WO2009121238A1 - 用于自体治疗肿瘤的组合物和方法 - Google Patents

用于自体治疗肿瘤的组合物和方法 Download PDF

Info

Publication number
WO2009121238A1
WO2009121238A1 PCT/CN2009/000171 CN2009000171W WO2009121238A1 WO 2009121238 A1 WO2009121238 A1 WO 2009121238A1 CN 2009000171 W CN2009000171 W CN 2009000171W WO 2009121238 A1 WO2009121238 A1 WO 2009121238A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
agent
composition
hapten
cells
Prior art date
Application number
PCT/CN2009/000171
Other languages
English (en)
French (fr)
Inventor
于保法
Original Assignee
Yu Baofa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Baofa filed Critical Yu Baofa
Publication of WO2009121238A1 publication Critical patent/WO2009121238A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • compositions and methods for autologous treatment of tumors are provided.
  • compositions and methods for treating tumors in mammals, particularly humans More particularly, compositions for intratumoral administration are provided, including tumor coagulation agents and inflammatory response enhancing agents. Methods of treating tumors by administering these compositions are also provided. Background technique '
  • immunotherapy a cancer vaccine comprising the use of such autologous vaccines effective tumor load less than 10 8 tumor cells in cancer patients.
  • Immunotherapy is often used as an adjuvant therapy in combination with other therapies such as surgery, radiation therapy and chemotherapy to remove any residual tumor cells.
  • Immunotherapy and the use of cancer vaccines have not proven to be effective for tumor burdens greater than 5 x 10 9 to 10 11 tumor cells, which are typical in patients with mild metastatic symptoms.
  • autologous tumor vaccination requires complex procedures and requires treatment of each patient's tumor specimen.
  • Intratumoral alcohol injection therapy has been used in clinical practice in the treatment of liver tumors and other tumors. Alcohol injection therapy alone does not kill all tumor cells, because the volume of alcohol injected is limited, alcohol causes normal 'coagulation necrosis of living tissue; blood in the tumor makes the alcohol dilution tank no thicker, especially in the treatment of large tumors; the elements of. Alcohol '' cannot be injected near critical structures, such as the central nervous system. Intratumoral injection therapy with a certain anti-tumor factor is called co-injection t (YU et al. (1994) J. Current Oncology, 1:97-100). In these methods, tissue coagulation masses caused by alcohol injection act as a slow release point for anti-tumor factors.
  • the present invention satisfies the above needs. For example, it is an object of the present invention to provide a method of treating these diseases and producing an immune vaccine. In particular, it is an object of the present invention to provide a cancer treatment method for eradicating systemic tumors at a plurality of sites in the body and specifically distinguishing between tumor cells and non-tumor cells. Summary of the invention
  • compositions for intratumoral treatment and post-operative treatment comprising agents which cause agglomeration of tumor tissue and enhancing agents which increase the inflammatory response to the resulting tumor tissue mass.
  • these compositions those which include three components (referred to as three-in-one or TIO) for intratumoral injection therapy are preferred.
  • TIO three-in-one
  • These compositions include oxidizing or reducing agents, haptens and therapeutic agents; alternatively, they may be combined with other methods of coagulation or treatment.
  • These compositions are useful for treating tumors, such as solid tumors. Accordingly, the present invention also provides methods of treatment using these compositions.
  • the therapeutic agent can be an anti-tumor agent. Further, the anti-tumor agent can be a chemotherapeutic agent.
  • an oxidizing agent can achieve the action of oxidizing the extracellular matrix and interstitial of the tumor, ie, the coagulation of the tumor, the denaturing deformation and the tumor at the site where the oxidant is located.
  • anti-cancer drugs and haptens are embedded between degenerative tumor tissues, these anti-cancer drugs will gradually release from the inside out, to kill those still living tumor cells, these haptens will also Binding to dead tumor cells or proteins released by tumor cell death to form antigens with strong immunogenicity, to stimulate the body to produce antibodies or immune lymphocytes specific for tumors, to kill those tumor coagulation and anticancer drugs There are no killed tumor cells.
  • compositions such as those comprising one or more oxidizing or reducing agents, haptens and antineoplastic agents, are useful in the treatment of a variety of neoplastic tumors, neoplasms and cancers, particularly There is great applicability in solid tumors that cannot be effectively treated with conventional cancer treatment methods such as surgery, radiation therapy, chemotherapy, and immunotherapy.
  • the present invention provides methods and compositions for treating neoplastic tumors, tumors, and cancer. Included in these methods is the use of any composition comprising one or more oxidizing or reducing agents, a hapten and one or more therapeutic agents (or consisting essentially of the above ingredients) which are effective to reduce, reduce, improve Or coronary tumors, tumors and cancers that grow and produce immune responses such as CD4 or CD8; or adjust or remain Clinical signs or diagnostic signs are associated with neoplastic tumors, tumors, and cancer, especially solid tumors that cannot be effectively treated with conventional cancer treatments such as surgery, radiation therapy, chemotherapy, and immunotherapy.
  • the composition can be administered alone or in combination with other methods of treating neoplastic tumors, tumors and cancer.
  • the therapeutic agent can be an anti-tumor agent.
  • the anti-tumor agent can be a chemotherapeutic agent.
  • Therapeutic neoplastic tumors, tumors and cancers include, but are not limited to, adrenal gland, anus, auditory nerve, bile duct, bladder, bone, brain, breast, bruccal, central nervous system, cervix, colon, ear, Endometrium, esophagus, eyelid, eyelid, fallopian tube, gastrointestinal tract, head and neck, heart, kidney, throat, liver, lung, mandible, mandibular, maxillary, mouth, nasopharyngeal, nasal, oral, ovary , pancreas, parotid gland, penis, auricle, pituitary, prostate, rectum, retina, salivary gland, skin, small intestine, spinal cord, stomach, testis, thyroid, tonsil, urethra, uterus, vagina, vestibular cochlear nerve, vulvar neoplasms, each Lymphatic and lymph node metastatic lesions and malignant lymphoma of the cancer
  • the treated neoplastic tumor, tumor and cancer are solid tumors.
  • solid tumors including solid tumors larger than 10 8 cells, such as solid tumors from about 5 x 10 9 to 10 11 cells, the composition is particularly effective.
  • composition provided can improve the therapeutic effect of cancer treatment in most cancer patients, including early cancer patients who have a tumor mass but are not suitable candidates for surgical treatment, and tumors that have lost the chance of surgery. Or metastatic advanced cancer patients.
  • compositions preferably in the form of a pharmaceutical composition comprising one or more oxidizing or reducing agents, haptens and therapeutic agents.
  • the composition is typically formulated into a pharmaceutical composition for administration by administration of an active ingredient comprising an oxidizing or reducing agent, a hapten and a therapeutic agent.
  • the active ingredients in the compositions may be administered separately, for example, in succession, or may be administered intermittently, or the three-component compositions may be administered together in a single composition. When administered sequentially or intermittently, the interval between administrations is generally less than one day, preferably less than one hour, but may be longer. The precise sequence and timing of administration can be determined empirically.
  • the therapeutic agent can be an anti-tumor agent. Further, the anti-tumor agent can be a chemotherapeutic agent.
  • each composition can be determined empirically, but is generally a dose that is normally used to treat neoplastic tumors, tumors, and cancer, in an amount sufficient to further enhance the treatment of other neoplastic tumors, or to reduce it when used alone. Or improve or somehow alleviate the symptoms of neoplastic tumors.
  • the composition can be packaged as a kit.
  • compositions can be administered directly into a tumor. After administration, they coagulate the tumor and form a library of self-drug release biomaterials within the tumor as claimed in the invention.
  • libraries of biomass are also known as IATCWDD (Introtumroal autologous therapeutic coagulum with drug depot).
  • Immunological adjuvants can also be added to the compositions. These adjuvants include, but are not limited to, Corynebacterium parvum, Brucella abortus, Staphylococcus, Streptococcus, Enterobacter, Vibrio cholerae, Anaerobic bacteria, Corynebacterium, Actinomycetes, spirochetes, Mycoplasma; amoeba, these bacteria and amoeba can be genes Engineered engineering bacteria.
  • the adjuvant may be selected from the group consisting of aW, erbA, erbB, ets, fes(fps) f fgr, fins, fos, list, intl, int2, jiin, hit, B-lym, mas, met, mil (raf ), mos, myb, myc, N-myc, neu(ErbB2), ml (mil), Ha-ras, Ki-ras, N-ras, reh ros, sis, src, sM, t : and ; Viral plasmids, or bacteria with these viral vectors.
  • BCG BCG
  • interferon BCG
  • colony-stimulating factor GM-CSF pretreated with low doses of cyclophosphamide.
  • composition TIO When the composition TIO is administered to form IATCWDD, treatment directly kills many tumor cells by large doses of oxidized (or reduced) tumor stroma and tumor tissue, resulting in shrinkage of the tumor. This reduces the tumor load value and can be applied to immunotherapy and tumor vaccine treatment. At the same time, the inflamed area is also formed to attract lymphocytes and other inflammatory mediators to reach the targeted tumor site.
  • the lymphocytes that are attracted include tumor antigen-presenting cells (APC), macrophages, dendritic cells (DC), and activated B cells. These lymphocytes are exposed to tumor antigens produced by lysis of tumor cells to elicit a tumor-specific immune response.
  • APC tumor antigen-presenting cells
  • DC dendritic cells
  • tumor cells are modified by haptens in the formed sites, resulting in modified MHC-related peptides with more complex immunogens, which are then released As a self-tumor vaccine.
  • a tumor vaccine enhances the patient's own tumor immunogenicity, stimulates T lymphocytes to attack live tumor cells in the initial tumor and surrounding areas that have not been killed by previous coagulation, metastatic tumors and microscopic lesions after intratumoral coagulation therapy.
  • Tumor Autologous tumor vaccines play an important role in preventing tumor metastasis and initial tumor recovery.
  • additional therapeutic viruses and nucleic acids such as DNA, cDNA
  • DNA, cDNA can also be included in the composition.
  • these can be encapsulated in IAWBD, fused or transfected into some tumor cells that remain in and around the IAWBD, producing genetically modified tumor vaccines and hybrid vaccines in situ.
  • Tumor DNA and RNA obtained from tumor lysis can be transfected into dendritic cells, which directly receive tumor antigen signals.
  • the combination of chemically and genetically modified intratumoral tumor vaccines produces potent antigen-specific and antigen-nonspecific or co-stimulatory signals against tumor immune responses.
  • the composition may also include other agents such as anti-angiogenic agents, radiosensitizers, and other cancer therapeutics, such as the isotope I 125 .
  • agents such as anti-angiogenic agents, radiosensitizers, and other cancer therapeutics, such as the isotope I 125 .
  • IATCWDD anti-angiogenic agents
  • radiosensitizers such as the isotope I 125 .
  • the resulting clot will slowly release anti-cancer drugs and isotopes, killing tumors surrounding the initial tumor site that were not killed by previous coagulation. cell.
  • the integration of radiotherapy and chemotherapy in the tumor is realized, and the organic integration is integrated.
  • IATCWDD can also slowly release radiosensitizers around the tumor to increase the effectiveness of radiation therapy.
  • IATCWDD also slowly releases anti-angiogenic agents to inhibit the formation of microvessels required for new tumor growth.
  • Antitumor (anti-cancer) agents for use in the compositions and methods include, but are not limited to, anti-angiogenic agents, alkylating agents, antimetabolites, natural products, platinum coordination complexes, Ketone, substituted urea, methyl hydrazine derivative adrenal cortex inhibitor, hormones and antagonists, cancer-based inhibitors such as anti-oncogene antibodies or anti-oncogene antisense oligonucleotides, anti-cancer polysaccharides, or Herbal extracts such as Chinese herbal extracts.
  • Anti-angiogenic agents include, but are not limited to, basement membrane degradation inhibitors, cell migration inhibition Agent, endothelial cell proliferation inhibitor, three-dimensional tissue and construction potency inhibitor, angiogenesis gene, angiogenesis chemical factor gene, AGM-1470 470), vasopressin steroid, angiostatin, anti-avB3 antibody, anti-alkaline fibroin Cell growth factor antibody, IL-1 antibody, TNF- ⁇ antibody, VEGF antibody, auranofm, azathioprine', BB-94, ⁇ -2156, ⁇ basic soluble FGF receptor , Carboxyaminotriazole (CAI), cartilage-derived inhibitor (CDI), chitin, chloroquine, cisplatin, CM101, cortisone/heparin, cortisone/hyaluroflan, 11-deoxysititol/heparin, CT-2584, cyclophosphamide, cyclosporin A, dexamethasone, di
  • the composition comprises a single composition comprising one or more oxidizing agents and/or reducing agents, haptens and therapeutic agents, and a formulation consisting of the same can be used for the injectable form of the drug Transport, or three compositions, one containing one or more oxidizing or reducing agents, the other containing a hapten, and one containing a therapeutic agent, each mixed with a pharmaceutically acceptable carrier or excipient It forms a form that can be injected. It can also be directly injected into the tumor by an automatic mixing syringe, or injected into the abdominal cavity with cancerous ascites, or injected into the chest cavity with cancerous pleural effusion. Specific medical procedures, pharmaceutical compositions, and kits are also provided.
  • the therapeutic agent can be an anti-tumor agent. Further, the anti-tumor agent can be a chemotherapeutic agent.
  • a composition comprising: a) an oxidizing or reducing agent; b) an anti-tumor (anti-cancer) agent, such as Arc-C; and c) a hapten.
  • composition comprising: a) a hapten; and b) a chemotherapeutic agent.
  • composition comprising: a) a hapten; and b) an oxidizing or reducing agent.
  • a composition comprising: a) a chemotherapeutic agent; and b) an oxidizing or reducing agent.
  • a method of treating a tumor preferably a solid tumor of a mammal, preferably a human, comprising administering an effective amount of an oxidizing or reducing agent, a hapten and a tumor therapeutic agent in situ, which causes tumor neoplasms. Coagulation, thereby producing an autoimmune response to the tumor, treating tumor neoplasms.
  • the autoimmune response to a tumor can be a humoral and/or cellular immune response.
  • the haptens used in therapy include, but are not limited to, trinitrophenol (TOP), dinitrophenol (DNP), N-iodoacetyl-N, ⁇ (5-sulfonate 1-naphthalene) Ethylene diamide (AED), dinitrofluorobenzene (DNFB) and Ovabulin (OVA), serum albumin (Albumin).
  • TOP trinitrophenol
  • DNP dinitrophenol
  • N-iodoacetyl-N
  • AED Ethylene diamide
  • DNFB dinitrofluorobenzene
  • OVA Ovabulin
  • serum albumin Albumin
  • the present methods and compositions of the oxidant include, but are not limited to, hydrogen peroxide (3 ⁇ 40 2), the carbonic acid amide, vitamin -C, potassium permanganate, ozone, oxygen 07 polyols, polyhydric oxygen 0 8, NaI0 4 , potassium oxone (oxone), D, L-S-methyl lipoic acid methyl ester, tert-butyl hydroperoxide, vitamin K3, hydrazine, iodogen, N-bromosuccinimide, omeprazole And N-ethylmaleimide.
  • the reducing agents used in the methods and compositions include, but are not limited to, hematoxylin, a low oxygen containing reducing agent such as a nitroimidazole, and a non-nitro compound SR 4233.
  • the composition also includes an accelerator and the method further comprises administering an enhancer that promotes the attachment of the hapten and the tumor antigen of a tumor neoplasm.
  • Promoters include, but are not limited to, chelating agents such as glycyl tyrosyl-(Ne-diethylenetriaminepentaacetic acid)-lysine (GYK-DTPA) or adriamycin adipate-diacyl ⁇ (ADR-ADH), or a chemical crosslinking reagent such as carbodiimide.
  • the composition may also include an immune response potentiator, which may further comprise administering an immune response potentiator to the tumor.
  • the immune response potentiator includes, but is not limited to, polysaccharides, herbal extracts such as herbal extracts, BCG, Bacillus licheniformis, Staphylococcus, Streptococcus, Enterobacter, Vibrio, Helicobacter, Anaerobic bacteria , Corynebacterium, Actinomycetes, spirochetes, Mycoplasma; an enzyme Vibrio cholerae neuraminidase (VCN), papain, beta-galactosidase and concanavalin, and non-pathogenic viruses such as Non-pathogenic Newcastle disease virus.
  • VCN Vibrio cholerae neuraminidase
  • a nucleic acid encoding the oncogene or an encoded gene product can also be administered, or included in the coagulant composition to enhance the immune response.
  • oncogenes include, but are not limited to, abl, erbA, erbB, ets, fes(fps), fgr f fins, fas, hst, intl, int2, jun, hit, B-lym, mas, met, mil (raj).
  • Viral plasmids containing these oncogenes and bacteria containing these plasmids are also packaged. These immunopotentiators may be a combination of antigens of these bacteria or a combination of viable bacteria of these bacteria.
  • the composition may also include a coacervating lysing agent, and the method further comprises administering the agent to the tumor neoplasm, either alone or as part of a composition.
  • Coagulating lysing agents include, but are not limited to, proteinase K, glycosyl-phosphatidylinositol-B7 and pancreatin preparations.
  • compositions may be administered simultaneously, 'either continuously, eg, they are on the same day, in the same week or in other cycles Apply below.
  • tumor suppressor genes such as pl6, p21, p27, p53, RB, WT-1, DCC, NF-1 and APC.
  • tumor suppressor gene is in a viral vector such as an adenoviral vector, a prion vector and a conditionally replicating human immunodeficiency virus vector.
  • a particular composition is applied in the treatment wherein 3 ⁇ 40 2 is used as the oxidizing agent, and NP is used as the hapten.
  • the oxidizing or reducing agent used is from about 0.01% (w/w) to about 35% (w/w), for example, 0.05% (w/w), 0.1% ( w/w), 1% (w/w), 5% (w/w), 10% (w/w), 20% (w/w), 30% (w/w), and the hapten used From about 1 mg/ml to about 80 mg/ml, for example 5 mg/ml, 10 mg/ml, 20 mg/ml, 30 mg/ml, 40 mg/ml, 50 mg/mK 60 mg/ml, 70 mg/mK 80 mg/ml.
  • Coacervation can also be performed by treating tumor neoplasms with certain physical methods, including hypothermia, laser agglutination (ILC), microwave coagulation via the skin, radiofrequency-induced coagulation through skin necrosis, transpupillary heat therapy and Radiation therapy.
  • certain physical methods including hypothermia, laser agglutination (ILC), microwave coagulation via the skin, radiofrequency-induced coagulation through skin necrosis, transpupillary heat therapy and Radiation therapy.
  • the hapten and coagulant are administered to the tumor neoplasm by injection.
  • the hapten and coagulant are applied to the tumor neoplasm by a combination with a surgical procedure.
  • a method of treating a tumor comprising administering an effective amount of an anti-tumor (anti-cancer) agent, such as Ara-C, and a coagulant, in situ.
  • an anti-tumor agent such as Ara-C
  • a coagulant in situ.
  • the coagulant comprises an oxidizing agent which is not an alcohol or an alcohol. It is also preferred at the same time that the coagulant is a composition comprising an oxidizing agent or a reducing agent.
  • a method of treating a tumor particularly a solid tumor, in a mammal, preferably a human, is provided, the method comprising administering an effective amount of an anti-tumor (anti-cancer) agent in situ, Such as Ara-C, and an oxidant or reducing agent, which can cause coagulation and coagulation of the tumor, thereby treating the tumor.
  • an anti-tumor agent such as Ara-C
  • an oxidant or reducing agent which can cause coagulation and coagulation of the tumor, thereby treating the tumor.
  • a method of treating a tumor particularly a tumor in a mammal, preferably a human, is provided, the method comprising injecting an effective amount of a hapten in situ, and a protein denaturant , thereby producing an autoimmune response to the tumor and treating the tumor.
  • a method of treating a tumor, particularly a solid tumor, in a mammal, preferably a human comprising injecting an effective amount of a hapten in situ, and an oxidizing or reducing agent, This produces an autoimmune response to the tumor and treats the tumor.
  • a method of treating a tumor, particularly a solid tumor, in a mammal, preferably a human comprising injecting an effective amount of a hapten in situ, and an oxidizing or reducing agent, Or inject the abdominal cavity with cancerous ascites, or inject into the chest with cancerous pleural effusion. This produces a self-plague response to the tumor and treats the tumor.
  • composition comprising:
  • composition of embodiment 1, wherein the coagulant is an oxidizing agent or a reducing agent.
  • composition of embodiment 2, wherein the oxidizing or reducing agent, the hapten and the therapeutic agent are formulated as a single pharmaceutical composition or each is formulated as a separate pharmaceutical composition.
  • the oxidizing agent selected from hydrogen peroxide, carbonic acid amide, vitamin -C, ozone, oxygen 07 polyols, polyhydric oxygen 0 8, NaI0 4, Potassium Peroxymonosulfate (of Oxone) , potassium permanganate, D, L-S-methyl methyl lipoate, omeprazole, N-ethylmaleimide, and combinations thereof.
  • composition of embodiment 2 wherein the reducing agent is selected from the group consisting of hematoxylin, a low oxygenate reducing agent, and a non-nitro compound tirapazamine (SR-4233).
  • composition of embodiment 5, wherein the low oxygen content reducing agent is nitroimidazole.
  • composition according to any one of embodiments 1 to 6, wherein the hapten is selected from the group consisting of trinitrophenol (TNP), dinitrophenol (DNP), N-iodoacetyl-N, one ( 5-sulfonate 1-naphthyl)ethylenediamide (AED), dinitrofluorobenzene (DNFB) and Ovabulin (OVA).
  • TNP trinitrophenol
  • DNP dinitrophenol
  • N-iodoacetyl-N one ( 5-sulfonate 1-naphthyl)ethylenediamide
  • AED 5-sulfonate 1-naphthyl)ethylenediamide
  • DNFB dinitrofluorobenzene
  • OVA Ovabulin
  • Albumin Albumin
  • composition of embodiment 8 wherein the anti-tumor agent is an anti-tumor chemotherapeutic agent.
  • composition of embodiment 8, wherein the anti-tumor agent is a biotherapeutic agent.
  • composition of embodiment 10, wherein the biotherapeutic agent is an anti-angiogenic agent.
  • composition of embodiment 11, wherein the anti-angiogenic agent is selected from the group consisting of a basement membrane degradation inhibitor, a cell migration inhibitor, an endothelial cell proliferation inhibitor, an inhibitor of three-dimensional structure and potency establishment, and The combination.
  • composition of embodiment 12, wherein the anti-angiogenic agent is selected from the group consisting of an angiogenesis inhibitor gene, an angiogenesis chemokine gene, AGM-1470 (TNP-470), an angiogenic steroid, angiostatin, Anti-av P 3 antibody, anti-basic fibroblast growth factor antibody, anti-IL-1 antibody, anti-TNF- ⁇ antibody, anti-VEGF antibody, auranofin, azathioprine, ⁇ -94, ⁇ -2516, alkaline FGF-soluble receptor, carboxyaminotriazole (CAI), cartilage-derived inhibitor (CDI), chitin, chloroquine, cisplatin, CM101, cortisone/heparin, cortisone/hyaluroflan, cortexolone/heparin, CT-2584, cyclophosphamide, cyclosporin A, dexamethasone, diclofenac/hyaluronic acid glycosaminoglycan, eo
  • TSPs metalloproteinase tissue inhibitors
  • TMP1 metalloproteinase tissue inhibitors
  • TMP2 metalloproteinase tissue inhibitors
  • vascular endothelial growth factor inhibitors vitamin A, vitaxin, and vitreous humor.
  • composition of embodiment 9, wherein the anti-tumor chemotherapeutic agent is selected from the group consisting of an alkylating agent, an antimetabolite, a natural product, a platinum coordination complex, an anthracenedione, a substituted urea, a formamidine derivative, Corticosteroid inhibitors, certain hormones and antagonists, anti-cancer polysaccharides and herbal extracts.
  • composition of embodiment 14, wherein the herbal extract is a traditional Chinese medicine extract.
  • composition of embodiment 8, wherein the anti-tumor agent is an oncogene inhibitor or a tumor suppressor gene or protein.
  • composition according to embodiment 16 wherein the oncogene inhibitor is an anti-oncogene antibody or an anti-oncogene antisense oligonucleotide.
  • composition of claim 16 wherein the tumor suppressor gene is selected from pl6, p21, P 27, p53 , RB, WT- 1, DCC, NF- 1 , and APC.
  • composition of embodiment 1 or 2 further comprising a viral vector comprising an oncogene or tumor suppressor gene sequence.
  • composition according to embodiment 20, wherein the viral vector is selected from the group consisting of an adenovirus vector, a prion vector, a conditionally replicating human immunodeficiency virus vector, a retroviral vector, an SV40 vector, and a simple herpesvirus amplification.
  • the viral vector is selected from the group consisting of an adenovirus vector, a prion vector, a conditionally replicating human immunodeficiency virus vector, a retroviral vector, an SV40 vector, and a simple herpesvirus amplification.
  • Subcarrier and poxvirus vector are selected from the group consisting of an adenovirus vector, a prion vector, a conditionally replicating human immunodeficiency virus vector, a retroviral vector, an SV40 vector, and a simple herpesvirus amplification.
  • composition according to embodiment 18, wherein the oncogene comprises a viral plasmid carrying the oncogene, or a bacterium carrying the viral plasmid.
  • composition of embodiment 1 or 2 further comprising an enhancer that promotes binding between the hapten and the tumor antigen.
  • composition of embodiment 23, wherein the promoter is a chelating agent or a chemical crosslinking agent.
  • composition according to embodiment 24, wherein the chelating agent is glycyl tyrosine-(Ne-diethylenetriaminepentaacetic acid)-lysine (GYK-DTPA) or Adria Adipic acid-dihydrazide
  • the chemical crosslinking agent is a carbodiimide.
  • composition of embodiment 1 or 2 wherein the therapeutic agent further comprises an immunopotentiator or an immunochemokine.
  • composition according to embodiment 27, wherein the immunopotentiator or immunochemokine is selected from the group consisting of BCG, Bacillus licheniformis, Brucella abortus, Staphylococcus, Streptococcus, Enterobacter , Vibrio, Helicobacter, Anaerobic bacteria, Corynebacterium, Actinomycetes, spirochetes, Mycoplasma, Amoeba, and their genetically engineered bacteria; the viral plasmid or the bacterium described in embodiment 22; , enzymes, levamisole, tylosonol, non-pathogenic viruses, polysaccharides and herbal extracts; and any combination thereof.
  • composition of embodiment 28, wherein the immunoreceptor synergist is a composition of a viable or viable bacterium of the bacterium.
  • composition of embodiment 29, wherein the composition of the living bacteria comprises the viral plasmid of the embodiment 22 or the bacterium.
  • composition of any one of embodiments 29 to 30, wherein the viable bacteria are viable bacteria that the antibiotic can kill.
  • composition of any one of embodiments 29 to 32, wherein the amount of the viable bacteria is from 10 7 to 10 12 bacteria. .
  • composition of embodiment 28, wherein the enzyme is selected from the group consisting of Vibrio cholerae neuraminidase (VCN), papain, galactosidase, and concanavalin A.
  • VCN Vibrio cholerae neuraminidase
  • composition of embodiment 28, wherein the non-pathogenic virus is a non-strong new plague virus.
  • composition of embodiment 2, wherein the oxidizing agent is H 2 O 2 , carbonic acid amide, potassium permanganate, vitamin C, or a combination thereof, the hapten being TNP.
  • composition of embodiment 36 wherein the oxidizing agent is 3 ⁇ 40 2 , the hapten is DNP, and the promoter is carbodiimide.
  • composition of embodiment 2, wherein the amount of the oxidizing agent or reducing agent is from about 0.01% (w/w) to about 35% (w/w), and the amount of the hapten is from about 1 mg. /ml to about 80mg/ml.
  • a kit comprising the composition of any of embodiments 1-38.
  • c) indicates that the article is a label for treating a tumor.
  • a method of treating a tumor in a mammal comprising administering to the mammalian tumor a therapeutically effective amount of a hapten, an anti-tumor agent, and a coagulant.
  • TNP trinitrophenol
  • DNP dinitrophenol
  • N-iodoacetyl-N N-iodoacetyl-N
  • DNFB dinitrofluorobenzene
  • OVA Ovabulin
  • Albumin human serum albumin
  • invention 47 or 48 further comprising administering an immune response synergist or immunochemokine to the tumor.
  • the immune response potentiator is selected from the group consisting of BCG, Bacillus coagulans, Staphylococcus, Streptococcus, Enterobacter, Vibrio, Helicobacter, Anaerobic bacteria, Corynebacterium, actinomycete, spirochete, mycoplasma, Brucella abortus extract and amoeba, and their genetically engineered bacteria; the viral plasmid or the bacterium described in embodiment 22; dextran, enzyme, left-handed Imidazole, tylosonol, enzymes, non-pathogenic viruses, multiple 'salt and herbal extracts; and any combination thereof.
  • VCN Vibrio cholerae neuraminidase
  • papain e-galactosidase
  • concanavalin A e-galactosidase
  • agglutination lysis reagent is selected from the group consisting of proteinase K, glycosyl-phosphatidylinositol-7, and pancreatin preparation.
  • coagulant is a composition comprising an oxidizing agent or a reducing agent.
  • any one of embodiments 56-61 wherein the oxidizing or reducing agent, the hapten, and the anti-tumor agent are formulated into a single pharmaceutical composition, wherein the oxidizing agent or reducing agent And at least two of the hapten and the anti-tumor agent are mixed by an automatic injection mixing device.
  • the tumor embolic agent according to claim 61 which is a lipiodol, a lipiodol emulsifier or any emulsifier which acts as an embolization.
  • spleen, lymph node or thymus of the mammal or human is obtained by biopsy, followed by in vitro culture or hybridization with tumor cells to produce monoclonal antibodies and killer lymphocytes.
  • oxidizing agent is selected from hydrogen peroxide (3 ⁇ 40 2), the carbonic acid amide, vitamin -C, potassium permanganate, ozone, oxygen 07 polyols, polyhydric oxygen 0 8, NaI0 4, Oxone, D, L-S-methyl methyl lipoate, t-butyl hydroperoxide, vitamin K3, hydrazine, Iodogen, N-bromosuccinimide, omeprazole and N-ethylmaleamide amine.
  • reducing agent is selected from the group consisting of hematoxylin, a low oxygenate reducing agent, and a non-nitro compound SR 4233.
  • anti-angiogenic agent is selected from the group consisting of inhibitors of basement membrane degradation, cell migration inhibitors, endothelial cell proliferation inhibitors, three-dimensional structures, and established inhibitors of potency.
  • the anti-angiogenic agent is selected from the group consisting of an angiogenesis inhibitor gene, an angiogenesis chemokine gene, AGM-1470 (TNP-470), angiostatin steroid, angiostatin, an antibody Av e 3 antibody, anti-basic fibroblast growth factor antibody, anti-IL-1 antibody, anti-TNF- ⁇ antibody, anti-VEGF antibody, auranofin, azathioprine, ⁇ -94, ⁇ 2516, basic FGF A soluble receptor, carboxyaminotriazole (CAI), cartilage-derived inhibitor (CDI), chitin, chloroquine, cisplatin, CM101, cortisone/heparin, cortisone/hyaluroflan, cortexolone/heparin, CT — 2584, cyclophosphamide, cyclosporin A, dexamethasone, diclofenac/hyaluronic acid glycosaminoglycan,
  • anti-tumor agent is selected from the group consisting of: a sputum agent, an antimetabolite, a natural product, a platinum coordination complex, an anthracenedione, a substituted urea, a formamidine derivative, a cortex Hormone inhibitors, hormones and antagonists.
  • anti-tumor agent is an oncogene inhibitor or a tumor suppressor gene or protein.
  • oncogene inhibitor is an anti-oncogene antibody or an anti-oncogene antisense oligonucleotide.
  • tumor suppressor gene is selected from the group consisting of pl6, p21, p27, p53, RB, WT-1, DCC, NF-1 and APC.
  • the viral vector is selected from the group consisting of an adenovirus vector, a prion vector, and a conditionally replicating human immunodeficiency virus vector, a retroviral vector, an SV40 vector, and a simple herpes virus amplifying a subcarrier and a poxvirus vector, or a bacterial engineered bacteria containing the viral vector.
  • a coagulation therapy selected from the group consisting of cryotherapy, laser agglomeration (ILC), transdermal microwave coagulation therapy, radiofrequency induced coagulation necrosis, Trans-pupil thermal therapy, ultrasound therapy, and radiation therapy, or in combination with the coagulation therapy.
  • a coagulation therapy selected from the group consisting of cryotherapy, laser agglomeration (ILC), transdermal microwave coagulation therapy, radiofrequency induced coagulation necrosis, Trans-pupil thermal therapy, ultrasound therapy, and radiation therapy, or in combination with the coagulation therapy.
  • the tumor is selected from the group consisting of adrenal gland, anus, auditory nerve, bile duct, bladder, bone, brain, breast, central nervous system, cervix, colon, ear, Uterine mucosa, esophagus, eye, eyelids, fallopian tubes, gastrointestinal tract, head and neck, heart, kidney, larynx, liver, lung, upper jaw, lower jaw, maxilla, mouth, nasopharynx, nose, mouth, ovary, pancreas, parotid gland , penis, auricle, pituitary, prostate, rectum, retina, salivary gland, skin, small intestine, spinal cord, stomach, testis, thyroid, tonsil, urethra, uterus, vagina, vestibular cochlear nerve, and vulva, lymph nodes and lymph nodes of various cancers Metastatic lesions and malignant lymphoma. .
  • the method of embodiment 41 further comprising administering in situ a suicide gene sequence, a cell lytic gene sequence, a cytokine gene sequence, a radiation sensitizer, a cytokine-containing depot, a reporter, and a reporter gene sequence.
  • the molecules are the viral plasmids containing these genes, ie the bacteria containing these viral plasmids.
  • a composition comprising:
  • anti-tumor agents 99 Use of the composition of any of embodiments 1-38 and 97 in the manufacture of an anti-tumor drug.
  • Figures 1 and 2 show the results of treatment studies in mice.
  • Figure 1 is a comparison of the results of analysis of elastic fibers, collagen fibers, and reticular fibers in each group of mice;
  • Figure 2 is a comparison of CD4 and CD8 contents in each group of tumor tissues.
  • Figure 3 is a schematic of a mixed injection.
  • Figures 4 and 5 are schematic diagrams of direct fluid infusion of vascular cannula liver.
  • Figure 6 is a schematic illustration of the therapeutic mechanism of the invention.
  • Figure 7 is a color photograph, including Figures 7-1, 7-2, and 7-3, showing the results of studies on the retention of radioisotopes in mice.
  • the first row (upper row) in Figure 7-1 is the result of a conventional injection method, and the second row is the result of the drug injection method of the present invention; it is shown that the size of the isotope is just injected.
  • the first row (upper row) in Figure 7-2 is the result of the conventional injection method, and the second row is the result of the drug injection method of the present invention; it is shown that: the size of the isotope development after injection is not the same, and the isotope of the conventional method has begun to diverge, The isotope of the present invention does not move.
  • the first row (upper row) in Figure 7-3 is the result of the conventional injection method, and the second row is the result of the drug injection method of the present invention; it is shown that: the size of the isotope is not the same after the injection, and the isotope of the conventional method has been scattered.
  • the isotope of the present invention does not move, but the cause of the half-life is weakened.
  • the present invention provides a composition and method for intratumoral immunotherapy of cancer, including tumor neoplasms, tumors and cancer tissues, preferably with intratumoral focusing chemotherapy, gene therapy, radiation therapy and surgery Surgery combined.
  • Disclosed herein is the coagulation of tumor neoplasms, tumors or cancerous tissues and cells while delivering haptens in situ, and is an effective method for treating these neoplasms, tumors or cancers.
  • Coagulation can be accomplished chemically, for example, by treating the tumor tissue or cells with an oxidizing or reducing agent or a combination of oxidizing or reducing agents and chemotherapeutic agents.
  • Coagulation can also be accomplished by physical methods, such as treatment of tumor tissue or cells with different physical therapies such as hypothermia, laser agglutination (ILC), microwave agglutination via the skin, radiofrequency-induced coagulation necrosis, transpupillary thermal therapy And radiation therapy.
  • physical therapies such as hypothermia, laser agglutination (ILC), microwave agglutination via the skin, radiofrequency-induced coagulation necrosis, transpupillary thermal therapy And radiation therapy.
  • This inflammatory effect together with the added hapten, further produces more complex immunogens, wherein the hapten binds to tumor-specific antigens produced by lysis of tumor cells by agglomeration.
  • Inflamed areas attract different lymphocytes, such as tumor antigen presenting cells (APC), macrophages, dendritic cells (DC) and activated B cells,
  • APC tumor antigen presenting cells
  • DC dendritic cells
  • the cells accumulate in the inflamed area and interact with tumor antigens, such as complex tumor antigens, DNA, RNA and other components released from cell lysis.
  • tumor antigens such as complex tumor antigens, DNA, RNA and other components released from cell lysis.
  • This localized tumor-specific immune response is further enhanced by the presence of live tumor neoplastic cells that are present in adjacent proximity and that are not killed by the initial coagulation. In this way, the subsequent tumor-specific immune response enhances the effect of coagulation (in situ vaccination) and extends to the metastatic tumor neoplasm, acting as an "invisible scalpel" to prevent recurrence and metastasis of tumor cells. .
  • compositions and methods can also achieve therapeutic effects by their effect on the extracellular matrix (EM).
  • extracellular matrix such as collagen, fibronectin, proteoglycans (proteins/carbohydrates), hyaluronic acid and other high molecular weight substances. It has been shown that tumor cells are different from the extracellular matrix of normal cells. Fibronectin and collagen, the two major extracellular matrix components studied, vary in quality and quantity as cells are transformed. Studies have shown that fibronectin secreted by transformed cells is much more phosphorylated than the same normal tissue. In addition, fibronectin synthesized by tumor cells has a slow electrophoretic mobility.
  • fibronectin is a long protein chain and molecular cord that binds other substances together and acts as a cellular information carrier. It has been shown that the nature of collagen surrounding cells is related to cell shape, differentiation and cell division. Modification or disruption of the extracellular matrix of cancer is believed to result in starvation of the cells, cutting off the delivery of glucose that is urgently needed by cancer cells.
  • the composition When the composition, such as the composition described in the Summary of the Invention or the composition described in Section B below, the composition will be dispersed in the extracellular matrix surrounding the tumor.
  • the extracellular matrix is denatured or altered by oxidation or reduction.
  • hydrogen peroxide H 2 O 2
  • the extracellular matrix is at least partially destroyed by hydrogen peroxide to produce hydroxyl radicals (305 nm light).
  • the extracellular matrix is also at least partially damaged by a reaction with a reducing agent such as hematoxylin. Such partial destruction can result in damage to the shape of the extracellular matrix.
  • the anticancer drug when used in combination with the composition, the anticancer drug is surrounded to some extent by collagen and other extracellular matrix. As the extracellular matrix changes, the central region of the tumor necrosis when minor changes occur around it, allowing the anti-cancer drug to slowly release around the tumor cells after initial treatment. Further, when the tumor is necrotic, many tumor proteins are modified by the hapten, if included in the composition, such as ⁇ or DNP, to increase tumor-specific antigenicity.
  • a tumor-specific immune response can be administered by in situ or by an agent comprising an oxidizing agent, promoting binding of a hapten to a tumor antigen, an immunoreactive synergist, a coagulation cell lysing agent, an oncogene product, or a combination of any of these. And increase.
  • the intended treatment can be used alone or in combination with other cancer treatments such as, but not limited to, surgery, radiation therapy, chemotherapy and traditional immunotherapy.
  • such treatment can be used with chemotherapy by adding a second anti-tumor agent, such as an anti-angiogenic agent, to the oxidative coagulant composition.
  • a second anti-tumor agent such as an anti-angiogenic agent
  • This combination therapy is advantageous because oxidative coagulation increases the time that the anti-tumor agent remains in the coagulated tumor mass, allowing the tumor mass to be exposed to the anti-tumor agent for a longer period of time. At this point, oxidative coagulation is used as a control drug Released tool.
  • oxidative coagulation reduces the killing of at least some or more than 50% of tumor cells within the target tumor.
  • the anti-tumor agent kills still alive cells that have not been initially killed by coagulation.
  • In situ "inoculation” further reduces live tumor cells, resulting in better results than any of the separate treatments.
  • the treatment can be used with radiation therapy by incorporating a radiation sensitizer into the oxidative coagulant composition.
  • coagulation acts as a tool to control drug release, releasing radiation sensitizers to still alive tumor cells that are not initially coagulated, increasing the effectiveness of radiation therapy.
  • the treatment can be used prior to surgery.
  • oxidative coagulation plays an important role in pre-treatment of tumors, making surgery easier to exclude tumor masses and reducing tumor metastasis.
  • the treatment can be used in combination with gene therapy by adding a nucleic acid encoding a desired wild type cancer gene, tumor suppressor gene, immune cytokine gene or apoptosis gene to the coagulant composition.
  • This combination therapy is advantageous because oxidative coagulation facilitates the introduction of these wild-type oncogenes or tumor suppressor genes into living tumor cells, which are then taken to other sites.
  • living tumor cells that are affected by oxidative coagulation act as a vector for gene therapy.
  • haptens In all treatments, the role of haptens is the role of specific immune responses, such as tumor immunostaining for CD4 and CD8, lymph nodes and splenomegaly.
  • immunological adjuvants such as BCG
  • coagulant compositions to increase the immune response to tumor cells, such as a higher positive rate of CD4 and CD8 or a more pronounced lymph node and spleen enlargement.
  • the active immunization of live bacteria into the tumor center, due to the proliferation of bacteria, the production of endotoxin, killing tumor cells, and causing active non-specific immunity of the human body, the death of the tumor is modified by haptens
  • the whole antigen plays an active and specific immune role.
  • Immunological adjuvants can be re-injected repeatedly, such as every 2 to 4 weeks.
  • Low dose cyclosphamide such as 200 to 300 mg/ni 2
  • white blood cells and lymphocytes in the blood of effective cases can be used to treat cancer patients of the same type, because these patients have combined tumor death and hapten in the above treatment.
  • the immune vaccine is used, white blood cells and lymphocytes in the patient's body are stimulated by the antigen and have the effect of killing the tumor.
  • an oxidation-reduction reaction refers to the reaction of electrons from a donor to a acceptor molecule.
  • an oxidizing agent refers to an agent that accepts electrons in an oxidation-reduction reaction.
  • a reducing reagent refers to an agent that provides electrons in an oxidation-reduction reaction.
  • a protein denaturant refers to an agent that causes protein denaturation, that is, a partially natural or partially stretched protein polypeptide chain to a specific natural conformation (secondary, tertiary, quaternary structure).
  • a hapten refers to an antibody-specific substance that induces antibody formation unless it is combined with a carrier or molecule. Once the hapten is bound to the carrier/molecule, the antibody produced by the conjugate can recognize the hapten and/or the vector/portion.
  • a hapten-carrier/molecular conjugate can also produce a specific cellular immune response.
  • anti-tumor therapy refers to any treatment regimen designed to treat tumor neoplasms, tumors or cancer that reduces or ameliorates its symptoms. Treatments to prevent or reduce the severity of tumor neoplasms, tumors or cancer are also being considered.
  • a tumor neoplasm refers to an abnormal new growth, so it is synonymous with a tumor and can be a benign or malignant tumor. Unlike hyperplasia, the proliferation of tumor neoplasms continues even in the absence of initial stimuli.
  • cancer refers to a general term for a class of diseases caused by any form of malignancy.
  • malignant when used in a tumor, refers to a primary tumor that has the ability to spread and metastasize, while losing growth control and positional control.
  • an anti-tumor agent (which can be used interchangeably with an anti-neoplastic biocide, anti-tumor or anti-cancer agent) refers to any agent used for anti-tumor therapy. These agents include, when used alone or in combination with other compounds, which can alleviate, reduce, ameliorate, prevent or adjust or maintain the clinical symptoms associated with neoplastic tumors, tumors or cancer or the mitigating status of diagnostic markers. They can be used in the methods, combinations and compositions provided herein.
  • Anti-caries biological tumor agents include, but are not limited to, anti-angiogenic agents, alkylating agents, antimetabolites, some natural products, platinum coordination complexes, anthraquinones, substituted ureas, formazan derivatives, adrenocortical hormone inhibition , certain hormones and antagonists, anti-cancer polysaccharides and certain herbal extracts such as herbal extracts.
  • antitumor agents or anti-tumor or anti-cancer agents
  • anti-neoplastic biological tumor treatments do not include compositions comprising oxidizing or reducing agents, protein denaturants, and haptens, or Treatment, but includes all agents and treatment modalities known to those skilled in the art to ameliorate some forms of symptoms of neoplasms, tumors or cancer.
  • angiogenesis refers to the creation of new blood vessels from the mother's microvessels. Angiogenesis It is tightly regulated by angiogenic stimuli and inhibitor systems. Pathological angiogenesis is caused by movement of the net balance between angiogenic stimuli and inhibitors, such as excessive production of normal or malformed angiogenic mediators, or due to the relative lack of inhibitors in the process.
  • uncontrolled angiogenesis refers to pathological angiogenesis in which angiogenic stimuli affect beyond the effects of angiogenesis inhibitors.
  • anti-angiogenic therapy or agent refers to any treatment regimen and compound that, when used alone or in combination with other compounds, that reduces, reduces, improves, prevents, or modulates or maintains Ideal and/or uncontrolled angiogenesis associated with clinical symptoms or diagnostic markers of relief status.
  • endothelin inhibitor is not considered to be “anti-angiogenic treatment or anti-angiogenic agent”.
  • tumor suppressor gene refers to a gene encoding a product that normally negatively regulates the cell cycle, which must be mutated before the cell undergoes rapid division or otherwise inactive.
  • tumor suppressor genes include, but are not limited to, pl6, p21, p53, RB (retinoblastoma), WT-1 (embryonic carcinosarcoma), DCC (deletion in colon cancer), NF-1 ( Neurofibrosarcoma) and APC (colon polypoid adenoma).
  • oncogene refers to a variant and/or overexpressed form of the normal gene of an animal cell (proto-oncogene) that, when dominant, enables the cell to detach from normal growth inhibition, thereby alone or in combination with Combined with other changes, cells can be transformed into tumor cells.
  • tumor suppressor genes include, but are not limited to, abl, erbB, ets, fes (fps), fgr, fins, fas, hst, intl, intl, jun, hit, B-lym, mas, met, mil (raf ), mos, myb, myc, N-myc, neu (ErbB 2 ), ral (mil), Ha-ras, Ki-ras, N-ras, rel, ros, sis, src, ski, trk and yes.
  • antisense oligonucleotide refers to a synthetic sequence of a nucleotide base complementary to an intentional strand of mRNA or double-stranded DNA. Mixtures of intentional and antisense oligonucleotides can result in pairing or hybridization of the two molecules under suitable conditions. When these oligonucleotides are paired (hybridized) with mRNA, hindered protein synthesis (translation) occurs. When these oligonucleotides are paired with double-stranded DNA, inhibition occurs 1 ⁇ 1 ⁇ 2" into (transcription). Inhibition of translation and/or transcription results in hindered synthesis of the protein encoded by the intentional strand.
  • an antibody includes an antibody fragment, such as a Fab fragment, which consists of a variable region of a light chain and a heavy chain.
  • a humanized antibody refers to an antibody that has been modified to include a "human" amino acid sequence such that it is administered to a human without causing an immune response.
  • Methods of preparing these antibodies are known. For example, a hybridoma expressing a monoclonal antibody has been altered by recombinant DNA technology to express an amino acid composition in which the constant region is a human antibody-based antibody. Computer programs have been designed to determine these areas.
  • haptens which promote the binding of a hapten to a tumor antigen
  • a reagent that crosslinks a hapten to a tumor antigen or an agent that promotes a cross-linking reaction.
  • the cross-linking of the hapten to the tumor antigen can be a covalent bond or a non-covalent bond and can be mediated by hydrophobic, polar, ionic electrostatic or other interactions.
  • immune response refers to the change in the response of an organism's immune system in response to an antigen; in vertebrates, this can include the production of antibodies that induce cell-mediated immunity, Development of complement activation or immune tolerance.
  • immune response potentiator refers to a substance that enhances the effect of an immune response by an antigen.
  • agglomerating lysing agent refers to an agent that can loosen or dissolve agglomerates.
  • coagulant refers to any agent that causes a cell, a component thereof, and an extracellular matrix to be converted into a soft, semi-solid or solid mass.
  • a coagulant can also be referred to as any means of agglomeration, including but not limited to, denaturation methods; oxidation, including biological reduction; and physical methods, and combinations of these methods.
  • Physical methods can be cryotherapy, laser agglomeration, radiation, percutaneous microwave coagulation, ultrasound aspiration, trans-pupil hyperthermia, electrochemical therapy, and the like. All of the methods mentioned may be used singly or in combination, or may be used in combination with a reagent which causes aggregation, as long as the appropriate agglomeration of the tumor is achieved.
  • coagulation of a tumor refers to the process of causing the transformation of tumor cells, components thereof, and extracellular matrix into a soft, semi-solid or solid mass that results in the death of condensed tumor cells. And enhancing the retention of the agent that is administered to the tumor in the condensed tumor cells.
  • a cytokine is a factor, such as a lymphokine or a monokine, which is produced by a cell and affects the same or other cells.
  • a "cytokine” is one of a group of molecules that transmit signals between cells in an immune response. Cytokines are proteins or peptides; some are glycoproteins.
  • interleukin refers to a large group of cytokines produced primarily by T cells, although some are produced by mononuclear phagocytic cells, or by tissue cells. They have multiple functions, but most are directly involved in guiding other cells to divide and differentiate. Each interleukin acts on a specific, limited cell that expresses the correct receptor for such a cytokine. -
  • interleukin-1 refers to an interleukin produced by a tumor antigen presenting cell (APC), which is associated with IL-6 as a costimulatory signal for T cell activation.
  • the IL-1 genome includes IL-1 ⁇ , IL-1 ⁇ and IL-1 receptor antagonists (IL-lR a ) (Dinarello, Eur, Cytokine Netw., 5 (6): 517-522 (1994)). Each member was first synthesized as a precursor protein; the molecular weight of the IL-1 precursor (ProIL-1 ⁇ , ProIL-1 ⁇ ) was approximately 31,000 Daltons.
  • IL-1 alpha and mature 17,000 dalton IL-1 alpha are biologically active, whereas ProIL-1 beta requires a peptide that is cleaved to 17,000 daltons for optimal biological activity.
  • the IL-lR ct precursor has a leader sequence that, after cleavage, becomes a mature form that is secreted like most proteins.
  • IL-1 alpha and IL-1 beta are potent agonists and IL-Ra is a specific receptor antagonist.
  • IL-Ra is clearly a pure receptor antagonist with no agonist activity in vitro or in vivo.
  • IL-1Ra is a secreted protein, this molecule has other forms that remain in the cell. It is called "intracellular" (ic) IL-lRa.
  • IcIL-lR is produced by replacing the exon encoding the signal peptide with an mR A splice insert of the altered IL-IR a gene.
  • the IL-IR a form is functionally indistin
  • IL-1 includes all proteins encoded by the IL-1 gene family including IL-1a, IL-1 ⁇ , IL-1Ra, and icIL-IRa, or Source or synthetically prepared equivalent molecule. It is expected that a conserved amino acid will be substituted, but the substitution will not change its activity of IL-1. Those skilled in the art are aware of suitable conservatively substituted amino acids, and such substitutions generally do not alter the biological activity of the resulting molecule.
  • amino acids in the various amino acid sequences presented herein are represented by their well-known three-letter or one-letter abbreviation. Nucleotides that occur in a variety of DNA fragments are expressed using standard single letter representations conventionally used in the art.
  • chemotherapeutic agent refers to traditional pharmaceutical and pharmaceutical treatments, including vaccines, which are known to those skilled in the art.
  • radiation protective agent refers to traditional pharmaceutical and pharmaceutical treatments, including vaccines, which are known to those skilled in the art.
  • chemotherapeutic agent refers to traditional pharmaceutical and pharmaceutical treatments, including vaccines, which are known to those skilled in the art.
  • Radioactive therapy agents are also known in the art.
  • vaccine refers to any composition for active immunological prevention.
  • the vaccine can be used therapeutically to treat the disease, either actively or after infection to prevent the progression of the disease or to reduce the severity of the disease.
  • examples of vaccines include, but are not limited to, live bacteria of a strain of bacteria or attenuated (variant or variant) strains that have been killed, or preparations of microorganisms, fungal plants, protozoa, metazoan derivatives or products.
  • Vaccine also contains vaccines based on white matter/peptide and nucleotides.
  • cytotoxic cell refers to a cell that kills a virally infected target cell, and the target cell expresses an MHC1 type molecular antigen peptide.
  • an effective amount of a compound that treats a particular disease is an amount sufficient to ameliorate or somehow reduce the symptoms associated with the disease. This amount can be administered as a single dose or as the case may be, whereby it can be effectively treated. The drug dose can cure the disease, but in general, the treatment is to relieve the symptoms of the disease. Repeated administration can achieve the desired symptom relief effect.
  • pharmaceutically acceptable salts, esters or other derivatives of such conjugates include any salt, ester or derivative which can be used by those skilled in the art using such derivatization methods as known to those skilled in the art. They are easily prepared, and this process produces compounds which are administered to animals or humans without substantial toxic effects, either pharmaceutically active or prodrugs.
  • treatment means any way in which a condition, disorder, or condition of the disease is improved or beneficially altered. Treatment also includes the use of the compositions of the compositions discussed herein.
  • an improvement in the symptoms of a particular disorder by administration of a particular pharmaceutical composition refers to any relief, either permanent or temporary, sustained or transient, which may be classified as or associated with the composition. Relevant application.
  • sufficient purification refers to a state of sufficient uniformity to determine the state of impurities that are not readily detectable by conventional analytical methods, including thin layer chromatography (TLC), gel electrophoresis, and high performance liquid chromatography (HPLC), those skilled in the art use these methods to achieve this purity, or sufficiently pure, such that further purification does not detectably alter the physical or chemical properties of the material, such as enzyme or biological activity.
  • TLC thin layer chromatography
  • HPLC high performance liquid chromatography
  • a prodrug is a compound that, upon entry into the body, can be metabolized or converted to a compound having a biologically active, pharmaceutically active or therapeutically active form.
  • the pharmaceutically active compound is modified to allow the active compound to be regenerated by metabolic processes.
  • Prodrugs can be designed to alter metabolic stability or the transport properties of the drug, mask the side effects or toxicity of the drug, improve the taste of the drug or alter other characteristics or properties of the drug.
  • biological activity refers to the in vivo administration of a compound, composition or other mixture, the activity of the compound in vivo or the physiological response they cause.
  • biological activities include therapeutic effects and pharmacological activity of such compounds, compositions and mixtures.
  • Biological activity can be observed by designing in vitro systems for detecting or utilizing these activities.
  • the biological activity of luciferase is its oxygenase activity, SP, which luminesces by oxidizing a substrate.
  • a receptor refers to a molecule that has an affinity for a particular ligand.
  • the receptor can be a naturally occurring or synthetic molecule.
  • Receptors may also be referred to in the art as anti-ligands. Used here, Receptors and anti-ligands are used interchangeably.
  • the receptor can be used in its unaltered state or in the formation of aggregates with other species of molecules.
  • the receptor may be attached indirectly or via a specific binder or linker, either covalently or non-covalently, or physically bonded to the binding member.
  • receptors include, but are not limited to, antibodies, cell membrane receptor surface receptors and internalized receptors, monoclonal antibodies, and antisera that interact with specific epitopes [eg, viruses, cells, or other substances], Drugs, polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cell membranes, and organelles.
  • receptors and applications using these receptors include, but are not limited to:
  • a) enzyme a specific transporter or enzyme necessary for the survival of microorganisms, which can be used as a target for the selection of antibiotics [ligands];
  • b) antibodies studies to determine the ligand binding site of an antibody molecule that binds to an epitope associated with an antigen; by mimicking the epitope sequence, the development of a vaccine based on one or more of these sequences can be led to Or the development of a useful diagnostic or therapeutically useful compound that is useful for the treatment of, for example, an autoimmune disease.
  • nucleic acid determining a ligand, such as a protein or RNA, binding site;
  • a catalytic polypeptide a polymer, preferably a polypeptide, which accelerates a chemical reaction comprising converting one or more reactants into one or more products; these polypeptides generally comprise at least one reactant or reaction intermediate a site of specific binding and an active functional group near the binding site, wherein the functional group is a chemically conjugated reactant [see, eg, US Pat. No. 5,215,899];
  • hormone receptors the identification of ligands that bind to the receptor with high affinity is useful for the development of hormone replacement therapy; for example, determining that a ligand that binds to such a receptor can lead to the development of a drug that controls blood pressure;
  • Opioid receptors Identifying ligands that bind to opiate receptors in the brain is useful for developing low addictions to replace morphine and related drugs.
  • an antibody includes an antibody fragment, such as a Fab fragment, which consists of a light chain and a variable region of a heavy chain.
  • a humanized antibody means that the antibody is modified to contain a "human" antibody amino acid sequence for use in humans without causing an immune response.
  • Methods of preparing these antibodies are known. For example, a hybridoma expressing a monoclonal antibody is altered by recombinant DNA techniques to express its non-variable amino acid composition as a human antibody-based antibody. Computer programs have been designed to identify such areas.
  • production by recombinant means that the use of recombinant DNA techniques refers to the expression of cloned DNA-encoded proteins using well-known molecular biology methods.
  • a product that is substantially identical is meant to be sufficiently similar that the relevant properties are sufficient to remain unchanged so that such a consistent product can replace the product.
  • “Complementary” means that the two sequences of nucleotides are capable of hybridization, preferably less than 25%, more preferably less than 15%, even more preferably less than 5%, most preferably relative nucleotides There is no mismatch between them.
  • the preferred two molecules hybridize under highly stringent conditions.
  • a combination or composition refers to a combination of two or more items. It includes a composition in which two or more components are contained in a single mixture; it also includes two separate compositions in question.
  • the composition may be a solution, a suspension, a liquid, a powder, a paste, an aqueous, a non-aqueous, or any combination thereof.
  • liquid refers to any composition that can flow.
  • the liquid therefore comprises a composition in the form of a semi-solid, paste, solution, aqueous mixture, gel, lotion, cream and other such compositions.
  • composition for intratumoral treatment comprising: A) an oxidizing agent and/or a reducing agent; B) a treatment An agent such as a chemotherapeutic agent; and a hapten.
  • the oxidizing or reducing agent, chemotherapeutic agent and hapten may be formulated as a single pharmaceutical composition, or each may be separately formulated as a pharmaceutical composition.
  • any biologically tolerated oxidizing agent can be used in the composition.
  • the oxidizing agent used is hydrogen peroxide (3 ⁇ 40 2 ), carbonic acid amide, vitamin C, potassium permanganate, ozone, polyoxo (0 7 ), polyoxo (0 8 ), Sodium oxyiodide (NaIQ 4 ), potassium oxychloride (oxone) (Wozniak et al, Bioorg. Med. Chem.
  • any biologically tolerant reducing agent can be used in the composition.
  • the reducing agent used is hematoxylin, a hypoxic reducing agent such as nitroimidazole or a nitrogen-free compound tirapazamine (SR-4233) (Zhang and Stevens, Melanoma Res. 8(6): 510-5 (998)).
  • any biologically tolerated hapten can be used in the composition.
  • the hapten used is trinitrobenzene (TNP) (Dieli et al, Int. Immunol., 9 (11:1-8 (1997), dinitrobenzene (DNP) ( Stjarnkvist et al, J. Pharm. Sci., 80(5): 436-40 (1991), ⁇ -iodoacetyl-hydrazine, -(5-sulfo-1-naphthyl)ethylenediamide (AED) ( Mizuochi et al, J.
  • composition further comprises an anti-tumor agent for use in combination with intratumoral therapy and chemotherapy.
  • any anti-tumor agent can be used in such compositions.
  • the anti-tumor agent used is an anti-angiogenic agent. More preferably, the anti-angiogenic agent is a basement membrane degradation inhibitor, a cell migration inhibitor, an inhibitor of endothelial cell proliferation, a tissue and an inhibitor of three-dimensional structural potency. Examples of such anti-angiogenic agents are further shown in Table 2 below ( Auerbach and Auerbach, Pharmacol. Ther., 63 £ 3: 265-311 (1994)).
  • Interferon white blood cell i / e
  • Cysteine-rich acidic SPAPC secreted protein, acidic, cysteine-rich (SPAPC)
  • Platelet activating factor inhibitor venom of the genus Vipera is targeted at mast cells and giants.
  • Phagocytes thiols and gold-containing compounds
  • lymphocytes solid cyclosporine-like morphine, such as: beta-endorphin or thiol, anti-lymphocyte serum, morphine, AGM-1470
  • the target is extracellular matrix:
  • Prostaglandin inhibitors synthesize prostaglandins such as indomethacin and aspirin, ketones, mitoxantrone or bisantrene, cis-aconitic acid and its derivatives, amiloride Placental ribonuclease inhibitor ribonuclease, glycine-arginine-glycine-asparaginic acid-serine (GRGDS), actin and an anti-actin antibody inhibitor
  • prostaglandins such as indomethacin and aspirin, ketones, mitoxantrone or bisantrene, cis-aconitic acid and its derivatives, amiloride Placental ribonuclease inhibitor ribonuclease, glycine-arginine-glycine-asparaginic acid-serine (GRGDS), actin and an anti-actin antibody inhibitor
  • Herbamycin, bleomycin, eponemycin, erbstatin, radicicol and staurosporine other cell migration inhibitors nicardipine, sphingosine-1-phosphate, tricarboxylaminoquinoline (N-methylphenyl- 1,2-Dihydro-4-hydroxyloxy-1-methyl-2-oxoquinoline-3-carbamoyl), platelet endothelial cell adhesion molecule-1 (PECAM-1)
  • Endothelial cell fibroblast growth inhibition FGF closed pit, pentosan polysulfate, heparin inhibitor enzyme, protamine, somatostatin analogues, such as octreotide blood stasis inhibitors TSP1, TSP2 and TSP3
  • TGF ⁇ family TGF ⁇ , TGF ⁇ 1 and TGF ⁇ 2 tumor necrosis factor, interferon, white TNF, IL-1, IFN- ⁇ , IFN- ⁇ and macrophage-derived mediators and other cytokines, endothelial cell inhibition Agent
  • Growth factor antibody bFGF antibody VEGF antibody, hepatocyte growth factor (diffusion factor) antibody, anti-diffusion factor antibody anti-angiogenic polypeptide prolactin stimulating hormone, a good 6KD fragment, a fibronectin-derived heparin-binding polypeptide fragment, a selective polypeptide of TSP, Peptide excreted in the anterior chamber, PF4, a non-heparin-binding PF4 analog, rPF4-241 retinal-derived inhibitor retina crude extract combined with adult serum Antibiotic rapamycin, eponemycin, a combination of spermidine structure 15-deoxyspermectin, TAN-1120, a baumycin group anthracycline antibiotic, d-penicillin derivative, fumagillin and it A more potent synthetic analog, AGM-1470 (TNP-470), FR-111142, isolated from the F-2015 strain Scolecobasiwn arenarium, WF-16775A1 and A2 isolated from chaet
  • Chloroquine nickel manganese alloy salt, sulfadiazine, several opioids, gold compounds, dimethyl sulfoxide
  • Arg-Gly-Asp-Ser GAGDS
  • ⁇ vitronectin fibronectin
  • antibody integrin ⁇ 1 ⁇ 3, ⁇ 1 ⁇ 3 inhibitor antibody
  • ⁇ -selectin antibody sialyl Lewis-X ligand antibody
  • endothelial cells are three-dimensionally composed of nicardipine, a phosphokinase C inhibitor, such as the inhibitor calphostin C and staurosporine, an intrinsic toxin, which is a mutant of aFGF fused to a Pseudomonas exotoxin.
  • a phosphokinase C inhibitor such as the inhibitor calphostin C and staurosporine
  • an intrinsic toxin which is a mutant of aFGF fused to a Pseudomonas exotoxin.
  • IL-1 ⁇ IL-6
  • TGF- ⁇ platelet-derived growth factor-BB
  • irsogladine fenretinide
  • fenretinide a proline analog
  • L-adetine-2-carboxy acid a proline analog
  • cyclosporine lactation 16kDa fragment of hormone Physiological and physical cell-cell interactions, outer membrane cells, endothelial cell-adventitial cell interaction, interference, cardiac microvascular endothelial cells and ventricular myocytes
  • Photodynamic therapy Laser coagulation for photodynamic therapy Hyperthermia The effects of hyperthermia can be produced by killing endothelial cells, inhibiting replication, inhibiting cell migration, or a combination of three mechanisms.
  • the anti-angiogenic agent used is AGM-1470 (TNP-470), angiostatin-like steroid, angiostatin, anti-av P3 antibody, anti-basic fibroblast Growth factor antibody, anti-interleukin-1 antibody, anti-TNF factor alpha antibody, anti-vascular endothelial growth factor antibody, auranofin, azathioprine, strontium-94, ⁇ -2516, basic fibroblast growth factor Soluble receptor, carboxamide triazole (CAI), cartilage-derived inhibitor (CDI), chitin, chloroquine, cisplatin, CM10K cortisone/heparin, cortisone/hyaluronic acid, 11-deoxidized skin Sterol/heparin, CT-2584, cyclophosphamide, cyclosporin A, dexamethasone, diclofenac/hyaluronic acid, major basic protein of eosinophil, fibronectin peptid
  • the anti-angiogenic agent used is an angiogenesis inhibitor such as vasopressin, endostatin, kringle-5, PEX, TIMP1, TIMP2, TIMP3, TIMP4, endo::angio, or endo::PEX Or an angiogenesis chemokine gene, such as IP-10, Mig or SDF-1 alpha.
  • angiogenesis chemokine gene such as IP-10, Mig or SDF-1 alpha.
  • the anti-tumor agent used is a deuteration agent, an antimetabolite, a natural product, a platinum coordination complex, an enoxadione An alternative urea, a methylhydrazine derivative, an adrenocortical hormone inhibitor, a hormone and an antagonist. Examples of such anti-tumor agents are shown in Table 3 below.
  • Fluorouracil (5-fluorouracil, breast, colon, stomach, pancreas, ovary, pyrimidine-like 5-FU) fluorodeoxyuridine (5-head and neck, bladder epithelial lesions before the bladder cancer fluoride deoxyurate FUdR) injury
  • Arabidose acute granulocyte and acute lymphoid leukemia ⁇ (basal) ⁇ (6-mercaptopurine acute lymphoid, acute granulocyte and chronic granule, 6-MP) cell leukemia
  • Thioguanine (6-thioguanine acute granulocytes, acute lymphoid and chronic granules and related
  • VLB Naturally produced vinblastine
  • Epipodile Etoposide Tinibir testicular, small cell lung tumor and other lung cancer, breast, Hodgkin's disease, non-Hodgkin's lymphoma, acute neutropenic leukemia, multiple hemorrhagic sarcoma of the skin
  • Actinomycin D velvet (hair) membrane cancer embryonal carcinosarcoma, rhabdomyosarcoma, testis, multiple hemorrhagic sarcoma of the skin
  • Adriamycin soft tissue, bone fiber and other sarcomas Hodgkin's disease, non-Hodgkin's lymphoma, acute antibiotic leukemia, breast, genital, thyroid, lung, stomach, neuroblastoma, Bole toxin testis, head and Neck, skin, esophagus, lung and genitourinary system, Hodgkin's disease, non-Hodgkin's lymphoma,
  • Mitomycin Mitomycin Stomach, Cervical, Colon, Breast, Pancreas, C
  • Bladder Head and Neck Enzyme day (gum) asparaginase acute lymphocytic leukemia bioreactor interferon- ⁇ hairy cell leukemia, multiple skin hemorrhagic sarcoma, melanoma, benign tumor, kidney, ovary, bladder, non-Hodgkin's lymphoma, mold (fungal) disease, multiple myeloma, chronic myeloid leukemia
  • Adrenal cortex prednisone (there are several other acute and chronic lymphocytic leukemias, non-Hodgkin steroids, see section 59) Lymphopathy, Hodgkin's disease, mammary tumor progesterone hydroxyprogesterone, sunflower acid Salt, pregnancy, endometrium, breast tumor
  • the anti-tumor agent used is a cytosine analog such as cytidine Adenosine (araC), daunorubicin, doxorubicin, methotrexate (MTX), fluorinated pyrimidine such as 5-fluorouracil (5-FU), hydroxyurea, 6-mercaptopurine, plant alkaloids Vincristine (VCR), VP-16 and vinblastine (VLB); sputum agents such as cyclophosphamide tumor cell lysing agent, mesna, melphalan, 1,3-dichloroethylnitrosourea ( BCNU cisplatin, nitrogen mustard (HN2), triamine (HN3), atypical alkylating agent such as methyl knot, bleomycin, mitomycin C, actinomycin D (DACT), or a An enzyme such as L-asparaginase.
  • a cytosine analog such as cytidine Adenosine (ara
  • the anti-tumor agent used is an oncogene inhibitor. More preferably, the oncogene inhibitor is an anti-oncogene antibody or an anti-oncogene antisense oligonucleotide.
  • the oligonucleotide antibodies and antisense oligonucleotides listed in Table 4 below can be used in the composition.
  • Myc MC29 myeloid tissue increased chicken lymphoma
  • N-myc NVT human neuroblast nuclei neu Erb NVT rat neuroblasts TyrPK GFR L
  • the anti-tumor agent used is a cell matrix inhibitor. More preferably, the cell-based sputum preparation is an anti-cell matrix antibody or an anti-cell matrix antisense oligonucleotide.
  • the cell-based sputum preparation is an anti-cell matrix antibody or an anti-cell matrix antisense oligonucleotide.
  • antibodies against the following cell matrix or cell matrix genes and antisense oligonucleotides can be used: caveolin-1, core proteoglycan, cadherin, catenin, integrin.
  • the composition further comprises a tumor suppressor gene for use in combination with intratumoral therapy and gene therapy.
  • the tumor suppressor genes used are pl6, p21, p27, p53, RB, WT-1, DCC, NF-1 and AK:.
  • the composition further comprises a suicide gene such as HSVltk (herpes simplex virus type 1 thymidine kinase), tdk&tmk (thymidine kinase & thymidylate kinase), coda&upp (cytosine deaminase & uracil phosphoribosyltransferase); A cytolytic gene such as granzyme A, granzyme B, perforin; or an apoptotic gene such as Bak, Bax, Bcl-XL, Bcl-XS, Bik, Sarp-2, TRAIL.
  • HSVltk herpes simplex virus type 1 thymidine kinase
  • tdk&tmk thymidine kinase & thymidylate kinase
  • coda&upp cytosine deaminase & uracil phosphoribosyltransfer
  • the composition further comprises a cytokine gene, such as interleukin 1 beta, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 15, GM-CSF , interferon alpha, interferon beta, interferon ⁇ , tumor necrosis factor alpha, B7.1 or ⁇ 7.2 to enhance the immune response.
  • a cytokine gene such as interleukin 1 beta, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 15, GM-CSF , interferon alpha, interferon beta, interferon ⁇ , tumor necrosis factor alpha, B7.1 or ⁇ 7.2 to enhance the immune response.
  • Genes that are originals of the gene transfer system may use naked DNA, composite DNA, cDNA, plasmid DNA, RNA, or other compositions thereof.
  • the tumor suppressor gene is contained in a viral vector.
  • Any viral vector suitable for gene therapy can be used in the composition.
  • an adenoviral vector U.S. Patent 5,869,305
  • a prion vector U.S. Patent 5,962,274
  • a conditionally replicating human immunodeficiency virus vector U.S. Patent 5,888,767
  • retrovirus SV40
  • herpes simplex can be used.
  • Viral replicon vector and vaccinia virus vector can be used, wherein the lipid protects DNA or other biological material from oxidation during agglutination.
  • the composition further comprises a radiation sensitizer for use in combination with intratumoral therapy and radiation therapy.
  • a radiation sensitizer for use in combination with intratumoral therapy and radiation therapy.
  • the radiation sensitizer used is SR2508 (etramide) (Chang et al, Int J Radiat Oncol Biol Phys, !: 65-70 (1998) or Butionine sulfoximine (BSO) (Vahrmeij et al, Cancer Chemother Pharmacol, 4401: 111-6 (1999)).
  • the composition further comprises an enhancer that promotes coupling between the hapten and the tumor antigen to enhance an autologous tumor-specific immune response.
  • the accelerator used is a chelating agent or a chemical crosslinking agent. More preferably, the chelating agent used is glycyl tyrosyl-(Ne-diethylenetriaminepentaacetate)-lysine (GYK-DTPA) or adriamycin adipate-dihydrazide ( ADR-ADH). Also more preferably, the chemical crosslinking agent used is carbodiimide.
  • the composition further comprises an immune response potentiator to enhance an autologous tumor-specific immune response.
  • the synergist used is BCG (Ratliff, Eur Urol, 2: 17-21 (1992), Corynebacterium parvum (Lillehoj et al., Avian Dis, 37 £ 3 ⁇ : 371-40 (1993) )) Brucella extract, dextran, levamisole, tylosonol, an enzyme, a non-toxic virus, a polysaccharide, or an herbal extract such as a herbal extract.
  • the enzyme used is Cholera solute neuroamidase (VCN) (Seiler and Sedlacek, Recent Results Cancer Res, ⁇ : 53-60 (1980)); papain (Helting and Nau, Acta Pathol. Microbiol. Immunol. Scand, 92 1 ⁇ : 59-63 (1984); and Hess, Eur J Immunol, 6 (31: 188-93 (1976)), ⁇ -galactosidase or concanavalin oxime.
  • VCN Cholera solute neuroamidase
  • VCN Cholera solute neuroamidase
  • the polysaccharide used is an anti-tumor polysaccharide derived from a liquid cultured mushroom blazei mill mycelium (originally glucoside, the main chain is ⁇ -1,2-linked-D- Mannopyran , Glucose side chain is ⁇ -D- Pyran residue-3-0- ⁇ -D-glucopyran residue) (Mizuno et al, Biochem Mol Biol In 47 (4:707-14 (1999); anti-tumor polymerization obtained from velvet mushroom
  • the sugar preparation (the main chain of the polysaccharide mainly contains ⁇ -(1->3)-D-linked glucose, and its molecular weight is about 200 KD) (Leung et al., Immunopharmacology, 35 (31: 255-63 (1997): Sigma (SPG) (Tanji et al, Yakugaku Zasshi, 110 £ ll: 869-75 (1990)); schizophyllan (Sakagaini et al, Biochem Bio
  • the composition may also contain an agglutinating lysing agent to enhance the autologous tumor-specific immune response.
  • the agglutinating solubilizing agent used is a proteinase K, glycosyl-phosphoryl inositol-indole 7 (Bi-unschwig et al, J Immunother, 22 (5:390-400 (1999): and McHugh et al. Human, Cancer Res, 59 (10:2433-7 (1999) and trypsin.
  • the composition may also contain a cytokine to enhance its own tumor-specific immune response.
  • a cytokine to enhance its own tumor-specific immune response.
  • the administered cytokine is a liposome-encapsulated interleukin 2 for storage of a formulation (Kra et al, J Immunother, 22 (6: 525-38 (1999)) or a storage formulation for granulocyte-macrophages Colony Stimulating Factor (GM-CSF) (Leong et al, J Immunother. 22 (2: 166-74 (1999V)).
  • GM-CSF granulocyte-macrophages Colony Stimulating Factor
  • the composition may further comprise an oncogene to enhance an autologous tumor-specific immune response.
  • an oncogene to enhance an autologous tumor-specific immune response.
  • the oncogenes listed in Table 4 above can be used.
  • the composition can include an attenuated, replicable viral vector to enhance an autologous tumor-specific immune response.
  • the attenuated, replicable viral vector used is mutant G207 of herpes simplex virus type 1 (HSV-1), which replicates in human tumor cells and causes cell death, thereby inhibiting tumor growth, but Not pathogenic to normal tissues (Toda et al., Hum. Gene. Ther" 2: 385-93 (1999)).
  • HSV-1 herpes simplex virus type 1
  • the composition can include a reporter to monitor the course of treatment.
  • the report can be a chemical or an enzyme.
  • the reporter enzyme is beta-galactosidase or its gene. Other reporters known in the art can also be used.
  • the effective case of blood-encapsulated white blood cells and lymphocytes, and the spleen, lymph nodes, and thymus can be cultured in vitro, or hybridized with tumor cells to produce monoclonal antibodies and killer lymphocytes, It is used to treat cancer patients of the same type.
  • the composition contains hydrogen peroxide as the oxidizing agent and hydrazine as the hapten.
  • Ethanol may also be included as a protein denaturant. It is also possible to contain a carbonized imine as a promoter.
  • the oxidizing or reducing agent is administered in a composition comprised at a concentration of from about 0.01% (w/w) to 35% (w/w) and the concentration of the protein denaturant is about 1% (w/). w) to 98% (w/w), the concentration of the hapten is from about 1 mg/ml to 80 mg/ml.
  • the present invention also provides a kit for intratumoral treatment comprising such a composition comprising one or more of A) an oxidizing agent and/or a reducing agent; a therapeutic agent; and C) a hapten.
  • the kit also includes a syringe for administering the composition and instructions for administration.
  • the therapeutic agent can be an anti-tumor agent.
  • the anti-tumor agent can be a chemotherapeutic agent.
  • the invention also provides a manufactured article for use in intratumoral treatment.
  • the manufactured goods include: A) packaging material; B) one or more oxidizing agents or a reducing agent, a therapeutic agent and a hapten; and C) a label indicating the use of the article for the treatment of a tumor.
  • the therapeutic agent can be an anti-tumor agent.
  • the anti-tumor agent can be a chemotherapeutic agent.
  • the present invention provides a method for treating a tumor in a mammal by administering an effective amount of an oxidizing agent or a reducing agent, a hapten and a therapeutic agent in situ to a tumor of a mammal, thereby causing agglutination of the tumor, by The tumor produces an autoimmune response to treat the tumor.
  • the mammal being treated is a human.
  • the therapeutic agent can be an anti-tumor agent. Further, the antitumor agent may be a chemotherapeutic agent.
  • the hapten used is trinitrobenzene (TNP), dinitrobenzene (DNP), N-iodoacetyl-N, - (5-sulfo-1-naphthalene) Ethylene diamide (AED), dinitrofluorobenzene (DNFB), ovalbumin Ovabulin (OVA), or serum protein (Abumin).
  • TNP trinitrobenzene
  • DNP dinitrobenzene
  • N-iodoacetyl-N N-iodoacetyl-N
  • AED Ethylene diamide
  • DNFB dinitrofluorobenzene
  • OVA ovalbumin Ovabulin
  • Abumin serum protein
  • the method of treatment can further comprise administering an enhancer in situ to enhance a tumor-specific autoimmune response by promoting coupling between the hapten and the tumor antigen.
  • the accelerator used is a chelating agent or a chemical crosslinking agent. More preferably, the chelating agent used is glycyl tyrosyl-(Ne-diethylenetriaminepentaacetate)-lysine (GYK-DTPA) or adriamycin adipate-dihydrazide ( ADR-ADH). Also more preferably, the chemical crosslinking agent used is carbodiimide.
  • the method of treatment can further comprise administering an immune response potentiator in situ to enhance a tumor-specific autoimmune response.
  • the immune response potentiator used is BCG (Ratliff, Eur Urol, 2: 17-21 (1992)), Lillehoj et al, Avian Pis, 37(3): 371 - 40 (1993), aborted B. sphaeroides extract, may also be a combination of some bacterial antigens, or a combination of some bacteria's live bacteria; dextran, levamisole, tyloron, an enzyme , a non-toxic virus, polysaccharide, or herbal extract such as a herbal extract.
  • the enzyme used is cholera sclerotin ceramide (VCN), papain, ⁇ -galactosidase or scalpel Bean globulin A.
  • the non-toxic virus used is a non-toxic ff ward virus.
  • the method of treatment can further comprise administering an agglutinating lysing agent in situ to enhance a tumor-specific autoimmune response.
  • the agglutinating solubilizing agent used is one Proteinase K, glycosyl-phosphatidylinositol-indole 7 or trypsin preparation.
  • any method that may agglutinate tumor tissue or cells, such as chemical or physical methods, may be used.
  • the purpose of agglutinating a tumor is achieved by administering a composition in situ.
  • Such compositions include: ⁇ ) an oxidizing agent and/or a reducing agent; ⁇ ) a hapten and a C) chemotherapeutic agent.
  • the therapeutic agent can be an anti-tumor agent.
  • the anti-tumor agent can be a chemotherapeutic agent.
  • the oxidizing or reducing agent, hapten and chemotherapeutic agent can be formulated as a pharmaceutical composition, or each can be formulated as a pharmaceutical composition, respectively.
  • the oxidizing agent used is hydrogen peroxide, ammonium carbonylate, potassium permanganate, ozone, polyoxo (0 7 ), polyoxo (0 8 ), peroxyiodination Sodium (NaI0 4 ), potassium oxone (Wozniak et al, Bioorg. Med. Chem.
  • the reducing agent used is hematoxylin, a hypoxic reducing agent such as nitroimidazole, or a nitrogen-free compound (SR-4233).
  • the protein denaturant used is alcohol, guanidine hydrochloride, guanidinium thiocyanate, sodium citrate, 2-mercaptoethanol, sar COSyl , phenol, chloroform or urea.
  • alcohol guanidine hydrochloride
  • guanidinium thiocyanate sodium citrate
  • 2-mercaptoethanol 2-mercaptoethanol
  • sar COSyl phenol
  • chloroform or urea methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-methyl, n-ten can be used in the treatment.
  • the alcohol used is ethanol.
  • Acidic conditions can be caused by chemical or physical treatment, such as about ⁇ ⁇ 2-5 to denature proteins.
  • intratumoral treatment provided by the present invention can be used alone or in combination with other cancer treatments.
  • the intratumoral therapy is administered in combination with chemotherapy, i.e., further administering an anti-tumor agent in situ.
  • any anti-tumor agent can be applied.
  • the anti-tumor agent used is an anti-angiogenic agent. More preferably, the anti-angiogenic agent is a basement membrane degradation inhibitor, an inhibitor of cell migration, an inhibitor of endothelial cell proliferation, tissue and an inhibitor of three-dimensional structure construction.
  • the anti-angiogenic agent used is AGM-1470 ( ⁇ -470), angiostatin steroid, neovastin, anti-av P 3 antibody, anti-basic fibroblast growth factor antibody, anti-interleukin- 1 antibody, anti-tumor necrosis factor ct antibody, anti-vascular endothelial growth factor antibody, auranofin, azathioprine ⁇ , BB-94, BB-2516, soluble receptor for basic fibroblast growth factor, carboxyamine triazole (CAI), cartilage inhibitor, chitin, chloroquine, cisplatin, CM101, Pine/heparin, cortisone/hyaluronic acid, 11-deoxysitol/heparin, CT-2584, cyclophosphamide, cyclosporin A, dexamethasone, diclofenac/hyaluronic acid glycosaminoglycan , eosinophilic major basic protein, fibro
  • the anti-angiogenic agent used is an angiotensin gene such as angiostatin, endostatin, kringle-5, PEX, TIMP1, TIMP2, TIMP3, TIMP4, endo::angio, or endo:: PEX, or an angiogenesis chemokine gene, such as IP-10, Mig or SDF-1 alpha.
  • angiotensin gene such as angiostatin, endostatin, kringle-5, PEX, TIMP1, TIMP2, TIMP3, TIMP4, endo:::angio, or endo:: PEX
  • an angiogenesis chemokine gene such as IP-10, Mig or SDF-1 alpha.
  • the anti-tumor agent used is a deuteration agent, an antimetabolite, a natural product, a platinum coordination complex, an anthraquinone, an Substituted urea, a methyl hydrazine derivative, an adrenocortin, a hormone, an antagonist, an anti-cancer polysaccharide, or an herbal extract such as a herbal extract. It is also possible to use additional anti-tumor agents as described in the section.
  • the anti-tumor agent used is an oncogene inhibitor such as an anti-oncogene antibody or an anti-oncogene antisense oligonucleotide.
  • an anti-cancer gene antibody or an anti-oncogene antisense oligonucleotide against the following oncogenes can be used: abl, erbA, erbB, ets, fes(3 ⁇ 4)S), fgr, fms, fos, hs intl, int2 Jun, hit, B-lym, mas, me mil(raf) mos, myb, myc, N-myc, neu(ErbB2), ral(mil), Ha-ras, Ki-ras, rel, ros, sis, src , ski, trk and mouth yes.
  • intratumoral therapy and gene therapy are used in combination by further injecting a tumor with a tumor suppressor gene sequence.
  • the tumor suppressor gene sequences used are pl6, p21, p27, p53, RB, WT-1, DCC, NF-1 and APC-.
  • the method further comprises administering a suicide gene in situ such as - HSVltk (single herpesvirus 1 thymidine kinase), tdk&tmk (thymidine kinase & thymidylate kinase), coda&upp' ( Cytosine deaminase A cytolytic gene such as granzyme A, granzyme B, perforin; or an apoptotic gene such as Bak, Box, Bcl-XL, Bcl-XB, Bik, Sarp-2, TRAIL .
  • a suicide gene in situ such as - HSVltk (single herpesvirus 1 thymidine kinase), tdk&tmk (thymidine kinase & thymidylate kinase), coda&upp' ( Cytosine deaminase A cytolytic gene such as granzyme A, gran
  • the method further comprises administering a cytokine gene in situ, such as interleukin 1 beta, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 15, GM - CSF, interferon alpha, interferon beta, interferon gamma, tumor necrosis factor alpha, B7.1 or ⁇ 7.2 to enhance the immune response.
  • a cytokine gene in situ such as interleukin 1 beta, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 15, GM - CSF, interferon alpha, interferon beta, interferon gamma, tumor necrosis factor alpha, B7.1 or ⁇ 7.2 to enhance the immune response.
  • the gene in the gene delivery system which is a component of the composition can be used in the form of naked DNA, composite DNA, cDNA, and plasmid DNA.
  • the tumor suppressor gene sequence is carried by a viral vector.
  • Any viral vector suitable for gene therapy can be used in the composition.
  • an adenoviral vector U.S. Patent 5,869,305
  • a prion vector U.S. Patent 5,962,274
  • a conditionally replicating human immunodeficiency virus vector a conditionally replicating human immunodeficiency virus vector
  • a poxvirus vector U.S. Patent 5,888,767)
  • retrovirus may be employed.
  • SV40 a herpes simplex virus amplicon vector expressing a related gene and a poxvirus vector.
  • non-viral vector systems such as liposome transporters can be used, wherein the lipids protect DNA or other biological material from oxidation during agglutination.
  • the method further comprises administering a radiation sensitizer in situ for the combined use of intratumoral therapy and radiation therapy.
  • the radiation sensitizer used is an antisense deoxyoligonucleotide of raf (Gokhale et al, Antisense Nucleic Acid Drag Dev, 9 ⁇ 2 ⁇ : 191-201 (1999)); SR2508 (etrazine) (Cha ⁇ ig et al, Int J Radiat Oncol Biol Phys, 4Q0 ⁇ : 65-7O (1998)) or Butionine sulfoximine (BSO) (Va rmeijer et al, Cancer Chemother Pharmacol, 44(2) : 111 -6 (1999T).
  • the method further comprises administering a cytokine-containing reservoir in situ to enhance an autologous tumor-specific immune response.
  • the cytokine-containing reservoir used is a liposome-embedded IL-2 (Krup et al, J Immunother, 22 ( ⁇ : 525-38 (1999)), or formulated as a granule Cell-macrophage colony stimulating factor (Leong et al, J Immunother, 22(2): 166-74 (1999)).
  • the method further comprises administering an oncogene sequence in situ to enhance an autologous tumor-specific immune response.
  • an oncogene sequence in situ to enhance an autologous tumor-specific immune response.
  • the oncogene sequences shown in Table 4 above can be used.
  • the method further comprises administering an attenuated, replicable viral vector in situ to enhance an autologous tumor-specific immune response.
  • the attenuated, replicable viral vector used is mutant G207 of herpes simplex virus type 1 (HSV-1), which replicates in human tumor cells and causes cell death, thereby inhibiting tumor growth, but It is not pathogenic to normal tissues (Toda et al., Hum Gene Ther, 10 ⁇ 3 ⁇ : 385-93 (1999)) o may also be a bacterium containing these viral plasmids.
  • HSV-1 herpes simplex virus type 1
  • the method further comprises administering a reporter in situ to monitor the course of the treatment.
  • the reporter can be a chemical or an enzyme.
  • the reporter enzyme is -galactosidase or its gene.
  • Other reporters known in the art can also be used.
  • hydrogen peroxide is used as an oxidant in therapy
  • TNP As a hapten
  • ethanol can be used as a protein denaturant.
  • the concentration of the oxidizing or reducing agent used in the treatment is from about 0.01% (w/w) to about 35% (w/w), and the concentration of the hapten is about 1 mg/ml. To 80mg/ml. Further, optionally, the concentration of the protein denaturant is from about 1% (w/w) to 99% (w/w).
  • Physical therapy can be used to achieve the purpose of aggregating tumor tissue and cells, such as cryotherapy
  • the autoimmune response produced by the combination of a hapten and an oxidative agglutinating agent or therapeutic agent is a humoral and/or cellular immune response, such as tumor immunostaining.
  • CD4 CD8 Positive, - lymph node spleen enlargement.
  • Any tumor neoplasm, tumor or cancer can be treated by the methods provided herein.
  • it can treat tumors in the following areas: adrenal gland, anus, ear nerve, biliary tract, bladder, bone, brain, chest, bruc Ca , central nervous system, cervix, colon, ear, endometrium, esophagus, eye, eyelid , fallopian tube, gastrointestinal tract, head and neck, heart, kidney, throat, liver, lung, jaw, mandibular odontoid, maxilla, mouth, nasopharynx, nose, mouth, ovary, pancreas, parotid gland, penis, auricle , pituitary, prostate, rectum, retina, salivary gland, skin, small intestine, spinal cord, stomach testis, thyroid, tonsil, urethra, uterus, vagina, vestibular cochlear nerve, or vulva, lymphatic and lymph node metastases and malignant
  • tumors and cancers that can be treated by this method include: breast cancer, lung cancer, colorectal cancer, pancreatic tumor, gallbladder hepatic duct tumor, liver tumor, stomach tumor, esophageal cancer, malignant melanoma, urethra and male Genital cancer, skin cancer, head and neck and thyroid cancer, central nervous system and pituitary cancer, ocular and ocular appendage tumors, bone malignant tumors, soft tissue sarcoma, Hodgkin's disease and non-Hodgkin's disease, multiple myeloma, pediatric entities Tumor, obstetrics and gynecology cancer.
  • Other examples include:
  • Interstitial-derived tumors (1) Connective tissue and its derivatives: sarcoma, fibrosarcoma, mucinous sarcoma, liposarcoma, chondrosarcoma, osteosarcoma.
  • Endothelial and related tissue vessels angiosarcoma, lymphangiosarcoma, synovial tumor, mesothelioma, invasive meningioma.
  • Endothelial and related tissue vessels angiosarcoma, lymphangiosarcoma, synovial tumor, mesothelioma, invasive meningioma.
  • squamous cancer, squamous cell or epidermoid carcinoma
  • Epithelial lining adenocarcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, myeloma, undifferentiated adenocarcinoma
  • Renal epithelium renal cell carcinoma, adrenal adenoma
  • Hepatocytes hepatoma (hepatocellular carcinoma)
  • biliary tract cholangiocarcinoma, trichomoniasis angiosarcoma (chlangiocarcinoma)
  • Urinary tract epithelium papillary carcinoma, transitional cell carcinoma, squamous cell carcinoma
  • Placenta epithelium choriocarcinoma
  • tumors derived from more than one type of tumor cells or more than one germ layer can also be treated.
  • the tumor treated is a solid tumor. More preferably, the solid tumor has a size greater than 10 8 cells. Most preferably, the size of the solid tumor is 5 x 10 9 to 10 11 cells.
  • the hapten and agglutinating agent are administered by injection into a tumor.
  • it can be injected slowly under high pressure, such as a syringe that reaches 6 AMP.
  • the solution can also be injected using a needle of size 15-15.
  • the needle can be rotated within the tumor by turning the needle handle.
  • the dose and frequency of the injection, as well as the course of treatment, need to be adjusted based on the nature, size and location of the tumor.
  • the injection channel can be prepared by pre-injection using a spinal needle prior to actual injection of the tumor. Injections can also be performed under the guidance of computed tomography (CT), magnetic resonance (MR), ultrasound, or other suitable imaging techniques.
  • CT computed tomography
  • MR magnetic resonance
  • ultrasound or other suitable imaging techniques.
  • the hapten and agglutinating agent can be administered to a controlled location in a solid tumor using the methods and apparatus described in U.S. Patent 565,1986.
  • the method and apparatus described in U.S. Patent No. 565,1986 is directed to the administration of a chemotherapeutic agent to a solid tumor in which the agent does not pass through the blood-brain barrier and is characterized by a low bioavailability and/or a short half-life in the body.
  • the instrument is provided with a reservoir that can be administered over an extended period of time while maintaining the biological activity of the agent and the bioavailability of the agent.
  • the administration or treatment of the hapten and oxidative agglutinating agent against the tumor is performed in conjunction with a surgical procedure.
  • administration or treatment of a hapten and an oxidative agglutinating agent against a tumor can be performed prior to, concurrently with, or subsequent to a surgical procedure.
  • the intra-tumor injection therapy can be repeated one or two weeks after administration or treatment of the hapten and oxidative agglutinating agent and chemotherapeutic agent against the tumor.
  • the hapten and oxidative agglutinating agent and the chemotherapeutic agent can be administered to the tumor or after treatment, after one or two weeks, different haptens and oxidative agglutinating agents and different chemotherapy can be used. The agent is directed to the administration or treatment of the tumor.
  • the tumor after administration or treatment of the hapten and oxidative agglutinating agent and chemotherapeutic agent for one or two weeks, the tumor can be surgically removed, can be cut into small pieces, and stored in - In the 80 ° C refrigerator, small pieces of tumor have been immersed in haptens for use in in vitro immunization vaccine treatment.
  • a surgically resected tumor stored in a refrigerator at -80 °C can be directly subjected to small piece resuscitation, research, filtration, subcutaneous injection, and vaccine. effect.
  • a surgically resected tumor stored in a refrigerator at -80 °C can be directly subjected to small piece resuscitation, cell culture, newly propagated tumor cells, and after hapten infusion, After inactivation, the finger (toe) is injected subcutaneously to act as a vaccine.
  • the blood of the effective case envelops white blood cells and lymphocytes, and the spleen, lymph nodes, and thymus, can be cultured in vitro, or hybridized with tumor cells to produce monoclonal antibodies and killer lymphocytes, It is used to treat cancer patients of the same type.
  • composition or coagulant or other coagulation provided by the present invention can cause tumor coagulation, and can release the inlaid drug inside, and slowly kill the peripheral tumor cells, due to hapten-modified tumor The dead cells, while enhancing the antigenicity of the tumor, thereby producing an autoimmune response to the tumor and treating the tumor.
  • the oxidizing agent or reducing agent, the hapten, and the chemotherapeutic agent can be formulated into a single pharmaceutical composition, which, when combined, is administered intratumorally for the purpose of chemotherapeutic agents by the action of a redox agent. And the hapten stays inside the tumor, and can release its inlaid internal drug, which plays a role in slowly killing the surrounding tumor cells. Because the hapten modifies the dead tumor cells of the tumor, it simultaneously enhances the antigenicity of the tumor and exerts its Anticancer effects and immunoinflammatory responses, such as tumor immunostaining CD4 and CD8 positive; lymph nodes and splenomegaly.
  • intratumoral injection therapy is repeated intratumoral injection therapy to enhance its anticancer effect and immune inflammatory response, such as tumor immunostaining CD4 and CD8 positive reaction; lymph node and spleen more Significantly swollen.
  • the oxidizing agent or reducing agent, the hapten and the chemotherapeutic agent can be formulated into a single pharmaceutical composition, and when combined, can be administered to the intratumoral treatment by means of a vascular catheter, and can also be killed.
  • the role of dead tumors in which the condensing agent produces an anti-cancer drug that stays in the tumor, continuously kills the tumor cells, and the tumor cells that die due to hapten modification of the tumor enhance the antigenicity of the tumor and exert its anticancer effect.
  • the role of action and immune inflammatory response attracting APC and DC cells to interface It is affected by antigenic signals, which in turn leads to inflammatory reactions such as tumor immunostaining CD4 and CD8. Lymph node and spleen enlargement, killing residual tumors, treating microscopic tumor metastasis, or preventing micrometastasis of tumors.
  • the oxidizing agent or reducing agent, hapten, and chemotherapeutic agent can be formulated into a single pharmaceutical composition, which, when combined, can be combined with a conventional tumor embolic agent, lipiodol, and then passed through a vascular catheter.
  • the method is implemented in the treatment of tumors, and can also play a role in killing tumors, can strengthen the role of conventional embolization treatment, and at the same time trigger an inflammatory reaction, wherein the coagulation caused by the oxidant is that the anticancer drug stays in the tumor and continuously kills Tumor cells, due to the hapten-modified tumor cells of tumor death, enhance the antigenicity of the tumor, and exert its anticancer effect and immune inflammatory response, attracting APC and DC cells to receive antigenic signals, thereby causing inflammatory reactions.
  • tumor immunostaining positive for CD4 and CD8 This method may be referred to as embolic immunotherapy, which may also be referred to as immunoembolization.
  • the tumor embolizing agent can be a lipiodol oil, an iodized oil emulsifier, or any emulsifier that can act as an embolism.
  • the oxidizing or reducing agent, hapten and chemotherapeutic agent can be formulated into a single pharmaceutical composition, passed through a device that automatically injects the mixer (as shown in Figure 3), and then in the tumor. Injection, or vascular catheterization is performed with intratumoral drug therapy.
  • the automatic injection mixer includes a chamber that can accommodate two or more secondary syringes.
  • the upper end of the chamber has a pushing piston, and the piston has a handle;
  • the lower end of the chamber has a liquid mixing chamber, the liquid mixing chamber has an inlet for each component and an outlet of the mixed material, and the needle can be connected to the outlet.
  • the components to be mixed are separately sucked into the secondary syringe and installed into the chamber of the automatic injection mixer, wherein the outlet end of each secondary syringe is connected to the inlet of the liquid mixing chamber, and each time
  • the handle of the stage syringe contacts the lower end of the piston of the autoinjection mixer.
  • the piston of the automatic injection mixer pushes the handle of the secondary syringe, allowing the contents of the secondary syringe to enter the liquid mixing chamber to effect mixing of the various components of the pharmaceutical composition.
  • the mixed substance can be used for treatment.
  • the present invention is described by taking the liver directly as a drug solution.
  • the drug is administered to the liver through a catheter inserted into a blood vessel using a syringe.
  • the figure shows the human body, including the syringe, catheter, blood vessels, and liver.
  • the description herein and the schematic diagram shown in Fig. 4 are illustrative of the mode of administration and do not constitute a limitation of the invention.
  • Figure 5 is a more detailed display of the mode of administration of Figure 4, the catheter is inserted into the blood vessel, the distal end of the catheter reaches the hepatic artery branches into the hepatic artery and the gastroduodenal artery, preferably into the hepatic artery; And the catheter directly reaches the hepatic artery and enters the liver.
  • the oxidizing or reducing agent, hapten and chemotherapeutic agent can be formulated as a single pharmaceutical composition that is passed through a device that automatically injects the mixer, at least two of which are passed through an autoinjection mixer Mixing, ⁇ , can be used in two or more single pharmaceutical preparations through an automatic injection mixer; it can also be used as a preparation and two preparations of chemotherapy and hapten as a preparation.
  • the device for automatic injection of the mixer is used.
  • the intratumoral injection is treated for a certain period of time and is capable of sustained release It is embedded in the internal medicine, which plays a role in slowly killing the surrounding tumor cells. It can also be used to surgically remove the tumor. This operation can reduce the loss and metastasis of tumor cells and avoid postoperative recurrence and metastasis. If there is loss of cancer cells, it may also be cells that have been killed. Dead cells that have been modified by haptens can act as a tumor vaccine.
  • Figure 6 is a schematic illustration of the mechanism of tumor treatment of the present invention.
  • the pharmaceutical composition of the present invention can achieve a combined effect of at least three aspects.
  • the first aspect is agglomeration, which is labeled as (A).
  • the methods used to induce clot formation are diverse, including denaturation methods; oxidation, including biological reduction; and physical methods, and combinations of these methods. use. Physical methods can be cryotherapy, laser agglomeration, radiation, percutaneous microwave agglomeration, ultrasound aspiration, trans-pupil hyperthermia, electrochemical therapy, and the like. All of the methods mentioned may be used alone or in combination as long as the appropriate agglomeration of the tumor is achieved. Coagulation forms a clot that encloses the solid tumor; at the same time, part of the tumor cells die, resulting in a subsequent effect on the body.
  • the second aspect is the immune response and related reactions, which are labeled as (B).
  • This aspect is mainly to mobilize organs, tissues and cells in the body to form a synergistic effect on the search and kill of tumor cells.
  • some of the tumor cells that are coagulated form lysates or modified lysates that stimulate the body, causing white blood cells (WBCs), antigen presenting cells (APCs), T cells, and N cells to move to have inflammatory characteristics.
  • WBCs white blood cells
  • APCs antigen presenting cells
  • T cells and N cells to move to have inflammatory characteristics.
  • the tumor site in order to fight cancer.
  • these cells can also receive anti-tumor gene signals as well as modified tumor antigens.
  • T lymphocytes and N cells kill tumor cells at the primary site or metastasize to tumor cells at other sites, so that they can further act on tumor clots and metastatic tumors.
  • tumor lysates, DNA preparations extracted from tumors, RNA preparations, and the like can be prepared, regardless of the single component or component of these substances, injected, stimulated white blood cells (WBC), antigen presenting cells (APC), and increased tumors.
  • WBC stimulated white blood cells
  • APC antigen presenting cells
  • Immunogenicity It can also increase the immunogenicity of TRAPTEN:DNP, TP chemically modified tumor cell lysate, live tumor cells around the clot, and genetic modification by virus to release the tumor protein P-16 by releasing a new antisense gene.
  • GM—-' - CSF, IL-2, either directly expressed or encoded by its cDNA, COGEN cDNA, GM-CSF cDNA and IL-2 cDNA.
  • tumor suppressor genes act on P 53 and P 16 live tumor cells.
  • the third aspect is the role of the drug, which is labeled as (C).
  • the drug is also enclosed inside the clot, forming a slow-release drug library that can control the tumor cells surrounding the clot or kill the tumor cells.
  • the drug delivery system may contain an anticancer drug, a radiation sensitizer, an anti-angiogenic agent, a radioisotope, and the like.
  • the present invention is a combination of a plurality of anticancer methods and drugs, and also includes consideration of the body's own functions. Therefore, the present invention is not limited to the specific materials and methods, and the present invention embodies a comprehensive application.
  • the existing reagents and methods in the treatment and prevention of tumors are all possible to combine with the idea and spirit of the present invention to obtain a good tumor therapeutic effect, and to form methods and products for tumor treatment, which are within the scope of the present invention. in.
  • Tumor cells and thus multi-mechanism of various methods and multiple agents for tumors, are an aspect of the invention.
  • the invention is a multi-mechanism mechanism of action.
  • the present invention relates to expanding the stimulating effect on the body caused by tumor aggregation, including the use of a hapten or the like.
  • the antitumor drug used in the present invention may be any suitable antitumor drug which can act on tumor cells inside the clot or slowly release tumor cells acting around the clot.
  • the present invention provides a tumor treatment method having excellent effects, and a corresponding reagent.
  • the therapeutic combination of the present invention may include a substance or means for promoting aggregation of tumor tissue; a substance or means for promoting the ability of the agglomerated tumor tissue to form an irritant for stimulating the body; and a substance or means for directly acting on the tumor cell.
  • This combination of treatments can be either a physical means or a combination of chemicals or biological substances.
  • the invention is not limited to any one specific means. The invention resides in a comprehensive application of multiple approaches.
  • compositions for treating a solid tumor comprising a coagulant, a hapten, and an anticancer drug.
  • the composition is administered directly to a solid tumor, causing the tumor tissue to agglomerate and form agglomerates. Coagulation causes some tumor cells to die and cleave to form antigenic substances that stimulate the body.
  • the hapten may modify some small molecules and form complex substances, which will stimulate the body.
  • Anticancer drugs can act directly on tumor cells inside the agglomerate, or they can release agglomerates and act on surrounding tumor cells. It is within the scope of the invention to combine two or more of these effects, or all of them.
  • the present invention can be summarized as a coagulation effect, that is, the present invention aims to treat tumors by aggregating tumor tissues, thereby stimulating the body's search and resistance to tumor cells.
  • the present invention may also include enhancing the body's search and resistance to tumor cells, including the use of haptens and the like.
  • the present invention also encompasses the use of anti-tumor drugs.
  • the invention is a combination of coacervation and action of the body. In another aspect, the invention is a combination of coacervation and enhanced body action. In yet another aspect, the invention is a combination of coacervation, body action, and drug action. In still another aspect, the invention is a combination of coacervation, enhanced body action, and drug action.
  • the specific form of each effect is unrestricted. Accordingly, the present invention provides a variety of combinations of materials and methods. The use of any one of the elements of the present invention in combination with another element constitutes an embodiment of the present invention. Therefore, the present invention is a plurality of technical solutions, not a technical solution.
  • the technical solutions of the present invention are not limited to the specific technical solutions explicitly written in the specification and the claims, but also include any one of the derivatives in which the elements of the technical solutions are combined, and the spirit and the On the basis of substance, any derivative scheme is obtained.
  • An important aspect of the present invention is the combination of extrinsic and intrinsic forces to form a novel therapeutic method for treating cancer, and the present invention also includes a medicament for such a therapeutic method.
  • the present invention includes therapeutic drugs and pharmaceutical compositions designed in accordance with the above novel methods. It is also within the scope of the invention to couple these materials, including the joining of different functional substances into one molecule with a linker.
  • the invention also provides the use of a composition provided herein in the manufacture of an anti-cancer drug.
  • the use comprises administering a therapeutically effective amount of a composition provided herein to a mammalian tumor in situ. Administration can be carried out by intratumoral injection or by intravascular injection through a vascular catheter.
  • S180 tumor strain was inoculated subcutaneously into mice. When the tumor grew to a diameter of about 0.6 cm, Ara-C was injected into the tumor, and DNP and oxidant carbonate (50 to 200 mg) were combined to observe the tumor growth size every day.
  • Chemotherapy + M-DNP group (1.0) 40.71* 52.35 * # 68.78 * 71.70 * Chemotherapy + L-DNP group (0.5) 29.37 62.79" — — ⁇
  • the H22 tumor strain was subcutaneously inoculated into mice. When the tumor grew to a diameter of about 0.6 cm, Ara-C was injected into the tumor, and DNP and oxidant carbonate were combined to observe the tumor growth size every day.
  • Example 3 showed the same effect as in Example 1, and the tumor inhibition rate of chemotherapy plus medium dose DNP and carbonic acid amide was significantly higher. At the same time, the bilateral tumors were only treated on the right side, and the tumor on the left side was also suppressed, which fully explained that DNP-modified tumor sputum played a role in the treatment of contralateral tumors. Only DNP treatment does not play any role in tumor therapy.
  • Example 3
  • the Lewis tumor strain was subcutaneously inoculated into mice. When the tumor grew to a diameter of about 0.6 cm, Ara-C was injected into the tumor, and DNP and oxidant carbonate amide were combined to observe the tumor length per day.
  • H22 tumor strain was subcutaneously inoculated into mice. When the tumor grew to a diameter of about 0.6 cm, Ara-C was injected into the tumor, and DNP and oxidant carbonate amide were combined. H's thymus index and spleen finger were observed every day.
  • Chemotherapy + L-DNP group (0.5) ⁇ ⁇ 1 ⁇ ⁇ ⁇ ⁇ ⁇
  • Table 4 shows that chemotherapy can cause a decrease in thymus index and spleen index, but DNP can increase thymus index and spleen index.
  • S180 tumor strain was subcutaneously inoculated into mice. When the tumor grew to a diameter of about 0.6 cm, Ara-C was injected into the tumor, and DNP and oxidant carbonate were combined. The thymus index and spleen index were observed every day.
  • Thymus thymus spleen index index model group (NS)
  • S180 tumor strain was subcutaneously inoculated into mice. When the tumor grew to a diameter of about 0.6 cm, Ara-C was injected into the tumor, combined with DNP and oxidant carbonate. After 5 days, the tumor tissue was taken and pathological sections were taken. , for immunostaining. As shown in Figure 1: Intratumoral injection of chemotherapeutic drugs and haptens and oxidants can cause elasticity of tumor tissue. Fibrous, collagen fibers and reticular fibers are highly proliferating, which acts to limit tumor growth and limit tumor metastasis. 7
  • Adenocarcinoma squamous cell carcinoma large round cell carcinoma giant cell carcinoma see cancer cells total number of cases 49 98 6 1 58 212
  • the clinical survival time of intratumoral injection of chemotherapeutic drugs plus hapten is as follows: It can be seen that the average survival time and half-year survival rate after hapten should be significantly better than the efficacy of unused haptens. It is illustrated that the pharmaceutical combination of the present invention has a good therapeutic effect. Achieved the effect of prolonging life. Median survival average survival half year survival rate one year survival rate n
  • the clinical survival time of intratumoral injection of chemotherapeutic drugs plus hapten is as follows: It can be seen that the average survival time and half-year survival rate after hapten application is significantly better than that of the unused hapten. It is illustrated that the pharmaceutical combination of the present invention has a good therapeutic effect. Achieved the effect of prolonging life. Median survival average survival half year survival rate one year survival rate n
  • the clinical survival time of intratumoral injection of chemotherapeutic drugs plus hapten was as follows: It can be seen that the mean survival time and half-year survival rate after hapten application are significantly better than those of haptens. It is indicated that the drug combination of the present invention has a good therapeutic effect and achieves an effect of prolonging life.
  • the clinical survival rate was as follows: n Median survival (month) Average survival (month) Half-year survival rate (%) Overall 31 5 5.1 43.3 Unused semi-antibody
  • the clinical survival time of intratumoral injection of chemotherapeutic drugs plus hapten in the treatment of esophageal cancer is as follows: It can be seen that the average survival time and half-year survival rate after application of hapten are significantly better than that of unused haptens. It is illustrated that the drug combination of the present invention has a good therapeutic effect and achieves an effect of prolonging life.
  • the clinical survival rate is as follows:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Figure imgf000002_0001
用于自体治疗肿瘤的组合物和方法
技术领域
[1] 本发明是关于治疗哺乳动物,特别是人的肿瘤的组合物和方法。更特别 地, 提供了用于在肿瘤内施用的组合物, 其中包括肿瘤凝聚试剂和发炎反应增强 试剂。 也提供了通过施用这些组合物治疗肿瘤的方法。 背景技术 '
[2] 对于癌症的治疗已经使用了许多方法, 包括手术、化疗和辐射。手术是 把全部或部分肿瘤移出身体的传统方法。 手术一般是治疗早期癌症的唯一有效方 法。 对于目前能诊断出的癌症患者中的 50 %以上的人而言, 他们不再是有效的手 术治疗的候选人。 在手术中, 手术过程可能通过血液循环提高肿瘤的转移。 大多 数癌症患者不是死于诊断时或手术时的肿瘤, 而是死于癌症的转移和复发。
[3] 别的治疗方法经常是无效的。辐射治疗只对癌症早期和中期的局部癌症 有效, 对具有转移的晚期癌症无效。 化疗是有效的, 但有严重的负作用, 如呕吐、 白细胞(WBC)降低、 脱发、 体重降低和别的毒性作用。 因为严重的毒性负作用, 许多癌症患者不能成功的完成全部的化疗过程。 一些癌症患者由于对化疗的弱耐 受性而死于化疗。 由于抗癌药物的低靶向特异性而导致抗癌药物的极大副作用。 药物循环通过患者大多数正常的器官和预期的靶肿瘤。 低靶向特异性是因为只有 一部分药物正确地作用于目标, 而造成负作用, 也降低了化疗的有效性。 化疗的 有效性因为抗癌药物在靶肿瘤内的短滞溜时间, 而进一步降低。
[4] 免疫疗法, 包括使用癌症疫苗, 如自体疫苗, 对于肿瘤荷载少于 108个 肿瘤细胞的癌症患者有效。 免疫疗法经常作为辅助疗法与其它的疗法如手术、 辐 射疗法和化疗相结合以清除任何残留的肿瘤细胞。 免疫疗法和使用癌症疫苗不能 证明对于肿瘤荷载大于 5X109到 1011个肿瘤细胞有效, 其在具有轻微转移症状的 患者中是典型的。 此外, 自体瘤疫苗接种需复杂的程序, 且要求对每一患者的肿 瘤标本进行处理。
[5] 肿瘤内醇注射疗法在治疗肝脏肿瘤和别的-肿瘤中已应用于临床实践。单 独的醇注射疗法不能杀死全部的肿瘤细胞, 因为注射的醇体积有限, 醇导致正常 '的活组织凝固坏死; 肿瘤内血液使醇稀释釜无 ¾浓 , 特别在治疗大的肿瘤; 以 及别的因素。 醇''不能注射到关键结构附近, 如中枢神经系统。 肿瘤内醇注射疗法 与某种抗肿瘤因子共同施用, 称为共注 t (YU et al. (1994) J. Current Oncology, 1:97-100)。在这些方法中, 醇注射导致的组织凝固团块作为抗肿瘤因子的缓释点。
[6] 目前, 对于具有高肿瘤荷载的患者,还没有有效的治疗方法。 因为早期 肿瘤不易早期检出, 许多诊断有癌症的患者是处于肿瘤荷载大于 5X109到 1011个 肿瘤细胞的癌症晚期, 或肿瘤已经转移到别的组织。 对于这些患者, 传统的癌症 治疗如手术、 辐射和化疗可能不再有效和 /或合适。
[7] 尽管癌症治疗有一些进展, 即便这样,有效的治疗方法仍很少。 由于赘 生性肿瘤、 肿瘤和癌症的严重性和广泛性, 很需要有效的治疗这些疾病的方法。 理想的癌症治疗应有能力根除身体内多个位点的全身性肿瘤, 并特异性地区别肿 瘤细胞和非肿瘤细胞。 所以本发明满足了上述需要。 例如, 本发明的一个目的是 提供治疗这些疾病并能产生免疫疫苗作用的方法。 特别的, 本发明的一个目的是 提供根除身体内多个位点的全身性肿瘤, 并且特异性区别肿瘤细胞和非肿瘤细胞 的癌症治疗方法。 发明内容
[8] 本发明提供了用于肿瘤内治疗和术后治疗的组合物,其中包括导致肿瘤 组织凝聚的试剂和提高针对所致肿瘤组织团块的发炎性反应的增强试剂。 在这些 组合物中,优选的是那些包括用于肿瘤内注射治疗的三种成分 (称为三合一或 TIO) 的组合物。 这些组合物包括氧化剂或还原剂、 半抗原和治疗剂; 可选地, 它们可 以与别的凝固方法或处理方法联合。 这些组合物用于治疗肿瘤, 如, 实体肿瘤。 因此, 本发明还提供了使用这些组合物进行治疗的方法。 一方面, 治疗剂可以是 抗肿瘤剂。 进一步地, 抗肿瘤剂可以是化疗剂。
[9] 尽管不打算将本发明限于任何特定的原理,但认为,使用氧化剂可达到 氧化肿瘤细胞外基质和间质的作用, 即肿瘤凝聚作用, 其变性变形并使氧化剂所 到部位的肿瘤不变性坏死及死亡, 同时使抗癌药物和半抗原镶嵌在变性的肿瘤组 织之间, 这些抗癌药物将逐步由内向外的释放出, 去杀死那些还活着的肿瘤细胞, 这些半抗原亦将与死亡的肿瘤细胞或肿瘤细胞死亡释放出的蛋白质结合, 形成具 有较强免疫原性的抗原, 以刺激机体产生具有针对肿瘤特异的抗体或免疫淋巴细 胞, 去杀死那些肿瘤凝聚和抗癌药物没有杀死的肿瘤细胞。
[10] 在此所示, 这些组合物, 例如那些包括一种或多种氧化剂或还原剂、半 抗原和抗肿瘤剂的组合物, 在治疗多种赘生性肿瘤、 胂瘤和癌症, 特别是用传统 的癌症治疗方法如手术、 辐射治疗、 化疗和免疫治疗不能有效治疗的实体肿瘤中 有很大的适用性。
[11] 本发明提供了治疗赘生性肿瘤、肿瘤和癌症的方法和组合物。在这些方 法中包含使用含有一种或多种氧化剂或还原剂、 半抗原和一种或多种治疗剂 (或 基本上由上述成分组成) 的任何组合物, 其能有效减轻、 减少、.改善或胆止赘生 性肿瘤、 肿瘤和癌症生长并能产生 CD4或 CD8等免疫反应; 或者调整或保持在 临床症状或诊断标示的减轻状态中, 临床症状或诊断标示是与赘生性肿瘤、 肿瘤 和癌症相关, 特别是用传统的癌症治疗方法如手术、 辐射治疗、 化疗和免疫治疗 不能有效治疗的实体肿瘤相关。该组合物可以单独使用或与别的治疗赘生性肿瘤、 肿瘤和癌症的方法相结合施用。 一方面, 治疗剂可以是抗肿瘤剂。 进一步地, 抗 肿瘤剂可以是化疗剂。
[12] 能治疗的赘生性肿瘤、 肿瘤和癌症包括, 但不局限于, 肾上腺, 肛门, 听觉神经, 胆管, 膀胱, 骨, 脑, 乳房, bruccal, 中枢神经系统, 子宫颈, 结肠, 耳, 子宫内膜, 食管, 目艮, 眼睑, 输卵管, 胃肠道, 头和颈, 心脏, 肾, 喉, 肝 脏, 肺, 下颌骨, 下颌髁, 上颌骨, 嘴, 鼻咽, 鼻, 口腔, 卵巢, 胰腺, 腮腺, 阴茎, 耳廓, 垂体, 前列腺, 直肠, 视网膜, 唾液腺, 皮肤, 小肠, 脊髓, 胃, 睾丸, 甲状腺, 扁桃体, 尿道, 子宫, 阴道, 前庭蜗神经, 外阴赘生性肿瘤, 各 种癌的淋巴和淋巴结转移病灶和恶性淋巴瘤。
[13] 优选的是,治疗的赘生性肿瘤、肿瘤和癌症是实体肿瘤。对于实体肿瘤, 包括大于 108个细胞的实体肿瘤, 如从大约 5 X 109到 1011个细胞的实体肿瘤, 该 组合物特别有效。
[14] 提供的所述组合物可以提高大多数癌症患者的癌症治疗的治疗效果,包 括可见肿瘤团块但不适合作为手术治疗的候选者的早期癌症患者和已失去手术机 会的肿瘤体积较大或转移的晚期癌症患者。
[15] 所以, 本发明提供了组合物,优选的是以药物组合物的形式, 其中包括 一种或多种氧化剂或还原剂、 半抗原和治疗剂。 该组合物一般是由包括氧化剂或 还原剂、 半抗原和治疗剂的活性成分配制成药物组合物以进行给药。 组合物中的 所述活性成分可以分别施用, 例如接连地施用, 或者能被间断地施用, 或者三种 分幵的组合物混和为一种单一的组合物一起施用。 当接连地或间断地给药时, 每 一给药的间隔一般小于一天, 优选地, 小于一小时, 但可以长一些。 给药的精确 顺序和时间选择可以按经验决定。 一方面, 治疗剂可以是抗肿瘤剂。 进一步地, 抗肿瘤剂可以是化疗剂。
[16] 每一组合物的剂量可以由经验决定, 但一般是正常用于治疗赘生性肿 瘤、 肿瘤和癌症的剂量, 数量足以进一步强化别的赘生性肿瘤的治疗, 或当单独 使用时足以减少或改善或以某种方式减轻赘生性肿瘤的症状。 该组合物可以包装 为试剂盒。
[17] 该组合物可以直接施用入肿瘤中。在施用之后, 它们使肿瘤凝固, 并形 成本发明中所称的肿瘤内自身药物释放生物物质库。 这些生物物质库也被称为 IATCWDD (Introtumroal autologous therapeutic coagulum with drug depot)。
[18] 免疫佐剂也可加入组合物中。这些佐剂包括,但不局限于,小棒状杆菌, 流产布鲁氏菌, 葡萄球菌, 链球菌, 肠道杆菌, 弧菌 螺旋杆菌, 厌氧细菌, 棒 状杆菌,.·放线菌, 螺旋体, 支原体; 阿米巴原虫, 这些细菌和阿米巴可以是基因 工程改造的工程菌。一方面, 佐剂可以是包含选自 aW, erbA, erbB, ets, fes(fps)f fgr, fins, fos, list, intl , int2, jiin, hit, B-lym, mas, met, mil(raf) , mos, myb, myc, N-myc , neu(ErbB2) , ml (mil) , Ha-ras, Ki-ras, N-ras, reh ros, sis, src, sM, t :和; 的癌基因的病毒质粒, 或带有这些基因病毒载体的细菌。
[19] 卡介苗 (BCG)、 干扰素、 或用低剂量的环磷酰胺 ( Cyclophosphamide ) 预处理后的集落刺激因子 GM—CSF。
[20] 当组合物 TIO被施用以便形成 IATCWDD时, 治疗通过大剂量的氧化 (或还原) 肿瘤基质和肿瘤组织直接杀死许多肿瘤细胞, 导致肿瘤的皱缩。 这使 肿瘤荷载值降低而可以应用免疫治疗和肿瘤疫苗治疗。 同时也形成了发炎区吸引 淋巴细胞和别的发炎反应介体到达靶向肿瘤位点。 被吸引的淋巴细胞包括肿瘤抗 原递呈细胞(APC)、 巨噬细胞、 树突细胞 (DC )和活化 B细胞。 这些淋巴细胞 暴露于由肿瘤细胞裂解而产生的肿瘤抗原而引发肿瘤特异性免疫反应。
[21] 当 ΉΟ形成伴随发炎和肿瘤细胞裂解的 IATCWDD时, 在形成的位点 中, 裂解的肿瘤细胞被半抗原修饰, 产生修饰的具有更复杂的免疫原的 MHC—相 关肽, 然后被释放, 作为自身肿瘤疫苗发挥作用。 这样的肿瘤疫苗加强了患者自 己的肿瘤免疫原性, 刺激 T淋巴细胞攻击没有被先前的凝固杀死的初始的肿瘤内 和周边的活的肿瘤细胞, 肿瘤内凝固治疗后的转移肿瘤和微病变肿瘤。 自身肿瘤 疫苗在阻止肿瘤转移和初始肿瘤恢复中发挥重要作用。
[22] 另外, 附加的治疗性病毒和核酸, 如 DNA、 cDNA,也能包括在该组合 物中。 在施用时, 这些可以被包裹在 IAWBD 中, 能融合到或转染入一些保留在 IAWBD中和周边的肿瘤细胞中, 原位产生遗传修饰了的肿瘤疫苗和杂交疫苗。 从 肿瘤裂解得到的肿瘤 DNA和 RNA可以转染入树突细胞, 其直接接受肿瘤抗原信 号。 化学和遗传修饰的肿瘤内肿瘤疫苗联合产生有效的抗原特异性和抗原非特异 性的或共剌激信号抗肿瘤免疫反应。
[23] 该组合物也可包括别的试剂,如抗血管生成试剂,放射致敏剂和别的癌 症治疗剂,如同位素 I125。例如,在施用另外加入别的这样的试剂的 ΉΟ组合物时, 得到的凝块(IATCWDD)将缓慢释放抗癌症药物和同位素, 杀死不被先前的凝固 杀死的初始肿瘤位点周围的肿瘤细胞。 这样就实现了肿瘤内的放疗与化疗的一体 化, 有机地融为一体。当需要时, IATCWDD也可缓慢在肿瘤周围释放放射致敏剂 以增加放射治疗的有效性。 IATCWDD也可缓慢释放抗血管生成试剂以抑制新肿瘤 生长所需的微血管的形成。
[24] 在该组合物和方法中使用的抗肿瘤 (抗癌症)试剂包括, 但不局限于, 抗血管生成剂, 烷化剂, 抗代谢物, 天然产物, 铂配位复合物, 蒽二酮, 取代尿 素, 甲基肼衍生物 肾上腺皮质遏抑剂, 激素和拮抗剂, 癌基-因抑制剂如抗癌基 因抗体或抗癌基因反义寡聚核苷酸, 抗癌多聚糖, 或药草提取物如中草药提取物。
[25] 抗血管生成试剂包括, 但不局限于, 基底膜降解抑制剂, 细胞迁移抑制 剂, 内皮细胞增殖抑制剂, 三维组织和构建效能抑制剂, 血管抑制基因, 血管抑 制化学因子基因, AGM— 1470 470),血管抑制类固醇,血管抑素,抗 avB3 的抗体,抗碱性成纤维细胞生长因子抗体, IL- 1的抗体, TNF— α的抗体, VEGF 的抗体, 金诺芬 (auranofm), 咪唑硫嘌吟', BB—94, ΒΒ—2156,· 碱式可溶 FGF 受体,羧基胺基三唑类(CAI),软骨衍生抑制剂 (CDI),几丁质,氯喹,顺铂, CM101 , 可的松 /肝素, 可的松 /hyaluroflan, 11-脱氧皮甾醇 /肝素, CT— 2584, 环磷酰胺, 环孢菌素 A, 地塞米松, 二氯酚酸 /透明质酸糖胺多糖, 嗜酸性的主要碱性蛋白, 纤连蛋白肽, 明胶酶抑制剂, 神经胶质瘤衍生的血管生成抑制因子 (GD— AIF), GM1474, 氯化金, 硫羟苹果酸金, 肝素酶, 透明质酸糖胺多糖(高分子量和低分 子量种类), 氢化可的松 / β环状右旋糖苷, 布洛芬, 吲哚美辛, α—干扰素, Υ— 干扰素诱导蛋白质 10, Υ—干扰素, IL一 1, IL-2, IL一 4, IL一 12, 层粘连蛋白, 左旋咪唑,三羧氨基喹啉, LM609,基质金属蛋白酶抑制剂,马马司他(marimastat (BB-2516)), 甲羟孕酮, 6—甲基巯基嘌呤核糖核苷, metastat (Col— 3 ), 氨甲 喋呤, 二甲胺四环素, 一氧化氮, 奧曲肽(生长激素释放抑制激素类似物), 杉醇, D—青霉酸衍胺, 多硫戊聚糖, 胎盘 proliferin相关蛋白, 胎盘核糖核酸酶抑制剂, 纤溶酶原激活因子抑制剂 (PAI),血小板因子—4(PF4),氢化泼尼松,催乳素(16Kda 片断), proliferin相关蛋白, 前列腺素合酶抑制剂, 鱼精蛋白, 类维生素 A, 罗喹 美克(LS— 2616, 三羟氨基喹啉), 生长激素释放抑制激素, 基质溶素抑制剂, 物 质 p,苏拉明, SU101 , tecogalan sodium (DS-4152),四氢皮质醇 -sthrombospondins (TSPs), 金属蛋白质酶组织抑制剂(TIMP1 , 2, 3), 血管内皮生长因子抑制剂, 维生素 A, vitaxin和玻璃体液。
[26] 在一个实施方案中,该组合物包含单一的组合物,其含有一种或多种氧 化剂和 /或还原剂、 半抗原和治疗剂, 由之组成的配方可以用于注射形式的药物传 输, 或者三种组合物, 一个含有一种或多种氧化剂或还原剂, 另一个含有半抗原, 还有一种含有治疗剂, 每一种都与药学上可接受的载剂或赋形剂混合组成可以注 射的形式。 也可以由一种自动混合注射器直接注入肿瘤, 或注入有癌性腹水的腹 腔, 或注入有癌性胸水的胸腔。 同时也提供了特定的医疗程序、 药学组合物和试 剂盒。 一方面, 治疗剂可以是抗肿瘤剂。 进一歩地, 抗肿瘤剂可以是化疗剂。
[27] 在一个特定的实施方案中, 提供了组合物, 其含有: a)氧化剂或还原 剂; b)抗肿瘤 (抗癌)剂, 如 Arc-C; 和 c)半抗原。
[28] 在另一个特定的实施方案中, 提供组合物, 该组合物包括: a)半抗原; 和 b)化疗剂。
[29] 在另一个特定的实施方案中, 提供组合物, 该组合物包括: a)半抗原; 和 b)氧化剂或还原剂。 - ·
[30] 在另一个特定的实施方案中, 提供组合物, 该组合物包括: a)化疗剂; 和 b)氧化剂或还原剂。 [31] 同时也提供一种治疗哺乳动物优选为人的肿瘤尤其是实体胂瘤的一种 方法, 包括原位施用有效量的氧化剂或还原剂、 半抗原和肿瘤治疗剂, 其引起肿 瘤赘生物的凝固, 由此产生针对肿瘤的自身免疫应答, 治疗肿瘤赘生物。 针对肿 瘤的自身免疫应答可以是体液的和 /或细胞免疫应答。
[32] 在治疗中应用的半抗原包括, 但不限于, 三硝基苯酚 (TOP ), 二硝基 苯酚(DNP), N-碘乙酰基一 N, ― (5—磺酸基 1—萘基)亚乙基二酰胺(AED), 二硝基氟苯(DNFB )和 Ovabulin (OVA) , 血清白蛋白 (Albumin)。
[33] 本方法和组合物所用的氧化剂包括, 但不限于, 过氧化氢 (¾02), 碳 酸酰胺, 维生素 -C, 高锰酸钾, 臭氧, 多元氧 07, 多元氧 08, NaI04, 过一硫酸 氢钾 (oxone) , D,L— S—甲基硫辛酸甲酯, 叔丁基氢过氧化物, 维生素 K3, 肼, iodogen, N-溴丁二酰亚胺, 奥美拉唑和 N-乙基马来酰亚胺。
[34] 本方法和组合物中使用的还原剂包括,但不限于, 苏木精, 一种含氧量 低的还原剂如一种硝基咪唑, 和非硝基化合物 SR 4233。
[35] 优选地,该组合物也包括一种促进剂和该方法进一步包括施用一种促进 剂, 该促进剂促进了半抗原和一种肿瘤赘生物的肿瘤抗原的接合。 促进剂包括, 但不限于,螯合剂如甘氨酰酪氨酰基- (N-e-二乙三胺五乙酸) -赖氨酸( GYK-DTPA ) 或亚德利亚霉素己二酸-二酰肼(ADR-ADH) ,或一个化学交联试剂如碳化二亚胺。
[36] 同时优选地,该组合物也可以包括一种免疫应答增效剂,该方法还可以 进一步包 在肿瘤上施用免疫应答增效剂。 该免疫应答增效剂包括, 但不限于, 多糖, 草药提取物如中草药提取物, 卡介苗(BCG), 小棒状杆菌, 葡萄球菌, 链 球菌, 肠道杆菌, 弧菌, 螺旋杆菌, 厌氧细菌, 棒状杆菌, 放线菌, 螺旋体, 支 原体; 一种酶 霍乱弧菌神经氨酸酶 (VCN), 木瓜蛋白酶, β -半乳糖苷酶和伴 刀豆球蛋白 Α, 以及非致病性病毒如非致病性的新城疫病毒。 也可以施用编码癌 基因的核酸或编码的基因产物, 或者包括于凝聚剂组合物中来提高免疫应答。 其 中的癌基因的实例包括, 但不限于, abl, erbA, erbB, ets, fes(fps), fgrf fins, fas, hst, intl, int2, jun, hit, B-lym, mas, met, mil (raj). · mos , myb, myc, N-myc, neu(ErbB2), ral(mil) , Ha-ras, Ki-ras, N-ras, rel, ros, sis, src, ski, trA:禾口 。 也包裹含有这些癌基因的病毒质粒和含这些质粒的细菌。 这些免疫增强剂可以是 这些细菌的抗原的组合物, 也可以是这些绅菌的活菌的组合物。
[37] 该组合物还可以包括凝聚裂解剂,和该方法进一步包括对肿瘤赘生物施 用这种试剂, 既可以单独施用也可以作为组合物的一部分施用。 凝聚裂解剂包括, 但不限于, 蛋白酶 K, 糖基 -磷脂酰肌醇 -B7和胰酶制剂。
[38] 这些组合物中的如本文所述的活性成分以及可选的其它成分和 /或其它 方法例如化学治疗可以同时施用, '或者连续施用如, 它们在在同一天、 同一周或 其它周期下施用。
[39] 目前的预期方法也可以与基因治疗结合,如,进一步在凝聚剂组合物中 包括肿瘤抑制基因如 pl6, p21 , p27, p53, RB, WT-1 , DCC, NF-1和 APC。 优 选地, 肿瘤抑制基因在一个病毒载体中如腺病毒载体, 猿病毒载体和条件复制人 免疫缺陷病毒载体中。
[40] 在一个优选的实施方案中, 在治疗中应用特定的组合物, 其中 ¾02作 为氧化剂, 和 NP作为半抗原。
[41] 在另一优选的实施方案中,使用的氧化剂或还原剂大约从 0.01% (w/w) 到大约 35% (w/w), 例如, 0.05% (w/w)、 0.1% (w/w)、 1% (w/w), 5% (w/w), 10% (w/w)、 20% (w/w), 30% (w/w), 且使用的半抗原从大约 lmg/ml到大约 80mg/ml,例如 5mg/ml、 10mg/ml、 20mg/ml、 30mg/ml、 40mg/ml、 50mg/mK 60mg/ml、 70mg/mK 80mg/ml。
[42] 凝聚作用也可以通过用某些物理方法处理肿瘤赘生物来进行,包括低温 疗法, 激光凝聚 (ILC), 经皮肤的微波凝聚治疗, 射频诱导凝聚经皮肤坏死, 反 式瞳孔热治疗和辐射治疗。
[43] 在一个优选的实施方案中, 半抗原与凝聚剂通过注射施用于肿瘤赘生 物。
[44] 在一个优选的实施方案中,半抗原与凝聚剂通过与外科手术过程组合施 用于肿瘤赘生物。
[45] 进一步提供了一种在哺乳动物中优选人类中,治疗肿瘤尤其是实体瘤的 方法, 包括原位施用有效量的抗肿瘤(抗癌)剂, 如 Ara-C, 和凝聚剂, 其能引起 肿瘤的凝聚, 由此治疗肿瘤。 优选地, 凝聚剂包括一种氧化剂, 其不能是醇或乙 醇。 同时优选的是, 凝聚剂是包括氧化剂或还原剂的组合物。
[46] 在另一个特定的实施方案中,提供了一种在哺乳动物中优选人类中治疗 肿瘤, 尤其是实体肿瘤的方法, 该方法包括原位施用有效量的抗肿瘤(抗癌)剂, 如 Ara-C, 和氧化剂或还原剂, 其能引起肿瘤的凝聚凝固, 由此治疗肿瘤。
[47] 在其它特定的实施方案中,提供了一种在哺乳动物中优选是人的治疗肿 、 瘤的方法尤其是实体肿瘤, 该方法包括原位注射有效量的半抗原, 和蛋白变性剂, 由此产生对肿瘤的自身免疫反应, 且治疗肿瘤。
[48] 在其它特定的实施方案中,提供了一种在哺乳动物中优选是人的治疗肿 瘤的方法尤其是实体肿瘤, 该方法包括原位注射有效量的半抗原, 和氧化剂或还 原剂, 由此产生对肿瘤的自身免疫反应, 且治疗肿瘤。
[49] 在其它特定的实施方案中,提供了一种在哺乳动物中优选是人的治疗肿 瘤的方法尤其是实体肿瘤, 该方法包括原位注射有效量的半抗原, 和氧化剂或还 原剂, 或注入有癌性腹水的腹腔, 或注入有癌性胸水的胸腔。 由此产生对肿瘤的 自身兔疫反应, 且治疗肿瘤。 ·
[50] 特定组合物和结合示例性地描述于以下的部分和随后的小部分中。
[51] .本发明提供了下列实施方案: I. 一种组合物, 其中包括:
a) 凝聚剂;
b) 半抗原; 和
c) 治疗剂。
2. 如实施方案 1的组合物, 其中所述凝聚剂是氧化剂或还原剂。
3.如实施方案 2的组合物, 其中所述氧化剂或还原剂、 所述半抗原和所述治 疗剂配成单一的药物组合物或每个配成独立的药物组合物。
4.如实施方案 3的组合物, 其中所述氧化剂选自过氧化氢、 碳酸酰胺、 维生 素 -C、 臭氧、 多元氧 07、 多元氧 08、 NaI04、 过一硫酸氢钾(Oxone)、 高锰酸钾、 D,L— S—甲基硫辛酸甲酯、 奥美拉唑、 N-乙基马来酰亚胺、 以及它们的组合。
5.如实施方案 2的组合物,其中所述还原剂选自苏木精、含氧量低的还原剂、 和非硝基化合物替拉扎明 (SR— 4233 )。
6.如实施方案 5的组合物, 其中所述含氧量低的还原剂是硝基咪唑。
7.如实施方案 1至 6任一项所述的组合物, 其中所述半抗原选自三硝基苯酚 (TNP)、二硝基苯酚(DNP)、 N-碘乙酰基一 N, 一(5—磺酸基 1—萘基)亚乙基 二酰胺(AED)、二硝基氟苯(DNFB)和 Ovabulin (OVA).血清白蛋白( Albumin)、 以及它们的组合。
8.如实施方案 1至 7任一项所述的组合物, 其中所述治疗剂是抗肿瘤剂。
9.如实施方案 8所述的组合物, 其中所述抗肿瘤剂是抗肿瘤化疗剂。
10.如实施方案 8所述的组合物, 其中所述抗肿瘤剂是生物治疗剂。
II.如实施方案 10所述的组合物, 其中所述生物治疗剂是抗血管生成剂。
12.如实施方案 11所述的组合物, 其中所述抗血管生成剂选自基底膜降解抑 制剂、 细胞迁移抑制剂、 内皮细胞增生抑制剂、 三维结构和效能的建立的抑制剂、 以及它们的组合。
13.如实施方案 12所述的组合物,其中所述抗血管生成剂选自血管抑制基因、 血管抑制趋化因子基因、 AGM—一 1470 (TNP— 470)、 血管抑制类固醇、 血管抑 素、 抗 av P 3抗体、 抗碱性成纤维细胞生长因子抗体、 抗 IL一 1抗体、 抗 TNF— α抗体、 抗 VEGF抗体、 金诺芬、 咪唑硫嘌呤、 ΒΒ— 94、 ΒΒ— 2516、 碱性 FGF 一可溶性受体、 羧基氨基三唑类(CAI)、 软骨衍生抑制剂 (CDI)、 几丁质、 氯喹、 顺铂、 CM101、 可的松 /肝素、 可的松 / hyaluroflan、 cortexolone/肝素、 CT—2584、 环磷酰胺、 环孢菌素 A、 地塞米松、 二氯酚酸 /透明质酸糖胺多糖、 嗜酸性的主 要碱性蛋白、 纤连蛋白肽、 明胶酶抑制剂、 神经胶质瘤血管生成抑制因子 (GD— AIF)、 GM1474, 氯化金、硫羟苹果酸金、 肝素酶、 透明质酸糖胺多糖(高分子量 和低分子量种类)、 氢化可的松、 β环状右旋糖.苷、 布洛芬、 吲哚美辛、 α—干扰 素、 Υ—干扰素诱导蛋白质 10、 Υ—干扰素、 IL— 1、 IL—2、 IL—4、 IL一 12、 层 粘连蛋白、左旋咪唑、三羟氨基喹啉、 LM609,基质金属蛋白酶抑制剂、 marimastat (BB-2516 ) , 甲羟孕酮、 6—甲基巯基嘌吟核糖核苷、 metastat ( Col— 3 )、 氨甲 喋呤、二甲胺四环素、一氧化氮、奧曲肽(生长激素释放抑制激素类似物)、杉醇、 D—青霉酸衍胺、 多硫戊聚糖、 胎盘 proliferin相关蛋白、 胎盘核糖核酸酶抑制剂、 纤溶酶原激活因子抑制剂 (PAI)、血小板因子一 4(PF4)、氢化泼尼松、催乳素(16Kda 片断)、 proliferin相关蛋白、 前列腺素合酶抑制剂、 鱼精蛋白、 类维生素 、 罗喹 美克(LS— 2616、 三羟氨基喹啉)、 生长激素释放抑制激素、 基质溶素抑制剂、 物 质 、苏拉明、 SU101、 tecogalan sodium (DS— 4152)、四氢皮质醇 -sthrombospondins
(TSPs) , 金属蛋白质酶组织抑制剂 (TIMP1、 2、 3)、 血管内皮生长因子抑制剂、 维生素 A、 vitaxin和玻璃体液。
14.如实施方案 9所述的组合物,其中所述抗肿瘤化疗剂选自烷化剂、抗代谢 剂、 天然产物、 铂配位复合物、 蒽二酮、 取代脲、 甲肼衍生物、 皮质激素抑制物、 某些激素和拮抗剂、 抗癌症多糖和草药提取物。
15.如实施方案 14所述的组合物, 其中所述草药提取物是中药提取物。
16.如实施方案 8所述的组合物,其中所述抗肿瘤剂是癌基因抑制物或肿瘤抑 制基因或蛋白质。
17.如实施方案 16所述的组合物, 其中所述癌基因抑制物是抗癌基因抗体或 抗癌基因反义寡聚核苷酸。
18.如实施方案 17所述的组合物,其中所述癌基因选自 abl, erbA, erbB, ets, fesffps), fgr , fins, fas, hst, intl, int2, jun, hit, B-lym, mas, met, mil (r of), mos, myb, myc, N-myc, neu(ErbB2) , ral(mil), Ha-ras, Ki-ras, N-ras, rel, ros,
Figure imgf000010_0001
19.如实施方案 16所述的组合物,其中所述肿瘤抑制基因选自 pl6, p21 , P27, p53 , RB, WT- 1 , DCC, NF— 1和 APC。
20.如实施方案 1或 2所述的组合物,进一步包含含有癌基因或肿瘤抑制基因 序列的病毒载体。 '
21.如实施方案 20所述的组合物, 其中所述病毒载体选自腺病毒载体、 猿病 毒载体、 条件复制人免疫缺陷病毒载体、 反转录病毒载体、 SV40载体、 单纯孢疹 病毒扩增子载体和痘病毒载体。
22.如实施方案 18所述的组合物, 其中所述癌基因包括带有所述癌基因的病 毒质粒, 或带有所述病毒质粒的细菌。
23.如实施方案 1或 2所述的组合物,进一步包含在所述半抗原和肿瘤抗原之 间促进结合的促进剂。
24.如实施方案 23所述的组合物, 其中所述促进剂是螯合剂或化学交联剂。
25.如实施方案 24所述的组合物, 其中所述螯合剂是甘氨酰酪氨雕基- (N-e- 二乙三胺五乙酸) -赖氨酸 (GYK-DTPA ) 或亚德利亚霉素己二酸-二酰肼
Figure imgf000010_0002
26.如实施方案 24所述的组合物, 其中所述化学交联剂是碳化二亚胺。
27.如实施方案 1或 2所述的组合物,其中所述治疗剂进一步包含免疫增效剂 或免疫趋化剂。
28.如实施方案 27所述的组合物, 其中所述免疫增效剂或免疫趋化剂选自卡 介苗(BCG)、 小棒状杆菌、流产布鲁氏菌、 葡萄球菌、 链球菌、肠道杆菌、弧菌、 螺旋杆菌、 厌氧细菌、 棒状杆菌、 放线菌、 螺旋体、 支原体、 阿米巴原虫、 和它 们的基因工程菌; 实施方案 22所述的病毒质粒或所述细菌; 葡聚糖、 酶、 左旋咪 唑、 泰洛伦、 非致病性病毒、 多糖和草药提取物; 和它们的任意组合。
29.如实施方案 28所述的组合物, 其中所述免疫受体增效剂是所述细菌的活 菌或活菌的组合物。
30.如实施方案 29所述的组合物, 其中所述活菌的组合物包含如实施方案 22 所述的病毒质粒或所述细菌。
31.如实施方案 29至 30所述的组合物,其中所述活菌是抗菌素可杀死的活菌。
32.如实施方案 29至 30所述的组合物,其中所述活菌是可致病的活菌或可引 起人体免疫反应的活菌。
33.如实施方案 29至 32所述的组合物, 其中所述活菌的量为从 107至 1012 个细菌。 .
34. 如实施方案 28 所述的组合物, 其中所述酶选自霍乱弧菌神经氨酸酶 (VCN)、 木瓜蛋白酶、 半乳糖苷酶和伴刀豆球蛋白 A。
35.如实施方案 28所述的组合物, 其中所述非致病性病毒是非烈性新成疫病 毒。
36.如实施方案 2所述的组合物, 其中所述氧化剂是 H202、 碳酸酰胺、 高锰 酸钾、 维生素 -C或它们的组合, 所述半抗原是 TNP。
37.如实施方案 36所述的组合物, 其中所述氧化剂是 ¾02, 所述半抗原是 DNP, 且促进剂是碳化二亚胺。
38.如实施方案 2所述的组合物,其中所述氧化剂或还原剂的量从大约 0.01% (w/w) 到大约 35% (w/w), 且所述半抗原的量从大约 lmg/ml到大约 80mg/ml。
39.一种包含实施方案 1-38任一项所述组合物的试剂盒。
40.—种制品, 其包括:
a) 包装材料;
b) 实施方案 1-38任一项所述的组合物; 且
c) 表明所述制品是用于治疗肿瘤的标签。
41.一种治疗哺乳动物肿瘤的方法,包括向所述哺乳动物肿瘤原位施用入治疗 •有效量的半抗原、 抗肿瘤剂和凝聚剂。
42.如实施方案 41所述的方法, 其中所述抗肿瘤剂是化疗剂。
43.如实施方案 41或 42所述的方法, 其中所述哺乳动物是人。 44.如实施方案 41至 43任一项所述的方法,其中所述半抗原选自三硝基苯酚 (TNP)、二硝基苯酚(DNP)、 N-碘乙酰基— N, - (5—磺酸基 1一萘基)亚乙基 二酰胺(AED)、二硝基氟苯(DNFB)和 Ovabulin( OVA)、人血清白蛋白(Albumin )。
45.如实施方案 44所述的方法, 其中进一步包括对肿瘤施用促进剂。
46.如实施方案 45所述的方法, 其中所述促进剂是螯合剂或化学交联试剂。
47. 如实施方案 44所述的方法, 其中所述螯合剂是甘氨酰酪氨酰基一 (N-e 一二乙三胺五乙酸) 一赖氨酸 (GYK— DTPA) 或亚德利亚霉素己二酸一二酰肼
Figure imgf000012_0001
48. 如实施方案 46所述的方法, 其中所述化学交联试剂是碳化二亚胺。
49.如实施方案 47或 48所述的方法,其中进一步包括对所述肿瘤施用免疫应 答增效剂或免疫趋化剂。
50.如实施方案 49所述的方法,其中所述免疫应答增效剂选自卡介苗 (BCG)、 小棒状杆菌、 葡萄球菌、 链球菌、 肠道杆菌、 弧菌、 螺旋杆菌、 厌氧细菌、 棒状 杆菌、 放线菌、 螺旋体、 支原体、 流产布氏菌提取物和阿米巴、 和它们的基因工 程菌; 实施方案 22所述的病毒质粒或所述细菌;; 葡聚糖, 酶, 左旋咪唑, 泰洛 伦, 酶, 非致病性病毒, 多' ϋ和草药提取物; 以及它们的任意组合。
51.如实施方案 48所述的方法, 其中所述免疫应答增效剂选自所述细菌的活 菌或活菌的组合物。 ―
52.如实施方案 50所述的方法,其中所述酶选自霍乱弧菌神经氨酸酶 (VCN)、 木瓜蛋白酶、 e -半乳糖苷酶和伴刀豆球蛋白 A。
53.如实施方案 50所述的方法, 其中所述非致病性病毒是非致病性的新成疫 病毒。
54.如实施方案 41至 43任一项所述的方法,进一步包括对所述肿瘤施用凝聚 裂解试剂。
55.如实施方案 54所述的方法, 其中所述凝聚裂解试剂选自蛋白酶 K、 糖基 一磷脂酰肌醇一 Β7和胰酶制剂。
56.如实施方案 41至 55任一项所述的方法,其中所述凝聚剂是包括氧化剂或 还原剂的组合物。
57.如实施方案 56所述的方法, 其中所述氧化剂或还原剂、 所述半抗原和所 述抗肿瘤剂被配制成单一的药物组合物, 或每个配成独立的药物组合物。
58.如实施方案 57所述的方法, 其中所述氧化剂或还原剂、 所述半抗原和所 述抗肿瘤剂被配制成单一的药物组合物, 并行肿瘤内注射治疗。
59.如实施方案 58所述的方法, 其中所述行肿瘤内注射治疗是重复行肿瘤内 注射治疗。
60.如实施方案 57所述的方法, 其中所述单一的药物组合物通过血管导管实 施于肿瘤内.。 61.如实施方案 60所述的方法, 其中所述单一的药物组合物在通过血管导管 实施于肿瘤内之前与肿瘤栓塞剂混合。
62. 如实施方案 56-61任一项所述的方法, 其中所述氧化剂或还原剂、 所述半 抗原和所述抗肿瘤剂被配制成单一的药物组合物, 其中所述氧化剂或还原剂、 所 述半抗原和所述抗肿瘤剂的至少两种经过自动注射混合装置混合。
63.如权利 61所述的肿瘤栓塞剂是碘油、 碘油乳化剂或任何起栓塞作用的乳 化剂。
64.如实施方案 58或 59所述的方法,其中在所述行肿瘤内注射治疗后一定时 间, 行手术切除肿瘤。
65.如实施方案 64所述的方法,其中切除得到的肿瘤保存于 -80°C下, 用于免 疫疫苗治疗。
66.如实施方案 64所述的方法,其中切除得到的肿瘤被直接无菌操作研成浆, 过滤, 行指和 /或趾蹼皮下注射。
67.如实施方案 65所述的方法,其中保存于 -80°C下的肿瘤行无菌操作研成 桨, 过滤, 行指和 /或趾蹼皮下注射。
68. 如实施方案 65所述的方法,其中保存于 -80°C下的肿瘤被复苏,细胞培养, 再用半抗原侵染, 用 H202或放射灭活, 再行指(趾)蹼皮下注射。
69.如实施方案 41-68任一项所述的方法,其中所述哺乳动物或人的血液或者. 其所有白细胞和淋巴细胞被用于治疗同类的癌症患者。
70.如实施方案 69所述的方法,其中所述哺乳动物或人的脾脏、 淋巴结或胸 腺被活检取得, 再进行体外培养或与瘤细胞进行杂交, 生产单克隆抗体和杀伤性 的淋巴细胞。
71.如实施方案 56所述的方法, 其中所述氧化剂选自双氧水(¾02)、碳酸酰 胺、 维生素 -C、 高锰酸钾、 臭氧、 多元氧 07、 多元氧 08、 NaI04、 Oxone, D,L— S—甲基硫辛酸甲酯、 叔丁基氢过氧化物、 维生素 K3、 肼、 Iodogen、 N-溴丁二酰 亚胺、 奥美拉唑和 N-乙基马来酰亚胺。
72.如实施方案 56所述的方法, 其中所述还原剂选自苏木精、 含氧量低的还 原剂和非硝基化合物 SR 4233。
73.如实施方案 72所述的方法, 其中所述含氧量低的还原剂是硝基咪唑。 74. 如实施方案 56所述的方法, 其中所述抗肿瘤剂是抗血管生成剂。
75.如实施方案 74所述的方法, 其中所述抗血管生成剂选自基底膜降解的抑 制物、 细胞迁移抑制物、 内皮细胞增生抑制物、 三维结构和效能的建立的抑制物。
76.如实施方案 74所述的方法, 其中所述抗血管生成剂选自血管抑制基因、 血管抑制趋化因子基因、 AGM—一 1470 (TNP— 470)、 血管抑制类固醇、 血管抑 素、 抗 av e 3抗体、 抗碱性成纤维细胞生长因子抗体、 抗 IL一 1抗体、 抗 TNF— α抗体、 抗 VEGF抗体、 金诺芬、 咪唑硫嘌呤、 ΒΒ—94、 ΒΒ 2516、 碱性 FGF 一可溶性受体、 羧基氨基三唑类(CAI)、 软骨衍生抑制剂 (CDI)、 几丁质、 氯喹、 顺铂、 CM101、 可的松 /肝素、 可的松 /hyaluroflan、 cortexolone/肝素、 CT— 2584、 环磷酰胺、 环孢菌素 A、 地塞米松、 二氯酚酸 /透明质酸糖胺多糖、 嗜酸性的主要 碱性蛋白、纤连蛋白肽、明胶酶抑制剂、神经胶质瘤血管生成抑制因子(GD— AIF)、 GM1474、 氯化金、 硫羟苹果酸金、 肝素酶、 透明质酸糖胺多糖(高分子量和低分 子量种类)、 氢化可的松、 β环状右旋糖苷、 布洛芬、 吲哚美辛、 α—干扰素、 Υ 一干扰素诱导蛋白质 10、 y—干扰素、 IL— 1、 IL_2、 IL_4、 IL—12、 层粘连蛋 白、左旋咪唑、 三羟氨基喹啉、 LM609、基质金属蛋白酶抑制剂、 marimastat (BB 一 2516)、 甲羟孕酮、 6—甲基巯基嘌呤核糖核苷、 metastat ( Col-3 ) , 氨甲喋呤、 二甲胺四环素、 一氧化氮、 奥曲肽(生长激素释放抑制激素类似物)、 杉醇、 D— 青霉酸衍胺、 多硫戊聚糖、 胎盘 proliferin相关蛋白、 胎盘核糖核酸酶抑制剂、 纤 溶酶原激活因子抑制剂(PAI)、血小板因子一 4 (PF4)、氢化泼尼松、催乳素( 16Kda 片段)、 proliferin相关蛋白、 前列腺素合酶抑制剂、 鱼精蛋白、 类维生素八、 罗喹 美克(LS— 2616、三羟氨基喹啉)、 生长激素释放抑制激素、基质溶素抑制剂、 物 质 p、苏拉明、 SU101、 tecogalan sodium (DS— 4152)、四氢皮质醇 -sthrombospondins (TSPs)、 金属蛋白质酶组织抑制剂(TIMP1、 2、 3 )、 血管内皮生长因子抑制剂、 维生素 A、 Vitaxin和玻璃体液。
77.如实施方案 56所述的方法, 其中所述抗肿瘤剂选自.垸化剂、 抗代谢剂、 天然产物、 铂配位复合物、 蒽二酮、 取代脲、 甲肼衍生物、 皮质激素抑制物、 激 素和拮抗剂。
78.如实施方案 56所述的方法, 其中所述抗肿瘤剂是癌基因抑制物或肿瘤抑 制基因或蛋白质。
79.如实施方案 78所述的方法, 其中所述癌基因抑制物是抗癌基因抗体或抗 癌基因反义寡聚核苷酸。
80. 如实施方案 78所述的方法, 其中所述癌基因选自 erbA , erbB。 Ets, fes(fps) , fgr, fins., fos, hst, intl , int2, jun, hit, B-lym, mas, met, mil(rqf) ., mos, mybf myc, N-myc, neu(ErbB2) , ral(mil), Ha-ras, Ki-ras, N-ras , rel, ros, sis, src, ski, trk和 yeso
81.如实施方案 78所述的方法, 其中所述肿瘤抑制基因选自 pl6, p21, p27, p53 , RB, WT- 1 , DCC, NF— 1和 APC。
82. 如实施方案 53所述的方法, 进一步对肿瘤施用含有癌基因或肿瘤抑制基 因序列的病毒载体, 或含所述病毒载体的工程细菌。
83.如实施.方案 82所述的方法, 其中所述病毒载体选自腺病毒载体、 猿病毒 载体和条件复制人免疫缺陷病毒载体、 逆转录病毒载体、 SV40载体、 单纯孢疹病 毒'扩增子载体和痘病毒载体, 或含所述病毒载体的细菌工程菌。
84. 如实施方案 56所述的方法,其中所述氧化剂是 ¾02,所述半抗原是 TNP。 85.如实施方案 56所述的方法,其中所述氧化剂或还原剂从大约 0.01%(w/w) 到大约 35 % (w/w), 所述半抗原从大约 lmg/ml到 80mg/ml。
86.如实施方案 41所述的方法, 其中任选地, 所述凝聚剂被选自下列的凝聚 治疗替代: 低温疗法、 激光凝聚(ILC)、 经皮肤的微波凝聚治疗、 射频诱导凝聚 坏死、 反式瞳孔热治疗、 超声波治疗和辐射治疗, 或者与所述凝聚治疗联合施用。
87.如实施方案 41-86任一项所述的方法, 其中所述肿瘤选自肾上腺、 肛门、 听觉神经、 胆管、 膀胱、 骨、 脑、 乳房、 中枢神经系统、 子宫颈、 结肠、 耳、 子 宫粘膜、 食管、 眼、 眼睑、 输卵管、 肠胃束、 头和颈、 心脏、 肾、 喉、 肝脏、 肺、 上颚、 下颌髁、 上颌骨、 嘴、 鼻咽、 鼻、 口腔、 卵巢、 胰腺、 腮腺、 阴茎、 耳廓、 垂体、 前列腺、 直肠、 视网膜、 唾液腺、 皮肤、 小肠、 脊髓、 胃、 睾丸、 甲状腺、 扁桃体、 尿道、 子宫、 阴道、 前庭蜗神经、 和外阴、 各种癌的淋巴及淋巴结转移 病灶和恶性淋巴瘤。 .
88.如实施方案 41-86任一项所述的方法, 其中所述肿瘤是实体肿瘤。
89.如实施方案 88所述的方法, 其中所述实体肿瘤的大小大于 108个细胞。
90.如实施方案 89所述的方法, 其中所述实体肿瘤的大小从大约 5X109到大 约 1011个细胞。
91.如实施方案 41所述的方法, 其中所述半抗原与所述凝聚剂是通过肿瘤内 注射施于所述肿瘤的。
92.如实施方案 41所述的方法, 其中所述半抗原与所述凝聚剂是通过与外科 手术程序结合的方式施于所述肿瘤的。
93.如实施方案 41所述的方法, 其中所述半抗原与所述凝聚剂是通过血管导 管的方式施于所述肿瘤的。
94.如实施方案 41所述的方法, 其中所述半抗原与所述凝聚剂在和肿瘤栓塞 剂混合后通过血管导管的方式施于所述肿瘤。
95.如实施方案 · 41所述的方法, 其中所述半抗原与所述凝聚剂在通过混合注 射装置混合后, 再行肿瘤内或血管导管的方式施于所述肿瘤。
96.如实施方案 41所述的方法, 进一步包括原位施用选自自杀基因序列、 细 胞裂解基因序列、 细胞因子基因序列、 辐射致敏剂、 含细胞因子的贮存库、 报告 子和报告基因序列的分子即含有这些基因的病毒质粒, 即含有这些病毒质粒的细 菌。
97.如实施方案 1所述的组合物,进一步包括选自自杀基因序列、细胞裂解基 因序列、 细胞因子基因序列、 辐射致敏剂、 含细胞因子的贮存库、 报告子和报告 基因序列的分子。
98.一种组合物, 其包括:
a) 半抗原; 和 ·
b) 抗肿瘤剂 99.实施方案 1-38和 97任一项所述的组合物在制备抗肿瘤药物中的用途。 附图说明
[52] 图 1和 2表示在鼠中的治疗研究结果。图 1是各组小鼠弹力纤维、胶原 纤维、 网状纤维分析结果比较图; 图 2是各组肿瘤组织 CD4和 CD8含量比较图。
[53] 图 3是混合注射的示意图。
[54] 图 4和 5是血管插管肝脏直接药液输注示意图。
[55] 图 6是本发明治疗机理的示意图。
[56] 图 7为彩色照片, 包括图 7-1、 7-2和 7-3, 显示了鼠中的放射性同位素 的保留研究结果。 图 7-1中第一排 (上排)是常规的注射方法所得结果, 第二排是本 发明药物注射方法所得结果;显示刚注射完同位素显影大小一样。图 7-2中第一排 (上排)是常规的注射方法所得结果,第二排是本发明药物注射方法所得结果;显示: 注射完同位素显影大小不一样, 常规方法的同位素已经开始流散, 本发明的同位 素停留不动。 图 7-3中第一排 (上排)是常规的注射方法所得结果, 第二排是本发明 药物注射方法所得结果; 显示: 注射完同位素显影大小不一样, 常规方法的同位 素已经流散无影, 本发明的同位素停留不动, 只是半衰期的原因变淡。 这些照片 显示了, 随着时间推移, 采用常规注射方法和本发明注射方法中的放射性同位素 在肿瘤中的保留情况不同, 本发明注射方法具有较高的肿瘤内保留率。 具体实施方式
[57] 本发明提供的是一种用于肿瘤内免疫治疗癌症,包括肿瘤赘生物、肿瘤 和癌症组织的组合物和方法, 优选的是与肿瘤内聚焦化学疗法、 基因疗法、 放射 疗法和外科手术相组合。 在此公开的是在原位传送半抗原的同时, 肿瘤赘生物、 肿瘤或癌组织和细胞的凝聚, 是治疗这些肿瘤赘生物、 肿瘤或癌症的有效方法。 凝聚可以通过化学方法来完成 如, 用氧化剂或还原剂或者组合的氧化剂或还原 剂和化疗剂来处理肿瘤组织或细胞。 凝聚也可以通过物理方法来完成, 如, 用不 同的物理治疗方法来处理肿瘤组织或细胞如低温治疗, 激光凝聚 (ILC), 经皮肤 的微波凝聚治疗, 射频诱导凝聚坏死, 反式瞳孔热治疗和辐射治疗。
[58] 尽管不希望受到在此描述的任何瑪论或机制的局限,目前了解的是以下 凝聚效应和半抗原对于治疗肿瘤赘生物、 肿瘤和癌症有作用。 首先, 通过原位的 化学的或物理的方法介导肿瘤组织和细胞的凝聚杀死至少部分, 大多数情况下, 在靶肿瘤中大于 50%的瘤细胞。 总的来说, 凝聚作用类似外科手术, 其降低了肿 瘤的重量, 有利于后续的免疫治疗。 此外, 凝聚也可以导致细胞表面, 胞外基质 的结构变化, 且细胞裂解释放肿瘤细胞的成分, 即局部发炎。 这一发炎效应, 与 加入的半抗原一起, 进一步产生更多的复合的免疫原, 其中半抗原与通过凝聚作 用导致的肿瘤细胞裂解产生的肿瘤特异抗原结合。 发炎区域吸引不同的淋巴细胞, 如肿瘤抗原递呈细胞 (APC), 巨噬细胞, 树突细胞(DC)和活化的 B细胞, 淋 巴细胞聚集于发炎区域且与肿瘤抗原作用, 如, 复合的肿瘤抗原, DNA, RNA和 其它从细胞裂解释放的组分。 这些相互作用诱导了肿瘤特异的免疫应答, 其中包 括体液的、 细胞的和补体介导的应答。 这一局部的肿瘤特异免疫应答通过在邻近 存在的没有通过开始的凝聚作用杀死的活肿瘤赘生细胞得到更进一步增强。 通过 这种方式, 后续的肿瘤特异免疫应答增强了凝聚作用的效果 (原位接种疫苗) 并 且延伸至转移的肿瘤赘生物部位, 作为 "看不见的手术刀"来阻止肿瘤细胞的复 发和转移。 .
[59] 该组合物和方法也可以通过其对胞外基质 (EM) 的作用效果来达到治 疗效果。在体内, 肿瘤细胞被胞外基质包围, 如胶原, 纤维结合素, 蛋白聚糖(蛋 白 /碳水化合物), 透明质酸和其它高分子量的物质。 已经显示, 肿瘤细胞与正常细 胞的胞外基质是不同的。 纤维结合素与胶原, 两个主要的被研究的胞外基质成分, 随着细胞的转化其质量和数量都会改变。 研究表明转化细胞分泌的纤维结合素与 相同的正常组织相比磷酸化增加许多。 另外, 肿瘤细胞合成的纤维结合素有慢的 电泳迁移率。 假如有的话, 肿瘤细胞表面相关联的纤维结合素比较少。 肿瘤细胞 分泌的纤维结合素大大低于正常细胞分泌的纤维结合素。 胶原是一种长的蛋白链 和分子索, 它把其它的物质结合在一起且作为细胞的信息载体。 已经显示, 包围 细胞的胶原的性质与细胞的形状、 分化和细胞分裂有关。 据信癌症的胞外基质的 修饰或破坏导致细胞的饥饿, 切断癌症细胞紧急需要的葡萄糖的输送。
[60] 当所述组合物, 如发明内容中所描述的组合物或以下 B部分描述的组 合物, 注射入肿瘤, 该组合物将分散在肿瘤周围的胞外基质中。 胞外基质会被氧 化或还原变性或改变。 例如, 当过氧化氢 (H202) 作为氧化剂, 胞外基质至少会 部分被过氧化氢破坏产生羟基自由基(305nm光照)。 胞外基质也至少会部分地通 过被还原剂如苏木精反应损伤。 这样的部分破坏会导致胞外基质形状损伤。 另外, 当抗癌药物与所述组合物结合使用时, 抗癌症药物会在一定程度上被胶原和别的 胞外基质物包围。 随着胞外基质的改变, 当周围发生微小的改变时, 肿瘤的中心 区域会坏死, 这就允许初始治疗后缓慢释放抗癌症药物到肿瘤细胞的周围。 进一 步, 当肿瘤坏死时, 许多肿瘤蛋白会被半抗原, 假如包括在所述组合物中的话, 如 ^^或 DNP修饰, 以增加肿瘤特异性抗原性。
[61] 肿瘤特异性免疫反应可以通过原位施用或通过包含氧化剂、促进半抗原 与肿瘤抗原结合的促进剂、 免疫反应增效剂、 凝固细胞裂解剂、 癌基因产物或任 何这些物质的组合物而增加。
[62] 预期的治疗可以单独使用或与别的癌症治疗相结合,例如,但不局限于, 手术, 辐射治疗, 化疗和传统的免疫治疗。 例如, 这种治疗可以通过在氧化凝固 剂组合物中加入第二种抗肿瘤剂, 如抗血管生成剂, 与化疗一起使用。 这种组合 治疗是有利的, 因为氧化凝固增加抗肿瘤剂保留在凝固的肿瘤团块中的时间, 使 肿瘤团块暴露于抗肿瘤剂下更长的时间。 在这一点上, 氧化凝聚是作为控制药物 释放的工具。
[63] 总之, 氧化凝固减少至少靶肿瘤内的一些或大于 50%的肿瘤细胞所杀 死。 抗肿瘤剂杀死没有被凝固初始杀死的仍活着的细胞。 原位 "接种"进一步减 少活的肿瘤细胞, 导致比分开的任何一种治疗更好的效果。
[64] 在一实施例中,通过在氧化凝固剂组合物中加入辐射致敏剂,治疗可以 与辐射治疗一起使用。 在这方面, 凝固作为控制药物释放的工具, 释放辐射致敏 剂到没有被凝固初始杀死的仍活着的肿瘤细胞, 增加辐射治疗的效果。
[65] 在另一实施例中, 治疗可以在手术前使用。在这方面,氧化凝固在预治 疗肿瘤前发挥重要作用, 使手术易于排除肿瘤团块, 减少肿瘤转移率。
[66] 在另一实施例中, 通过在凝固剂组合物中加入编码所要的野生型癌基 因、 肿瘤抑制基因、 免疫细胞因子基因或凋亡基因的核酸, 该治疗可以与基因治 疗结合使用。 这种组合治疗是有利的, 因为氧化凝固有利于把这些野生型癌基因 或肿瘤抑制基因导入活的肿瘤细胞, 然后这些基因会被带到别的位点。 在这方面, 受到氧化凝固作用影响的活的肿瘤细胞会被作为基因治疗的载体发挥作用。
[67] 在所有的治疗中,半抗原所起到的作用, 是特异免疫反应的作用, 如肿 瘤免疫染色 CD4和 CD8呈阳性反应; 淋巴结及脾脏肿大。
[68] 在所有的治疗中, 免疫佐剂, 如 BCG, 可以与凝固剂组合物相结合增 加对肿瘤细胞的免疫反应,如使 CD4和 CD8阳性率高或淋巴结及脾脏肿大更明显。 其中活菌的接种到肿瘤中心起到的主动免疫的作用, 因细菌的繁殖增生, 产生内 外毒素, 杀死肿瘤细胞, 同时引起人体的主动非特异免疫作用, 肿瘤的死亡被半 抗原所修饰成为全抗原, 起到主动的特异性免疫作用。
[69] 免疫佐剂可以重复地再注射, 如每隔 2 到 4 周注射。 低剂量 cyclosphamide, 如 200到 300mg/ni2也可以预先施用, 例如提前 3天, 每一原位免 疫接种以加强对抗原的细胞介导免疫的发展。
[70] 在所有的治疗中,有效的病例的血液内的白细胞和淋巴细胞等,可以用 · 来治疗同类的癌症患者, 因为这些病人在上述治疗中, 肿瘤死亡和半抗原的结合, 已经起到了免疫疫苗的作用, 在病人身体中白细胞和淋巴细胞, 是被抗原刺激后 生长起来的, 具有杀伤肿瘤的作用。
[71] 在所有的治疗中,有效病例的血液包裹白细胞和淋巴细胞, 和脾脏, 淋 巴结和胸腺, 可以体外培养, 或与瘤细胞进行杂交, 生产出单克隆抗体和杀伤性 的淋巴细胞, 用于治疗同类的癌症患者。
A .定义
[72] 除非另外定义,在此使用的所有技术和科学术语都有与本发明所属技术 领域的技术人员一般理解的同样意义。 所有在此参考的专利、 申请、 公开的申请 和别的出版物和来自 GenBank和其他数据库的序列是完整的引入此处作为参考。 如果此节中阐明的定义与引入此处作为参考的申请、 公开的申请和别的出版物和 来自 GenBank和其他数据库的序列中阐明的定义相反或不一致, 此节中阐明的定 义比在此引入作为参考的定义优先。
[73] 正如在此使用, "一个"意味着 "至少一个"或 "一个或多个"。
[74] 正如在此使用, 氧化一还原反应指电子从供体传到受体分子的反应。
[75] 正如在此使用, 氧化试剂(或氧化剂)指在氧化一还原反应中接受电子 的试剂。
[76] 正如在此使用, 还原试剂(或还原剂)指在氧化一还原反应中提供电子 的试剂。
[77] 正如在此使用, 蛋白质变性剂指导致蛋白质变性的试剂, 也就是, 部分 或全部伸展蛋白质多肽链特定天然的构象(二级, 三级, 四级结构)。
[78] ,正如在此使用,半抗原指除非与载体或分子相结合,才能诱导抗体形成 的抗体特异性物质。 一旦半抗原与载体 /分子结合, 用该偶合物产生的抗体可以识 别半抗原和 /或载体 /部分。半抗原一载体 /分子的偶合物也可以产生特异的细胞免疫 反应。
[79] 正如在此使用,抗肿瘤治疗指设计的任何减少或改良其症状的治疗肿瘤 赘生物、 肿瘤或癌症的治疗方案。 预防肿瘤赘生物、 肿瘤或癌症复发或减少其严 重性的治疗方法也在考虑之列。
[80] 正如在此使用, 肿瘤赘生物指异常的新的生长, 所以与肿瘤同义, 可以 是良性瘤或恶性瘤。 不同于增生, 肿瘤赘生物的增殖甚至在没有起始的刺激的情 况下还在持续。
[81] 正如在此使用, 癌症指由任何形式的恶性肿瘤引起的一类疾病的总称。
[82] 正如在此使用, 恶性的, 当用于肿瘤时, 指具有癌扩散转移能力, 同时 失去生长控制和位置控制的初级瘤。
[83] 正如在此使用, 抗肿瘤剂(可以与抗赘生物肿瘤剂,抗瘤或抗癌剂互换 使用) 指任何用于抗肿瘤治疗的试剂。 这些试剂包括, 当单独使用或与别的化合 物组合使用的任何试剂, 它们可以减轻、 减少、 改善、 阻止或调整或保持与赘生 性肿瘤、 肿瘤或癌症相关联的临床症状或诊断标记的缓解状态, 它们可以用于此 处所'提供的方法、 组合和组合物中。 抗赘生物肿瘤剂包括, 但不限于, 抗血管生 成剂, 烷化剂, 抗代谢物, 一些天然产物, 铂配位复合物, 蒽二酮, 取代脲, 甲 肼衍生物, 肾上腺皮质激素抑制物, 某些激素和拮抗剂, 抗癌症多糖和某些草药 提取物如中草药提取物。
[84] 正如在此使用, 抗肿瘤剂(或抗肿瘤或抗癌剂)或抗赘生物肿瘤治疗并 不包括包含氧化剂或还原剂、 蛋白变性剂、 和半抗原的组合物, 或采用它们的治 疗, 但包括本技术领域的技术人员所知的为了改善肿瘤赘生物、 肿瘤或癌症的一 些形式的症状的所有药剂和治疗形式。
[85] 正如在此使用, "血管生成"指从母微血管中产生新的血管。 血管生成 是由血管生成刺激物和抑制物系统严密调控的。 病理的血管生成是由血管生成刺 激物和抑制物间的净平衡的移动导致, 如, 过量产生正常的或畸形的血管生成介 体, 或由于在此过程中相对缺乏抑制物。
[86] 正如在此使用, "不需要的和 /或不受控制的血管生成"指病理的血管生 成, 其中血管生成的刺激物影响超出了血管生成抑制物的影响。
[87] 正如在此使用, "抗血管生成治疗或药剂"指包括当单独使用或与别的 化合物组合使用的任何治疗方案和化合物, 它们可以减轻、 减少、 改善、 阻止或 调节或保持与不理想和 /或不受控制的血管生成相联系的临床症状或诊断标记的缓 解状态。 正如在这里所用, "内皮酶抑制剂"不认为是 "抗血管生成处理或抗血管 生成剂"。
[88] 正如在此使用, "肿瘤抑制基因"(或抗癌基因,癌症易感基因)指编码 正常地负调控细胞周期的产物的基因, 它们在细胞进行快速分裂前必须变异否则 是无活性。 肿瘤抑制基因的实例包括, 但不局限于, pl6, p21, p53 , RB (成视网 膜细胞瘤), WT-1 (胚性癌肉瘤), DCC (在结肠癌中发生缺失), NF-1 (神经纤 维肉瘤)和 APC (结肠息肉样腺瘤)。
[89] 正如在此使用, "癌基因"指动物细胞(原癌基因) 的正常基因的变异 和 /或过度表达形式, 其占优势时能使细胞脱离正常的生长抑制, 从而单独, 或与 其它变化相结合, 可把细胞转变为肿瘤细胞。 肿瘤抑制基因的实例包括, 但不局 限于, abl, erbB, ets, fes (fps), fgr, fins, fas, hst, intl, intl, jun, hit, B-lym, mas, met, mil (raf), mos, myb, myc, N-myc, neu (ErbB 2 ) ,ral (mil), Ha-ras, Ki-ras, N-ras, rel, ros, sis, src, ski, trk禾口 yes。
[90] 正如在此使用, "反义寡核苷酸"指与 mRNA或双链 DNA的有意链互 补的核苷酸碱基的合成序列。 有意和反义寡聚核苷酸混合物在合适条件下可以导 致两种分子的配对或杂交。当这些寡聚核苷酸与 mRNA配对(杂交), 发生阻碍蛋 白合成(翻译)。当这些寡聚核苷酸与双链 DNA配对,发生阻碍 1^ ½"成(转录)。 所致翻译和 /或转录的抑制导致有意链编码的蛋白的合成受阻。
[91] 正如在此使用, 抗体包括抗体片段, 如 Fab片段,其由轻链和重链的可 变区组成。
[92] 正如在此使用, 人源化抗体指通过修饰以便包括 "人 "氨基酸序列的抗 体, 以至施用于人而不会引起免疫应答。 制备这些抗体的方法是已知的。 例如, 表达单克隆抗体的杂交瘤已经被重组 DNA技术改变从而来表达其中的不变区的氨 基酸组成是以人抗体为基础的抗体。 已经设计了计算机程序来确定这些区域。
[93] 正如在此使用, "促进剂, 它们促进半抗原与一个肿瘤抗原的结合"指 一种交联半抗原与肿瘤抗原的试剂, 或住何促进交联反应的试剂。 半抗原与肿瘤 抗原的交联可以是共价键或非共价键, 可以通过疏水、 极性、 离子静电或其它相 互作用介导。 [94] 正如在此使用, "免疫应答"指一个生物体在应答一个抗原时, 其免疫 系统的反应性的变化; 在脊椎动物中, 这可以包括抗体的产生, 诱导细胞介导的 免疫, 补体激活或免疫耐受性的发展。
[95] 正如在此使用, "免疫应答增效剂"指一种可以增强抗原引起一种免疫 应答效应的物质。
[96] 正如在此使用, "凝聚作用"指引起细胞、 其中的成分和胞外基质转化 为一种软的、 半固体或固体块的过程。
[97] 正如在此使用, "凝聚裂解剂"指一种可以松散化或溶解凝聚物的试剂。
[98] 正如在此使用, "凝聚剂"指能引起细胞、 其中的成分和胞外基质转化 为一种软的、 半固体或固体块的任何试剂。 为了本发明的目的, 凝聚剂也可以指 起到凝聚作用的任何手段, 包括但不限于, 变性方法; 氧化, 包括生物还原; 以 及物理方法, 以及这些方法的组合使用。 物理方法可以是低温疗法、 激光凝聚、 辐射、 经皮的微波凝聚、 超声吸引、 反式瞳孔热疗、 电化学疗法等等。 所有提及 的这些方法可以单独使用, 或者组合使用, 也可以与引起凝聚作用的试剂组合使 用, 只要达到适当凝聚肿瘤即可。
[99] 正如在此使用, "肿瘤的凝聚 "指引起肿瘤细胞、 其中的成分和胞外基 质转化为一种软的、 半固体或固体块的过程, 这种转化导致凝聚的肿瘤细胞的死 亡, 并且增强凝聚的肿瘤细胞中施用入肿瘤的试剂的保持力。
[100]正如在此使用, 细胞因子是一种因子, 如淋巴因子或单核因子, 它由细 胞产生, 影响相同或别的细胞。 "细胞因子"是在免疫反应中在细胞之间传递信号 的分子组中的一种。 细胞因子是蛋白质或肽; 一些是糖蛋白。
[101]正如在此使用, "白细胞介素(IL) "指主要由 T细胞产生的一大组细胞 因子, 虽然一些由单核吞噬细胞产生, 或由组织细胞产生。 它们有多种功能, 但 大多数直接参与指导别的细胞分裂和分化。 每一种白细胞介素作用于特定的, 有 限的表达此种细胞因子的正确受体的细胞。 -
[102]正如在此使用, 白细胞介素 -1 (IL-1 )指某种肿瘤抗原递呈细胞(APC) 产生的白细胞介素, 与 IL-6—起, 作为 T细胞激活的共刺激信号。 IL一 1基因组 包括 IL-1 α, IL-1 β和 IL-1受体拮抗物(IL-lR a ) (Dinarello, Eur, Cytokine Netw. , 5 (6): 517-522 ( 1994))。 每一种成员首先合成为前体蛋白; IL-1 前体 (ProIL-1 α, ProIL-1 β ) 的分子量是大约 31000道尔顿。 ProIL-1 α和成熟的 17000道尔顿 的 IL-1 α都有生物活性, 然而 ProIL-1 β需要切割成 17000道尔顿的肽而有最佳的 生物活性。 IL-lR ct前体有一前导序列, 切割后成为成熟形式, 象大多数蛋白一样 分泌。 IL-1 α和 IL-1 β是强效的激动剂, IL-Ra是特定的受体拮抗剂。而且, IL-Ra 显然是纯粹的受体拮抗剂而在体外或体内没有激动剂活性。虽然 IL-lR a是分泌蛋 白,但这种分子有别的保留在细胞内的形式。它被叫做"胞内"(ic)IL-lRa。 IcIL-lR 由改变的 IL一 IR a基因的 mR A拼接插入物替代编码信号肽的外显子而产生。 IL一 IR a形式在功能性上是不可区别的。
[103] 因而, 例如, 提及的 "IL一 1 "包括所有的由 IL一 1基因家族包括 IL一 1 a, IL一 1 β, IL- lR a , 和 icIL-IRa编码的蛋白质, 或别的来源或合成制备的同 等分子。 预计包含保守氨基酸被取代, 但取代不改变其活性的 IL-1。 本技术领域 的技术人员知道合适的保守取代氨基酸, 并且这些取代一般不改变得到的分子的 生物活性。 本技术领域的技术人员认识到, 一般地, 在多肽的非必需区单个氨基 酸取代并不一定改变生物活性 (参见, 如, Watson et ai Molecular Biology of the Gene, 4th edition, 1987, the Bejacmin/Cummings Pub co, p224), 优选的这些取代 与表 1列出的一致, 如下所示:
Figure imgf000022_0001
[104]也允许别的取代, 可以经验决定或根据已知的保守取代确定。
[105] 正-如在此使用,在此出现的多种氨基酸序列中的氨基酸根据它们众所周 知的三个字母或一个字母的缩写来表示。在多种 DNA片段中出现的核苷酸用本技 术领域中常规使用的标准单字母表示来表达。
[106]正如在此使用,术语 "治疗剂", '治疗法", "辐射防护剂", "化疗药剂" 指传统的药物和药物治疗, 包括疫苗, 其为本技术领域的技术人员所知。 "辐射治 疗"剂在本技术领域也是已知的。
[107]正如在此使用, "疫苗"指用于积极的免疫学预防的任何组合物。 疫苗 可以在治疗上用作治疗疾病, 或者主动地或在感染后阻止疾病的发展或减轻疾病 的严重性。 疫苗的实例包括, 但不局限于, 已被杀死的烈性菌株细菌或减毒 (变 种或变异) 菌株的活细菌, 或微生物, 真菌植物, 原生动物, 后生动物衍生物或 产物的制备物。 "疫苗"也包含基于蛮白质 /肽和核苷酸的疫苗。
[108]正如在此使用, "细胞毒性细胞"指杀死病毒性感染靶细胞的细胞, 靶 细胞表达 MHC1型分子抗原肽。
[109]正如在此使用, "血清" '指除去了纤维蛋白凝块和血细胞后得到的血液 液体部分, 区别于循环血中的血浆。 [110]正如在此使用,治疗特定疾病的化合物的有效量是足以改善或以某种方 式减少与疾病相关的症状的量。 此量可以作为单一剂量施用或根据情况决定, 借 此可以有效治疗。 药物剂量可以治愈疾病, 但一般的, 治疗是为了缓解疾病症状。 重复的施用可以得到理想的症状缓解效果。
[111]正如在此使用,这种偶合物的药物可接受盐,酯或别的衍生物包括任何 盐, 酯或衍生物, 这些物质可以由本技术领域的技术人员使用已知的此种衍生方 法容易地制备它们, 这一过程产生施用到动物或人, 不会产生实质毒性作用的化 合物, 这些化合物或者有药物活性或者是前体药物。
[112]正如在此使用, 治疗意味着任何方式,其中一种情况、紊乱或疾病的症 状发生好转或有利的改变。 治疗也包括在此讨论的组合物的药物上的用途。
[113]正如在此使用,通过施用特定药物组合物发生特定紊乱的症状的改善指 任何减轻, 或者是永久的或者是暂时的, 持续的或短暂的, 都可以归为或与该组 合物的施用有关。
[114]正如在此使用,充分纯化是指足够均一,通过常规的分析方法确定没有 容易检出的杂质的状态, 这些分析方法包括薄层色谱(TLC), 凝胶电泳和高效液 相色谱 (HPLC), 本技术领域的技术人员使用这些方法达到这种纯度, 或者足够 纯粹, 以致进一步的纯化不能可检测地改变物质的物理或化学性质, 例如酶或生 物活性。 化合物通过纯化得到充分化学纯的化合物的方法对于本技术领域的技术 人员来说是熟知的。 但是, 一种充分化学纯的化合物可以是立体异构体或异构体 的混合物。 在这些例子中, 进一步的纯化可能会增加化合物的特异活性。
[115]正如在此使用,前体药物是一种化合物,一旦进入体内, 其可以代谢为 或转化为具有生物活性, 药学活性或治疗活性形式的化合物。 为了制作一种前体 药物, 药学活性的化合物经过修饰以使活性化合物可以通过代谢过程再生。 前体 药物可以设计成改变了代谢稳定性或药物的运输特性, 屏蔽了药物的副作用或毒 性, 改进了药物的味道或改变了药物的其它特点或性质。 依靠在体内的药物动力 学过程和药物代谢的知识, 本技术领域的技术人员, 一旦知道了药物活性形式的 化合物, 就可以设计该化合物的前体药物 (参见, 如 Nogrady ( 1985 ) Medicinal Chemistry A Biochemical Approach, Oxford University Press (牛津大学出版社 ), New York, 388— 392页)。
[116]正如在此使用,生物活性指对于体内施用一种化合物、组合物或其它混 合物, 该化合物在体内的活性或它们引起的生理性反应。 这样, 生物学活性包括 治疗效应和这些化合物、 组合物和混合物的药理学活性。 生物学活性可以通过设 计用于检测或利用这些活性的体外系统来观察。 这样, 在此所述的用途中, 荧光 素酶的生物活性是其氧合酶活性, SP, 通过氧化一种底物而发光。
[117]正如在此使用,受体指对于一种特定的配体具有亲和 -性的分子。受体可 以是天然产生的或合成的分子。 受体在本技术领域也可以指抗配体。 在此所用, 受体和抗配体可以互换使用。 受体可以以其未变化的状态或与其它种类分子形成 聚集体使用。 受体可以直接或经由一个特殊的结合物或连接物间接地附着, 共价 或非共价, 或物理接触结合到结合成员上。 受体的例子包括, 但不限于; 抗体, 细胞膜受体表面受体和内在化的受体, 单克隆抗体和与特定的抗原决定族作用 [如 病毒, 细胞, 或其它物质]的抗血清, 药物, 多聚核苷酸, 核酸, 肽, 辅因子, 凝 集素, 糖, 多糖, 细胞, 细胞膜, 和细胞器。
[118]受体和使用这些受体的应用的例子包括, 但不限于:
a) 酶:对于微生物的生存而必须的特定转运蛋白或酶,其可以作为抗生素 [配 体]选择的靶子;
b) 抗体: 研究确定与有关抗原的表位结合的抗体分子的配体结合位点; 通过 模仿抗原表位序列的确定可以导致以一个或多个这些序列为基础的免疫原的疫苗 的发展, 或导致对于如自身免疫疾病的治疗有用的相关诊断剂或治疗中有用化合 物的发展
c) 核酸: 确定配体, 如蛋白或 RNA, 结合位点;
d) 催化性多肽; 聚合物, 优选为多肽, 其可以加速包括转化一种或多种反应 物为一种或多种产物的化学反应; 这些多肽一般包括与至少一种反应物或反应中 间物特异结合的位点和一个靠近结合位点的活性功能基, 其中的功能基是可以化 学修饰所结合的反应物 [参见, 如, U.S.专利 5,215,899];
e) 激素受体: 以高亲和力结合于受体的配体的确定对于发展激素替代疗法有 用; 如, 确定结合于这样的受体的配体可以导致控制血压的药物的发展; 且
f) 阿片制剂受体: 确定与在脑中的阿片制剂受体结合的配体对于发展低成瘾 替换吗啡和相关药物有用。
[119]正如在此使用, 抗体包括抗体片段, 如 Fab片段,其由一条轻链和一条 重链的可变区组成。
[120]正如在此使用:, 人源化抗体指抗体经修饰包含"人"抗体氨基酸序列以 便用于人而不会引起免疫反应。 制备这些抗体的方法是已知。 例如, 表达单克隆 抗体的杂交瘤被重组 DNA技术改变以便表达其非可变区的氨基酸组成以人抗体为 基础的抗体。 已经设计了计算机程序来辨别这样的区域。
[121]正如在此使用, 通过重组子生产是指通过使用重组 DNA技术, 是指使 用已熟知的分子生物学方法来表达克隆的 DNA编码的蛋白。
[122]正如在此使用,一种产品的实质相同是指足够相似, 以便相关的性质足 以保持不变化, 以至于这种充分一致的产物可以代替该产品。
[123]正如在此所用, 等效的, 当提到核苷酸的两个序列时, 意味着讨论的两 个序列编码相同序列的氨基酸或等效的蛋白质。 当在提到两种蛋白或肽时, 使用 "等效"意味着两种蛋白或肽实质上有相同的氨基酸序列, 只有保守的氨基酸代 替(参见, 如, 以上表 1 ), 并不实质上改变蛋白或肽的活性或功能。 当 "等效" 指性质时, 性质并不需要达到同样的程度 (如, 两种肽可以表现出同样类型的酶 活性, 但具有不同的速度), 但活性实质上优选为相同的。 当指出两个核苷酸序列
"互补"时, 意味着核苷酸的两个序列能杂交, 优选的少于 25 %, 更优选的少于 15 % , 甚至更优选的少于 5 %, 最优选的是相对的核苷酸之间没有错配。优选的两 个分子在高度严格的条件下杂交。
[124]正如在此使用: 杂交的条件严紧度以错配百分率确定, 情况如下-
1 ) 高度严紧: 0.1XSSPE, 0.1 %SDS, 65 V
2) 中度严紧: 0.2XSSPE, 0.1 %SDS, 50 °C
3)低度严紧: 1.0XSSPE, 0.1 %SDS, 50 °C
[125]应当能理解到, 当使用可替换的缓冲液、盐和温度时, 可以达到等效的 严格条件。
[126]术语"实质上 "相同或同源或相似在本上下文中发生变化, 正如相关技 术领域的技术人员所理解的那样, 一般意味着至少 70%, 优选的至少 80%, 更优 选的至少 90%, 最优选的至少 95 %的同一性。
[127]正如在此使用,组合或组合物指两个或多个项目的联合。其包括两种或 多种组分包含在一个单一的混合物中的组合物; 它也包括相关的两种独立的组合 物。 所述组合物可以是溶液, 悬浮液, 液体, 粉末, 糊剂, 含水的, 不含水的, 或它们的任何组合物。
[128]正如在此使用,液体指任何可以流动的组合物。所以液体包含以半固体、 糊剂、 溶液、 含水的混合物、 凝胶、 洗剂、 乳膏和别的这样的组合物形式的组合 物。
[129]正如在此使用,保护基团、氨基酸和其它化合物的缩写,除非特别指明, 均与其普遍用法、 公认缩写方式或国际理论与应用化学联合会 -国际生物化学联合 会(IUPAC— IUB ) 所制定的生物化学命名相一致 (参见, 1972) Biochem, 11: 1726)。
[130]为公开的清楚起见,但并不受其限制,对本发明的详细描述分为以下几 个小部分。
B. 组合物
[131]在一个特定的实施方案中,其中所提供的是一种应用于肿瘤内治疗的组 合物, 该组合物包括: A)—种氧化剂和 /或一种还原剂; B)—种治疗剂例如化疗 剂; 和一种半抗原。
[132]该氧化或还原剂、 化疗剂和半抗原可以配制为一种单一的药剂组合物, 或每一种可分别配制为药剂组合物。
[133]任何一种具生物耐受性的氧化剂可用于该组合物中。在一个优选的实施 方案中, 所使用的氧化剂为过氧化氢(¾02)、 碳酸酰胺、 维生素 -C, 高锰酸钾、 臭氧、多元氧(07)、 多元氧(08)、过氧碘化钠(NaIQ4)、过一硫酸氢钾(oxone) (Wozniak等人, Bioorg. Med. Chem. Lett., 8 ( 19): 2641-6 ( 1998)), D,L-S-甲 基硫辛酸甲基酯 (Pan和 Jordan, Biochemistry, 37 (5); 1357-64 ( 1998)), 叔 丁基氢过氧化物(Tarin等人, Mol Hum eprod,202): 895-901 ,( 1996); 维生素 K3 ( Santini等人, Free Radic Biol Med, 20 (7): 915-24 ( 1996)), 二酰胺 (Bpsin和 Kasper, J Biochem Toxicol, 7(3): 139-45(1992)),iodogen(Sa a等人, Int J Rad Appl Instrum, 16{4}:431-3(1989)) , N-溴丁二酰亚胺(Sinn 等人, Anal Biochem, 170(1):186-92(1988),奥美拉唑 (Im等人, J Biol Chem 260(8):4591-7(1985)X N-乙基 马来酰亚胺 (Marzulli等人, Boll. Soc. Ital. Biol. Sper., 61{l}:121-7(1985)) o
[134]任何一种具生物耐受性的还原剂可用于该组合物中。在一个优选的实施 方案中, 所使用的还原剂为苏木精、 一种如硝基咪唑的低氧还原剂或无氮化合物 替拉扎明 (SR-4233 ) (Zhang和 Stevens, Melanoma Res.. 8(6):510-5( 998))。
[135]任何一种具生物耐受性的半抗原可用于该组合物中。在一个优选的实施 方案中, 所使用的半抗原为三硝基苯 (TNP ) (Dieli 等人, Int. Immunol., 9(11:1-8(1997^, 二 硝 基 苯 (DNP)(Stjarnkvist 等 人 , J. Pharm. Sci., 80(5):436-40(1991Τ), Ν-碘乙酰 -Ν, - (5-磺基 1-萘基)亚乙基二酰胺(AED) (Mizuochi 等人, J. Immunol., 134(2 :673-6(1985Τ),二硝基氟苯(DNFB) (Claman, J. Immunol, 116(3}:704-9(1976)) 或 Ovabulin(OVA) (Katz 等 人 , J. Immunol., 107(5):1319-28a971V)。
[136]在另一个特定的实施方案中,该组合物进一步包括一种抗肿瘤试剂,用 于联合肿瘤内治疗和化疗。
[137]任何抗肿瘤试剂可用于这种组合物中。在一个优选的实施方案中,所使 用的抗肿瘤试剂是一种抗血管生成剂。 更加优选的, 这种抗血管生成剂是一种基 底膜降解抑制剂、 一种细胞迁移抑制剂、 一种内皮细胞增殖的抑制剂、 一种组织 和构建三维结构效能的抑制剂。该类抗血管生成剂的实例进一步表现在下面的表 2 中 ( Auerbach和 Auerbach, Pharmacol. Ther., 63£3}:265-311(1994) ) )。
表 2抗血管生成剂
Figure imgf000026_0001
类固醇 甲孕酮,地塞米松,甲羟孕酮, 去炎松缩 酮,脯氨酸类似物和反式类维生素 抑 生长素类似物
抗生素 二甲氨四环素, 偏端霉素 A的磺酸盐衍 生物
细胞迁移抑 红豆杉醇,诺考达唑,秋水 红豆杉醇,诺考达唑,秋水仙碱,长春碱 制剂 仙碱,长春碱
干扰素 白细胞( i / e )干扰素
霍舌 L毒素
β型转化生长因子家族
-甲基二氟鸟氨酸和其
它鸟氨酸脱羧酶抑制剂 成纤维细胞生长因子抑
制 剂 , 鱼 精 蛋 白
(Protanine),血小板因子
4 (PF4), 苏拉明
皮质类固醇和肝素 硫酸氨基己醣聚糖
白介素 -8
富含半胱氨酸的酸性分 SPAPC (分泌性蛋白质,酸性, 富含半胱 泌蛋白 (SPAPC) 氨酸)
血小板活化因子抑制剂 具窍蝮蛇属的蛇毒 (venon) 靶目标为肥大细胞和巨
噬细胞: 硫醇和含金化合
靶目标为淋巴细胞: 类固 环孢霉素类吗啡物, 如: β -内啡呔或硫 醇, 抗淋巴细胞血清, 辐 酸吗啡, AGM-1470
靶目标为胞外基质 : 多
肽, 抗体, 硫酸几丁质衍
生物
肝素
前列腺素抑制剂 合成前列腺素,像吲哚美辛和阿斯匹林, 酮类,米托意'醌或双蒽生 (bisantrene ), 顺乌头酸及其衍生物,氨氯吡脒 胎盘核糖核酸酶抑制剂 核糖核酸酶,甘氨酸-精氨酸-甘氨酸 -天冬 酰胺酸-丝氨酸 (GRGDS),肌动蛋白和一 种抗肌动蛋白抗体抑制剂
抗生素 Herbamycin,博来霉素 , eponemycin, erbstatin,根赤壳菌素和 staurosporine 其它细胞迁移抑制剂 尼卡地平、 鞘氨醇 -1-磷酸盐,三羧氨基喹 啉 (N-甲基苯基 -1,2-二氢 -4-羟氢氧基 -1- 甲基 -2-氧喹啉 -3-氨甲酰),血小板内皮细 胞粘附分子 -1(PECAM-1)
内皮细胞增 成纤维原细胞生长抑制 FGF封闭坑体,戊聚糖多聚硫酸盐,肝素 殖抑制剂 剂 酶,鱼精蛋白,生长抑素类似物,如奥曲肽 血拴抑制剂 TSP1,TSP2和 TSP3
佛波醇酯
类维生素 A Etretin,苯壬四烯酯或异维甲酸, 阿齐特 林,染料木素
TGF β家族 TGF β ,TGF β 1和 TGF β 2 肿瘤坏死因子,干扰素,白 TNF,IL-1,IFN- λ ,IFN- α和巨噬细胞衍生 介素和其它细胞因子 物、 内皮细胞抑制剂
类固醇和肝素 四氢化 S,氢化可的松, 环糊精十四垸 硫酸,雌激素代谢物如 2-甲基乙氧基雌 二醇,类固醇与 DS4152 (—种细菌来源的 多糖沲合物)联合用药
苏拉明 苏拉明,阿扑利辛磺化脲
α 2-巨球蛋白
生长因子抗体 bFGF抗体, VEGF抗体,肝细胞生长因 子(扩散因子)抗体,抗扩散因子抗体 抗血管生长的多肽 泌乳刺激素的确良 6KD片段,粘连蛋白 来源的肝素结合多肽片段, TSP的选择性 多肽, 前房尿钠排泄的多肽, PF4,—种非 肝素结合型 PF4类似物, rPF4-241 视网膜衍生抑制剂 视网膜的粗提取液与成人血清联合 抗生素 雷帕霉素, eponemycin, 含亚精胺结构的 化合 15-脱氧精胍菌素, TAN-1120,—种 baumycin组蒽环类抗生素, d-青霉酸衍胺, 烟曲霉素和它的更有效的合成的类似物 AGM- 1470(TNP-470),FR- 111142,从菌株 Scolecobasiwn arenarium的 F-2015中分 离 而 来 ,WF-16775A1 和 A2 从 chaetasbolisia丹毒中分离而来, SP-PG (或 它的活性成分, DS-4152),—种硫酸多肽聚 糖混合物, 由 Arthobacter生产,四环素, 二甲胺四环素
粘多糖 透明质酸盐
SPARC
其它药剂 氯喹,镍锰合金盐,磺胺嘧啶,几种阿片样 物质,金化合物,二甲基亚砜
组织和构建 TGF β族 TGF P l,TGF ^ 2,TGF e 3
三维结构效 干扰素 干扰素-入,干扰素- α
应的抑制剂 脂肪酸
唑酮 MD27032(4-丙基 -5(4-吡啶基 -2(3H)-唑 酮)
基底膜生物合成抑制剂 环腺苷一磷酸盐, 顺式-羟基-脯氨酸,一
种胶原产品抑制剂
细胞粘附分子抑制剂 含 YSIGR肽, Arg-Gly-Asp(RGD)-含肽
Gly-
Arg-Gly-Asp-Ser(GRGDS), · vitronectin,纤 连蛋白,抗体,整连蛋白 α 1 β 3, α 1 β 3 抑制剂抗体, Ε-选择素抗体 ,sialyl Lewis-X配基的抗体
其它内皮细胞三维构成 尼卡地平、 磷酸激酶 C 抑制剂,如 的抑制剂 calphostin C 和星形孢菌素,一种嵌全毒 素, 其是 aFGF被融合到假单孢菌属外 毒素的突变体中, IL-1 β ,IL-6,TGF- β 和 血 小 板 衍 生 生 长 因 子 -BB,irsogladine,fenretinide,一种脯氨酸类 似物, L-adetine-2-羧基酸, 环孢霉素, 泌 乳剌激素的 16kDa片段 生理和物理 细胞-细胞相互作用 外膜细胞,内皮细胞-外膜细胞相互作用, 干涉作用 心脏微血管内皮细胞和心室肌细胞的共 i¾ "养
血液流动
光力学治疗 光力学治疗的激光凝固法 过高温疗法 高热疗法的效果可通过杀死内皮细胞、 抑制复制,抑制细胞迀移或者三种机制联 合来产生
缺氧
[138]在另一个优选的实施方案中, 所使用的抗血管生成剂是 AGM-1470 (TNP-470), 血管抑制类固醇、 血管抑素、 抗 av P 3的抗体、 抗碱性成纤维细胞 生长因子抗体、 抗白介素 -1 抗体、 抗肿瘤坏死因子 α抗体、 抗血管内皮细胞生长 因子抗体、 金诺芬、 咪唑硫嘌吟、 ΒΒ-94、 ΒΒ-2516、 碱性成纤维细胞生长因子的 可溶性受体、羧基酰胺三唑类 (CAI)、软骨衍生抑制剂 (CDI)、几丁质、氯奎、顺铂、 CM10K 可的松 /肝素、 可的松 /透明质酸、 11-脱氧皮甾醇 /肝素、 CT-2584、 环磷酰 胺、 环孢菌素 A、 地塞米松、 二氯酚酸 /透明质酸、 嗜酸性的主要碱性蛋白、 纤连 蛋白肽、 白明胶酶抑制剂、 神经胶质瘤衍生的血管生成抑制因子 (GD-AIF )、 GM1474、 氯化金、 硫羟苹果酸金、 肝素酶、 透明质酸、 糖胺多糖、 (高和低分子 量的种类), 氢化可的松 环右旋糖苷、布洛芬、 吲哚美辛、 α干扰素、 Υ干扰素 诱导的蛋白质 10、 Υ干扰素、 白介素 1、 白介素 2、 白介素 4、 白介素 12、 层粘连 蛋白、 左旋咪唑、 三羧氨基喹啉、 LM609、 基质金属蛋白酶抑制剂、 马马司他 (BB2516)、 甲羟孕酮、 6-甲基硫基嘌呤、 metastat(Col-3)、 甲氨蝶呤、 美满霉素、 氧化氮、 奥曲肽(生长激素抑制剂类似物)、 紫杉醇、 D-青霉酸衍胺、 多聚硫酸戊 糖、胎盘 proliferin相关蛋白、 胎盘核糖核酸酶抑制剂、纤溶酶原激活因子抑制物 (PAD, 血小板因子 4 (PF4)、 氢化泼尼松、 催乳素 (16Kda片段)、 proliferin相 关蛋白、 前列腺素合成酶抑制剂、鱼精蛋白、类维生素入、罗喹美克(LS— 2616, 三羧氨基喹啉)、生长抑素、基质溶素抑制剂、 P物质、苏拉明、 SU101、 tecogalan sodium 、 四氢皮质醇 -sthrombospondins ( TSPs)、 组织基质金属蛋白酶抑制剂 (TIMP1 , 2, 3)、血管内皮细胞生长因子抑制剂、 维生素 A、 Vitaxin、 玻璃体液、 沙利度胺、 3—氨基沙利度胺、 3—羟基沙利度胺及沙利度胺、 3—氨基沙利度胺、 3—羟基沙利度胺的代谢物或水解物(O'Reilly, Investigational New Drags, 15:5-13(1997);J Nat'l Cancer Instit,88:786-788(1996);美国专利 5593990、 5629327和 5712291)。 同样优选的, 使用的抗血管生成剂是一种血管抑制基因, 如血管阻素、 内皮他丁、 kringle—5、 PEX、 TIMP1、 TIMP2、 TIMP3、 TIMP4、 endo::angio 、 或 endo::PEX、 或是一种血管抑制趋化因子基因, 如 IP-10、 Mig或 SDF-1 α。 [139]在另一个更加优选的实施方案中, 所使用的抗肿瘤试剂是一种垸化剂、 一种抗代谢物、 一种天然产品、 一种铂配位复合物、 一种恩二酮、 一种替代的尿 素、 一种甲基肼衍生物、 一种肾上腺皮质激素抑制剂、 一种激素和一种拮抗剂。 该类抗肿瘤试剂的实例见下面的表 3。
用于肿瘤疾病的化疗剂
Figure imgf000031_0001
氟尿嘧啶(5-氟尿嘧啶, 乳房、 结肠、 胃、 胰腺、 卵巢、 嘧啶类似 5-FU)氟脱氧尿苷(5- 头颈、 膀胱癌变前的局部表皮损 物 氟脱氧尿 FUdR) 伤
阿糖胞甙 急性粒细胞和急性淋巴白血病 巯 (基)嘌呤 (6-巯基嘌 急性淋巴、 急性粒细胞和慢性粒 呤, 6—MP) 细胞白血病
嘌吟类似
硫鸟嘌呤 (6-硫鸟嘌 急性粒细胞、 急性淋巴和慢性粒 物及相关
呤; TG) 细胞白血病
的抑制剂
戊聚糖 (2-去氧皮质 毛状细胞白血病, 霉菌病, 慢性 酮) 淋巴白血病
天然产 长春碱(VLB) 霍奇金病, 非霍奇金淋巴瘤病, 品 乳房、 睾丸
长春花生 长春新碱 急性淋巴白血病, 成神经细胞瘤, 物碱 胚性癌肉瘤, 横紋肌肉瘤, 霍奇 金病, 非霍奇金淋巴瘤病, 小细 胞肺瘤
表鬼臼脂 依托泊甙, 替尼伯甙 睾丸、 小细胞肺瘤和其它肺癌, 乳房、 霍奇金病, 非霍奇金淋巴 瘤病, 急性粒细胞减少白血病, 皮肤多发性出血性肉瘤
放线菌素 D 绒 (毛)膜癌, 胚性癌肉瘤, 横紋肌 肉瘤, 睾丸、 皮肤多发性出血性 肉瘤
道诺霉素 急性粒细胞减少和急性淋巴性白 血病
阿霉素 软组织、 骨纤维和其它肉瘤, 霍 奇金病, 非霍奇金淋巴瘤病, 急 抗生素 性白血病, 乳房、 生殖器、 甲状 腺、 肺、 胃、 成神经细胞瘤 博来毒素 睾丸、 头和颈、 皮肤、 食道、 肺 和泌尿生殖系统, 霍奇金病, 非 霍奇金淋巴瘤病,
光辉霉素 (光神霉素) 睾丸、 恶性血钙过多
丝裂霉素 (丝裂霉素 胃、 宫颈、.结肠、 乳房、 胰腺、 C) 膀胱、 头和颈 酶 天 (门)冬酰胺酶 急性淋巴性白血病 生物反应 干扰素 - α 毛细胞白血病, 皮肤多发性出血 调节物 性肉瘤,黑色素瘤,良性肿瘤,肾脏, 卵巢,膀胱,非霍奇金淋巴瘤,霉菌 (真菌)病,多发性骨髓瘤,慢性粒 细胞白血病
顺铂 (cis-DDP) 睾丸,卵巢,膀胱,头和颈,肺,甲状 铂配位复
卡铂 腺,宫颈,子宫内膜,成神经细胞瘤, 合物
骨源性肉瘤
蒽二酮 米托蒽醌 急性粒细胞减少白血病,乳房 脲替代物 羟基脲 慢性粒细胞减少白血病,红血球增 各种药
多症,血小板增多症,恶性黑色素 剂
甲基肼衍 甲基苄肼(N-甲基 霍奇金病
生物 肼, MIH)
肾上腺皮 邻氯苯对氯苯二氯乙 肾上腺皮质
质抑制物 烷 (o,p,-DDD)
肾上腺皮 强的松 (有其它几种等 急性和慢性淋巴白血病,非霍奇金 质类固醇 效药制剂, 见 59节) 淋巴病,霍奇金病,乳房瘤病 孕酮 羟孕酮,葵酸盐, 甲孕 子宫内膜,乳房瘤
酮,醋酸甲羟孕酮
雌激素 二乙基已烯雌酚 乙炔 乳房, 前列腺
基雌二醇 (其它等效药
制剂, 见 57节)
抗雌激素 它莫 ¾芬 乳房
激素和
男性激素 丙醋睾丸酮,氟羚甲基 乳房
对抗物
睾丸素 (其它可用药制
剂见 58节)
抗雄激素 氟硝丁酰胺 前列腺
物质
促性腺激 促性腺激素类似物 前列腺
素-分泌荷
尔蒙类似
[140]在另一个优选的实施方案中,使用的抗肿瘤药剂是胞嘧啶类似物如胞苷 阿糖腺苷(araC)、道诺霉素、 阿霉素、氨甲蝶呤(MTX)、 氟化嘧啶如 5—氟尿嘧 啶 (5—FU)、 羟基脲、 6—巯基嘌呤、 植物生物碱如长春新碱 (VCR)、 VP— 16 和长春碱(VLB); 垸化剂如环磷酰胺肿瘤细胞裂解剂、 美司钠、 美法仑、 1,3-双 氯乙基亚硝基脲 (BCNU 顺铂、 氮芥 (HN2)、 三胺 (HN3 ), 非典型烷化剂如 甲基节肼、 博来霉素、 丝裂霉素 C、 放线菌素 D (DACT), 或一种酶如 L一天冬 酰胺酶。
[141]在另一个优选的实施方案中, 使用的抗肿瘤药剂是一种癌基因抑制剂。 更优选的, 该癌基因抑制剂是抗癌基因抗体或抗癌基因反义寡核苷酸。 例如, 下 面表 4中所列的寡核苷酸抗体和反义寡核苷酸可用于该组合物。
Figure imgf000034_0001
mas NVT 人 表皮癌 对血管紧缩素 II强 反应
met NVT 小鼠 骨肉瘤 TyrPK GFR L
Mill Hill2急性淋巴管 鸡 Ser/ TyrPK(src) 炎
mos 莫洛尼氏肉瘤 小鼠 Ser/ TyrPK(src) myb 成髓细胞组织增生 鸡 白血病 核, TR
myc MC29 髓细胞组织增 鸡 淋巴瘤
N-myc NVT 人 成神经细胞 核 neu(Erb NVT 大鼠 成神经细胞 TyrPK GFR L
B2) 瘤
Ral(mil 3611肉瘤 小鼠 Ser/ TyrPK(src)
)b
Ha-ras 哈维鼠科肉瘤 大鼠 膀胱, 乳腺和 结合三磷酸鸟苷
皮肤癌
Kr-ras 柯尔斯顿-鼠科肉瘤 大鼠 肺, 结肠癌 结合三磷酸鸟苷 n-ras NVT 人 成神经细胞 结合三磷酸鸟苷 白血病
rel 网状内皮组织增殖 火鸡
ros UR2 鸡 TyrPK GFR L sis 猿肉瘤 猴 PDGF的一条链 src '鲁斯氏肉瘤 鸡 TyrPK
ski SKV770 鸡 核
trk NVT 人 结肠癌 TyrPK GFR L yes Y73, Esh肉瘤 鸡 TyrPK(src)
[142]在另一个实施方案中,使用的抗肿瘤药剂是一种细胞基质抑制剂。更加 优选的, 细胞基质抻制剂是一种抗细胞基质抗体或抗细胞基质反义寡核苷酸。 例 如, 可使用抗以下细胞基质或细胞基质基因的抗体和反义寡核苷酸: 小窝蛋白 -1、 核心蛋白多糖、 钙粘蛋白、 连环蛋白、 整连蛋白。
[143]在一个特定的实施方案中,该组合物进一步包括一种用于联合肿瘤内治 疗和基因治疗的肿瘤抑制基因。 在一个优选的实施方案中, 使用的肿瘤抑制基因 是 pl6, p21, p27, p53, RB, WT-1, DCC, NF-1和 AK:。 在另一个特定的实施方案中, 该组合物进一步包括一种自杀基因如 HSVltk(l 型单纯疱疹病毒胸腺嘧啶激酶)、 tdk&tmk (胸腺嘧啶激酶&胸苷酸激酶)、 coda&upp (胞嘧啶脱氨酶&尿嘧啶磷酸核 糖转移酶);一种溶细胞基因如粒酶 A、粒酶 B、穿孔素;或一种凋亡基因如 Bak, Bax, Bcl-XL, Bcl-XS, Bik, Sarp-2, TRAIL。 在另一个更加优选的实施方案中, 该组合物 进一步包括一种细胞因子基因, 如白介素 1 β、 白介素 2、 白介素 4、 白介素 6、 白介素 8、 白介素 10、 白介素 12、 白介素 15、 GM— CSF、 干扰素 α、 干扰素 β、 干扰素 Υ、 肿瘤坏死因子 α、 B7.1或 Β7.2以增强免疫应答。
- [144]作为基因转运系统原件的基因可使用裸 DNA、 复合 DNA、 cDNA、 质 粒 DNA、 RNA或它们的其它组合物。在另一个实施方案中, 肿瘤抑制基因包含于 一个病毒载体中。 任何适用于基因治疗的病毒载体均可应用于该组合物中。 例如, 可应用一种腺病毒载体 (美国专利 5869305)、一种猿病毒载体 (美国专利 5962274)、 一种条件复制型人免疫缺陷病毒载体(美国专利 5888767 ),逆转录病毒, SV40, 单纯疱疹病毒复制子载体和痘苗病毒载体。 另外, 可以用非病毒载体系统如脂质 体转运基因, 其中的脂质可保护 DNA或其它生物材料在凝集过程中免于氧化。
[145]在另一个特定的实施方案中,该组合物进一步包括一种辐射致敏剂用于 联合肿瘤内治疗和放疗。在一个优选的实施方案中,所使用的辐射致敏剂是 SR2508 (依他硝唑) (Chang 等人, Int J Radiat Oncol Biol Phys, !):65-70(1998))或 Buthionine sulfoximine (BSO)(Vahrmeij 等人 , Cancer Chemother Pharmacol, 4401:111-6(1999))。
[146]在另一个特定的实施方案中,该组合物进一步包括一种促进剂,可促进 半抗原与肿瘤抗原之间的偶联以提高自身肿瘤特异性免疫应答。 优选的, 所使用 的促进剂是一种螯合剂或是一种化学交联剂。 更优选的, 使用的螯合剂是甘氨酰 酪氨酰基- (N-e-二乙三胺五乙酸) -赖氨酸(GYK-DTPA)或亚德利亚霉素己二酸 -二酰肼 (ADR-ADH)。 同样更优选的, 使用的化学交联剂是碳化二亚胺。
- [147]在另一个特定的实施方案中,该组合物进一步包括一种免疫应答增效剂 以增强自身肿瘤特异性免疫应答。优选的,所使用的增效剂是卡介苗 (BCG)(Ratliff, Eur Urol, 2:17-21(1992),小棒状杆菌 (Lillehoj 等人, Avian Dis, 37£3}:371-40(1993)) 流产布氏杆菌提取物、 葡聚糖、 左旋咪唑、 泰洛伦、 一种酶、 一种非毒性病毒、 多糖, 或草药提取物如中草药提取物。 更优选的, 所使用的酶是霍乱孤菌神经酰 氨酶(VCN) (Seiler和 Sedlacek, Recent Results Cancer Res,^:53-60( 1980));木瓜 蛋白酶 (Helting和 Nau, Acta Pathol. Microbiol. Immunol. Scand, 92 1}:59-63(1984); 和 Hess,Eur J Immunol, 6(31: 188-93(1976)), β -半乳糖苷酶或伴刀豆球蛋白 Α。 同 样更优选的,所使用的非毒性病毒是一种非毒性新城疫病毒(Meulemans等人, Vet Rec, 143£11}:300-3(1998);和 Adams, Poult Sci, 49(1):229-33(1970))。 进一步更优选 的, 所使用的多聚糖是来源于液体培养的蘑菇属 blazei mill菌丝体的抗肿瘤多聚 糖(起先为葡苷露聚糖, 主链为 β -1,2-连接 -D-甘露吡喃残基, 侧链为 β -D-葡萄糖 吡喃残基 -3-0- β - D-葡萄糖吡喃残基) (Mizuno 等人, Biochem Mol Biol In 47(4 :707-14(1999 ) ; 从絨状火菇得到的抗肿瘤多聚糖制备物 (多聚糖的主链 主要含 β - ( 1->3 ) -D-连接葡萄糖, 其分子量大约为 200KD ) (Leung 等人, Immunopharmacology, 35(31:255-63(1997^:西佐糖 (SPG) (Tanji等人, Yakugaku Zasshi, 110£l l}:869-75(1990));schizophyllan(Sakagaini等人, Biochem Biophys Res Commun, 155(2}:650-5(1998)); 甘露聚糖(Gavrilenko 等人, Vopr Onkol, 29{4}:67-70(1983));蘑菇多糖 (Haba等人, Int J Cancer, 18£1}:93- 104(1976)); Su-多糖 (Su-Ps)(Kumazawa 等人, Gan To Kagaku Ryoho, 14(12^:3329-35(1987 ); mannozym(Zastrow, Padiatr Grenzgeb, 24(3):229-36(1985))0
[148]在另一个特定的实施方案中,该组合物也可含一种凝集溶解剂以增强自 身肿瘤特异性免疫应答。 优选的, 所使用的凝集溶解剂是一种蛋白酶 K, 糖基-磷 月旨酰肌醇 -Β7 (Bi-unschwig等人, J Immunother, 22(5 :390-400(1999):和 McHugh等 人, Cancer Res, 59(10 :2433-7(1999 )和胰酶制剂。
[149]在另一个特定的实施方案中,该组合物也可含一种细胞因子以增强自身 肿瘤特异性免疫应答。 优选的, 给予的细胞因子是用于储存配方的脂质体包埋的 白介素 2 (Kra 等人, J Immunother, 22(6 :525-38(1999))或储存配方为粒细胞 -巨噬 细胞集落刺激因子 (GM-CSF) (Leong等人, J Immunother. 22(2 :166-74(1999V)。
[150]在另一个特定的实施方案中,该组合物可进一步含一种癌基因以增强自 身肿瘤特异性免疫应答。 优选的, 可使用以上表 4中所列的癌基因。
[151]在另一个实施方案中,该组合物可以包括一种减毒的、可复制的病毒载 体以增强自身肿瘤特异性免疫应答。 优选的, 使用的减毒的、 可复制的病毒载体 是 1型单纯疱疹病毒 (HSV-1 ) 的突变体 G207, 它可在人肿瘤细胞中复制并引起 细胞死亡,从而抑制肿瘤的生长,但对正常组织没有致病性 (Toda等人, Hum. Gene. Ther" 2):385-93(1999))。
[152]在另一个实施方案中, 该组合物可以包括一种报告子来监测治疗进程。' 该报告子可以是化学制品或酶。优选的,这种报告酶是 β -半乳糖苷酶或它的基因。 也可用其它在本技术领域中已知的报告子。
[153]在所有的实施方案中,有效的病例的血液包裹白细胞和淋巴细胞,可以 用来治疗同类的癌症患者, 因为这些病人在上述治疗中, 肿瘤死亡和半抗原的结 合, 已经起到了免疫治疗的作用, 在病人身体中白细胞和淋巴细胞, 是被抗原刺 激后生长起来的, 具有杀伤肿瘤的作用。
[154]在所有的实施方案中,有效病例的血液包裹白细胞和淋巴细胞,和脾脏, 淋巴结和胸腺, 可以体外培养, 或与瘤细胞进行杂交, 生产出单克隆抗体和杀伤 性的淋巴细胞, 用于治疗同类的癌症患者。
[155]在一个典范的实施方案中, 该组合物含过氧化氢作为氧化剂, ΤΝΡ为 半抗原。 也可以含有乙醇作为蛋白变性剂。 也可以含碳化 亚胺作为促进剂。 [156]氧化剂或还原剂以被包含在组合物中的方式给药,浓度大约 0.01%(w/w) 到 35%(w/w),蛋白质变性剂的浓度约为大约 l%(w/w)到 98%(w/w),半抗原的浓度 约为 lmg/ml到 80mg/ml。
[157]本发明也提供用于肿瘤内治疗的试剂盒,该试剂盒含这种组合物,其中 包括的成分为一种或多种 A)—种氧化剂和 /或一种还原剂; B)一种治疗剂;和 C) 一种半抗原。 试剂盒也包含用于将所述组合物给药的注射器以及给药说明书。 一 方面, 治疗剂可以是抗肿瘤剂。 进一步地, 抗肿瘤剂可以是化疗剂。
[158]本发明也提供用于肿瘤内治疗的生产商品。 该生产商品包括: A)包装 材料; B)一种或多种氧化剂或一种还原剂, 一种治疗剂和一种半抗原; 以及 C) 一种标签, 指明该商品用于治疗肿瘤。 一方面, 治疗剂可以是抗肿瘤剂。 进一步 地, 抗肿瘤剂可以是化疗剂。
c 治疗方法
[159]本发明提供的是用于治疗哺乳动物体内肿瘤的方法,该方法通过在哺乳 动物的肿瘤原位施用有效剂量的氧化剂或还原剂, 半抗原和治疗剂, 导致肿瘤的 凝集, 通过对肿瘤产生自身免疫应答从而治疗该肿瘤。 在一个特定的实施方案中, 所治疗的哺乳动物是人。 一方面, 治疗剂可以是抗肿瘤剂。 进一步地, 抗肿瘤剂 可以是化疗剂。
[160]在另一个特定的实施方案中, 所使用的半抗原为三硝基苯(TNP)、 二 硝基苯 (DNP)、 N-碘乙酰 -N, - (5-磺基 1-萘基) 亚乙基二酰胺 (AED)、 二硝基 氟苯(DNFB)、 卵清蛋白 Ovabulin(OVA), 或血清蛋白 (Abumin)。
[161]在另外一个特定的实施方案中,该治疗方法可进一步包括原位给予一种 促进剂, 通过促进半抗原和肿瘤抗原之间的偶联来增强肿瘤特异性自身免疫应答。 优选的, 所使用的促进剂是一种螯合剂或是一种化学交联剂。 更优选的, 使用的 螯合剂是甘氨酰酪氨酰基- (N-e-二乙三胺五乙酸) -赖氨酸(GYK-DTPA)或亚德 利亚霉素己二酸-二酰肼 (ADR-ADH)。 同样更优选的, 使用的化学交联剂是碳化 二亚胺。
[162]在另外一个特定的实施方案中,该治疗方法可进一步包括原位给予一种 免疫应答增效剂, 以增强肿瘤特异性自身免疫应答。 优选的, 所使用的免疫应答 增效剂是卡介苗(BCG) (Ratliff, Eur Urol, 2:17-21(1992)), 小棒状杆菌 (Lillehoj )等, Avian Pis, 37(3):371 -40(1993»,流产布氏秆菌提取物,也可以是一些细菌的抗原的 组合物, 也可以是一些细菌的活菌的组合物; 葡聚糖,左旋咪唑,泰洛伦,一种酶, 一种非毒性病毒, 多糖, 或草药提取物如中草药提取物。 更优选的, 所使用的酶 是霍乱孤菌神经酰氨酶(VCN)、 木瓜蛋白酶、 β -半乳糖苷酶或伴刀豆球蛋白 A。 同样更优选的, 所使用的非毒性病毒是一种非毒性 ff城疫病毒。
[163]在另外一个特定的实施方案中,治疗方法可进一步包括原位给予一种凝 集溶解剂, 以增强肿瘤特异性自身免疫应答。 优选的, 所使用的凝集溶解剂是一 种蛋白酶 K, 糖基 -磷脂酰肌醇 -Β7或胰酶制剂。
[164]可以使用任何可能凝集肿瘤组织或细胞的方法,如化学或物理方法。在 一个特定的实施方案中, 通过原位给予一种组合物来达到凝集肿瘤的目的。 这种 组合物包括: Α)—种氧化剂和 /或一种还原剂; Β)—种半抗原和 C)化疗剂。一 方面, 治疗剂可以是抗肿瘤剂。 进一步地, 抗肿瘤剂可以是化疗剂。
[165]该氧化或还原剂、半抗原和化疗剂可以配制为一种药剂组合物,或每一 种可分别配制为药剂组合物。
[166]在一个优选的实施方案中, 所使用的氧化剂为过氧化氢、碳酰酸铵, 高 锰酸钾, 臭氧、 多元氧 (07)、 多元氧 (08)、 过氧碘化钠 (NaI04)、 过一硫酸氢 钾(oxone) (Wozniak等人, Bioorg. Med.Chem. Lett., 8 ( 19): 2641-6 ( 1998)), D,L-S甲基硫辛酸甲基酯(Pan和 Jordan, Biochemistry, 37 (5); 1357-64 ( 1998) ), 叔丁基氢过氧化物 (Tarin等人, Mol Hum Reprod,2O2}:895-901, (1996);维生素 K3 (Santini等人, Free Radic Biol Med, 20 (7); 915-24 ( 1996) ), 二酰胺 (Bosin和 Kasper, J Biochem Toxicol, 7(3): 139-45(1992)),iodogen(Saha等人, Int J Rad Appl Instrum, 16(4}:431-3(1989)) , N-溴丁二酰亚胺(Sinn 等人, Anal Biochem, 170(1):186-92(1988),奥美拉唑 (Im等人, J Biol Chem 260(8-):4591-7(1985 , N-乙基 马来酰亚胺 (Marzulli等人, Boll Soc Ital Biol Sper, 610}: 121-7(1985))
[167]在一个特定的实施方案中,所使用的还原剂为苏木精、一种如硝基咪唑 的低氧还原剂、 或无氮化合物 (SR-4233)。
[168]在另一个特定的实施方案中, 所使用的蛋白质变性剂为醇、盐酸胍、硫 氰酸胍、 柠檬酸钠、 2-巯基乙醇、 sarC0Syl、 苯酚、 氯仿或尿素。 例如在治疗中可 使用甲基、 乙基、 n-丙基、 n-丁基、 n-戊基、 n-已基、 n-庚基、 n-辛基、 n-葵基、 n- 十二烷基、 n-十四烷基、 n-十六烷基、 n-十八烷基、异丙基、异丁基、 sec-丁基、 tert- 丁基、 异戊基、 旋性戊基、 tert-戊基、 环戊醇、 环已醇、 烯丙基、 丁烯基、 乙烯基 甲醇、苯甲基、 α -苯乙基、 β -苯乙基、二苯基甲醇、三苯基甲醇、苯丙烯基、 1,2- 乙垸二醇、 1,2-丙垸二醇、 丙三醇、 或季戊四醇。 优选的, 所使用的醇是乙醇。 可 通过化学的或物理学的处理造成酸性条件, 如大约 ρΗ2-5来使蛋白质变性。
[169]本发明提供的肿瘤内治疗可单独或与其它癌症治疗法联合应用。在一个 特定的实施方案中, 该肿瘤内疗法与化疗联合应用, 即进一步原位给予一种抗肿 瘤剂。
[170]可应用任何抗肿瘤剂。在一个优选的实施方案中,所使用的抗肿瘤试剂 是一种抗血管生成剂。 更加优选的, 这种抗血管生成剂是一种基底膜降解抑制剂、 一种细胞迁移的抑制剂、 内皮细胞增殖的抑制剂、 组织和构建三维结构的抑制剂。 更加优选的, 所使用的抗血管生成剂是 AGM-1470 (ΤΝΡ-470), 血管抑制类固醇、 新血管抑素、 抗 av P 3的抗体、 抗碱性成纤维细胞生长因子抗体、 抗白介素 -1抗 体、 抗肿瘤坏死因子 ct抗体、 抗血管内皮细胞生长因子抗体、 金诺芬、 咪唑硫嘌 吟、 BB-94、 BB-2516 , 碱性成纤维细胞生长因子的可溶性受体、 羧基胺三唑类 ( CAI)、 软骨抑制剂、 几丁质、 氯奎、 顺式铂氨、 CM101、 可的松 /肝素、 可的松 /透明质酸、 11-脱氧皮甾醇 /肝素、 CT-2584、 环磷酰胺、 环孢菌素 A、 地塞米松、 二氯酚酸 /透明质酸糖胺多糖、 嗜酸性的主要碱性蛋白、 纤维连接肽、 白明胶酶抑 制剂、 神经胶质瘤来源的抗生血抑制因子 (GD-AIF)、 GM1474、 金卡方氯化物、 硫羟苹果酸金、 肝素酶、 透明质酸糖胺多糖(高和低分子量的种类), 氢化可的松 / β环右旋糖苷、 布洛芬、 吲哚美辛、 α干扰素、 Υ干扰素诱导的蛋白质 10、 y干 扰素、 白介素 1、 白介素 2、 白介素 4、 白介素 12、 层粘连蛋白、 左旋咪唑、 三羧 氨基喹啉、 LM609、 基质蛋白酶抑制剂、 马马司他(BB2516)、 甲羟孕酮、 6-甲基 硫基嘌呤、 metastat(C0l-3)、 甲氨蝶呤、 美满霉素、 氧化氮、 奥曲肽 (生长激素 抑制剂类似物)、 紫杉醇、 D—青霉酸衍胺、 多聚硫酸戊糖、 胎盘 proliferin相关蛋 白、胎盘核糖核酸酶抑制剂、纤溶酶原激活因子抑制物(PAI)、血小板因子 4 (PF4)、 氢化泼尼松、催乳素(16Kda片段)、 proliferin相关蛋白、前列腺素合成酶抑制剂、 鱼鱼精蛋白、类维生素 、罗喹美克(LS— 2616)、生长抑素、基质降解酶抑制剂、 P物质、苏拉明、 SU101、 tecogalan sodium (-4152)、 四氢皮质醇 -sthiombospondins ( TSPs)、 组织基质金属蛋白酶抑制剂 (TIMP1 , 2, 3 )、 血管内皮细胞生长因子 抑制剂、 维生素 A、 Vitaxin, 玻璃体液、 沙利度胺、 3—氨基沙利度胺、 3—羟基沙 利度胺及沙利度胺、 3—氨基沙利度胺、 3—羟基沙利度胺的代谢物或水解物。 也 可以应用在 B节中描述的其它抗血管生长剂。 同样优选的, 所使用的抗血管生长 剂是一种血管抑制基因,如血管抑素、内皮他丁、 kringle—5、PEX、TIMPl、TIMP2、 TIMP3、 TIMP4、 endo::angio、 或 endo::PEX、 或是一种血管抑制趋化因子基因, 如 IP— 10、 Mig或 SDF— 1 α。
[171]在另一个优选的实施方案中,所使用的抗肿瘤试剂是一种垸化剂、一种 抗代谢物、 一种天然产品、 铂配位复合物、 一种蒽二酮、 一种取代的尿素、 一种 甲基肼衍生物、 一种肾上腺皮质抑制素、 一种激素、 ···' 种拮抗剂、 一种抗癌多糖、 或草药提取物如中草药提取物。 也可能使用 Β节中所描述的另外的抗肿瘤剂。
[172]在另一个优选的实施方案中,使用的抗肿瘤药剂是一种癌基因抑制剂如 抗癌基因抗体或抗癌基因反义寡核苷酸。 例如, 可使用抗以下癌基因的抗癌基因 抗体或抗癌基因反义寡核苷酸: abl、 erbA、 erbB、 ets、 fes(¾)S)、 fgr、 fms、 fos、 hs intl、 int2、 Jun、 hit、 B-lym、 mas、 me mil(raf) mos、 myb、 myc、 N-myc、 neu(ErbB2)、 ral(mil)、 Ha-ras、 Ki-ras、 rel、 ros、 sis、 src、 ski、 trk禾口 yes。
[173]在另一个特定的实施方案中,通过进一步给肿瘤原位注射一种肿瘤抑制 基因序列, 将肿瘤内治疗和基因治疗联合应用。 优选的, 使用的肿瘤抑制基因序 列是 pl6, p21, p27, p53, RB, WT-1, DCC, NF-1和 APC -。 在另一个特定的实施方案 中,该方法进一步包括原位给予一种自杀基因如— HSVltk (单.纯疱疹病毒 1胸腺嘧啶 激酶)、 tdk&tmk (胸腺嘧啶激酶&胸苷酸激酶)、 coda&upp' (胞嘧啶脱氨酶 &尿嘧 啶磷酸核糖转移酶); 一种溶细胞基因如粒酶 A、 粒酶 B、 穿孔素; 或一种凋亡基 因如 Bak, Box, Bcl-XL, Bcl-XB, Bik, Sarp-2, TRAIL。在另一个更加特定的实施方案 中, 该方法进一步包括原位给予一种细胞因子基因, 如白介素 1 β、 白介素 2、 白 介素 4、 白介素 6、 白介素 8、 白介素 10、 白介素 12、 白介素 15、 GM— CSF、 干 扰素 α、 干扰素 β、 干扰素 γ、 肿瘤坏死因子 α、 B7.1或 Β7.2以增强免疫应答。
[174]作为该组合物成分的基因转运系统中的基因可使用的形式为裸 DNA、 复合 DNA、 cDNA、 质粒 DNA。 在另一个优选的实施方案中, 肿瘤抑制基因序列 由一个病毒载体携带。 任何适用于基因治疗的病毒载体均可应用于该组合物中。 例如, 可应用一种腺病毒载体(美国专利 5869305)、 一种猿病毒载体(美国专利 5962274 )、 一种条件复制型人免疫缺陷病毒载体和痘病毒载体 (美国专利 5888767), 逆转录病毒, SV40, 表达相关基因的单纯疱疹病毒扩增子载体和痘病 毒载体。另外,可以用非病毒载体系统如脂质体转运基因,其中的脂质可保护 DNA 或其它生物材料在凝集过程中免于氧化。
[175]在另一个特定的实施方案中,该方法进一步包括原位给予一种辐射致敏 剂用于肿瘤内治疗和放疗的联合应用。 在一个优选的实施方案中, 所使用的辐射 致敏剂是 raf的反义脱氧寡核苷酸( Gokhale等人, Antisense Nucleic Acid Drag Dev, 9{2}: 191 -201 (1999)); SR2508 (依他硝唑) (Cha^ig等人, Int J Radiat Oncol Biol Phys,4Q0}:65-7O(1998))或 Buthionine sulfoximine(BSO)(Va rmeijer 等人, Cancer Chemother Pharmacol, 44(2) : 111 -6(1999T)。
[176]在另一个特定的实施方案中,该方法进一步包括原位给予一种含细胞因 子的储存体以增强自身肿瘤特异性免疫应答。 优选的, 所使用的含细胞因子的储 存体是一种配方为脂质体包埋的 IL-2 ( Krup 等人, J Immunother, 22(^:525-38(1999) ) ,或配方为粒细胞-巨噬细胞集落剌激因子 (Leong 等人, J Immunother, 22(2): 166-74(1999))。
[177]在另一个特定的实施方案中,该方法进一步包括原位给予一种癌基因序 列以增强自身肿瘤特异性免疫应答。 优选的, 可使用上面表 4中所显示的癌基因 序列。
[178]在另一个特定的实施方案中, 该方法进一步包括原位给予一种减毒的、 可复制的病毒载体以增强自身肿瘤特异性免疫应答。 优选的, 使用的减毒的、 可 复制的病毒载体是 1型单纯疱疹病毒 (HSV-1 ) 的突变体 G207, 它可在人肿瘤细 胞中复制并引起细胞死亡,从而抑制肿瘤的生长,但对正常组织没有致病性(Toda 等人, Hum Gene Ther, 10{3}:385-93(1999))o 也可以是含这些病毒质粒的细菌。
[179]在另一个实施方案中,该方法进一步包括原位给予一种报告子来监测治 疗进程。 该报告子可以是化学制品或酶。 优选的, 这种报告酶是 -半乳糖苷酶或 它的基因。 也可用其它在本技术领域中已知的报告子。
[180]在一个特定的实施方案中, 在治疗中使用过氧化氢作为氧化剂, TNP 作为半抗原。 此外, 乙醇可以作为蛋白质变性剂。
[181]在另一个特定的实施方案中,在治疗中使用的氧化剂或还原剂的浓度大 约为 0.01%(w/w)到 35%(w/w), 半抗原的浓度约为 lmg/ml到 80mg/ml。此外,可选 地, 蛋白质变性剂的浓度约为大约 l%(w/w)到 99%(w/w)。
[182]可以通过物理法处理达到聚集肿瘤组织和细胞的目的, 如冷冻疗法
(Morris, HPB Surg, 9 (2): 118-20 ( 1996); Seifert等人, World J Surg, 23 ( 10); 1019-26 ( 1999); 和 August, Clin Dermatol, 13 (6); 589-92 ( 1995)), 激光聚集 (ILC) (Joc an , Recent Results Cancer Res, 126: 135-42 ( 1993); Chang等人, Br J Plast Surg, 52(3): 178-81(1999);和 Jiao和 Habib. Br J Surg, 86(9): 1224(1999)), 皮下微波聚集疗法 (Ohmoto等人, Am J Roentgenol, 173(5 :1231-3d999 ; Seki等 人, Am J Gastroenterol. 94(2^:322-7(1999);禾 13 Shibata等人, Gan To Kagaku Ryoho, 26(12): 1760-3(1999)) ,射频诱导的凝集坏死(Francica和 Marone, Eur J Ultrasound, 9(2): 145-53(1999); Goldberg等人, Radiology, 209(3}:371-9(1998); Strmen和 Furdova, Cesk Slow Oftalmol, 55(3): 176-80(1999)) ,超声治疗 (Lu等人, Int J Hyperthermia, 120}:375-99(1996);和 Saitoh等人, Urology, 43(3^342-8(1983);和 Strashinin等人, Vopr. Onkok., 17(1 :78-9(1971 ).
[183]在一个特定的实施方案中,由半抗原和氧化凝集剂或治疗剂的联合作用 所产生的自身免疫应答是一种体液和 /或细胞免疫应答,如肿瘤免疫染色 .CD4, CD8 成阳性,- 淋巴结脾脏肿大。
[184]任何肿瘤赘生物、肿瘤或癌都可由这里提供的方法治疗。例如,可治疗 以下部位的肿瘤: 肾上腺、 肛门、 耳神经、 胆道、 膀胱、 骨、 脑、 胸、 brucCal、 中枢神经系统、 子宫颈、 结肠、 耳、 子宫内膜、 食管、 眼、 眼睑、 输卵管、 胃肠 道、 头和颈、 心脏、 肾脏、 喉、 肝脏、 肺、 下颚、 下颚骨齿突、 上颌骨、 口、 鼻 咽、 鼻、 口腔、 卵巢、 胰腺、 腮腺、 阴茎、 耳廓、 垂体、 前列腺、 直肠、 视网膜、 唾液腺、 皮肤、 小肠、 脊髓、 胃 睾丸、 甲状腺、 扁桃体、 尿道、 子宫、 阴道、 前庭耳蜗神经、 或外阴, 各种癌的淋巴和淋巴结转移病灶和恶性淋巴瘤。
[185]可用这种方法治疗的其它肿瘤和癌的例子包括: 乳腺癌、肺癌、结肠直 肠癌、 胰腺肿瘤、 胆囊肝管肿瘤、 肝肿瘤、 胃肿瘤、 食管癌、 恶性黑色素瘤、 尿 道和男性生殖器癌、 皮肤癌、 头颈和甲状腺癌、 中枢神经系统和垂体癌、 眼和眼 附属器肿瘤、 骨恶性肿瘤、 软组织肉瘤、 霍奇金疾病和非霍奇金疾病、 多发性骨 髓瘤、 小儿实体瘤、 妇产科癌。 其它的例子还包括:
A. 间质来源的肿瘤- ( 1 ) 结缔组织及其衍生物: 肉瘤、 纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉 瘤、 成骨肉瘤。
(2) 内皮及相关组织血管: 血管肉瘤、淋巴血管肉瘤、滑膜瘤、 间皮瘤、侵 袭性脑膜瘤。 B.上皮来源的肿瘤:
( 1 ) 鳞状分层的: 癌、 鳞状细胞或表皮样癌
(2) 皮肤或附件基细胞: 基细胞癌
(3 ) 皮肤附属器腺体: 汗腺癌、 皮脂腺癌
(4) 上皮内层: 腺癌、 乳头癌、 乳头状腺癌、 囊腺癌、 髓癌、 未分化腺癌
(5) 呼吸道: 支气管腺癌
(6) 神经外胚层: 黑色素瘤
(7) 肾上皮: 肾细胞癌、 肾上腺样瘤
(8) 肝细胞: 肝细胞瘤 (肝细胞癌)
(9) 胆道: 胆管癌、 滴虫血管肉瘤 (chlangiocarcinoma)
( 10) 泌尿道上皮: 乳头癌、 移行性细胞癌、 鳞状细胞癌
( 11 ) 胎盘上皮: 绒毛膜癌
( 12) 睾丸上皮 (;胚细胞): 精原细胞癌、 胚癌
[186]进一步, 也可以治疗来源于一种类型以上瘤细胞或一个以上胚层的肿 瘤。
[187]在一个优选的实施方案中, 所治疗的肿瘤是一种实体瘤。更优选的, 这 种实体瘤的大小大于 108个细胞。 最优选的, 实体瘤的大小为 5 X 109到 1011个细 胞。
[188]在另一个优选的实施方案中,半抗原和凝集试剂是通过注射到肿瘤内的 方式给药的。 为更好地分配注射到肿瘤内的液体, 可以在高压下缓慢注射, 如达 到 6 AMP的注射器。该溶液也可以用一种规格为 15— 35的针进行注射。在注射的 过程中, 可通过转动针柄使针在肿瘤内转动。 需根据肿瘤的性质、 大小和位置来 调整注射的剂量和频率, 以及治疗的进程。 为使溶液在肿瘤内达到更好的分布, 在对肿瘤实际注射之前, 可通过使用脊柱针进行预注射来准备注射渠道。 注射也 可以在计算机 X射线断层造影 (CT)、 磁共振(MR)、 超声或其它合适的影像技 术指导下进行操作。
[189]在一个特定的实施方案中,可使用美国专利 5651986中所描述的方法和 仪器将半抗原和凝集试剂向实体瘤中进行有控制的定位给药。 美国专利 5651986 中所描述的方法和仪器是用来向实体瘤定位给予化疗药剂的, 其中的药剂不通过 血脑屏障, 其特点是在体内具低生物药效和 /或短的半衰期。 该仪器具备储存器, 可在延长的时间内给药, 并同时保持药剂的生物活性和该药剂的生物有效度。
[190]在另一个特定的实施方案中,半抗原和氧化凝集剂针对肿瘤的给药或治 疗是与外科操作联合进行的。 例如, 半抗原和氧化凝集剂针对肿瘤的给药或治疗 可在外科操作之前、 同时或之后进行。
[191]在另一个特定的实施方案中,半抗原和氧化凝集剂和化疗剂针对肿瘤的 给药或治疗后, 一或二周之后, 可以重复肿瘤内注射治疗。 [192]在另一个特定的实施方案中,半抗原和氧化凝集剂和化疗剂针对肿瘤的 给药或治疗后, 一或二周之后, 可以用不同的半抗原和氧化凝集剂和不同的化疗 剂针对肿瘤的给药或治疗。
[193]在另一个特定的实施方案中,半抗原和氧化凝集剂和化疗剂针对肿瘤的 给药或治疗后, 一或二周之后, 可以手术切除肿瘤, 可以切成小块, 保存于 -80°C 的冰箱, 肿瘤小块已被半抗原所浸染, 以备用于体外免疫疫苗治疗。
[194]在另一个特定的实施方案中, 保存于 -80°C的冰箱的手术切除肿瘤, 可 以直接进行小块复苏, 研衆, 过滤, 行指 (趾) 蹼皮下注射, 起到疫苗的作用。
[195]在另一个特定的实施方案中, 保存于 -80°C的冰箱的手术切除肿瘤, 可 以直接进行小块复苏, 进行细胞培养, 新增殖的肿瘤细胞, 可再进行半抗原浸染 后, 行灭活后, 行指 (趾) 蹼皮下注射, 起到疫苗的作用。
[196]在所有的实施方案中,有效的病例的血液包裹白细胞和淋巴细胞,可以 用来治疗同类的癌症患者, 因为这些病人在上述治疗中, 肿瘤死亡和半抗原的结 合, 已经起到了免疫治疗的作用, 在病人身体中白细胞和淋巴细胞, 是被抗原刺 激后生长起来的, 具有杀伤肿瘤的作用。
[197]在所有的实施方案中,有效病例的血液包裹白细胞和淋巴细胞,和脾脏, 淋巴结和胸腺, 可以体外培养, 或与瘤细胞进行杂交, 生产出单克隆抗体和杀伤 性的淋巴细胞, 用于治疗同类的癌症患者。
[198]本发明所提供的组合物或凝聚剂或其它凝聚作用, 可引起肿瘤的凝聚, 并能缓释其镶嵌在内部药物, 起到缓慢杀死周边肿瘤细胞的作用, 由于半抗原修 饰肿瘤的死亡细胞, 同时增强肿瘤的抗原性, 由此产生针对肿瘤的自身免疫应答 且治疗肿瘤。 -
[199]在一个实施方案中,氧化剂或还原剂,半抗原和化疗剂可以配制成单一 的药物组合物使用, 配合后, 行肿瘤内注射治疗, 目的是通过氧化还原剂的作用, 使化疗剂和半抗原停留在肿瘤内部, 并能缓释其镶嵌在内部药物, 起到缓慢杀死 周边肿瘤细胞的作用, 由于半抗原修饰肿瘤的死亡的肿瘤细胞, 同时增强肿瘤的 抗原性, 并发挥其抗癌作用和免疫炎性反应的作用, 如肿瘤免疫染色 CD4和 CD8 呈阳性反应; 淋巴结及脾脏肿大。
[200]一方面,行肿瘤内注射治疗是重复行肿瘤内注射治疗,使其发挥加强其 抗癌作用和免疫炎性反应的作用, 如肿瘤免疫染色 CD4和 CD8呈阳性反应;淋巴 结及脾脏更明显肿大。
[201]在另一个实施方案中,氧化剂或还原剂,半抗原和化疗剂可以配制成单 一的药物组合物使用, 配合后, 可通过血管导管的方式实施于肿瘤内治疗, 同样 可以起到杀死肿瘤的作用, 其中氧化剂所产生的凝聚作用是抗癌药物停留于肿瘤 内, 不断杀死肿瘤细胞, 由于半抗原修饰肿瘤的死亡的肿瘤细胞, 同时增强肿瘤 的抗原性, 并发挥其抗癌作用和免疫炎性反应的作用, 吸引 APC和 DC细胞来接 受抗原信号,进而引起炎性反应如肿瘤免疫染色 CD4和 CD8呈阳性反应; 淋巴结 及脾脏肿大, 起到杀伤肿瘤残余灶, 治疗微小肿瘤转移, 或预防肿瘤微小转移。
[202]一方面,所述氧化剂或还原剂,半抗原和化疗剂可以配制成单一的药物 组合物使用, 配合后, 可以与常规的肿瘤栓塞剂碘油, 合为一体, 再通过血管导 管的方式实施于肿瘤内治疗, 同样可以起到杀死肿瘤的作用, 可以加强常规栓塞 治疗的作用, 同时又引发炎症反应, 其中氧化剂所产生的凝聚作用是抗癌药物停 留于肿瘤内, 不断杀死肿瘤细胞, 由于半抗原修饰肿瘤的死亡的肿瘤细胞, 同时 增强肿瘤的抗原性, 并发挥其抗癌作用和免疫炎性反应的作用, 吸引 APC和 DC 细胞来接受抗原信号,进而引起炎性反应如肿瘤免疫染色 CD4和 CD8呈阳性反应。 该方法可称为栓塞免疫治疗, 也可以称为免疫栓塞治疗。
[203]一方面, 肿瘤栓塞剂, 可以是碘油, 也可以是碘油乳化剂, 或任何可以 起栓塞作用的乳化剂。
[204]在一个实施方案中,所述氧化剂或还原剂,半抗原和化疗剂可以配制成 单一的药物组合物使用, 经过自动注射混合器的装置(如图 3所示), 再行肿瘤内 注射, 或血管导管的方式实施与肿瘤内部药物治疗。
[205] 自动注射混合器包括一个可以容纳两个或者更多个次级注射器的腔。腔 的上端有推动活塞, 活塞连有手柄; 腔的下端有液体混合腔隙, 液体混合腔隙上 有各成分入口以及混合后的物质的出口, 出口上可以连接上针头。 使用时, 将欲 混合的各个成分分别吸入到次级注射器中, 安装到自动注射混合器的腔中, 其中 每个次级注射器的出口端连接到液体混合腔隙的入口上, 并且每个次级注射器的 手柄接触自动注射混合器的活塞下端。 推动自动注射混合器的手柄, 自动注射混 合器的活塞推动次级注射器的手柄, 使次级注射器的内容物进入液体混合腔隙, 实现药物组合物的各个成分的混合。 混合后的物质可以用于治疗。
[206]对于如何进行血管导管方式的给药,本发明以肝脏直接给予药液为例进 行说明 ·参见图 4, 将药物用注射器通过插入到血管中的导管, 给药至肝脏。 图中 示意性显示了人体, 包括注射器、 导管、 血管、 肝脏。 这里的描述和图 4所显示 的示意图, 是示例性说明用药方式的, 不构成对本发明的限制。 图 5是图 4的给 药方式的更详细显示, 导管被插入到血管中, 导管远端到达肝总动脉分支成肝动 脉和胃十二指肠动脉处, 优选伸入肝动脉; 药物经注射器和导管直接到达肝动脉, 从而进入肝脏。
[207]在另一个实施方案中,氧化剂或还原剂,半抗原和化疗剂可以配制成单 一的药物组合物, 其经过自动注射混合器的装置进行, 其中至少两种成分是经过 自动注射混合器混合, δΡ, 可以使是两种或两种以上的单一药物制剂经经过自动 注射混合器的装置使用; 也可以使氧化剂作为一种制剂和化疗及半抗原作为一种 制剂的两种制剂经经过自动注射混合器的装置使用。
[208]在仍另一个实施方案中,所述行肿瘤内注射治疗后一定时间,并能缓释 其镶嵌在内部药物, 起到缓慢杀死周边肿瘤细胞的作用, 也可以择期行手术切除 肿瘤, 这样手术可以减少肿瘤细胞流失和转移, 避免术后的复发与转移。 如果有 癌细胞的流失, 也可能是已被杀死的细胞, 已被半抗原修饰的死细胞, 可以起到 自身肿瘤疫苗的作用。
[209] 图 6是本发明的肿瘤治疗机理的示意图。本发明的药物组合物可以实现 至少三个方面的联合效应。
[210]第一个方面是凝聚, 图中标示为 (A)方面, 诱导形成凝块的方法是多 种多样的, 包括变性方法; 氧化, 包括生物还原; 以及物理方法, 以及这些方法 的组合使用。 物理方法可以是低温疗法、 激光凝聚、 辐射、 经皮的微波凝聚、 超 声吸引、 反式瞳孔热疗、 电化学疗法等等。 所有提及的这些方法可以单独使用, 或者组合使用, 只要达到适当凝聚肿瘤即可。 凝聚作用形成凝块, 将实体瘤封闭 起来; 同时也是部分肿瘤细胞发生死亡, 产生对机体的后续作用。
- [211]第二个方面是免疫反应以及相关反应, 图中标示为 (B)方面, 这一方 面主要是调动体内器官、 组织和细胞, 形成对肿瘤细胞的搜寻和杀死的协作效应。 首先是, 遭到凝聚作用的一些肿瘤细胞会形成裂解液或者修饰的裂解液, 这些裂 解液刺激机体, 导致白细胞(WBC)、 抗原呈递细胞(APC)、 T细胞、 N细胞移 动到具有炎症特征的肿瘤处, 以便进行抗癌战斗。 同时, 这些细胞还可以接受抗 肿瘤基因信号以及经过修饰的肿瘤抗原。 T淋巴细胞和 N细胞会杀死原发部位的 肿瘤细胞或者转移到其他部位的肿瘤细胞, 从而它们可以进一步作用于肿瘤凝块 和转移的肿瘤。 另外, 可以制备肿瘤裂解液、 从肿瘤提取的 DNA制备物、 RNA 制备物等, 不论这些物质的单一成分或者成分, 将它们进行注射, 刺激白细胞 (WBC)、 抗原呈递细胞(APC), 增加肿瘤免疫原性。 还可以通过释放新的反义 基因, 对 TRAPTEN:DNP、 T P化学修饰的肿瘤细胞裂解液、 凝块周围的活的肿 瘤细胞增加免疫原性, 以及通过病毒进行遗传修饰, 表达肿瘤蛋白 P— 16— GM—-': - CSF、IL—2,或者是直接表达或者是其 cDNA编码, COGEN cDNA、GM-CSF cDNA 和 IL-2 cDNA。 此外, 肿瘤抑制基因会对 P53和 P16活肿瘤细胞进行作用。
[212]第三个方面是药物作用, 图中标示为 (C)方面。 肿瘤被凝聚之后, 药 物也就会被封闭在凝块内部, 形成一个缓慢释放的药物库, 可以控制凝块周围的 肿瘤细胞或者杀死这些肿瘤细胞。 这个药物释放系统可以含有抗癌药、 辐射敏化 剂、 抗血管发生剂、 放射性同位素等。
[213]上述三个方面的任意一个方面均是本发明的范围。本发明是将多种抗癌 方法和药物进行组合应用, 也包括考虑机体自身功能。 所以, 本发明不局限于具 体物质和方法, 本发明体现的是综合应用。 现有的肿瘤治疗和预防中的试剂和方 法均是有可能与本发明的思想和精神相结合, 取得良好的肿瘤治疗效果, 形成用 于肿瘤治疗的方法和产品, 这些是在本发明范围之中。
[214]诱导实体瘤的凝聚,形成对机体剌激,用药物以缓释库形式不断作用于 肿瘤细胞, 从而对肿瘤进行多种方法和多种试剂的多机理作用是本发明的一个方 面。 优选地, 本发明是多机理作用机制。 进一步而言, 本发明涉及扩大肿瘤凝聚 所致的对机体的刺激作用, 包括使用半抗原等。 本发明所用的抗肿瘤药物可以是 任何适宜的抗肿瘤药物, 它们能够作用于凝块内部的肿瘤细胞, 也可以缓慢释放 作用于凝块周围的肿瘤细胞。
[215]本发明提供了一种具有优异效果的肿瘤治疗方法, 以及相应的试剂。本 发明的治疗组合, 可以包括促进肿瘤组织凝聚的物质或者手段; 促进凝聚后的肿 瘤组织形成刺激机体的刺激物的能力的物质或者手段; 以及直接作用于肿瘤细胞 的物质或者手段。 这种治疗组合, 可以是物理手段, 也可以是化学物质或者生物 物质的组合。 本发明不限于任何一种具体手段。 本发明在于多种方式的综合应用。
[216]本发明的一个方面在于治疗实体瘤的药物组合物, 该组合物包括凝聚 剂、 半抗原和抗癌药物。 该组合物是直接给予到实体瘤中, 导致肿瘤组织凝聚, 形成凝聚块。 凝聚作用导致一些肿瘤细胞死亡、 裂解形成剌激机体的抗原物质等, 同时半抗原可能修饰一些小分子物质、 也形成复合物质, 对机体构成刺激。 抗癌 药物能够直接作用于凝聚块内部的肿瘤细胞, 也可以释放出凝聚块, 作用于周围 肿瘤细胞。 这些作用的两个或者多个, 或者全部的综合利用, 均是本发明的范围。
[217]最基本地,本发明可以归纳为凝聚作用,即本发明是通过凝聚肿瘤组织, 从而激发机体对肿瘤细胞的搜寻和抵抗, 达到治疗肿瘤的目的。
[218]进一步,本发明也可以包括增强机体对肿瘤细胞的搜寻和抵抗,包括使 用半抗原以及类似物质。
[219]再进一步, 本发明还包括使用抗肿瘤药物。
[220]在一个方面, 本发明是凝聚作用和机体作用的结合。 在另外一个方面, 本发明是凝聚作用和增强的机体作用的结合。 在又一个方面, 本发明是凝聚作用、 机体作用、 药物作用的结合。 在再一个方面, 本发明是凝聚作用、 增强的机体作 用和药物作用的结合。 每一个作用的具体形式是不受限制的。 所以, 本发明提供 了多种物质组合物和方法组合。 本发明的任何一个要素与另外一个要素的结合使 用, 就会构成本发明的一个实施方案。 因此, 本发明是多种技术方案, 不是一种 技术方案。 本发明的技术方案不仅仅限于本说明书和权利要求书中明确写出的各 个具体技术方案, 还包括将这些技术方案中的要素进行组合的任何一个衍生方案, 以及在利用了本发明的精神和实质的基础上, 所得到任何一个衍生方案。
[221]本发明重要的一点在于将外在作用和内在力量结合起来,形成一种治疗 癌症的新治疗方法, 本发明还包括用于这样一种治疗方法的药物。 以及, 本发明 包括依据上述新方法, 设计的治疗药物以及药物组合物。 也可以将这些物质偶联, 包括用连接物将不同功能的物质连接成一个分子, 这些也是在本发明范围内。
[222]本发明还提供了本文所提供的组合物在制备抗癌药物中的用途。 一方 面, 所述用途包括向哺乳动物肿瘤原位施用入治疗有效量的本文所提供的组合物。 施用可以行肿瘤内注射进行, 也可以通过血管导管的方式实施于肿瘤内。
D. 实施例 实施例 1
[223] S180瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm 时, 肿瘤内注 射 Ara-C,结合 DNP及氧化剂碳酸酰胺 (50至 200mg), 每天观察肿瘤生长大小。
表 1. DNP联合化疗后 S180实体瘤小鼠抑瘤率 (%) Δ 第三次实验
组别与剂量 (mg/ml) 第一次实验 第二次实验 双侧
单侧 ―
右侧 左侧 模型组 (NS) ― o ― — — ― 化疗组 (Adr2.5) 15.70 68.35" 21.95 - - 化疗 +H-DNP组 (2.0) 45.92* 43.55* - — —
化疗 +M-DNP组 (1.0) 40.71* 52.35 * # 68.78 * 71.70 * 化疗 +L-DNP组 (0.5) 29.37 62.79" — — ―
H-DNP组 (2.0 -38.14 ― — — ―
M-DNP组 (1.0) 4.52 36.44 -46.29 一 -
L-DNP组 (0.5) 2.14 ― — — ― 分组后第 9天, ¾S * P< 0.05, 与模型组比较。 # P< 0.05, 与化疗组比较。
[224]表明化疗加中等剂量的 DNP以及碳酸酰胺的抑瘤率明显高。 同时双侧 的肿瘤仅仅治疗了右侧, 左侧的肿瘤同样得到了抑制, 充分说明: DNP修饰的瘤 苗起到了治疗对侧肿瘤的作用。 仅仅 DNP治疗不能起到任何肿瘤治疗的作用。 实施例 2
[225] H22瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm 时, 肿瘤内注 射 Ara-C, 结合 DNP及氧化剂碳酸酰胺, 每天观察肿瘤生长大小。
表 2. DNP联合化疗后 H22皮下实体瘤小鼠抑瘤率(%) Δ 第三次实验
组别与剂量 (mg/ml) 第一次实验 第二次实验 双侧
单侧 ·
右侧 左侧 模型组 (NS) - - ― 一 ―
66.64
化疗组 (Adr2.5) 18.15 35.83* * ―
化疗 +H-DNP组 (2.0) 48.48* 44.22* ― ― ―
76.88
化疗 +M-DNP组 1.0) 40.58* 48.73** * 30.24 * 44.45 化疗 +L-DNP组 (0.5) 30.95 ― ― ―
H-DNP组 (2.0 47.94* ― ― ― ―
M-D P组 (1.0) 6.99 8.43 16.34 ― ―
L-DNP组 (0.5) 1.12 ― ― ―
*分组后第 9天, X± S * P< 0.05, 与模型组比较。
[226]表明与实施例 1同样的效果, 化疗加中等剂量的 DNP以及碳酸酰胺的 抑瘤率明显高。 同时双侧的肿瘤仅仅治疗了右侧, 左侧的肿瘤同样得到了抑制, 充分说明: DNP修饰的瘤庖起到了治疗对侧肿瘤的作用。仅仅 DNP治疗不能起到 任何肿瘤治疗的作用。 实施例 3
[227] Lewis瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm时, 肿瘤内 注射 Ara-C, 结合 DNP及氧化剂碳酸酰胺, 每天观察肿瘤 长大小。
DNP联合化疗后 Lewis实体瘤小鼠抑瘤率 (%) 双侧.
组别与剂量 (mg/tnl) 单侧
右侧 ■:■■■· '·:
模型组(NS) ― ― ― 化疗组 (Adr2.5) 72.57 * ― ― 化疗 + DNP组 (1.0) 87.88 * 56.73 * 58.90 *
DNP组 (1.0) -61.69 * ― 分组后第9夭, ±5 * < 0.05, 与模型组比较。
[228]表明与实施例 1和 2同样的效果, 化疗加中等剂量的 DNP以及碳酸酰 ' 胺的抑瘤率明显高。 同时双侧的肿瘤仅仅治疗了右侧, 左侧的肿瘤同样得到了抑 制, 充分说明: DNP修饰的瘤鹿起到了治疗对侧肿瘤的作用。 仅仅 DNP治疗不 能起到任何肿瘤治疗的作用。 实施例 4:
[229] H22瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm时, 肿瘤内注 射 Ara-C, 结合 DNP及氧化剂碳酸酰胺, 每天 H'察胸腺指数、 脾脏指。
表 4. DNP联合化疗后 H22实体瘤小鼠胸腺指数、 脾脏指数
(g/g) ( X 10-3) * 第一次实验 第二次实验 第三次实验
单侧 双侧 组别与剂量 (mg/ml) 胸腺 脾脏 胸腺 脾脏
指数 指数 指数 指数 胸腺 脾脏 胸腺 脾脏
指数 指数 指数 指数 模型组 ( S) ― ― ― ― ― ― ― ― 化疗组 (Adr2.5) \ \ \ \ J ■ ― ― 化疗 +H-DNP组 (2.0) 1 \ 1 1 ― ― ― ― 化疗 +M-DNP组 (1.0) 1 \ \ i 1
化疗 +L-DNP组 (0.5) \ \ 1 ― ― ― ―
H-DNP组 (2.0 t Ϊ ― ― ― ― ― ―
M-D P组 (1.0) ― ―
L-DNP组 (0.5) 个 ― ― ― ― ― ―
*分组后第 9天, S
[230]表 4说明化疗可以引起胸腺指数、 脾脏指数下降, 但是 DNP可以提高 胸腺指数、 脾脏指数。 实施例 5:
[231] S180瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm时, 肿瘤内注 射 Ara-C,结合 DNP及氧化剂碳酸酰胺, 每天观察胸腺指数、 脾脏指数。
表 5. DNP联合化疗后 S180实体瘤小鼠胸腺指数、 脾脏指
数 (g/g) ( io-3) * 第一次实验 第二次实验 第三次实验
组别与剂量 (mg/ml) 胸腺 脾脏 胸腺 脾脏 单 ί! 双侧
胸腺 胸腺 脾脏 指数 指数 指数 模型组(NS)
化疗组 (Adr2.5) 1 I †
化疗 +H-DNP组 (2.0) \
化疗 +M-DNP组 (1.0) I
化疗 +L-DNP组 (0.5)
H-DNP组 (2.0 † t
M-DNP组 (1.0) † t ί
L-DNP组 (0.5)
*分组后第 9天, S
[232] 同样, 表 5说明化疗可以引起胸腺指数、 脾脏指数下降, 但是 DNP可 以提高胸腺指数、 脾脏指数。 实施例 6:
[233] S180瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm 时, 肿瘤内注 射 Ara-C, 结合 DNP及氧化剂碳酸酰胺治疗, 5天后处死, 取肿瘤组织, 行病理切 片, 进行免疫染色。 如图 1 所示: 肿瘤内注射化疗药和半抗原及氧化剂, 可以引 起肿瘤组织的弹力.纤维、 胶原纤维和网状纤维高度增生, 起到限制肿瘤增长的作 用和限制肿瘤转移的作用 实施例 7
[234] S180瘤株皮下接种于小鼠, 待瘤体长大到直径约 0.6cm时, 肿瘤内注 射 Ara-C, 结合 DNP及氧化剂碳酸酰胺治疗, 5天后处死, 取肿瘤组织, 行病理切 片, 进行免疫染色。 如图 2所示: 肿瘤内注射化疗药和半抗原及氧化剂, 可以引 起肿瘤组织的 CD4和 CD8的免疫反应,起到杀伤肿瘤的作用和杀伤微小转移肿瘤 的作用。 证实了本发明的肿瘤内化疗加半抗原及氧化剂, 可以诱导肿瘤自身免疫 疫苗的作用。 实施例 8 [235]我院用肿瘤内注射化疗药加半抗原以及氧化剂治疗了 212例肺癌患者 中, 可评价疗效患者 157例, 其中病理分型:
腺癌 鳞癌 大圆细胞癌 巨细胞癌 査见癌细胞 合计 例数 49 98 6 1 58 212
[236]肿瘤内注射化疗药加半抗原治疗的临床受益率为: 88.54%。 效果 n %
CR 7 4.46
PR 36 22.93
SD 96 61.15
PD 18 11.46
o
临床有效 43 27.39
临床受益 139 88.54
总数 157 100
[237]肿瘤内注射化疗药加半抗原治疗的临床生存时间如下:可以看到应有了 半抗原后的平均生存时间和半年生存率明显的好于未用半抗原的疗效。 说明了本 发明的药物组合有很好的治疗效果。 达到了延长生命的效果。 中位生存 平均生存 半年生存率 一年生存率 n
(月) (月) ( ) ( % ) 总体 127 12.37 12.41 73.23 48.03 未用半抗
60 12.29 66.67 52.54 原
应用半抗
59 12.42 81.36 43.33 原
I期 5 41.67 18.4 80 60
II期 24 13.13 14.33 87.5 45.83
ΠΙ期 64 12.55 11.43 68.87 48.44 襲 36 11.73 10.96 65.38 46.67
* t=2. 21 , P < 0. 05 注: 212例患者中可评价生存期患者 127例 实施例 9:
[238]我院用肿瘤内注射化疗药加半抗原以及氧化剂 H202、维生素 -C治疗 489 例肝癌患者中, 可评价疗效患者 246例。 [239]肿瘤内注射化疗药加半抗原治疗的临床受益率为: 80.89%如下表: 效果 n %
CR 0 0
PR 16 6.5
SD 183 74.39
PD 47 19.11
临床有效 16 6.5
临床受益 199 80.89
总数 246 100
[240]肿瘤内注射化疗药加半抗原治疗的临床生存时间如下:可以看到应用了 半抗原后的平均生存时间和半年生存率明显的好于未用半抗原的疗效。 说明了本 发明的药物组合有很好的治疗效果。 达到了延长生命的效果。 中位生存 平均生存 半年生存率 一年生存率 n
(月) (月) ( % ) ( % ) 总体 333 6.35 9.22 53.15 25.23 未用半抗
120 4.78 7.63* 57.5 26.25 原
应用半抗
213 7.04 10.11* 61.50 29.57 原
I期 18 36 23.76 77.78 55.56
II期 146 7.26 10.60 61.64 32.88 麵 142 5.23 5.92 41.55 12.67 應 21 6.33 10.52 52.38 33.33 实施例 10:
[241]我院用肿瘤内注射化疗药加半抗原以及氧化剂治疗胰腺癌患者 91例。 可评价疗效患者 46例。 肿瘤内注射化疗药加半抗原治疗胰腺癌的临床受益率为: 91%如下表。
效果 n %
CR 0 0
PR 5 10.87
SD 37 80.43
PD 4 8.70
临床有效 5 10.87 临床受益 42
总数 46
[242]临肿瘤内注射化疗药加半抗原治疗的临床生存时间如下:可以看到应用 了半抗原后的平均生存时间和半年生存率明显的好于未用半抗原的疗效。 说明了 本发明的药物组合有很好的治疗效果, 达到了延长生命的效果。 临床生存率如下: n 中位生存 (月) 平均生存 (月) 半年生存率(%) 总体 31 5 5.1 43.3 未用半抗
8 3.33 4.25 22.22 应用半抗
23 5.75 5.39 47.83
原 实施例 11 :
[243]我院用肿瘤内注射化疗药加半抗原以及氧化剂治疗胰腺癌患者 760例, 可评价疗效患者 623例。 肿瘤内注射化疗药加半抗原治疗食道癌的临床受益率为 91%如下表。 效果 n %
CR 53 8.51
PR 199 31.94
SD 316 50.72
PD 55 8.83
临床有效 252 40.45
临床受益 568 91.17
^、^^ 623 100
[244] 临肿瘤内注射化疗药加半抗原治疗食道癌的临床生存时间如下:可以看 到应用了半抗原后的平均生存时间和半年生存率明显的好于未用半抗原的疗效。 说明了本发明的药物组合有很好的治疗效果, 达到了延长生命的效果。 临床生存 率如下:
中位生存 平均生存 半年生存率 ~一年生存率 11 (月) (月) ( % ) ( % )
Figure imgf000055_0001
未用半抗原 194 13.67 13.26* 87.18 49.48 应用半抗原 90 14.40 17.64* 92.22 实施例 12:
[245] 2004年患者,姓李, 患有恶性神经母细胞瘤,肿块 5x6x7cm无法手术, 来我院行化疗加半抗原及氧化剂(¾02, 维生素 -C), 治疗 5次。 肿瘤有所缩小。 抽取肿瘤液化组织, 行趾蹼注射治疗。 肿瘤渐渐缩小, 于疗后 5月时, CT显示肿 瘤消失。 表明本发明的组合物有的疫苗的作用, 肿瘤液化组织已被半抗原修饰, 能够起到了肿瘤疫苗的作用。 实施例 13 :
[246] 2005年, 患者, 姓黄, 患有骶骨恶性骨肉瘤, 双肺转移。 外院无法治 疗, 来我院行骶骨肿瘤内化疗加半抗原及氧化剂 (¾02, 维生素 -C) 8次。 于 4 月后骶骨肿瘤明显缩小, 同时双肺转移灶消失。 表明本发明的组合物有疫苗的作 用, 肿瘤液化组织被半抗原修饰起到了肿瘤疫苗的作用。 实施例 14: '
[247] 2003年, 患者, 姓李, 患有肝癌, 并发肺转移。 来我院治疗, 先行干 肿瘤内注射化疗药加半抗原及氧化剂(H202, 维生素 -C), 2次治疗后, 病人因经 济困难停止治疗。 2年后仍然健在, 回院复査,肝脏肿瘤明显缩小,双肺肿瘤稳定。 表明本发明的组合物有疫苗的作用, 肿瘤液化组织被半抗原修饰起到了肿瘤疫苗 的作用, 治疗一个部位的肿瘤诱发疫苗作用, 起到了治疗另一个肿瘤的作用。
[248]本发明并不限于本申请描述的特定实施方式,所述的特定实施方式仅是 本发明各方面的一些例示。 对本发明进行各种修改和变化是可能的, 它们并不脱 离本发明的精神和范围, 这对于本领域技术人员是明显的。 根据本文前面的描述, 除了本文提及的方法和组合, 本发明范围内的功能上等价的方法和组合对本技术 领域的技术人员是明显的。 这样的修改和变化在所附权利要求的范围内。 本发明 仅受所附权利要求以及其等价物的范围的限制。 应该理解, 本发明不限于特定的 方法、 试剂、 组合物或生物系统, 它们可以变化。 还应该理解, 本文使用的术语 仅是出于描述具体的实施方案的目的, 并不是限制性的。 本发明的其它实施方式 在权利要求中提出。

Claims

权 利 要 求 书
1. 一种组合物, 其中包括- a) 凝聚剂;
b) 半抗原; 和
c) 治疗剂。
2.如权利要求 1的组合物, 其中所述凝聚剂是氧化剂或还原剂。
3.如权利要求 2的组合物, 其中所述氧化剂选自过氧化氢、 碳酸酰胺、 维生 素 -C、 臭氧、 多元氧 07、 多元氧 08、 NaI04、 过一硫酸氢钾(Oxone)、 高锰酸钾、 D,L— S—甲基硫辛酸甲酯、 奥美拉唑、 N-乙基马来酰亚胺、 以及它们的组合。
4. 如权利要求 2的组合物,其中所述还原剂选自苏木精、含氧量低的还原剂、 和非硝基化合物替拉扎明 (SR— 4233)。
5.如权利要求 1至 4任一项所述的组合物, 其中所述半抗原选自三硝基苯酚 (TNP)、二硝基苯酚(DNP)、 N-碘乙酰基一 N, 一 (5—磺酸基 1一萘基)亚乙基 二酰胺(AED)、二硝基氟苯(DNFB)和 Ovabulin (OVA)、血清白蛋白(Albumin)、 以及它们的组合。
6.如权利要求 1至 5任一项所述的组合物, 其中所述治疗剂是抗肿瘤剂。
7.如权利要求 6所述的组合物, 其中所述抗肿瘤剂是抗肿瘤化疗剂。
8.如权利要求 6所述的组合物, 其中所述抗肿瘤剂是生物治疗剂。
9.如权利要求 6所述的组合物, 其中所述抗肿瘤剂是癌基因抑制物或肿瘤抑 制基因或蛋白质。
10.如权利要求 1或 2所述的组合物,进一步包含含有癌基因或肿瘤抑制基因 序列的病毒载体。
11.如权利要求 1或 2所述的组合物,进一步包含在所述半抗原和肿瘤抗原之 间促进结合的促进剂。
12.如权利要求 11所述的组合物, 其中所述促进剂是螯合剂或化学交联剂。
13.如权利要求 1或 2所述的组合物,其中所述治疗剂进一步包含免疫增效剂 或免疫趋化剂。
14.如权利要求 2所述的组合物,其中所述氧化剂或还原剂的量从大约 0.01% (w/w) 到大约 35 % (w/w), 且所述半抗原的量从大约 lmg/ml到大约 80mg/ml。
15.一种包含权利要求 1-14任一项所述组合物的试剂盒。
16. 一种制品, 其包括- a) 包装材料;
b) 权利要求 1-14任一项所述的组合物; 且
c) 表明所述制品是用于治疗肿瘤的标签。
17.一种治疗哺乳动物肿瘤的方法,包括向所述哺乳动物肿瘤原位施用入治疗 有效量的半抗原、 抗肿瘤剂和凝聚剂。
18.如权利要求 17所述的方法, 其中任选地, 所述凝聚剂被选自下列的凝聚 治疗替代: 低温疗法、 激光凝聚 (ILC)、 经皮肤的微波凝聚治疗、 射频诱导凝聚 坏死、 反式瞳孔热治疗、 超声波治疗和辐射治疗, 或者与所述凝聚治疗联合施用。
19.一种组合物, 其包括- a) 半抗原; 和
b) 抗肿瘤剂
20.权利要求 1-14任一项所述的组合物在制备抗肿瘤药物中的用途。
PCT/CN2009/000171 2008-04-02 2009-02-20 用于自体治疗肿瘤的组合物和方法 WO2009121238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810090812.4 2008-04-02
CNA2008100908124A CN101549153A (zh) 2008-04-02 2008-04-02 用于自体治疗肿瘤的组合物和方法

Publications (1)

Publication Number Publication Date
WO2009121238A1 true WO2009121238A1 (zh) 2009-10-08

Family

ID=41134812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000171 WO2009121238A1 (zh) 2008-04-02 2009-02-20 用于自体治疗肿瘤的组合物和方法

Country Status (2)

Country Link
CN (1) CN101549153A (zh)
WO (1) WO2009121238A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525283A (zh) * 2021-11-29 2022-05-24 江苏师范大学 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106531A (zh) * 2014-11-26 2017-08-29 于保法 微创精准个体化肿瘤内化学诱导免疫治疗方法半抗原增强的化学免疫治疗
CN105368779A (zh) * 2015-12-04 2016-03-02 广州赛莱拉干细胞科技股份有限公司 一种巨噬细胞诱导培养基及培养方法
CN115590836B (zh) * 2022-09-27 2024-06-21 浙江大学 一种提高mRNA疫苗诱导免疫应答能力的脂质纳米颗粒及其应用
CN115969994B (zh) * 2022-10-08 2024-08-02 四川大学华西医院 一种靶向肿瘤的核壳结构纳米臭氧递送可控释放系统、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431909A (zh) * 2000-01-19 2003-07-23 B·于 用于治疗肿瘤的组合物
CN101138634A (zh) * 2006-09-07 2008-03-12 于保法 用于治疗肿瘤的组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431909A (zh) * 2000-01-19 2003-07-23 B·于 用于治疗肿瘤的组合物
CN101138634A (zh) * 2006-09-07 2008-03-12 于保法 用于治疗肿瘤的组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525283A (zh) * 2021-11-29 2022-05-24 江苏师范大学 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用
CN114525283B (zh) * 2021-11-29 2023-08-29 江苏师范大学 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用

Also Published As

Publication number Publication date
CN101549153A (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
WO2008034346A1 (fr) Composition et méthode de traitement de tumeurs
US6811788B2 (en) Combinations and methods for treating neoplasms
AU2001230977A1 (en) Combinations for treating neoplasms
ES2932516T3 (es) Combinaciones de ARNm que codifican polipéptidos inmunomoduladores y usos de los mismos
US20050118187A1 (en) Combinations and methods for treating neoplasms
US20050208138A1 (en) Local regional chemotherapy and radiotherapy using in situ hydrogel
CN110022867A (zh) 高迁移率族蛋白box i突变体
WO2009121238A1 (zh) 用于自体治疗肿瘤的组合物和方法
US20160166683A1 (en) Adjuvant immunotherapy for the treatment cancer, of clinical manifestations associated with the diseases like cachexia and correction of adverse effects of drugs such as immunosuppression, secundary cachexia, neutropenia and lymphopenia, comprising the association or combination of a biological response modifier specially selected and other substances with antineoplastic action and/or other treatments
Shao et al. KERS‐Inspired Nanostructured Mineral Coatings Boost IFN‐γ mRNA Therapeutic Index for Antitumor Immunotherapy
Chen et al. Injectable thermo-sensitive hydrogel enhances anti-tumor potency of engineered Lactococcus lactis by activating dendritic cells and effective memory T cells
JP2008266179A (ja) 経肺用組成物
US7427395B2 (en) Chemotherapeutic agent-incorporated pharmaceutical preparation
US11110303B2 (en) Hapten-enhanced chemoimmunotherapy by ultra-minimum incision personalized intratumoral chemoimmunotherapy
CN114344333A (zh) 动物非致病性细胞相关组分的应用和包含该组分的药物组合物
JP7535327B2 (ja) がん幹細胞特異結合ペプチドを含みビタミンb6が結合されたポリオール基盤ポリジキシリトール遺伝子伝達体及びがん幹細胞標的治療技術
Wahlberg et al. Polymeric controlled-release amsacrine chemotherapy in an experimental glioma model
WO2017114215A1 (zh) 重组人钙调磷酸酶b亚基的应用
EP1488813A1 (en) Compositions for delivering biologically active drug and method of using the same
US20240366740A1 (en) Interleukin-12 self-replicating rna and methods
WO2018006689A1 (zh) 氟维司群在制备治疗无功能垂体腺瘤的药物中的用途
WO2022068925A1 (zh) 动物非致病性细胞相关组分的应用和包含该组分的药物组合物
US20230295640A1 (en) Compositions and methods for controlling blood sugar levels using nanocapsule-based drug delivery system
JP6650953B2 (ja) プリンヌクレオシドホスホリラーゼまたはヌクレオシドヒドロラーゼのプロドラッグ関連用途の増強された治療的使用
CN114306612A (zh) 非致病性细胞相关组分的应用以及包含非致病性细胞相关组分的药物组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728031

Country of ref document: EP

Kind code of ref document: A1