℃~850℃の温度範囲で焼準処理することによりフェライト+パーライトの組織として、処理温度500~650℃,処理時間1~5時間の条件で軟窒化処理を行い、この軟窒化処理による曲がりを矯正する歪矯正加工を施す場合には、焼準処理時の温度を780℃~850℃の範囲に収まる温度とすることで、良好な疲労強度を確保しながら、軟窒化処理後に歪みを除去する歪矯正加工における歪矯正能を高めることができ、この歪矯正加工の歩留まりを高め、生産効率の向上を図ることができる。また、焼準処理を上記の温度で施すことによって、好適な切削性を持たせることが可能となる。
 つまり、上記素材を用いてクランクシャフトを製造する場合、
 ・上記の組成を満たす鋼を溶製し、
 ・溶製した鋼を熱間鍛造してクランクシャフトの形状とし、
 ・熱間鍛造の後に、780℃~850℃の温度で焼準処理を施し、
 ・焼準処理の後で機械加工を行い、
 ・機械加工後に、処理温度500~650℃,処理時間1~5時間の条件で軟窒化処理を施して、実用クランクシャフトとする、
 工程を含むことが好ましい。
 これにより、高い疲労強度と高い歪矯正能とを合わせ持ち、歪矯正加工における歩留まりをさらに向上させ、より一層の生産性の向上を図ることが可能な軟窒化クランクシャフト用素材を提供できる。また、軟窒化処理を行うことで十分に強度が高められ、かつ、歪矯正能が高い状態で歪矯正加工が施されるので、軟窒化処理後の歪矯正加工により歪みを容易に矯正し、より高精度のクランクシャフトを高い歩留まりで製造できる。
 以上本発明の実施形態を詳述したが、本発明はこれに限定されるものではなく、例えば、上記素材を評価する際に、軟窒化処理の一例として塩浴軟窒化処理を施した場合を挙げて説明したが、ガス軟窒化処理やイオン窒化処理等を施すことも勿論可能であるし、軟窒化処理の条件についても任意である。同様に、上記素材の溶製、熱間鍛造、機械加工時の条件についても、適宜変更可能である。
 また、本発明の軟窒化処理クランクシャフト用素材は、四輪自動車、自動二輪車、或いは他の用途に用いられる各種内燃機関のクランクシャフトに適用可能であり、その用途については何ら限定されず、その他本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。

Claims (3)

  1.  質量%で
        C :0.35~0.55%
        Si:0.05~0.5%
        Mn:0.6~1.2%
        Cu:0.01~0.5%
        Ni:0.01~0.5%
        Cr:0.05~0.6%
        V :0.01~0.40%
        S :0.04~0.1%
        s-Al:0.001~0.01%
        Ca:0.0005~0.02%
        N :0.001~0.04%
     残部Fe及び不可避的不純物からなる組成を有するとともに、焼準加熱時のオーステナイト中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、
        C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]
     が0.58~0.89%を満たすように各成分が調整され、熱間鍛造及び焼準処理後の組織がフェライト+パーライトである軟窒化クランクシャフト用素材からなり、
     上記組成を有する鋼を溶製した後に熱間鍛造を行い、その後に当該熱間鍛造材に対して処理温度780℃~850℃の温度範囲で焼準処理が施され、軟窒化処理による曲がりを矯正する歪矯正加工が後に施されること、
     を特徴とする軟窒化クランクシャフト用素材。
  2.  処理温度780℃~850℃の温度範囲で焼準処理が施された後、処理温度500~650℃,処理時間1~5時間の条件で軟窒化処理が施され、その後に上記歪矯正加工が施されること、
     を特徴とする請求項1記載の軟窒化クランクシャフト用素材。
  3.  質量%で
        C :0.35~0.55%
        Si:0.05~0.5%
        Mn:0.6~1.2%
        Cu:0.01~0.5%
        Ni:0.01~0.5%
        Cr:0.05~0.6%
        V :0.01~0.40%
        S :0.04~0.1%
        s-Al:0.001~0.01%
        Ca:0.0005~0.02%
        N :0.001~0.04%
     残部Fe及び不可避的不純物からなる組成を有するとともに、焼準加熱時のオーステナイト中に固溶できるV量を[V]、炭素当量C[eq.]としたとき、
        C[eq.]=C+0.07×Si+0.16×Mn+0.19×Cu+0.17×Ni+0.2×Cr+[V]
     が0.58~0.89%を満たすように各成分が調整されて成る材料を溶製し、
     溶製した上記材料の熱間鍛造を行い、その後に当該熱間鍛造材を処理温度780℃~850℃の温度範囲で焼準処理することによりフェライト+パーライトの組織として、
     処理温度500~650℃,処理時間1~5時間の条件で軟窒化処理を行い、
     この軟窒化処理による曲がりを矯正する歪矯正加工を施すこと、
     を特徴とする軟窒化クランクシャフト用素材の製造方法。
PCT/JP2009/000820 2008-03-31 2009-02-25 軟窒化クランクシャフト用素材及びその製造方法 WO2009122653A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/922,247 US8808469B2 (en) 2008-03-31 2009-02-25 Nitrocarburized raw material for crankshafts and method for manufacturing the same
EP09727864.2A EP2264204B1 (en) 2008-03-31 2009-02-25 Method for manufacturing nitrocarburized matearial for crankshaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008089232A JP5580517B2 (ja) 2008-03-31 2008-03-31 軟窒化クランクシャフト用素材の製造方法
JP2008-089232 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122653A1 true WO2009122653A1 (ja) 2009-10-08

Family

ID=41135062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000820 WO2009122653A1 (ja) 2008-03-31 2009-02-25 軟窒化クランクシャフト用素材及びその製造方法

Country Status (4)

Country Link
US (1) US8808469B2 (ja)
EP (1) EP2264204B1 (ja)
JP (1) JP5580517B2 (ja)
WO (1) WO2009122653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987690A (zh) * 2017-05-19 2017-07-28 成都亨通兆业精密机械有限公司 一种锻钢曲轴的制造工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752203B2 (en) 2011-10-07 2017-09-05 Babasaheb Neelkanth Kalyani Process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process
CN112442641A (zh) * 2019-08-29 2021-03-05 广州汽车集团股份有限公司 一种发动机高强度曲轴及其制备方法
CN115466900B (zh) * 2022-09-20 2023-08-01 西华大学 一种提高汽车曲轴抗疲劳性能的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162161A (ja) * 2002-09-25 2004-06-10 Daido Steel Co Ltd 機械部品およびその製造方法
JP2007231302A (ja) 2006-02-27 2007-09-13 Daido Steel Co Ltd 強度及び曲げ矯正性に優れた軟窒化クランクシャフト用素材及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450217B2 (ja) * 2005-06-23 2010-04-14 住友金属工業株式会社 軟窒化用非調質鋼
JP2007197812A (ja) * 2005-12-28 2007-08-09 Honda Motor Co Ltd 軟窒化非調質鋼部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162161A (ja) * 2002-09-25 2004-06-10 Daido Steel Co Ltd 機械部品およびその製造方法
JP2007231302A (ja) 2006-02-27 2007-09-13 Daido Steel Co Ltd 強度及び曲げ矯正性に優れた軟窒化クランクシャフト用素材及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987690A (zh) * 2017-05-19 2017-07-28 成都亨通兆业精密机械有限公司 一种锻钢曲轴的制造工艺

Also Published As

Publication number Publication date
EP2264204B1 (en) 2019-04-10
JP2009242842A (ja) 2009-10-22
JP5580517B2 (ja) 2014-08-27
US20110017351A1 (en) 2011-01-27
EP2264204A1 (en) 2010-12-22
US8808469B2 (en) 2014-08-19
EP2264204A4 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5123335B2 (ja) クランクシャフトおよびその製造方法
JP5655366B2 (ja) ベイナイト鋼
JP2007231302A (ja) 強度及び曲げ矯正性に優れた軟窒化クランクシャフト用素材及びその製造方法
JP4230794B2 (ja) 機械部品およびその製造方法
JP4737601B2 (ja) 高温窒化処理用鋼
JP2019218582A (ja) 機械部品
JP5580517B2 (ja) 軟窒化クランクシャフト用素材の製造方法
JP2010189697A (ja) クランクシャフトおよびその製造方法
JP3550886B2 (ja) 被削性および疲労強度に優れた高周波焼入用の歯車用鋼材の製造方法
JP2009167505A (ja) 調質型軟窒化クランク軸用粗形品および調質型軟窒化クランク軸
JP4488228B2 (ja) 高周波焼入れ用鋼材
JP2020029608A (ja) 浸炭窒化用鋼
JP2003113419A (ja) 非調質鋼熱間鍛造部品の製造方法およびその非調質鋼熱間鍛造部品
JP2008223083A (ja) クランクシャフト及びその製造方法
JPH10147814A (ja) 熱処理歪みの少ない肌焼鋼製品の製法
JP3527154B2 (ja) 非調質軟窒化鋼部品
JP6477614B2 (ja) 軟窒化用鋼および部品ならびにこれらの製造方法
JP5131770B2 (ja) 軟窒化用非調質鋼
JP5151662B2 (ja) 軟窒化用鋼材の製造方法
JP4526440B2 (ja) 軟窒化用鋼及び軟窒化部品
JPH09324848A (ja) 浸炭歯車部品
JP2000309846A (ja) 軟窒化用非調質鋼
WO2016121371A1 (ja) 肌焼鋼
JP7196707B2 (ja) 窒化用鍛造部材及びその製造方法、並びに表面硬化鍛造部材及びその製造方法
JP7167482B2 (ja) 窒化用非調質鋼およびクランクシャフト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727864

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12922247

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009727864

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE