WO2009121645A1 - Hydraulische fahrzeugbremsanlage - Google Patents

Hydraulische fahrzeugbremsanlage Download PDF

Info

Publication number
WO2009121645A1
WO2009121645A1 PCT/EP2009/051214 EP2009051214W WO2009121645A1 WO 2009121645 A1 WO2009121645 A1 WO 2009121645A1 EP 2009051214 W EP2009051214 W EP 2009051214W WO 2009121645 A1 WO2009121645 A1 WO 2009121645A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
brake system
master cylinder
hydraulic
vehicle brake
Prior art date
Application number
PCT/EP2009/051214
Other languages
English (en)
French (fr)
Inventor
Stefan Strengert
Ulf Pischke
Dietmar Baumann
Andreas Henke
Dirk Hofmann
Werner Harter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN200980112093.4A priority Critical patent/CN102015392B/zh
Priority to EP09729031A priority patent/EP2265480A1/de
Publication of WO2009121645A1 publication Critical patent/WO2009121645A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/20Tandem, side-by-side, or other multiple master cylinder units
    • B60T11/203Side-by-side configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/38Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including valve means of the relay or driver controlled type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/4086Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device

Definitions

  • the invention relates to a hydraulic vehicle brake system having the features of the preamble of claim 1.
  • Known hydraulic vehicle brake systems have a muscle-operated master cylinder, to which wheel brake cylinders of wheel brakes are hydraulically connected.
  • the connection of the wheel brake cylinder is usually via a brake control device which has solenoid valves, hydraulic pumps and hydraulic accumulator and allows a wheel-specific brake pressure control.
  • brake pressure controls are referred to as anti-lock, traction and / or vehicle dynamics controls and abbreviated ABS, ASR, FDR, ESP and the like. More.
  • hydraulic vehicle brake systems as a foreign-power brake systems, ie to provide with a foreign energy supply device, which provides the necessary energy for a service braking.
  • the external energy supply device comprises a hydraulic see accumulator charged with a hydraulic pump.
  • the muscle force exerted by a driver provides a setpoint for the amount of braking force.
  • Only in case of failure of the external power supply device is an actuation of the vehicle brake system by the muscular force of the driver as so-called.
  • auxiliary power brake systems are known in which a part of the energy required for the brake operation comes from a foreign energy supply device and the remaining part of the muscle power of the driver. Both the power and the auxiliary power brake systems do not require a brake booster.
  • the published patent application DE 10 2004 025 638 A1 discloses a master brake cylinder for a foreign power actuation of a hydraulic vehicle brake system.
  • the known master cylinder has a first piston which is mechanically connected via a piston rod with a brake pedal.
  • the first piston is slidably received in a second piston forming a cylinder for the first piston.
  • the first piston is supported via a spring element on the second piston.
  • a third piston which is arranged in the axial extension of the second piston, abuts against an end face of the second piston.
  • the third piston can be considered as a primary piston of the master cylinder.
  • a gap between the second and the third piston in the master cylinder is hydraulically pressurized.
  • the hydraulic pressure shifts the third piston, so the primary piston, in the master cylinder, the brake fluid displaced from the master cylinder and thereby builds pressure to actuate the vehicle brake system.
  • the pressurization by the pressure source of the external power supply device between the second and the third piston causes except the displacement of the third piston that the second piston remains in its initial position, so does not move.
  • the displaceable in the second piston first piston which is supported via the spring element on the second piston, forms a pedal travel simulator.
  • a pedal actuation displaces the first piston and, via the support with the spring element, the second piston.
  • the second piston closes a hydraulic connection, so that a volume of brake fluid is enclosed in the second piston. Due to the fluid inclusion, the second piston is almost immovably connected to the first piston.
  • the second piston displaces the third piston which bears against its end face, that is to say the primary piston, and in this way actuates the vehicle brake system, which is an auxiliary brake.
  • a master cylinder for a foreign or auxiliary brake of a hydraulic vehicle brake system disclosed in the published patent application DE 103 18 850 A1.
  • a rear side of the primary piston is hydraulically pressurizable from a pressure source of a foreign energy supply device.
  • the primary piston is displaced by the pressurization of its back in the master cylinder, displaces brake fluid from the master cylinder and thus actuates the vehicle brake system.
  • the master cylinder of the hydraulic vehicle brake systems according to the invention with the features of claim 1 has a pressure chamber which is depressurized switchable.
  • the pressure chamber is that acted upon by a piston of the master cylinder in a brake actuated portion of the master cylinder.
  • a master cylinder has for each brake circuit of a vehicle brake system to a pressure chamber to which the respective brake circuit is hydraulically connected. It is sufficient to depressurize one of the pressure chambers of the master cylinder.
  • the actuation of the vehicle brake system takes place as a foreign power brake with the hydraulic pressure source of their external power supply device, the master cylinder serves as a setpoint generator for the height of the wheel brake to be set in the wheel brake.
  • auxiliary braking is possible by virtue of the muscular force actuation of the master brake cylinder in that its pressure chamber is not depressurized.
  • the master cylinder of the invention then acts as a conventional master cylinder.
  • a power brake in which a part of the energy required for the brake operation generated by the muscle power of the driver by operation of the master cylinder and the remaining part of the external power supply device is possible with the vehicle brake system according to the invention.
  • the auxiliary power braking means a brake booster, it should not be confused with the auxiliary braking in case of failure of the external power supply device.
  • the vehicle brake system according to the invention has the advantage that no vacuum brake booster is required.
  • the negative pressure is often insufficient for a vacuum brake booster and it is often undesirable to influence the intake of the combustion engine by a vacuum brake booster.
  • the drive is combined with one (or more) electric motor and an internal combustion engine, are often not suitable for a vacuum brake booster.
  • the hydraulic vehicle brake system according to the invention can be used advantageously.
  • Another advantage of the invention is a controllable pedal decoupling, which is to be understood as “controllable” also “controllable”: In the hydraulic vehicle brake system according to the invention with the master cylinder, which has a non-pressure switchable pressure chamber, the degree of decoupling of the brake pedal or other control of Master cylinder electrically controllable.
  • a major advantage of the invention is that the master cylinder in the case of auxiliary braking in case of failure of the external power supply device has virtually no deterioration in performance compared with a conventional master cylinder. Unlike known master brake cylinders for power brake systems, the pedal travel is not extended in the event of failure of the external energy supply device.
  • Another advantage is the comparatively simple vehicle brake system due to the possible omission of a vacuum brake booster.
  • the hydraulic vehicle brake system according to the invention is particularly suitable for a hybrid vehicle, ie a motor vehicle with an internal combustion engine and one (or more) electric motor (s) for the combined drive of the vehicle.
  • a hybrid vehicle ie a motor vehicle with an internal combustion engine and one (or more) electric motor (s) for the combined drive of the vehicle.
  • energy is recovered by the electric motor or the electric motors is operated as a generator.
  • the recovery of energy is also called recuperation.
  • the deceleration of the hybrid vehicle takes place completely, partially or not with the electric motor (s) and consequently not, partially or completely with the vehicle brake system.
  • the ratio with which the electric motor operated as a generator and the vehicle brake system contribute to a deceleration of the vehicle can change during braking (multiple times).
  • a desired value for the braking force is predetermined by actuation of the master cylinder.
  • the degree of decoupling between the brake pedal and the wheel brakes is controllable in the vehicle brake system according to the invention, it is particularly suitable for a hybrid vehicle, the partially and with changing ratio braked with the vehicle brake system and incidentally with the or the electric motor (s) is delayed, which is operated as a generator.
  • the degree of pedal decoupling is a widely used
  • Claim 3 provides a built-in master cylinder hydraulic pedal travel simulator. This has a simulator piston, which is displaceable against spring force in the master cylinder and causes a pedal force, even if a pressure chamber of the master cylinder is depressurized, ie at a foreign power braking.
  • the spring force can be effected, for example, by gas pressure.
  • Claim 5 provides that the vehicle brake system has one or more self-energizing wheel brakes.
  • all wheel brakes of the vehicle wheels of a vehicle axle are self-reinforcing.
  • Wheel brakes with mechanical self-reinforcement are known and have, for example, a wedge or ramp mechanism.
  • Claim 6 provides hydraulically self-energizing wheel brakes. Even those are known, they have an auxiliary piston on which a friction brake lining is supported in the circumferential direction of a brake disc. During a brake application, the rotating brake disk urges the friction brake lining pressed against it against the auxiliary piston, which thereby builds up a brake pressure and displaces brake fluid into a wheel brake cylinder. The braking force of the wheel brake is thereby increased.
  • the advantage of self-boosting wheel brakes is that it is possible to dispense with an otherwise improved brake force, for example a vacuum brake booster. It is not necessary that all wheel brakes of the vehicle brake system are self-reinforcing.
  • the hydraulic vehicle brake system 1 has a tandem master cylinder 2 to which an intermediate brake tion of a brake control device 3 wheel brake cylinders of wheel brakes 4 are connected.
  • the brake device 3 is an anti-lock and slip control unit of a known type; for example, the applicant's ESP system 8.0 can be used.
  • the brake control device 3 has a hydraulic pump 5 in each brake circuit and a brake pressure build-up valve 6 and a brake pressure reduction valve 7 for a wheel-specific brake pressure control for each wheel brake 4.
  • the hydraulic pumps 5 are driven by a common electric motor 8.
  • Such brake control devices and their function are known per se and will not be explained in detail here.
  • the master cylinder 2 is operated by muscle power, it has a (foot) brake pedal 9 for its operation. Furthermore, a force sensor 10 and / or a displacement sensor 11 are provided with which a pedal force and / or a pedal travel can be measured.
  • a pressure chamber 12 of the master cylinder 2 is connected via a designated here as decoupling valve 13 valve with a brake fluid reservoir 14 of the master cylinder 2.
  • the decoupling valve 13 is a 2/2-way solenoid valve, which is closed in its normally-off normal position.
  • the brake fluid reservoir 14 is connected via the decoupling valve 13 to the pressure chamber 12, referred to as the primary chamber, of the master brake cylinder 2, which is acted on by a rod piston 15 of the master brake cylinder 2.
  • the rod piston 15 is mechanically coupled to the brake pedal 9, it is also referred to as a primary piston.
  • the brake fluid reservoir 14 may be connected via the decoupling valve 13 to the other pressure chamber 16 of the master cylinder 2, which is referred to as a secondary chamber and is acted upon by a floating piston 17.
  • the simulator piston 19 operates against an annular piston 20 which is axially displaceable and sealed guided in the larger diameter part of the master cylinder 2 and is supported by a simulator spring 21 in the master cylinder 2.
  • the simulator spring 21 is a helical compression spring, but it can also find other spring elements use, for example, is a gas spring, so a larger diameter part of the master cylinder 2 with the simulator piston 20 enclosed, pressurized gas volume as a simulator spring 21 possible (not shown).
  • the larger diameter portion of master cylinder 2, simulator piston 19, annular piston 20, and simulator spring 21 form a pedal travel simulator 22 integrated with master cylinder 2.
  • a volume of brake fluid from pedal simulator 22 between simulator piston 19 and annular piston 20 communicates with brake fluid reservoir 14 through a simulator valve 23
  • the simulator valve 23 is a 2/2-way solenoid valve which is open in its currentless basic position.
  • a pressure sensor 24 is connected to the pedal travel simulator 22, to the pedal travel simulator 22, a pressure sensor 24 is connected.
  • the wheel brakes 4 are self-reinforcing, d. H. they have a self-boosting device. Such mechanical or hydraulic self-boosting devices are known and therefore need not be explained in detail here.
  • the self-energizing of the wheel brakes 4 is shown in the drawing by the letters "SE" for "self-energizing".
  • the brake pedal 9 is depressed and the master cylinder 2 is actuated thereby.
  • the decoupling valve 13 is opened and the simulator valve 23 is closed.
  • the pressure chamber 12 of the master cylinder 2 is depressurized and there is no pressure build-up with the master cylinder 2. It does not matter whether the primary or the secondary pressure chamber 12, 16 depressurized is switched.
  • a brake pressure build-up takes place with the hydraulic pumps 5, a regulation of the wheel brake pressures in the wheel brake cylinders of the wheel brakes 4 takes place individually with the brake pressure build-up valves 6 and the brake pressure reduction valves 7.
  • a setpoint for the amount of braking forces of the wheel brakes or wheel brake pressures in the wheel brake cylinders is the pressure in the pedal travel simulator 22, which is measured with the pressure sensor 24. Redundant nominal values are supplied by the force sensor 10 and / or the displacement sensor 11, which measure the pedal force and the pedal travel.
  • the braking is an external power braking, wherein the hydraulic pumps 5 form pressure sources of a foreign energy supply device. It is also a power brake possible by a partial or regulated opening of the decoupling valve 13, a brake pressure in the pressure chambers 12, 16 of the master cylinder 2 constructed and the pressure with the hydraulic pumps 5 is increased. It is a hydraulic brake booster also with the hydraulic pumps 5 as pressure sources of a Fremdergiemakerspps- device.
  • the decoupling valve 13 is designed as a proportional valve for this case.
  • the volume of brake fluid contained in the pedal travel simulator 22 is included.
  • the simulator piston 19 operates against the annular piston 20, which is supported by the simulator spring 21 in the master cylinder 2. In this way, a desired pedal force on the brake pedal 9 is effected.
  • the decoupling valve 13 is closed, so that the brake pressure build-up in a conventional manner by muscle power of the master cylinder 2.
  • the simulator valve 23 remains open, so that the pedal travel simulator 22 is depressurized and does not build up any back pressure that would increase the pedal force.
  • the auxiliary braking by muscle power in case of failure of the external energy supply is not to be confused with the auxiliary power braking, the latter is an electrohydraulic brake booster with operating external power supply.
  • the self-amplification of the wheel brakes 4 is also effective in an auxiliary braking in case of failure of the external energy supply.
  • wheel brakes 4 need to be self-reinforcing, it is also possible that only part of the wheel brakes 4 is self-reinforcing, preferably all wheel brakes 4 of a vehicle axle are self-energizing or non-self-energizing.
  • An embodiment of the vehicle brake system 1 is possible only with non-self-reinforcing wheel brakes 4.
  • simplified brake control devices 3 are possible which, for example, do not have a brake pressure build-up valve 6 or in which wheel brakes 4 of a vehicle axle are jointly controlled (not shown).
  • an embodiment of the vehicle brake system 1 with only one hydraulic brake circuit or even with more than two brake circuits is possible (not shown).
  • the vehicle brake system 1 with a connected to the master cylinder 2 brake circuit, the master cylinder 2 is then formed as a single-circuit master cylinder, and connect the other brake circuit directly to the brake fluid reservoir 14 and exclusively as a foreign-power brake circuit by external energy to operate, which is generated by the hydraulic pump 5 as a pressure source.
  • the master cylinder 2 for each wheel 4 a cylinder 25 with a secondary piston 26, which are arranged side by side and connected in parallel and mechanically and hydraulically.
  • the vehicle brake 1 thus has a separate brake circuit for each wheel brake 4.
  • the master brake cylinder 2 from FIG. 2 has a stepped piston 18 whose smaller diameter section forms the piston rod 15 of the master brake cylinder 2 and its larger diameter section forms the simulator piston 19 of the pedal travel simulator 22 integrated into the master brake cylinder 2.
  • the pedal travel simulator 22 has the annular piston 20 and the simulator spring 21 and is connected to the brake fluid reservoir 14 via a simulator valve 23 connected.
  • the actuation takes place by means of the brake pedal 9, the pressure sensor 24 for measuring the hydraulic pressure in the pedal travel simulator 22 and the force sensor 10 and / or displacement sensor 11 for measuring the pedal force and / or the pedal travel are also present.
  • No brake circuit is connected to the pressure chamber 12 acted upon by the primary piston 15, but the pressure chamber 12 in FIG. 2, as in FIG. 1, is connected to the brake fluid reservoir 14 via a decoupling valve 13 and can thus be switched without pressure.
  • the displacement of the parallel juxtaposed secondary piston 26 takes place with an intermediate piston 27 which is slidably disposed in the master cylinder 2 and is acted upon by the pressure of the pressure chamber 12, which is acted upon by the rod piston 15.
  • the transmission of the force of the intermediate piston 27 to the secondary piston 26 takes place in the embodiment shown in Figure 2 with a pressure plate 28th
  • the brake control device 3 is also present in Figure 2, it has in each brake circuit, a brake pressure build-up valve 6 and a brake pressure reduction valve 7 and a hydraulic pump 5, which is driven by an electric motor 8 for all brake circuits together on.
  • the brake pressure build-up valves 6 are connected to a pressure side of the hydraulic pump 5, but they are not connected to the wheel brake cylinders of the wheel brakes 4, but act on the rear sides of the secondary pistons 26 and via these indirectly the wheel brake cylinders of the wheel brakes 4.
  • the brake pressure reduction valves 7 are Also connected to the backs of the secondary piston 26 and connected to a suction side of the hydraulic pump 5 and the Bremsfect- keitsvorrats memorier 14.
  • the wheel-specific brake pressure control in the wheel brake cylinders of the wheel brakes 4 is carried out with the brake control device 3 in a conventional manner with the proviso that the pressure control is not directly but indirectly via the secondary piston 26.
  • the operation of the vehicle brake system 1 shown in Figure 2 is carried out in the same manner as described above with reference to Figure 1 by depressing the The decoupling valve 13 is opened and the master cylinder 2 thereby depressurized, there is a Fremdkraftbremsung with the hydraulic pump 5 as a source of external energy.
  • auxiliary power braking is possible in which the muscular force is amplified electrohydraulically by the external energy supply device.
  • the simulator valve 23 is closed during a brake application, so that the volume of brake fluid contained in the pedal travel simulator 22 is included and the pedal travel simulator 22 is in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

Die Erfindung betrifft eine hydraulische Fahrzeugbremsanlage (1) mit einem Hauptbremszylinder (2). Die Erfindung schlägt vor, eine Druckkammer (12) des Hauptbremszylinders (2) über ein Entkoppelventil (13) mit einem Bremsflüssigkeitsvorratsbehälter (14) zu verbinden, so dass die Druckkammer (12) drucklosschaltbar ist. Eine Bremsbetätigung erfolgt als Fremdkraftbremsung mit einer eine Hydropumpe (5) aufweisenden Fremdenergieversorgungseinrichtung. Vorzugsweise ist ein hydraulischer Pedalwegsimulator (22) in den Hauptbremszylinder (2) integriert, der über ein Simulatorventil (23) drucklos schaltbar ist.

Description

Hydraulische Fahrzeugbremsanlage
Beschreibung
Stand der Technik
Die Erfindung betrifft eine hydraulische Fahrzeugbremsanlage mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Bekannte hydraulische Fahrzeugbremsanlagen weisen einen muskelkraftbetätig- baren Hauptbremszylinder auf, an den Radbremszylinder von Radbremsen hydraulisch angeschlossen sind. Üblich ist der Anschluss der Radbremszylinder über eine Bremsregeleinrichtung, die Magnetventile, Hydropumpen und Hydrospeicher aufweist und eine radindividuelle Bremsdruckregelung ermöglicht. Solche Brems- druckregelungen werden als Blockierschutz-, Antriebsschlupf und/oder Fahrdynamikregelungen bezeichnet und mit ABS, ASR, FDR, ESP und dgl. mehr abgekürzt.
Auch ist es bekannt, hydraulische Fahrzeugbremsanlagen als Fremdkraft- Bremsanlagen auszubilden, d. h. mit einer Fremdenergieversorgungseinrichtung zu versehen, die die zu einer Betriebsbremsung notwendige Energie bereitstellt. Üblicherweise umfasst die Fremdenergieversorgungseinrichtung einen hydrauli- sehen Druckspeicher, der mit einer Hydropumpe aufgeladen wird. Die von einem Fahrer ausgeübte Muskelkraft liefert einen Sollwert für die Höhe der Bremskraft. Nur bei Ausfall der Fremdenergieversorgungseinrichtung erfolgt eine Betätigung der Fahrzeugbremsanlage durch die Muskelkraft des Fahrzeugführers als sog. Hilfsbremsung. Auch sind Hilfskraftbremsanlagen bekannt, bei denen ein Teil der zur Bremsbetätigung erforderlichen Energie von einer Fremdenergieversorgungseinrichtung stammt und der übrige Teil von der Muskelkraft des Fahrzeugführers. Sowohl die Fremdkraft- als auch die Hilfskraftbremsanlagen benötigen keinen Bremskraftverstärker.
Die Offenlegungsschrift DE 10 2004 025 638 A1 offenbart einen Hauptbremszylinder für eine Fremdkraftbetätigung einer hydraulischen Fahrzeugbremsanlage. Der bekannte Hauptbremszylinder weist einen ersten Kolben auf, der über eine Kolbenstange mechanisch mit einem Bremspedal verbunden ist. Der erste Kolben ist verschiebbar in einem zweiten Kolben aufgenommen, der einen Zylinder für den ersten Kolben bildet. Der erste Kolben stützt sich über ein Federelement am zweiten Kolben ab. Bei nicht betätigtem Hauptbremszylinder liegt ein dritter Kolben, der in axialer Verlängerung des zweiten Kolbens angeordnet ist, an einer Stirnfläche des zweiten Kolbens an. Der dritte Kolben kann als Primärkolben des Hauptbremszylinders aufgefasst werden. Zu einer Fremdenergiebetätigung der Fahrzeugbremsanlage wird ein Zwischenraum zwischen dem zweiten und dem dritten Kolben im Hauptbremszylinder hydraulisch mit Druck beaufschlagt. Der hydraulische Druck verschiebt den dritten Kolben, also den Primärkolben, im Hauptbremszylinder, der Bremsflüssigkeit aus dem Hauptbremszylinder verdrängt und dadurch Druck zur Betätigung der Fahrzeugbremsanlage aufbaut. Die Druckbeaufschlagung durch die Druckquelle der Fremdenergieversorgungseinrichtung zwischen dem zweiten und dem dritten Kolben bewirkt außer der Verschiebung des dritten Kolbens, dass der zweite Kolben in seiner Ausgangsstellung verbleibt, sich also nicht verschiebt. Der im zweiten Kolben verschiebliche erste Kolben, der sich über das Federelement am zweiten Kolben abstützt, bildet einen Pedalwegsimulator. Bei Ausfall der Fremdenergieversorgungseinrichtung verschiebt eine Pedalbetätigung den ersten Kolben und über die Abstützung mit dem Federelement den zweiten Kolben. Durch die Verschiebung verschließt der zweite Kolben einen hydraulischen Anschluss, so dass ein Bremsflüssigkeitsvolumen im zweiten KoI- ben eingeschlossen ist. Durch den Flüssigkeitseinschluss ist der zweite Kolben nahezu unbeweglich mit dem ersten Kolben verbunden. Der zweite Kolben verschiebt den an seiner Stirnseite anliegenden dritten Kolben, also den Primärkolben und betätigt auf diese Weise die Fahrzeugbremsanlage, was eine Hilfsbrem- sung ist.
Ebenfalls einen Hauptbremszylinder für eine Fremd- oder Hilfskraftbremsung einer hydraulischen Fahrzeugbremsanlage offenbart die Offenlegungsschrift DE 103 18 850 A1. Bei diesem Hauptbremszylinder ist eine Rückseite des Primärkolbens hydraulisch druckbeaufschlagbar aus einer Druckquelle einer Fremdenergieversorgungseinrichtung. Der Primärkolben wird durch die Druckbeaufschlagung seiner Rückseite im Hauptbremszylinder verschoben, verdrängt Bremsflüssigkeit aus dem Hauptbremszylinder und betätigt auf diese Weise die Fahrzeugbremsanlage.
Offenbarung der Erfindung
Der Hauptbremszylinder der erfindungsgemäßen hydraulischen Fahrzeugbrems- anläge mit den Merkmalen des Anspruchs 1 weist eine Druckkammer auf, die drucklos schaltbar ist. Die Druckkammer ist der von einem Kolben des Hauptbremszylinders bei einer Bremsbetätigung beaufschlagte Abschnitt des Hauptbremszylinders. Ein Hauptbremszylinder weist für jeden Bremskreis einer Fahrzeugbremsanlage eine Druckkammer auf, an die der jeweilige Bremskreis hyd- raulisch angeschlossen ist. Es genügt, eine der Druckkammern des Hauptbremszylinders drucklos zu schalten. Die Betätigung der Fahrzeugbremsanlage erfolgt als Fremdkraftbremsung mit der hydraulischen Druckquelle ihrer Fremdenergieversorgungseinrichtung, der Hauptbremszylinder dient als Sollwertgeber für die Höhe des in den Radbremszylindern einzustellenden Radbremsdrucks. Der Soll- wert kann auch an einem (Fuß-) Bremspedal, einem (Hand-) Bremshebel, einem sonstigen Bedienelement zur Einleitung der Muskelkraft des Fahrzeugführers in den Hauptbremszylinder oder der das Bedienelement mit einem Kolben des Hauptbremszylinders verbindenden Kolbenstange abgegriffen werden. Bei Aus- fall der Fremdenergieversorgungseinrichtung ist eine Hilfsbremsung durch die Muskelkraftbetätigung des Hauptbremszylinders möglich indem dessen Druckkammer nicht drucklos geschaltet wird. Der erfindungsgemäße Hauptbremszylinder wirkt dann wie ein üblicher Hauptbremszylinder. Auch eine Hilfskraftbremsung, bei der ein Teil der zur Bremsbetätigung erforderlichen Energie von der Muskelkraft des Fahrzeugführers durch Betätigung des Hauptbremszylinders erzeugt und der übrige Teil von der Fremdenergieversorgungseinrichtung stammt, ist mit der erfindungsgemäßen Fahrzeugbremsanlage möglich. Die Hilfskraftbremsung bedeutet eine Bremskraftverstärkung, sie ist nicht zu verwechseln mit der Hilfsbremsung bei Ausfall der Fremdenergieversorgungseinrichtung.
Im Vergleich mit herkömmlichen hydraulischen Fahrzeugbremsanlagen hat die erfindungsgemäße Fahrzeugbremsanlage den Vorteil, dass kein Unterdruckbremskraftverstärker erforderlich ist. Bei modernen Verbrennungsmotoren ist der Unterdruck vielfach nicht ausreichend für einen Unterdruckbremskraftverstärker und es ist auch oft die Beeinflussung des Ansaugverhaltens des Verbrennungs- motors durch einen Unterdruckbremskraftverstärker unerwünscht. Auch Hybridfahrzeuge, deren Antrieb kombiniert mit einem (oder mehreren) Elektromotor und einem Verbrennungsmotor erfolgt, eignen sich vielfach nicht für einen Unterdruckbremskraftverstärker. Auch hier ist die erfindungsgemäße hydraulische Fahrzeugbremsanlage vorteilhaft einsetzbar.
Ein weiterer Vorteil der Erfindung ist eine steuerbare Pedalentkopplung, wobei unter „steuerbar" auch „regelbar" verstanden werden soll: Bei der erfindungsgemäßen hydraulischen Fahrzeugbremsanlage mit dem Hauptbremszylinder, der eine drucklos schaltbare Druckkammer aufweist, ist der Grad der Entkopplung des Bremspedals oder sonstigen Bedienelementes vom Hauptbremszylinder e- lektrisch steuerbar. Ein großer Vorteil der Erfindung ist, dass der Hauptbremszylinder im Fall einer Hilfsbremsung bei Ausfall der Fremdenergieversorgungseinrichtung praktisch keine Funktionsverschlechterung im Vergleich mit einem herkömmlichen Hauptbremszylinder aufweist. Anders als bekannten Hauptbremszylindern für Fremd- kraftbremsanlagen verlängert sich der Pedalweg bei Ausfall der Fremdenergieversorgungseinrichtung nicht.
Ein weiterer Vorteil ist die vergleichsweise Einfachheit der Fahrzeugbremsanlage durch den möglichen Verzicht auf einen Unterdruckbremskraftverstärker.
Die erfindungsgemäße hydraulische Fahrzeugbremsanlage eignet sich insbe- sondere für ein Hybridfahrzeug, also ein Kraftfahrzeug mit einem Verbrennungsmotor und einem (oder mehreren) Elektromotor(en) zum kombinierten Antrieb des Fahrzeugs. Bei einer Fahrzeugverzögerung, also einer Bremsung, wird Energie rückgewonnen, indem der Elektromotor bzw. die Elektromotoren als Generator betrieben wird. Die Rückgewinnung der Energie wird auch als Rekuperation bezeichnet. Die Verzögerung des Hybridfahrzeugs erfolgt vollständig, teilweise oder nicht mit dem oder den Elektromotor(en) und folglich nicht, teilweise oder vollständig mit der Fahrzeugbremsanlage. Dabei kann sich das Verhältnis, mit dem der als Generator betriebene Elektromotor und die Fahrzeugbremsanlage zu einer Verzögerung des Fahrzeugs beitragen, während einer Bremsung (mehrfach) ändern. Ein Sollwert für die Bremskraft wird durch Betätigung des Hauptbremszylinders vorgegeben. Dadurch, dass der Grad der Entkoppelung zwischen dem Bremspedal und den Radbremsen bei der erfindungsgemäßen Fahrzeugbremsanlage steuerbar ist, eignet sie sich besonders für ein Hybridfahrzeug, das teilweise und mit sich änderndem Verhältnis mit der Fahrzeugbremsanlage gebremst und im Übrigen mit dem oder den Elektromotor(en) verzögert wird, der als Generator betrieben wird. Durch Steuerung des Grads der Pedalentkopplung ist ein weitgehend gewohntes
Pedalgefühl möglich.
Die Unteransprüche haben vorteilhafte Ausgestaltungen und Weiterbildungen der im Anspruch 1 angegebenen Erfindung zum Gegenstand. Anspruch 3 sieht einen in den Hauptbremszylinder integrierten hydraulischen Pedalwegsimulator vor. Dieser weist einen Simulatorkolben auf, der gegen Federkraft im Hauptbremszylinder verschiebbar ist und eine Pedalkraft bewirkt, auch wenn eine Druckkammer des Hauptbremszylinders drucklos geschaltet ist, also bei einer Fremdkraftbremsung. Die Federkraft kann beispielsweise auch durch Gasdruck bewirkt sein.
Anspruch 5 sieht vor, dass die Fahrzeugbremsanlage eine oder mehrere selbstverstärkende Radbremsen aufweist. Vorzugsweise sind alle Radbremsen der Fahrzeugräder einer Fahrzeugachse selbstverstärkend. Radbremsen mit mecha- nischer Selbstverstärkung sind bekannt und weisen beispielsweise einen Keiloder Rampenmechanismus auf. Anspruch 6 sieht hydraulisch selbstverstärkende Radbremsen vor. Auch solche sind bekannt, sie weisen einen Hilfskolben auf, an dem sich ein Reibbremsbelag in Umfangshchtung einer Bremsscheibe abstützt. Bei einer Bremsbetätigung beaufschlagt die drehende Bremsscheibe den gegen sie gedrückten Reibbremsbelag gegen den Hilfskolben, der dadurch einen Bremsdruck aufbaut und Bremsflüssigkeit in einen Radbremszylinder verdrängt. Die Bremskraft der Radbremse wird dadurch erhöht. Vorteil selbstverstärkender Radbremsen ist, dass auf eine anderweitige Bremskraftverstärkung, beispielsweise einen Unterdruckbremskraftverstärker, verzichtet werden kann. Nicht notwendig ist, dass alle Radbremsen der Fahrzeugbremsanlage selbstverstärkend sind.
Kurze Beschreibung der Zeichnung
Die Erfindung wird nachfolgend anhand in der Zeichnung dargestellter Ausführungsformen näher erläutert. Die beiden Figuren zeigen hydraulische Schaltpläne zweier erfindungsgemäßer Fahrzeugbremsanlagen.
Ausführungsformen der Erfindung
Die in Figur 1 dargestellte, erfindungsgemäße hydraulische Fahrzeugbremsanlage 1 weist einen Tandemhauptbremszylinder 2 auf, an den unter Zwischenschal- tung einer Bremsregeleinrichtung 3 Radbremszylinder von Radbremsen 4 angeschlossen sind. Die Bremseinhchtung 3 ist eine Blockierschutz- und Schlupfregeleinheit an sich bekannter Bauart, es kann beispielsweise das ESP System 8.0 der Anmelderin Verwendung finden. Die Bremsregeleinrichtung 3 weist in jedem Bremskreis eine Hydropumpe 5 und zu einer radindividuellen Bremsdruckregelung für jede Radbremse 4 ein Bremsdruckaufbauventil 6 und ein Bremsdruckabsenkventil 7 auf. Die Hydropumpen 5 werden von einem gemeinsamen Elektromotor 8 angetrieben. Derartige Bremsregeleinrichtungen und deren Funktion sind an sich bekannt und sollen hier nicht näher erläutert werden.
Der Hauptbremszylinder 2 ist muskelkraftbetätigt, er weist ein (Fuß-) Bremspedal 9 zu seiner Betätigung auf. Des Weiteren sind ein Kraftsensor 10 und/oder ein Wegsensor 11 vorgesehen, mit denen eine Pedalkraft und/oder ein Pedalweg messbar sind. Eine Druckkammer 12 des Hauptbremszylinders 2 ist über ein hier als Entkoppelventil 13 bezeichnetes Ventil mit einem Bremsflüssigkeitsvorratsbe- hälter 14 des Hauptbremszylinders 2 verbunden. In der dargestellten Ausführungsform der Erfindung ist das Entkoppelventil 13 ein 2/2-Wege-Magnetventil, das in seiner stromlosen Grundstellung geschlossen ist. Im Ausführungsbeispiel ist der Bremsflüssigkeitsvorratsbehälter 14 über das Entkoppelventil 13 mit der als Primärkammer bezeichneten Druckkammer 12 des Hauptbremszylinders 2 verbunden, die von einem Stangenkolben 15 des Hauptbremszylinders 2 beaufschlagt wird. Der Stangenkolben 15 ist mechanisch mit dem Bremspedal 9 gekoppelt, er wird auch als Primärkolben bezeichnet. Ebenso kann der Bremsflüssigkeitsvorratsbehälter 14 über das Entkoppelventil 13 mit der anderen Druckkammer 16 des Hauptbremszylinders 2 verbunden sein, die als Sekundärkammer bezeichnet wird und von einem Schwimmkolben 17 beaufschlagt wird.
Der Hauptbremszylinder 2 weist eine Durchmesserstufung auf, er erweitert sich in Richtung des Bremspedals 9. Er weist einen Stufenkolben 18 auf, dessen durchmesserkleineres, dem Bremspedal 9 fernes Ende den Stangenkolben 15 bildet. Ein durchmessergrößerer Abschnitt des Stufenkolbens 18 bildet einen Si- mulatorkolben 19, der im durchmessergrößeren Teil des Hauptbremszylinders 2 axial verschiebbar ist. Der Simulatorkolben 19 arbeitet gegen einen Ringkolben 20, der im durchmessergrößeren Teil des Hauptbremszylinders 2 axial verschieblich und abgedichtet geführt und über eine Simulatorfeder 21 im Haupt- bremszylinder 2 abgestützt ist. In der dargestellten Ausführungsform ist die Simulatorfeder 21 eine Schraubendruckfeder, es können allerdings auch andere Federelemente Verwendung finden, beispielsweise ist auch eine Gasdruckfeder, also ein im Durchmesser größeren Teil des Hauptbremszylinders 2 mit dem Simulatorkolben 20 eingeschlossenes, unter Druck stehendes Gasvolumen als Si- mulatorfeder 21 möglich (nicht dargestellt). Der durchmessergrößere Teil des Hauptbremszylinders 2, der Simulatorkolben 19, der Ringkolben 20 und die Simulatorfeder 21 bilden einen in den Hauptbremszylinder 2 integrierten Pedalwegsimulator 22. Ein Bremsflüssigkeitsvolumen des Pedalwegsimulators 22 zwischen dem Simulatorkolben 19 und dem Ringkolben 20 kommuniziert durch ein Simulatorventil 23 mit dem Bremsflüssigkeitsvorratsbehälter 14. Bei der dargestellten Ausführungsform der Erfindung ist das Simulatorventil 23 ein in seiner stromlosen Grundstellung offenes 2/2-Wege-Magnetventil. An den Pedalwegsimulator 22 ist ein Drucksensor 24 angeschlossen.
Die Radbremsen 4 sind selbstverstärkend, d. h. sie weisen eine Selbstverstärkungseinrichtung auf. Derartige mechanische oder hydraulische Selbstverstärkungseinrichtungen sind bekannt und brauchen deswegen hier nicht näher erläutert zu werden. Die Selbstverstärkung der Radbremsen 4 ist in der Zeichnung durch die Buchstaben „SE" für „Self-Energizing" dargestellt.
Zu einer Betätigung der Fahrzeugbremsanlage 1 wird das Bremspedal 9 niedergetreten und der Hauptbremszylinder 2 dadurch betätigt. Das Entkoppelventil 13 wird geöffnet und das Simulatorventil 23 geschlossen. Durch das Öffnen des Entkoppelventils 13 wird die Druckkammer 12 des Hauptbremszylinders 2 drucklos geschaltet und es erfolgt kein Druckaufbau mit dem Hauptbremszylinder 2. Dafür ist es egal, ob die Primär- oder die Sekundär-Druckkammer 12, 16 drucklos ge- schaltet wird. Ein Bremsdruckaufbau erfolgt mit den Hydropumpen 5, eine Regelung der Radbremsdrücke in den Radbremszylindern der Radbremsen 4 erfolgt radindividuell mit den Bremsdruckaufbauventilen 6 und den Bremsdruckabsenkventilen 7. Einen Sollwert für die Höhe der Bremskräfte der Radbremsen bzw. der Radbremsdrücke in den Radbremszylindern bildet der Druck im Pedalwegsimulator 22, der mit dem Drucksensor 24 gemessen wird. Redundante Sollwerte liefern der Kraftsensor 10 und/oder der Wegsensor 11 , die die Pedalkraft und den Pedalweg messen. Die Bremsung ist eine Fremdkraftbremsung, wobei die Hydropumpen 5 Druckquellen einer Fremdenergieversorgungseinrichtung bilden. Es ist auch eine Hilfskraftbremsung möglich, indem durch teilweises oder geregeltes Öffnen des Entkoppelventils 13 ein Bremsdruck in den Druckkammern 12, 16 des Hauptbremszylinders 2 aufgebaut und der Druck mit den Hydropumpen 5 erhöht wird. Es handelt sich dabei um eine hydraulische Bremskraftverstärkung ebenfalls mit den Hydropumpen 5 als Druckquellen einer Fremdenergieversorgungs- einrichtung. Vorzugsweise ist für diesen Fall das Entkopplelventil 13 als Proportionalventil ausgebildet.
Durch das Schließen des Simulatorventils 23 bei Betätigung des Hauptbremszylinders 2 wird das im Pedalwegsimulator 22 enthaltene Bremsflüssigkeitsvolumen eingeschlossen. Der Simulatorkolben 19 arbeitet gegen den Ringkolben 20, der sich mit der Simulatorfeder 21 im Hauptbremszylinder 2 abstützt. Auf diese Weise wird eine gewünschte Pedalkraft am Bremspedal 9 bewirkt.
Bei Ausfall der Hydropumpen 5 oder der Bremsregeleinrichtung 3 erfolgt eine Hilfsbremsung per Muskelkraft durch Betätigung des Hauptbremszylinders 2 mit dem Bremspedal 9. In diesem Fall bleibt das Entkoppelventil 13 geschlossen, so dass der Bremsdruckaufbau in herkömmlicher Weise durch Muskelkraftbetätigung des Hauptbremszylinders 2 erfolgt. Das Simulatorventil 23 bleibt geöffnet, so dass der Pedalwegsimulator 22 drucklos ist und keinen Gegendruck aufbaut, der die Pedalkraft erhöhen würde. Die Hilfsbremsung per Muskelkraft bei Ausfall der Fremdenergieversorgung ist nicht zu verwechseln mit der Hilfskraftbremsung, letztere ist eine elektrohydraulische Bremskraftverstärkung bei funktionierender Fremdenergieversorgung. Die Selbstverstärkung der Radbremsen 4 ist auch bei einer Hilfsbremsung bei Ausfall der Fremdenergieversorgung wirksam.
Anders als dargestellt müssen nicht alle Radbremsen 4 selbstverstärkend sein, es ist auch möglich, dass nur ein Teil der Radbremsen 4 selbstverstärkend ist, vorzugsweise sind alle Radbremsen 4 einer Fahrzeugachse selbstverstärkend oder nicht-selbstverstärkend. Auch ist eine Ausführung der Fahrzeugbremsanlage 1 ausschließlich mit nicht-selbstverstärkenden Radbremsen 4 möglich. Des Weiteren sind vereinfachte Bremsregeleinrichtungen 3 möglich, die beispielsweise nicht über ein Bremsdruckaufbauventil 6 verfügen oder bei denen Radbremsen 4 einer Fahrzeugachse gemeinsam geregelt werden (nicht dargestellt). E- benfalls ist eine Ausführung der Fahrzeugbremsanlage 1 mit nur einem hydraulischen Bremskreis oder auch mit mehr als zwei Bremskreisen möglich (nicht dar- gestellt). Des Weiteren ist es möglich, die Fahrzeugbremsanlage 1 mit einem an den Hauptbremszylinder 2 angeschlossenen Bremskreis auszubilden, wobei der Hauptbremszylinder 2 dann als Einkreis-Hauptbremszylinder ausgebildet ist, und den anderen Bremskreis direkt mit dem Bremsflüssigkeitsvorratsbehälter 14 zu verbinden und ausschließlich als Fremdkraft-Bremskreis durch Fremdenergie zu betätigen, die von der Hydropumpe 5 als Druckquelle erzeugt wird.
In Figur 2 weist der Hauptbremszylinder 2 für jede Radbremse 4 einen Zylinder 25 mit einem Sekundärkolben 26 auf, die nebeneinander angeordnet und mechanisch und hydraulisch parallel geschaltet sind. Die Fahrzeugbremse 1 weist somit für jede Radbremse 4 einen eigenen Bremskreis auf. Wie in Figur 1 weist der Hauptbremszylinder 2 aus Figur 2 einen Stufenkolben 18 auf, dessen durchmesserkleinerer Abschnitt den Stangenkolben 15 des Hauptbremszylinders 2 und dessen durchmessergrößerer Abschnitt den Simulatorkolben 19 des in den Hauptbremszylinder 2 integrierten Pedalwegsimulators 22 bildet. Wie in Figur 1 weist der Pedalwegsimulator 22 den Ringkolben 20 und die Simulatorfeder 21 auf und ist über ein Simulatorventil 23 mit dem Bremsflüssigkeitsvorratsbehälter 14 verbunden. Die Betätigung erfolgt mittels des Bremspedals 9, der Drucksensor 24 zur Messung des hydraulischen Drucks im Pedalwegsimulator 22 und der Kraftsensor 10 und/oder Wegsensor 11 zur Messung der Pedalkraft und/oder des Pedalwegs sind ebenfalls vorhanden. An die vom Primärkolben 15 beaufschlagte Druckkammer 12 ist kein Bremskreis angeschlossen, allerdings ist die Druckkammer 12 in Figur 2 ebenso wie in Figur 1 über ein Entkoppelventil 13 mit dem Bremsflüssigkeitsvorratsbehälter 14 verbunden und dadurch drucklos schaltbar. Die Verschiebung der parallel nebeneinander angeordneten Sekundärkolben 26 erfolgt mit einem Zwischenkolben 27, der im Hauptbremszylinder 2 verschiebbar angeordnet ist und mit dem Druck der Druckkammer 12 beaufschlagt wird, die vom Stangenkolben 15 beaufschlagt wird. Die Übertragung der Kraft des Zwischenkolbens 27 auf die Sekundärkolben 26 erfolgt in der in Figur 2 dargestellten Ausführungsform mit einer Druckplatte 28.
Die Bremsregeleinrichtung 3 ist in Figur 2 ebenfalls vorhanden, sie weist in jedem Bremskreis ein Bremsdruckaufbauventil 6 und ein Bremsdruckabsenkventil 7 sowie eine Hydropumpe 5, die von einem Elektromotor 8 für alle Bremskreise gemeinsam angetrieben wird, auf. Wie bei Bremsregeleinrichtungen üblich sind die Bremsdruckaufbauventile 6 an eine Druckseite der Hydropumpe 5 angeschlos- sen, allerdings sind sie nicht mit den Radbremszylindern der Radbremsen 4 verbunden, sondern beaufschlagen Rückseiten der Sekundärkolben 26 und über diese mittelbar die Radbremszylinder der Radbremsen 4. Die Bremsdruckabsenkventile 7 sind ebenfalls an die Rückseiten der Sekundärkolben 26 angeschlossen und mit einer Saugseite der Hydropumpe 5 und dem Bremsflüssig- keitsvorratsbehälter 14 verbunden. Die radindividuelle Bremsdruckregelung in den Radbremszylindern der Radbremsen 4 erfolgt mit der Bremsregeleinrichtung 3 in an sich bekannter Weise mit der Maßgabe, dass die Druckregelung nicht unmittelbar sondern mittelbar über die Sekundärkolben 26 erfolgt.
Die Betätigung der in Figur 2 dargestellten Fahrzeugbremsanlage 1 erfolgt in gleicher Weise wie oben anhand Figur 1 beschrieben durch Niedertreten des Bremspedals 9, also eine Muskelkraftbetätigung des Hauptbremszylinders 2. Das Entkopplungsventil 13 wird geöffnet und der Hauptbremszylinder 2 dadurch drucklos geschaltet, es erfolgt eine Fremdkraftbremsung mit der Hydropumpe 5 als Fremdenergiequelle. Möglich ist wie ebenfalls zu Figur 1 beschrieben eine Hilfskraftbremsung, bei der die Muskelkraft elektrohydraulisch durch die Fremdenergieversorgungseinrichtung verstärkt wird. Das Simulatorventil 23 wird bei einer Bremsbetätigung geschlossen, so dass das im Pedalwegsimulator 22 enthaltene Bremsflüssigkeitsvolumen eingeschlossen und der Pedalwegsimulator 22 in Funktion ist. Bei Ausfall der Fremdenergieversorgung erfolgt eine Hilfsbrem- sung per Muskelkraft durch Betätigung des Hauptbremszylinders 2, wobei das Entkoppelventil 13 geschlossen und das Simulatorventil 23 geöffnet bleibt. Es sind alle, bei Ausführungsformen der Erfindung auch nur ein Teil der Radbremsen 4 selbstverstärkend. Die anhand Figur 1 aufgezeigten hydraulischen Vereinfachungsmöglichkeiten sind in Figur 2 ebenfalls möglich, auch ist die Fahrzeug- bremsanlage 1 ohne selbstverstärkende Radbremsen 4 möglich. Entsprechend Figur 2 ist eine Fahrzeugbremsanlage 1 mit grundsätzlich beliebiger Anzahl hydraulisch von einander unabhängiger Bremskreise möglich, ebenfalls können mehrere Radbremsen 4 an einen Bremskreis angeschlossen sein (nicht dargestellt). Auch ist ein Anschluss nur eines Teils der Radbremsen 4 an einen oder mehrere Sekundärzylinder 25 des Hauptbremszylinders 2 und eine Betätigung der übrigen Bremskreise ausschließlich als Fremd kraftbremsen mit einer Fremdenergieversorgungseinrichtung möglich (nicht dargestellt).

Claims

Patentansprüche
1. Hydraulische Fahrzeugbremsanlage, mit einem muskelkraftbetätigbaren Hauptbremszylinder (2), an den Radbremszylinder von Radbremsen (4) hydraulisch angeschlossen sind, und mit einer hydraulischen Druckquelle
(5) als Fremdenergieversorgungseinrichtung, mit der die Radbremszylinder zu einer Bremsbetätigung hydraulisch mit Druck beaufschlagbar sind, dadurch gekennzeichnet, dass eine Druckkammer (12) des Hauptbremszylinders (2) drucklos schaltbar ist.
2. Hydraulische Fahrzeugbremsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Fahrzeugbremsanlage (1 ) einen Bremsflüssigkeitsvorratsbehälter (14) und ein Entkoppelventil (13) aufweist, mit dem die Druckkammer (12) des Hauptbremszylinders (2) mit dem Bremsflüssigkeitsvorratsbehälter (14) verbindbar ist.
3. Hydraulische Fahrzeugbremsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass der Hauptbremszylinder (2) einen integrierten hydraulischen Pedalwegsimulator (22) mit einem gegen Federkraft im Hauptbremszylinder (2) verschiebbaren Simulatorkolben (15) aufweist.
4. Hydraulische Fahrzeugbremsanlage nach Anspruch 3, dadurch gekennzeichnet, dass der Simulatorkolben (15) drucklos schaltbar ist.
5. Hydraulische Fahrzeugbremsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Fahrzeugbremsanlage (1 ) selbstverstärkende Rad- bremsen (4) aufweist.
6. Hydraulische Fahrzeugbremsanlage nach Anspruch 5, dadurch gekennzeichnet, dass die Fahrzeugbremsanlage (1 ) hydraulisch selbstverstärkende Radbremsen (4) aufweist.
7. Hydraulische Fahrzeugbremsanlage nach Anspruch 1 , dadurch gekenn- zeichnet, dass die Fahrzeugbremsanlage (1 ) eine Zweikreisbremsanlage mit einem Tandemhauptbremszylinder (2) ist.
8. Hydraulische Fahrzeugbremsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Fahrzeugbremsanlage (1 ) eine Mehrkreisbremsanla- ge ist und der Hauptbremszylinder (2) parallel angeordnete Kolben (26) aufweist.
PCT/EP2009/051214 2008-04-04 2009-02-04 Hydraulische fahrzeugbremsanlage WO2009121645A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980112093.4A CN102015392B (zh) 2008-04-04 2009-02-04 液压的汽车制动设备
EP09729031A EP2265480A1 (de) 2008-04-04 2009-02-04 Hydraulische fahrzeugbremsanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810001013 DE102008001013A1 (de) 2008-04-04 2008-04-04 Hydraulische Fahrzeugbremsanlage
DE102008001013.8 2008-04-04

Publications (1)

Publication Number Publication Date
WO2009121645A1 true WO2009121645A1 (de) 2009-10-08

Family

ID=40513811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051214 WO2009121645A1 (de) 2008-04-04 2009-02-04 Hydraulische fahrzeugbremsanlage

Country Status (4)

Country Link
EP (1) EP2265480A1 (de)
CN (1) CN102015392B (de)
DE (1) DE102008001013A1 (de)
WO (1) WO2009121645A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034671A1 (de) * 2010-08-18 2012-02-23 Volkswagen Ag Fahrzeugbremsanlage mit Pedalsimulator
WO2012097902A1 (de) * 2011-01-21 2012-07-26 Robert Bosch Gmbh Bremssystem für ein fahrzeug und verfahren zum betreiben eines bremssystems für ein fahrzeug
WO2012045656A3 (de) * 2010-10-04 2012-09-20 Continental Teves Ag & Co. Ohg Bremsanlage und verfahren zu deren betrieb
EP2559601A1 (de) * 2011-08-19 2013-02-20 Robert Bosch Gmbh Elektrohydraulisches dynamisches Bremssystem, und entsprechendes Steuerverfahren
DE102011083896A1 (de) 2011-09-30 2013-04-04 Robert Bosch Gmbh Hauptbremszylinder für ein Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines Hauptbremszylinders
WO2014154631A2 (de) 2013-03-28 2014-10-02 Robert Bosch Gmbh Bremssystem für ein fahrzeug
DE102013205639A1 (de) 2013-03-28 2014-10-02 Robert Bosch Gmbh Bremssystem für ein Fahrzeug sowie ein Verfahren zum Betreiben des Bremssystems
DE102013223207A1 (de) 2013-11-14 2015-05-21 Robert Bosch Gmbh Bremssystem für ein Fahrzeug und Verfahren zum Betreiben des Bremssystems
US20150360659A1 (en) * 2014-06-13 2015-12-17 Robert Bosch Gmbh Pressure supply device for a hydraulic braking system, hydraulic braking system for a vehicle and method for operating a hydraulic braking system of a vehicle
EP3036135A1 (de) * 2013-08-20 2016-06-29 Continental Teves AG & Co. oHG Bremsanlage für kraftfahrzeuge
CN115402281A (zh) * 2022-09-09 2022-11-29 东风柳州汽车有限公司 一种电子液压制动系统及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057648A1 (de) * 2009-12-09 2011-06-16 Bayerische Motoren Werke Aktiengesellschaft Bremssystem eines zweiachsigen zweispurigen Kraftfahrzeugs
DE102009055117A1 (de) * 2009-12-22 2011-06-30 Robert Bosch GmbH, 70469 Hauptbremszylinder für eine hydraulische Fahrzeugbremsanlage und Verfahren zu ihrem Betrieb
DE102011086527A1 (de) 2010-11-24 2012-05-24 Continental Teves Ag & Co. Ohg Bremsanlage und Verfahren zu deren Betrieb
DE102011078938A1 (de) * 2011-07-11 2013-01-17 Robert Bosch Gmbh Bremssystem für ein Fahrzeug
DE102013213324A1 (de) * 2013-06-03 2014-12-04 Continental Teves Ag & Co. Ohg Bremsbetätigungssystem
KR102356584B1 (ko) * 2017-05-17 2022-01-28 주식회사 만도 전자식 브레이크 시스템
DE102017208938A1 (de) 2017-05-29 2018-11-29 Robert Bosch Gmbh Bistabiles Magnetventil für ein hydraulisches Bremssystem und korrespondierendes hydraulisches Bremssystem
DE102017208937A1 (de) 2017-05-29 2018-11-29 Robert Bosch Gmbh Bistabiles Magnetventil für ein hydraulisches Bremssystem und korrespondierendes hydraulisches Bremssystem
CN113442887B (zh) * 2020-03-26 2022-10-18 比亚迪股份有限公司 制动主缸、液压制动系统和车辆
CN111873969B (zh) * 2020-07-06 2022-03-15 东风汽车集团有限公司 一种具有独立双回路的电子液压线控制动系统
CN111942355A (zh) * 2020-09-08 2020-11-17 上海拿森汽车电子有限公司 一种制动系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910618A1 (de) * 1998-03-10 1999-10-07 Aisin Seiki Hauptzylindereinrichtung und Hydraulikbremseinrichtung für ein Fahrzeug
DE102004025638A1 (de) * 2003-11-06 2005-09-08 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
JP2006160085A (ja) * 2004-12-07 2006-06-22 Nissan Motor Co Ltd ブレーキ制御装置
US20070045061A1 (en) * 2005-09-01 2007-03-01 Takashi Murayama Disc Brake Apparatus
JP2007131130A (ja) * 2005-11-10 2007-05-31 Hitachi Ltd ブレーキ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318850A1 (de) 2003-04-25 2004-11-18 Lucas Automotive Gmbh Bremsanlage für ein Kraftfahrzeug
JP4241505B2 (ja) * 2004-05-31 2009-03-18 トヨタ自動車株式会社 車輌の制動制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910618A1 (de) * 1998-03-10 1999-10-07 Aisin Seiki Hauptzylindereinrichtung und Hydraulikbremseinrichtung für ein Fahrzeug
DE102004025638A1 (de) * 2003-11-06 2005-09-08 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
JP2006160085A (ja) * 2004-12-07 2006-06-22 Nissan Motor Co Ltd ブレーキ制御装置
US20070045061A1 (en) * 2005-09-01 2007-03-01 Takashi Murayama Disc Brake Apparatus
JP2007131130A (ja) * 2005-11-10 2007-05-31 Hitachi Ltd ブレーキ装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034671A1 (de) * 2010-08-18 2012-02-23 Volkswagen Ag Fahrzeugbremsanlage mit Pedalsimulator
US9096205B2 (en) 2010-10-04 2015-08-04 Continental Teves Ag & Co. Ohg Brake system and method for operating same
WO2012045656A3 (de) * 2010-10-04 2012-09-20 Continental Teves Ag & Co. Ohg Bremsanlage und verfahren zu deren betrieb
CN103140397A (zh) * 2010-10-04 2013-06-05 大陆-特韦斯贸易合伙股份公司及两合公司 制动系统及其运行方法
WO2012097902A1 (de) * 2011-01-21 2012-07-26 Robert Bosch Gmbh Bremssystem für ein fahrzeug und verfahren zum betreiben eines bremssystems für ein fahrzeug
US10202109B2 (en) 2011-01-21 2019-02-12 Robert Bosch Gmbh Brake system for a vehicle and method for operating a brake system for a vehicle
CN103338988A (zh) * 2011-01-21 2013-10-02 罗伯特·博世有限公司 车辆的制动系统以及用于使车辆的制动系统运行的方法
JP2014506538A (ja) * 2011-01-21 2014-03-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両用のブレーキシステムおよび車両用のブレーキシステムの作動方法
CN103338988B (zh) * 2011-01-21 2015-11-25 罗伯特·博世有限公司 车辆的制动系统以及用于使车辆的制动系统运行的方法
EP2559601A1 (de) * 2011-08-19 2013-02-20 Robert Bosch Gmbh Elektrohydraulisches dynamisches Bremssystem, und entsprechendes Steuerverfahren
FR2979089A1 (fr) * 2011-08-19 2013-02-22 Bosch Gmbh Robert Systeme de freins dynamique electro-hydraulique et procede de commande
US9266508B2 (en) 2011-08-19 2016-02-23 Robert Bosch Gmbh Electro-hydraulic dynamic braking system and control method
WO2013045161A1 (de) 2011-09-30 2013-04-04 Robert Bosch Gmbh Hauptbremszylinder für ein bremssystem eines fahrzeugs und verfahren zum betreiben eines hauptbremszylinders
US9643582B2 (en) 2011-09-30 2017-05-09 Robert Bosch Gmbh Master brake cylinder for a braking system of a vehicle and method for operating a master brake cylinder
DE102011083896A1 (de) 2011-09-30 2013-04-04 Robert Bosch Gmbh Hauptbremszylinder für ein Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines Hauptbremszylinders
JP2016517372A (ja) * 2013-03-28 2016-06-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両のためのブレーキシステム
DE102013205639A1 (de) 2013-03-28 2014-10-02 Robert Bosch Gmbh Bremssystem für ein Fahrzeug sowie ein Verfahren zum Betreiben des Bremssystems
WO2014154631A2 (de) 2013-03-28 2014-10-02 Robert Bosch Gmbh Bremssystem für ein fahrzeug
WO2014154631A3 (de) * 2013-03-28 2015-04-02 Robert Bosch Gmbh Bremssystem für ein fahrzeug
DE102014205431A1 (de) 2013-03-28 2014-10-02 Robert Bosch Gmbh Bremssystem für ein Fahrzeug
US9914443B2 (en) 2013-03-28 2018-03-13 Robert Bosch Gmbh Brake system for a vehicle
EP3036135A1 (de) * 2013-08-20 2016-06-29 Continental Teves AG & Co. oHG Bremsanlage für kraftfahrzeuge
DE102013223207A1 (de) 2013-11-14 2015-05-21 Robert Bosch Gmbh Bremssystem für ein Fahrzeug und Verfahren zum Betreiben des Bremssystems
US20150360659A1 (en) * 2014-06-13 2015-12-17 Robert Bosch Gmbh Pressure supply device for a hydraulic braking system, hydraulic braking system for a vehicle and method for operating a hydraulic braking system of a vehicle
US9776609B2 (en) * 2014-06-13 2017-10-03 Robert Bosch Gmbh Pressure supply device for a hydraulic braking system, hydraulic braking system for a vehicle and method for operating a hydraulic braking system of a vehicle
CN115402281A (zh) * 2022-09-09 2022-11-29 东风柳州汽车有限公司 一种电子液压制动系统及方法
CN115402281B (zh) * 2022-09-09 2023-06-16 东风柳州汽车有限公司 一种电子液压制动系统及方法

Also Published As

Publication number Publication date
DE102008001013A1 (de) 2009-10-08
EP2265480A1 (de) 2010-12-29
CN102015392A (zh) 2011-04-13
CN102015392B (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2009121645A1 (de) Hydraulische fahrzeugbremsanlage
EP2379379B1 (de) Bremsanlage für ein kraftfahrzeug und verfahren zu ihrer steuerung
EP2100784B1 (de) Hydraulische Fahrzeugbremsanlage
EP1708912B1 (de) Verfahren zum betreiben der bremsausrüstung eines fahrzeugs
EP2144796B1 (de) Verfahren zum Betrieb einer hydraulischen Fahrzeugbremsanlage
EP2516222B1 (de) Hauptbremszylinder für eine hydraulische fahrzeugbremsanlage und verfahren zu ihrem betrieb
EP2379375B1 (de) Bremsanlage für ein kraftfahrzeug und verfahren zu deren steuerung
EP3271227A2 (de) Bremsanlage mit schwimmkolben-hauptbremszylindereinheit mit neuartiger mux-regelung (mux 2.0) mit mindestens einem auslassventil und verfahren zur druckregelung
EP2707262A1 (de) Hydraulische fahrzeug-bremsanlage mit elektromechanischem aktuator und verfahren zum betrieben einer derartigen hydraulischen fahrzeug-bremsanlage
DE2908480A1 (de) Hydraulische bremsbetaetigungseinrichtung fuer kraftfahrzeuge mit einem anti- blockier-system
EP2675671A1 (de) Hydraulische fahrzeugbremsanlage
DE102005059937A1 (de) Verfahren zum Betrieb einer hydraulischen Bremsanlage für Kraftfahrzeuge
DE112016003087T5 (de) Bremssteuervorrichtung und Bremssystem
DE112016000781T5 (de) Bremsvorrichtung
WO2005087565A1 (de) Bremskrafterzeuger für eine hydraulische fahrzeugbremsanlage und fahrzeugbremsanlage
DE112016004834T5 (de) Bremssteuervorrichtung
DE102009028770A1 (de) Verfahren zur Betätigung einer hydraulischen Fahrzeugbremsanlage
DE10053993B4 (de) Hydraulische Bremsanlage und Verfahren zur Bremsdruckerzeugung und -regelung für Fahrzeugbremssystem
DE10319194B3 (de) Kombinierte hydraulische und elektromechanische Fahrzeugbremsanlage mit einer Bremskraftregeleinrichtung
DE102009055251A1 (de) Hydraulische Fahrzeugbremsanlage
WO2009074527A1 (de) Elektrohydraulische fremdkraft-fahrzeugbremsanlage
EP2318246A1 (de) Hydraulische fahrzeugbremsanlage
DE102008054446A1 (de) Verfahren zur Steuerung einer rekuperativen Hydraulikbremsanlage und rekuperative Hydraulikbremsanlage
WO2019179668A1 (de) Verfahren zur regelung der antriebsleistung eines elektronisch ansteuerbaren motors zum antrieb eines druckerzeugers einer schlupfregelbaren fremdkraftbremsanlage eines kraftfahrzeugs
DE10304145A1 (de) Elektrohydraulische Fahrzeugbremsanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112093.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009729031

Country of ref document: EP