CN114525283A - 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用 - Google Patents

红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用 Download PDF

Info

Publication number
CN114525283A
CN114525283A CN202111430598.4A CN202111430598A CN114525283A CN 114525283 A CN114525283 A CN 114525283A CN 202111430598 A CN202111430598 A CN 202111430598A CN 114525283 A CN114525283 A CN 114525283A
Authority
CN
China
Prior art keywords
tcmyb29
taxus
taxus chinensis
callus
transcription factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111430598.4A
Other languages
English (en)
Other versions
CN114525283B (zh
Inventor
曹小迎
蒋继宏
徐玲霞
李露丹
周降生
宛雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202111430598.4A priority Critical patent/CN114525283B/zh
Publication of CN114525283A publication Critical patent/CN114525283A/zh
Application granted granted Critical
Publication of CN114525283B publication Critical patent/CN114525283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Epoxy Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用。TcMYB29转基因红豆杉愈伤能够显著提高愈伤中紫杉醇含量,本发明经过一系列实验分析发现,TcMYB29能够调控紫杉醇生物合成基因T5OH的转录。本发明挖掘了TcMYB29的功能,对基因工程技术提高紫杉醇含量提供了重要的理论依据,具有广阔的应用前景。

Description

红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合 成中的应用
技术领域
本发明属于生物技术领域,特别涉及一种红豆杉转录因子TcMYB29的新用途。
背景技术
红豆杉(Taxus sp.)又称紫杉,是红豆杉科红豆杉属的常绿乔木或灌木。红豆杉属植物在全世界约有11个种200多个栽培种,我国有4个种、1个变种和1个杂交种,即东北红豆杉、喜马拉雅红豆杉、云南红豆杉、中国红豆杉、变种南方红豆杉和杂交种曼地亚红豆杉等。红豆杉是珍贵的用材树种并具有较高的园艺观赏价值,同时还具有很高的药用价值。红豆杉中的抗癌活性成分紫杉醇能够有效抑制癌细胞的增生繁殖,是治疗癌症的珍贵药物。但红豆杉生长缓慢,且紫杉醇含量极低,因此在不破坏野生森林资源的前提下,利用现代生物技术手段提高紫杉醇产量具有重要意义。
MYB转录因子家族,含有Myb结构域,是植物中描最大的转录因子家族之一。很多研究表明,MYB转录因子在调控植物数量的生物过程中发挥着重要作用,包括植物的生长、发育和胁迫响应、初级和次级代谢。
发明内容
本发明的目的是提供一种红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用,以提高红豆杉愈伤中紫杉醇的产量。
为实现上述目的,本发明采用如下技术方案:
红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用。
进一步的,所述红豆杉转录因子TcMYB29基因调控紫杉醇生物合成基因T5OH的转录。
进一步的,所述红豆杉转录因子TcMYB29结合紫杉醇生物合成基因T5OH的启动子上的B1位点。
进一步的,所述红豆杉转录因子TcMYB29通过MYB基序直接结合T5OH的启动子。
进一步的,所述红豆杉转录因子TcMYB29基因过表达转基因红豆杉愈伤紫杉醇含量增加。
有益效果:TcMYB29转基因红豆杉愈伤能够显著提高愈伤中紫杉醇含量,经过一系列实验分析发现,TcMYB29能够调控紫杉醇生物合成基因T5OH的转录。本发明挖掘了TcMYB29的功能,对基因工程技术提高紫杉醇含量提供了重要的理论依据,具有广阔的应用前景。
附图说明
图1为转TcMYB29和空白质粒愈伤中紫杉醇及中间代谢物含量;
图2为T5OH启动子上的预测到的两个可能的MYB29结合位点;
图3为ChIP实验验证T5OH启动子上两个位点与是否与TcMYB29蛋白结合;
图4为EMSA实验验证T5OH启动子上B1位点与TcMYB29蛋白的结合。
具体实施方式
下面结合实施例对本发明做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下实施例通过分子生物学、生物化学、遗传学等手段验证TcMYB29能够直接结合紫杉醇生物合成相关基因的启动子并促进其转录,从而调控紫杉醇的生物合成。
实施例1:
红豆杉转录因子TcMYB29的生物学功能验证
以过表达空质粒红豆杉愈伤,过表达35S:TcMYB29愈伤为材料,冷冻干燥后用甲醇进行提取,用LC-MS测定其中10-DAB,巴卡亭及紫杉醇含量,结果过表达35S:TcMYB29愈伤中10-DAB,巴卡亭及紫杉醇含量都显著提高,如图1。
实施例2:TcMYB29调控紫杉醇生物合成相关基因转录活性的验证:
(1)紫杉醇相关生物合成基因序列分析
根据基因步移及红豆杉基因组序列分析获得紫杉醇生物合成途径中的T5OH基因启动子区2000bp的序列,找到T5OH基因2000bp启动子区内存在2个可能的MYB结合位点(CNGTTR)如图2所示。
(2)ChIP-qPCR实验验证TcMYB29结合紫杉醇生物合成基因T5OH的启动子采用过表达35S:TcMYB29:GFP的红豆杉愈伤进行ChIP实验,实验步骤参照文献(Yoo et al.2010)。采用GFP标记特异性单克隆抗体进行ChIP分析。ChIP产物通过qPCR进行DNA分析。两对引物(F1和R1,F2和R2)分别用于扩增150bp左右带可能的MYB结合位点的片段(图2中R-3和R-4片段),另外一对引物(F3和R3)用于扩增远离两个结合位点的150bp左右的CDS区片段(图2中的CDS-2片段)。ChIP-qPCR结果分析如图3所示,表明TcMYB29结合紫杉醇生物合成基因T5OH的启动子上的B1位点。
正向引物F1:5'-ACAATTCTTCTCACCCCCTGCCAT-3'
反向引物R1:5'-GGTAGCGCTAAAGGTGGGGGAA-3'
正向引物F2:5'-GTATCCATTGCATTACCCACGTGC-3'
反向引物R2:5'-CCAAGGTCATTTCAAACGTTAGATTCCAT-3'
正向引物F3:5'-AGATGTCGTGGCCCGCTCAA-3'
反向引物R3:5'-AGCGCACCAGGGCCGAAAAA-3'
(3)EMSA实验验证TcMYB29直接结合紫杉醇生物合成基因T5OH的启动子
(3.1)纯化带有GST标签的TcMYB29蛋白:将TcMYB29的ORF连入带有GST标签的质粒转化大肠杆菌rosetta中,挑取单克隆于5ml含氨苄抗生素的液体LB培养基中,37℃震荡过夜。将活化好的菌液按1:100的比例接入新的含氨苄抗生素的液体LB培养基中,37℃震荡,培养至菌液OD值为0.5时,加入IPTG至终浓度0.5mM,然后转入18℃120rpm震荡培养14h。4000rpm,4℃离心10min,收集菌体,弃掉上清,用column buffer悬浮,大约500ml菌液加入10ml column buffer,加入PMSF至终浓度为1mM,冰上放置30min。将悬浮好的菌液进行超声波破裂,加入终浓度为1%的TritionX-100,12000rpm,4℃离心1h,留上清。将洗好的GST的beads与上清共同4℃孵育2-3h,然后1000rpm,4℃离心2min,留下beads,再将beads用washbuffer清洗7-8次,然后加入到淋洗液中,孵育30min。加入1×loading buffer,煮沸5min,高速离心10min;上样,进行SDS-PAGE电泳;电泳结束后,考马斯亮蓝染色进行检测。
(3.2)根据T5OH(正向引物F4与反向引物R4、正向引物F5与反向引物R5)启动子区的MYB基序(图2中的R-2片段)设计相应的结合探针与突变探针,参照购买自碧云天公司的EMSA探针生物素标记试剂盒的操作手册标记生物素探针。
(3.3)然后参照购买自碧云天公司的化学发光法EMSA试剂盒的操作手册进行实验。结果如图2所示,TcMYB29可以通过MYB基序直接结合T5OH的启动子。
正向引物F4:
5'-TACAATCCCCCGAGTACTCCCCCCTCCGTTAAGTTAAGCATCCTCCTCTTCCCCCA-3'
反向引物R4:
5'-TGGGGGAAGAGGAGGATGCTTAACTTAACGGAGGGGGGAGTACTCGGGGGATTGTA-3'
正向引物F5:
5'-TACAATCCCCCGAGTACTCCCCCCTCCGAATAGTTAAGCATCCTCCTCTTCCCCCA-3'
反向引物R5:
5'-TGGGGGAAGAGGAGGATGCTTAACTATTCGGAGGGGGGAGTACTCGGGGGATTGTA-3'
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 江苏师范大学
<120> 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 24
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 1
acaattcttc tcaccccctg ccat 24
<210> 2
<211> 22
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 2
ggtagcgcta aaggtggggg aa 22
<210> 3
<211> 24
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 3
gtatccattg cattacccac gtgc 24
<210> 4
<211> 29
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 4
ccaaggtcat ttcaaacgtt agattccat 29
<210> 5
<211> 20
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 5
agatgtcgtg gcccgctcaa 20
<210> 6
<211> 20
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 6
agcgcaccag ggccgaaaaa 20
<210> 7
<211> 56
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 7
tacaatcccc cgagtactcc cccctccgtt aagttaagca tcctcctctt ccccca 56
<210> 8
<211> 56
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 8
tgggggaaga ggaggatgct taacttaacg gaggggggag tactcggggg attgta 56
<210> 9
<211> 56
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 9
tacaatcccc cgagtactcc cccctccgaa tagttaagca tcctcctctt ccccca 56
<210> 10
<211> 56
<212> DNA
<213> 红豆杉(Taxus sp.)
<400> 10
tgggggaaga ggaggatgct taactattcg gaggggggag tactcggggg attgta 56

Claims (5)

1.红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用。
2.根据权利要求1所述的应用,其特征在于:所述红豆杉转录因子TcMYB29基因调控紫杉醇生物合成基因T5OH的转录。
3.根据权利要求2所述的应用,其特征在于:所述红豆杉转录因子TcMYB29结合紫杉醇生物合成基因T5OH的启动子上的B1位点。
4.根据权利要求3所述的应用,其特征在于:所述红豆杉转录因子TcMYB29通过MYB基序直接结合T5OH的启动子。
5.根据权利要求1所述的应用,其特征在于:所述红豆杉转录因子TcMYB29基因过表达转基因红豆杉愈伤紫杉醇含量增加。
CN202111430598.4A 2021-11-29 2021-11-29 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用 Active CN114525283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111430598.4A CN114525283B (zh) 2021-11-29 2021-11-29 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111430598.4A CN114525283B (zh) 2021-11-29 2021-11-29 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用

Publications (2)

Publication Number Publication Date
CN114525283A true CN114525283A (zh) 2022-05-24
CN114525283B CN114525283B (zh) 2023-08-29

Family

ID=81618593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111430598.4A Active CN114525283B (zh) 2021-11-29 2021-11-29 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用

Country Status (1)

Country Link
CN (1) CN114525283B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351782A2 (en) * 1988-07-20 1990-01-24 Hitachi, Ltd. Optically active compounds liquid crystal composition containing said compound, and liquid crystal optical modulator using said composition
CN101138634A (zh) * 2006-09-07 2008-03-12 于保法 用于治疗肿瘤的组合物
WO2009121238A1 (zh) * 2008-04-02 2009-10-08 Yu Baofa 用于自体治疗肿瘤的组合物和方法
CN101781648A (zh) * 2009-01-19 2010-07-21 中国林业科学研究院林业研究所 一种有效抑制曼地亚红豆杉细胞生物合成c-14位氧化紫杉烷的方法
CN102690841A (zh) * 2012-06-19 2012-09-26 复旦大学 一种获得红豆杉转基因愈伤组织的遗传转化方法
WO2014150504A2 (en) * 2013-03-15 2014-09-25 The Regents Of The University Of California Tissue specific reduction of lignin
CN104178510A (zh) * 2014-07-28 2014-12-03 南京大学 一个高产药用天然产物的硬紫草转LeMYB1基因毛状根株系
US8969655B1 (en) * 2010-09-20 2015-03-03 Cacao Biotechnologies LLC Modulation of flavonoid content in cacao plants
US20170009249A1 (en) * 2014-02-18 2017-01-12 Vib Vzw Means and methods for regulating secondary metabolite production in plants
CN106432452A (zh) * 2016-12-12 2017-02-22 中国热带农业科学院环境与植物保护研究所 橡胶树抗病相关蛋白GLPs及其编码基因与应用
US20230062179A1 (en) * 2019-11-06 2023-03-02 Qingdao Kingagroot Chemical Compound Co., Ltd. Methods for generating new genes in organism and use thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351782A2 (en) * 1988-07-20 1990-01-24 Hitachi, Ltd. Optically active compounds liquid crystal composition containing said compound, and liquid crystal optical modulator using said composition
CN101138634A (zh) * 2006-09-07 2008-03-12 于保法 用于治疗肿瘤的组合物
WO2008034346A1 (fr) * 2006-09-07 2008-03-27 Baofa Yu Composition et méthode de traitement de tumeurs
WO2009121238A1 (zh) * 2008-04-02 2009-10-08 Yu Baofa 用于自体治疗肿瘤的组合物和方法
CN101781648A (zh) * 2009-01-19 2010-07-21 中国林业科学研究院林业研究所 一种有效抑制曼地亚红豆杉细胞生物合成c-14位氧化紫杉烷的方法
US20160024515A1 (en) * 2010-09-20 2016-01-28 Cacao Bio-Technologies, Llc Modulation of Flavonoid Content in Cacao Plants
US8969655B1 (en) * 2010-09-20 2015-03-03 Cacao Biotechnologies LLC Modulation of flavonoid content in cacao plants
CN102690841A (zh) * 2012-06-19 2012-09-26 复旦大学 一种获得红豆杉转基因愈伤组织的遗传转化方法
WO2014150504A2 (en) * 2013-03-15 2014-09-25 The Regents Of The University Of California Tissue specific reduction of lignin
US20170009249A1 (en) * 2014-02-18 2017-01-12 Vib Vzw Means and methods for regulating secondary metabolite production in plants
CN104178510A (zh) * 2014-07-28 2014-12-03 南京大学 一个高产药用天然产物的硬紫草转LeMYB1基因毛状根株系
CN106432452A (zh) * 2016-12-12 2017-02-22 中国热带农业科学院环境与植物保护研究所 橡胶树抗病相关蛋白GLPs及其编码基因与应用
US20230062179A1 (en) * 2019-11-06 2023-03-02 Qingdao Kingagroot Chemical Compound Co., Ltd. Methods for generating new genes in organism and use thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
XIAOYING CAO 等: "TcMYB29a, an ABA-Responsive R2R3-MYB Transcriptional Factor, Upregulates Taxol Biosynthesis in Taxus chinensis", 《FRONTIERS IN PLANT SCIENCE》 *
XINLING HU 等: "The R2R3-MYB transcription factor family in Taxus chinensis: identification, characterization, expression profiling and posttranscriptional regulation analysis", 《PEERJ》 *
张燏: "中国红豆杉MYBMYBMYB类转录因子的克隆及功能研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *
时敏;王瑶;周伟;花强;开国银;: "药用植物萜类化合物的生物合成与代谢调控研究进展", 中国科学:生命科学, no. 04 *
马铭浩;张晗;肖英;刘华领;周姗;詹亚光;曾凡锁;: "水曲柳FmMYB转录因子生物信息学及表达模式分析", 黑龙江农业科学, no. 07 *
高珂;王玲;吴素瑞;隋春;: "调控药用植物药效成分合成的转录因子研究进展", 中草药, no. 20 *

Also Published As

Publication number Publication date
CN114525283B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
Exposito et al. Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate
Shoji et al. Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco
Lin et al. Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT
Park et al. Agrobacterium tumefaciens-mediated transformation of the lichen fungus, Umbilicaria muehlenbergii
CN101421295A (zh) 用于提高作物植物中的氮利用效率的基因
Huang et al. RNA-seq profiling showed divergent carbohydrate-active enzymes (CAZymes) expression patterns in Lentinula edodes at brown film formation stage under blue light induction
Tanabe et al. The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specific expression of the GUS reporter gene in transgenic Arabidopsis
Han et al. Bioproduction of baccatin III, an advanced precursor of paclitaxol, with transgenic Flammulina velutipes expressing the 10‐deacetylbaccatin III‐10‐O‐acetyl transferase gene
Cao et al. TcMYB29a, an ABA-responsive R2R3-MYB transcriptional factor, upregulates taxol biosynthesis in Taxus chinensis
Liu et al. Overexpression of the saccharopine dehydrogenase gene improves lysine biosynthesis in Flammulina velutipes
CN105566463B (zh) 一种与叶绿素合成相关的蛋白及其编码基因与应用
CN103290034B (zh) 一种参与豆科植物共生结瘤的泛素连接酶基因及应用
CN114525283A (zh) 红豆杉转录因子TcMYB29在调控红豆杉愈伤中紫杉醇生物合成中的应用
US12104190B2 (en) Taxadiene synthase TcTS2, encoding nucleotide sequence and use thereof
Kim et al. Hairy root cultures of Taxus cuspidate for enhanced production of paclitaxel
CN106148355B (zh) 菘蓝IiAP2/ERF049基因在调控木脂素类化合物合成中的应用
CN117286172A (zh) 一种TcJAMYC5基因在调控紫杉烷类生物合成中的应用
Yang et al. A nodule-localized small heat shock protein GmHSP17. 1 confers nodule development and nitrogen fixation in soybean
US7402417B2 (en) P450 oxygenases and methods of use
CN107058375B (zh) ZmPGK基因在玉米矮花叶病防治中的应用
KR100597316B1 (ko) 클로렐라 바이러스 유래 신규 프로모터 및 그 용도
US7273755B2 (en) Compositions and methods for altering biosynthesis of taxanes and taxane-related compounds
CN113897377B (zh) 乙烯形成酶基因VdEFE在大丽轮枝菌生长发育、致病力和乙烯合成中的应用
CN101781648A (zh) 一种有效抑制曼地亚红豆杉细胞生物合成c-14位氧化紫杉烷的方法
Wang Role of female predominant MYB39-bHLH13 complex in sexually dimorphic accumulation of taxol in Taxus media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant