WO2009119658A1 - Nonvolatile semiconductor memory element and semiconductor device - Google Patents

Nonvolatile semiconductor memory element and semiconductor device Download PDF

Info

Publication number
WO2009119658A1
WO2009119658A1 PCT/JP2009/055942 JP2009055942W WO2009119658A1 WO 2009119658 A1 WO2009119658 A1 WO 2009119658A1 JP 2009055942 W JP2009055942 W JP 2009055942W WO 2009119658 A1 WO2009119658 A1 WO 2009119658A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor memory
nonvolatile semiconductor
drain
source
memory element
Prior art date
Application number
PCT/JP2009/055942
Other languages
French (fr)
Japanese (ja)
Inventor
正通 浅野
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2010505723A priority Critical patent/JP5240291B2/en
Publication of WO2009119658A1 publication Critical patent/WO2009119658A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • G11C14/0063Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell and the nonvolatile element is an EEPROM element, e.g. a floating gate or MNOS transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the present invention relates to a nonvolatile semiconductor memory element and a semiconductor device which can be rewritten with a single-layer polysilicon cell structure which can be manufactured by a standard CMOS (complementary metal-oxide semiconductor) process.
  • CMOS complementary metal-oxide semiconductor
  • Nonvolatile semiconductor memories represented by EEPROM have been used in many applications because information does not disappear even when the power is turned off.
  • EEPROM Electrically-Erasable-Programmable-Read-Only Memory
  • flash memory are used as a replacement for the mask ROM in the microcomputer because it can be rewritten at any time according to the application.
  • embedded memory embedded memory
  • a nonvolatile semiconductor memory is incorporated in a part of a system LSI or logic IC.
  • a small-sized non-volatile semiconductor memory of about several hundred bits to several K bits is also required as an adjustment switch that is incorporated in an analog circuit and performs tuning and the like of a high-precision analog circuit.
  • a non-volatile semiconductor memory generally has a cell structure using two-layer polysilicon or three-layer polysilicon, and the manufacturing process is more complicated and requires more manufacturing processes than the standard CMOS logic process. Attempting to embed them in the chip at the same time has caused many problems in the manufacturing process, yield decreases, and the product price (cost) increases.
  • Patent Document 1 If this one-layer polysilicon EEPROM is used, the number of manufacturing steps can be reduced as compared with the conventional two-layer polysilicon process. JP-A-10-289959
  • the second-layer polysilicon used as the control gate is omitted, it is necessary to embed a control gate made of a diffusion layer under the floating gate, which is more complicated than the standard CMOS process used in logic. It becomes a difficult manufacturing process. Furthermore, if the diffusion layer embedded at a high concentration is oxidized, an oxide film of poor quality is formed, and the probability of occurrence of a defect is high, and reliability is also a problem. In addition, writing and erasing are complicated, such as requiring a high voltage for writing.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a non-volatile semiconductor memory element having a single-layer polysilicon cell structure that can be manufactured by a standard CMOS process and a semiconductor device using the same.
  • the present invention provides a first nonvolatile semiconductor memory element, a second nonvolatile semiconductor memory element that stores information on a logic state opposite to the first nonvolatile semiconductor memory element, and , And a sense unit for reading out information stored in the first and second nonvolatile semiconductor memory elements via a pair of first signal line and second signal line.
  • Each of the first and second nonvolatile semiconductor memory elements includes at least a floating gate, a drain, and a source formed on a semiconductor substrate, and the source is set in a write state.
  • -A voltage is applied between the drain and the charge is injected into the floating gate and stored, and in the erased state, the charge is stored in the floating gate.
  • a voltage is applied between the semiconductor substrate and the drain or source to generate hot carriers between the bands, and the charge accumulated in the floating gate is erased by the hot carriers.
  • the semiconductor device is configured as described above.
  • the first nonvolatile semiconductor memory element has a drain connected to the second signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element A drain connected to the first signal line, a source connected to a second control signal terminal, and a source of the first and second nonvolatile semiconductor memory elements connected to the first control signal terminal;
  • the second control signal terminals are configured independently of each other, have different potentials at the time of writing and erasing, and respectively have a reference potential at the time of reading.
  • the first nonvolatile semiconductor memory element has a drain connected to the second signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element
  • the drain is connected to the first signal line
  • the source is connected to the first control signal terminal
  • the first control signal terminal connected in common takes a predetermined potential at the time of erasing and writing to read Sometimes connected to a reference potential.
  • the present invention further includes first and second transistors, wherein the first nonvolatile semiconductor memory element has a drain connected to a source of the first transistor and a source connected to the first control signal terminal.
  • the second nonvolatile semiconductor memory element has a drain connected to the source of the second transistor, a source connected to the first control signal terminal, and a gate connected to the activation signal input terminal of the first transistor.
  • the drain is connected to the second signal line
  • the source is connected to the drain of the first nonvolatile semiconductor memory element
  • the second transistor has a gate connected to the activation signal input terminal and a drain connected to the first signal line.
  • the first control signal terminal connected in common to the signal line is connected to the drain of the second nonvolatile semiconductor memory element, and is connected during erasing and writing
  • the first and second non-volatile transistors are turned on by the activation signal input to the activation signal input terminal, and the first and second transistors are turned on by the activation signal input to the activation signal input terminal.
  • the present invention further includes first and second resistors, wherein the first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the first resistor via the first resistor.
  • the second nonvolatile semiconductor memory element has a drain connected to the first signal line and a source connected to the first control signal terminal via a second resistor,
  • the control signal terminal S has a predetermined potential at the time of erasing and writing, and is a reference potential at the time of reading.
  • the present invention further includes first and second transistors, wherein the first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the drain of the first transistor,
  • a drain is connected to the first signal line
  • a source is connected to a drain of the second transistor
  • a gate of the first transistor is connected to an input terminal of an activation signal.
  • the source is connected to the first control signal terminal
  • the second transistor has a gate connected to an input terminal of an activation signal, a source connected to the first control signal terminal, and an input of the activation signal.
  • the first and second transistors are activated, and the first control signal terminal takes a predetermined potential during erasing and writing, and becomes a reference potential during reading.
  • the sense unit includes a flip-flop circuit in which a power supply line is connected via a power transistor and holds a signal, and the flip-flop circuit includes an on state and an off state of the power transistor. Is controlled so that a voltage is applied to the power supply to hold output signals from the first and second nonvolatile semiconductor memory elements.
  • the sense unit is connected to a power source through a power transistor, and is connected to a reference potential through a ground transistor, and the memory unit and the pair of first and second signal lines And a signal amplifier for amplifying an output signal from the flip-flop circuit.
  • the present invention is a semiconductor device including a memory cell in which the storage unit and the sense unit are combined, and includes at least a matrix array in which the memory cells are arranged in a row and a column direction, and a sense amplifier.
  • Each of the memory cells is connected to a power supply through a power supply transistor, and a storage unit including first and second nonvolatile semiconductor memory elements including at least a floating gate, a drain, and a source formed on a semiconductor substrate.
  • a flip-flop circuit for holding a signal, and the first and second nonvolatile semiconductor memory elements are arranged between the semiconductor substrate and the drain or source when erasing charges accumulated in the floating gate.
  • a voltage is applied to generate hot carriers between the bands in the semiconductor substrate.
  • a sense unit configured to apply power to the circuit; a source line connecting the sources of the first and second nonvolatile semiconductor memory elements for each row; a selection signal for the sense unit and the activation signal; And a bit line for transmitting information of the sense unit for each column, and the sense amplifier connects a signal output from the sense unit to the bit line for each column.
  • the present invention is a semiconductor device including a memory cell in which the storage unit and the sense unit are combined, and includes at least a matrix array in which the memory cells are arranged in a row and a column direction, and a sense amplifier.
  • Each of the memory cells includes a first and second nonvolatile semiconductor memory elements each including at least a floating gate, a drain, and a source formed on a semiconductor substrate, and each of the first and second nonvolatile semiconductor memory elements.
  • a storage unit including a first transistor and a second transistor which are connected in series to control selection or non-selection of the first and second nonvolatile semiconductor memory elements by being turned on or off, and a power source
  • a sense unit comprising a sense unit for holding a signal by a flip-flop circuit connected to a power supply via a transistor The first and second transistors are turned on, a voltage is applied between the source and drain of the first and second nonvolatile semiconductor memory elements to inject charges into the floating gate and accumulate, When erasing charges accumulated in the floating gates of the first and second nonvolatile semiconductor memory elements, a voltage is applied between the semiconductor substrate and the drains or sources of the first and second nonvolatile semiconductor memory elements.
  • a non-volatile semiconductor memory device configured to generate hot carriers between bands in the semiconductor substrate and erase charges accumulated in the floating gate by the hot carriers, and the flip-flop circuit has power control To control the on / off state of the power supply transistor to control the flip-flop.
  • a sense unit configured to apply power to a logic circuit, a source line connecting the sources of the first and second nonvolatile semiconductor memory elements for each row, and gates of the first and second transistors
  • a control signal that controls the activation signal, a row line that transmits the selection signal of the sense unit for each row, and a bit line that transmits the information of the sense unit for each column, and the sense amplifier includes: A signal output from a sense unit is connected to the bit line for each column, and the nonvolatile semiconductor memory element and the sense unit can be selectively cut off by a signal input to the row line.
  • Readout means for reading out information stored in accordance with the state of electric charge accumulated in the floating gate of the nonvolatile semiconductor memory element designated by the row line is provided.
  • a storage unit including a first nonvolatile semiconductor memory element and a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element;
  • a signal holding unit having a signal input terminal and comprising a sense circuit that reads information from the storage unit by an input activation signal, and a flip-flop circuit that holds and outputs the information read by the sense circuit;
  • a precharge unit that charges the signal holding unit when reading information from the storage unit; and an amplification detection unit that amplifies and outputs a signal output from the signal holding unit, and the first and second
  • the nonvolatile semiconductor memory element includes a floating gate, a drain, and a source formed on a semiconductor substrate, each source being the first control signal terminal.
  • a voltage is applied between the source and the drain in a writing state to inject and accumulate charges in the floating gate, and an erasing state erases the charges accumulated in the floating gate.
  • a voltage is applied between the semiconductor substrate and the drain or source, hot carriers between bands are generated in the semiconductor substrate, and charges accumulated in the floating gate are erased by the hot carriers. It is characterized by being.
  • the present invention provides a first nonvolatile semiconductor memory element, a storage unit including a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element, and a pair of A signal holding unit that is connected to the storage unit via first and second signal lines and holds and outputs information read from the storage unit by a flip-flop circuit having an activation circuit, and
  • the first and second nonvolatile semiconductor memory elements have a transistor configuration including a floating gate, a drain, and a source formed on a semiconductor substrate, and each source is connected to the first control signal terminal. As a state, a voltage is applied between the source and drain to inject charges into the floating gate for accumulation, and an erase state is set.
  • the first nonvolatile semiconductor memory element has a drain connected to the first signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element.
  • the drain is connected to the second signal line
  • the source is connected to the first control signal terminal
  • the control signal terminal S connected in common is predetermined when erasing and writing.
  • the potential is taken and becomes a reference potential at the time of reading, and the signal holding unit is connected to the power supply side of the flip-flop circuit.
  • Providing the activating circuit comprises a static, characterized.
  • the present invention also provides a first nonvolatile semiconductor memory element, a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element, and a first nonvolatile semiconductor memory.
  • the memory unit includes a first transistor connected in series with the element and a second transistor connected in series with the second nonvolatile semiconductor memory element, and a flip-flop circuit including an activation circuit.
  • the first and second nonvolatile semiconductor memory elements include a floating gate, a drain, and a source formed on a semiconductor substrate, each source being the first control signal terminal In the writing state, a voltage is applied between the source and drain to charge the float.
  • a voltage is applied between the semiconductor substrate and the drain or source when erasing charges stored in the floating gate as an erased state while being injected into the gate and accumulated, and hot carriers due to band-to-band are transferred to the semiconductor substrate.
  • the storage unit is configured to erase the electric charge generated in the floating gate by the hot carriers, and the storage unit includes a first nonvolatile semiconductor memory element, and a drain is connected via the second signal line.
  • the high-speed sense amplifier has a source connected to the drain of the first transistor, and the second nonvolatile semiconductor memory element has a drain connected to the high-speed sense amplifier via the first signal line and a source connected to the second transistor.
  • the first transistor has a gate connected to an activation signal input terminal and a source connected to the first transistor.
  • the second transistor has a gate connected to an activation signal input terminal, a source connected to the first control signal terminal, and the first control signal terminal at the time of erasing and It takes a predetermined potential during writing and becomes a reference potential during reading.
  • the signal holding unit includes an activation circuit including a power transistor connected to the power source side of the flip-flop circuit, and the signal holding unit includes the activation potential.
  • a first nonvolatile semiconductor memory element and a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element are provided.
  • the first and second nonvolatile semiconductor memory elements include at least a floating gate, a drain, and a source formed on a semiconductor substrate, and a voltage is applied between the source and drain in a writing state.
  • a voltage is applied between the source and drain to inject and accumulate charges in the floating gate, and in the off state, a voltage is applied between the semiconductor substrate and the drain or source when erasing the charges accumulated in the floating gate.
  • a non-volatile semiconductor memory device can be configured to generate hot carriers between bands in a semiconductor substrate and to erase charges accumulated in the floating gate by the hot carriers, using a standard logic CMOS process. And a semiconductor device using the same, The logic embedded memory easily, also can be realized inexpensively.
  • FIG. 2 is a diagram showing an equalization circuit according to the embodiment of FIGS. 1A to 1C.
  • FIG. 2 is a diagram for explaining characteristics of the embodiment of FIGS. 1A to 1C.
  • FIG. 2 is a diagram for explaining the operation of the embodiment of FIGS. 1A to 1C.
  • FIG. 2 is a diagram for explaining the operation of the embodiment of FIGS. 1A to 1C.
  • FIG. 2 is a diagram showing a configuration of an embodiment (Embodiment 1) of the nonvolatile semiconductor memory element of FIGS. 1A to 1C.
  • FIG. 2 is a diagram showing a configuration of an embodiment (Embodiment 1) of the nonvolatile semiconductor memory element of FIGS. 1A to 1C.
  • FIG. 6 is a diagram for explaining the operation of the embodiment of FIGS. 5A and 5B in the first embodiment. 6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2.
  • FIG. 6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2.
  • FIG. 6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2.
  • FIG. 7 is a diagram showing a case where a matrix array is configured using the embodiment of FIGS. 7A to 7C in Embodiment 3.
  • FIG. 6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 4.
  • FIG. It is a figure which shows the case where a matrix array is comprised using Embodiment of FIG. 9 in Embodiment 5.
  • FIG. FIG. 16 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in a sixth embodiment. It is a figure for demonstrating the operation
  • FIG. 16 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in a seventh embodiment. It is a figure for demonstrating the operation
  • FIG. FIG. 16 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in an eighth embodiment.
  • FIG. 25 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 9. It is a figure for demonstrating the operation
  • FIG. FIG. 32 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in a tenth embodiment.
  • FIG. 1A is a plan view of one transistor constituting the nonvolatile semiconductor memory element used in the embodiment of the present invention
  • FIG. 1B is a cross-sectional view of FIG. 1A
  • FIG. 1C is an equivalent circuit diagram of FIG. 1A.
  • Indicates. 1A to 1C includes a floating gate FG, a drain D, and a source S formed on a semiconductor substrate SUB (potential Vsub) using a single-layer polysilicon cell structure.
  • This floating gate FG serves as a charge holding region, no electrode is provided, and a floating gate FG made of polysilicon is formed on a gate insulating layer formed on the substrate SUB.
  • the drain D and the source S are diffusion regions formed on the substrate SUB, and electrodes are provided through contacts.
  • FIG. 2 shows an equivalent circuit of the coupling system of the nonvolatile semiconductor memory device shown in FIGS. 1A to 1C. If there is a charge Q in the floating gate FG, the total charge of this system is Q. It becomes. However, VFG, VD, VS, and Vch are the potential of the floating gate FG, the potential of the drain D, the potential of the source S, and the potential of the channel CH, respectively.
  • C (FB) is a capacitance between the floating gate FG and the substrate SUB
  • C (FD) is a capacitance between the floating gate FG and the drain D
  • C (FS) is a capacitance between the floating gate FG and the source S
  • C (FC ) Is a capacitance between the floating gate FG and the channel CH.
  • VFG Erase
  • FIG. 4A schematically shows the change in the drain current ID when the drain potential VD is changed with the horizontal axis being the drain potential VD and the vertical axis being the drain current ID, using the floating gate potential VFG as a parameter. .
  • VBD is low when VFG is low, and VBD is high when VFG is high.
  • the transistor characteristics in the erased and written states will be described.
  • the horizontal axis is the floating gate potential VFG
  • the vertical axis is the current ID of the drain D
  • the change of the gate current ID when the floating gate potential VFG is changed in the three states of erase, neutral and write is schematically shown. It is a representation.
  • VD 1V
  • VS 0V
  • Vch 0V
  • VFG floating gate potential
  • FIG. 4B summarizes the operation of this nonvolatile semiconductor memory element. Note that the operations of the drain and the source can be reversed.
  • Embodiment 1 which is an application example of the nonvolatile semiconductor memory element described with reference to FIGS. 1A, 1B, and 1C.
  • the memory cell includes a storage unit 200 including an SRAM unit 100 (sense unit), a nonvolatile semiconductor memory element 201 (first nonvolatile semiconductor memory element), and 202 (second nonvolatile semiconductor memory element).
  • SRAM unit 100 is for sensing and latching data in the storage unit 200
  • the storage unit 200 is a writable / erasable storage unit.
  • the SRAM unit 100 activates the SRAM unit 100 and receives an activation signal (SET) for sensing / determining data in the storage unit 200, and PMOS transistors 102 and 103 constituting a latch unit.
  • the storage unit 200 includes nonvolatile semiconductor memory elements 201 and 202, and stores data indicating the opposite logic.
  • the transistor 102 and the transistor 104, and the transistor 103 and the transistor 105 are connected as inverters, respectively.
  • the two inverters are connected to form a flip-flop circuit. That is, the transistor 102 has a gate connected to the gate of the transistor 104 and a source connected to the drain of the transistor 104.
  • the source of the transistor 104 is connected to the reference potential.
  • the transistor 103 has a gate connected to the gate of the transistor 105 and a source connected to the drain of the transistor 105.
  • the transistor 105 has a gate connected to the source of the transistor 102, a drain connected to the gate of the transistor 102, and a source connected to a reference potential.
  • a power supply terminal of the flip-flop circuit formed by the combination of the inverters is connected to the power supply via the transistor 101. That is, the transistor 101 has a gate connected to the input terminal of the activation signal SET, a drain connected to the power supply, and a source connected to the drains of the transistors 102 and 103. Further, the transistor 106 and the transistor 107 are connected to the word line WL, the data line DL, and the data line inversion signal line DLB.
  • the transistor 106 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the source of the transistor 102.
  • the transistor 107 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the source of the transistor 103.
  • Nonvolatile semiconductor memory elements 201 and 202 of the storage unit 200 are connected to the SRAM unit 100 via signal lines Bit and BitB.
  • the nonvolatile semiconductor memory element 201 has a source connected to the control signal terminal S and a drain connected to the gate terminal of the transistor 102 of the SRAM unit 100 via the signal line BitB.
  • the nonvolatile semiconductor memory element 202 has a source connected to the control signal terminal SB and a drain connected to the gate terminal of the transistor 103 of the SRAM unit 100 via the signal line Bit.
  • FIG. 5B shows a write operation, an erase operation, and a read operation in order.
  • a write operation when a 2 V potential is input to the word line WL, the input terminal for the activation signal SET, and the data line DL, and a 0 V potential is input to the data line inversion signal line DLB, the transfer transistors 106 and 107 are used.
  • the potential of the data line DL and the data line inversion signal line DLB is transmitted to the signal lines Bit and BitB, the potential of the signal line Bit is about 1V, and the potential of the signal line BItB is 0V.
  • the nonvolatile semiconductor memory element 201 is in a writing state and the nonvolatile semiconductor memory element 202 is in an erasing state. Electrons are injected into the floating gate of the volatile semiconductor memory device 201, and holes are injected into the floating gate of the nonvolatile semiconductor memory device 202.
  • FIG. 6 is a timing chart showing a read operation of the storage unit 200.
  • FIG. 6 shows the change in voltage of each signal line of the activation signal SET, the word line WL, the signal line Bit, BitB, the data line DL, and the data line inversion signal line DLB with time.
  • the nonvolatile semiconductor memory element 201 Since “0” data is written in the storage unit 200, the nonvolatile semiconductor memory element 201 is in an off state and the nonvolatile semiconductor memory element 202 is in an on state. Thereby, the potential of the signal line Bit is pulled to the “L (Low)” level side, the potential of the signal line BitB is charged, the signal line Bit is “0”, and the B signal line BitB is “1”. "(Time t12). When the voltage of the word line WL is set to 2V at time t13, the transfer transistors 106 and 107 are turned on, the voltage of the data line DL is set to 0V, the voltage of the data line inversion signal line DLB is set to 2V, and the read operation is finished.
  • the storage unit 200 When the storage unit 200 is erased, that is, when “1” data is read, the signal indicating the state indicates the reverse operation, the voltage of the signal line Bit is 2 V, and the voltage of the signal line BitB Is 0V, the voltage of the data line DL is 2V, the voltage of the data line inversion signal line DLB is 0V, and the read operation is completed.
  • the sense period is from the time when the terminal voltage of the input terminal of the activation signal SET starts to change from “H” to “L” until the voltage of the data line DL and the data line inversion signal line DLB is determined, that is, from time t11 to t13. It becomes.
  • the merit of this configuration is that the configuration can be simplified.
  • the high voltage is applied to the portions connected to the control signal terminal S and the control signal terminal SB of the nonvolatile semiconductor memory elements 201 and 202, and the high voltage is applied to the SRAM unit 100 (sense unit). Therefore, a fine process can be adopted for the sense portion.
  • the SRAM unit 100 (sense unit) uses a 65 ⁇ m process in the logic standard process, and the nonvolatile semiconductor memory elements 201 and 202 use an I / O transistor process (usage voltage 3 to 5 V, actual withstand voltage 8 V in the logic standard process).
  • I / O transistor process usage voltage 3 to 5 V, actual withstand voltage 8 V in the logic standard process.
  • FIG. 7A is a block diagram according to the second embodiment.
  • the parts changed in the second embodiment will be described, and parts not changed are denoted by the same reference numerals and the description thereof will be omitted.
  • the SRAM unit 100 (sense unit) shown in the first embodiment is the same, but the storage unit 200 includes a nonvolatile semiconductor memory element 201 (first nonvolatile semiconductor memory element) and 202 (second nonvolatile semiconductor memory).
  • the source of the element) is set separately for the control signal terminal S and the control signal terminal SB.
  • the sources of the nonvolatile semiconductor memory elements 201 and 202 are the common control signal. Connect to terminal S.
  • FIGS. 7B and 7C show an example in which the applied voltage of the control signal terminal voltage VS is changed.
  • FIG. 7B shows a case where the control signal terminal voltage VS is 7V.
  • (Formula 2), (Formula 3), (Formula 4-1), and (Formula 4-2) are confirmed.
  • VS enters instead of VD.
  • the initial state of the floating gate FG at the time of erasing is from (Equation 2)
  • the threshold value of the nonvolatile semiconductor memory elements 201 and 202 is 0.5 V, so that it can operate sufficiently.
  • FIG. 7C shows a case where the control signal terminal voltage VS is 6V.
  • the initial state of the floating gate FG at the time of erasing is from (Equation 2)
  • the initial state of the floating gate FG at the time of writing is from (Equation 3):
  • the initial state of the floating gate FG at the time of writing is from (Equation 3):
  • the initial state of the floating gate FG for “1” reading is expressed by (Equation 4-2): It becomes.
  • the threshold value as the nonvolatile semiconductor memory elements 201 and 202 is 0.5 V, so that the margin for the “1” read operation becomes strict (the permissible read range is narrow).
  • the threshold values of the nonvolatile semiconductor memory elements 201 and 202 are set to around 0V.
  • FIG. 8 shows still another embodiment 3.
  • a plurality of memory cells of the second embodiment are arranged in a matrix to form a memory array cell. That is, each of the memory cells M11 to Mmn is a memory cell including the SRAM unit 100 (sense unit) and the storage unit 200a, and the details of the inside are as described in the second embodiment. Parts that are not changed are denoted by the same reference numerals, and description thereof is omitted with reference to the second embodiment.
  • the memory cell array includes (m ⁇ n) memory cells M11 to Mmn and n sense amplifiers 800-1 to 800-n.
  • Memory cells M11 to M1n are arranged with the word line WL1 in common, and memory cells Mm1 to Mmn are arranged with the word line WLm in common. Further, the data lines DL1 and DLB1 of M11 to Mm1 are connected in common, and the data lines DLn and DLBn of M1n to Mmn are connected in common. Further, the sources are commonly connected in the word line direction, and become source lines S1 to Sm, respectively.
  • the terminal of the activation signal SET for activating the SRAM unit 100 is also connected by the gate lines SET1 to SETm in the word line direction.
  • the data lines DL1, DLB1 to DLn, DLBn are connected to sense amplifiers 800-1 to 800-n, respectively.
  • the word lines WL1 to WLm are signal lines for supplying a selection signal for selecting each SRAM unit 100 connected to each row for each row of the SRAM unit 100.
  • Gate lines SET1 to SETm are signal lines for supplying an activation signal SET for activating the SRAM unit 100 for each row of the SRAM unit 100.
  • the data lines DL1, DLB1 to DLn, DLBn are signal lines that transmit information read from the SRAM unit 100 or information to be written for each column.
  • the source lines S1 to Sm are signal lines that supply control signals for writing, erasing, and reading information in the storage unit 200a for each row.
  • the memory cells M11 to M1n selected by the word line WL1, the gate line SET1, and the source line S1 can be simultaneously written / erased or read, so-called page rewrite, page read is possible, and high-speed rewrite is possible. High-speed reading is possible.
  • FIG. 9 shows a fourth embodiment which is a modified form from the first embodiment.
  • the parts changed in the fourth embodiment will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted.
  • the SRAM unit 100 (sense unit) shown in the first embodiment is the same, but the storage unit 200 includes a nonvolatile semiconductor memory element 201 (first nonvolatile semiconductor memory element) and 202 (second nonvolatile semiconductor memory).
  • the source of the device is that the control signal terminal S and the control signal terminal SB are set separately, and the nonvolatile semiconductor memory devices 201 and 202 are directly connected to the SRAM unit 100.
  • the storage unit 200b is different. For the point of connecting the sources of the nonvolatile semiconductor memory elements 201 and 202 to the common control signal terminal S, refer to the description in the storage unit 200a shown in the second embodiment.
  • the storage unit 200b includes NMOS transistors 203 and 204 for data transfer between the SRAM unit 100 and the nonvolatile semiconductor memory elements 201 and 202.
  • the nonvolatile semiconductor memory element 201 has a drain connected to the source of the transistor 203 and a source connected to the control signal terminal S.
  • the nonvolatile semiconductor memory element 202 has a drain connected to the source of the transistor 204 and a source connected to the control signal terminal S.
  • the transistor 203 has a gate connected to the input terminal of the transfer signal TRF, and a drain connected to the SRAM unit 100 via the signal line BitB.
  • the transistor 204 has a gate connected to the input terminal of the transfer signal TRF, and a drain connected to the SRAM unit 100 via the signal line Bit.
  • a transfer signal TRF selected as “H” is input to the gates of the transistors 203 and 204 at the time of writing, erasing, and transferring data of the nonvolatile semiconductor memory elements 201 and 202 to the SRAM.
  • the transfer signal TRF is inputted with “L”, and the nonvolatile semiconductor memory elements 201 and 202 are transferred from the SRAM unit 100. Since they are disconnected, there is an advantage that no voltage is supplied to the drain, unnecessary voltage is not applied, and reliability is improved.
  • FIG. 10 shows still another embodiment 5.
  • the parts changed in the fifth embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted by referring to the fourth embodiment.
  • memory cells MA11 to MAmn are used instead of the memory cells M11 to Mmn in the memory cell array shown in the third embodiment.
  • the memory cell array includes (m ⁇ n) memory cells MA11 to MAmn and n sense amplifiers 800-1 to 800-n.
  • the difference between the memory cells M11 to Mmn and the memory cells MA11 to MAmn is different in the form of the storage unit.
  • the memory cells M11 to Mmn include the SRAM unit 100 (sense unit) and the storage unit 200a.
  • the memory cells MA11 to MAmn include the SRAM unit 100 (sense unit) and the storage unit 200b. That is, the memory cells included in the memory cells MA11 to MAmn have the same form as the memory cell shown in the fourth embodiment.
  • data stored in the memory cells MA11 to MAmn can be read at once. For example, by setting the transfer signals TRF1 to TRFm for data transfer to “L”, the memory cells connected to the row line in which “L” is input to the transfer signals TRF1 to TRFm can be deselected. Thus, if the memory cell is separated from the SRAM unit 100, the memory can operate in the same manner as the SRAM unit 100 thereafter. If data is transferred to all the memory cells at the same time, excessive current may flow due to excessive concentration of current flowing in the SRAM unit 100. In this case, the peak current can be suppressed by shifting the activation timings of the memory cells MA11 to MAmn by sequentially shifting the input timing of the activation signal SET to the input terminal of the activation signal SET.
  • FIG. 11 shows a sixth embodiment which is a modification of the second embodiment.
  • the parts changed in the sixth embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted.
  • a high-sensitivity sense amplifier 300 sense unit
  • the storage unit 200a is the same, and is connected to the high-sensitivity sense amplifier 300 via the signal lines Bit and BitB.
  • a high-sensitivity sense amplifier 300 provided instead of the SRAM unit 100 will be described.
  • the high-sensitivity sense amplifier 300 transfers (reads) precharge PMOS transistors 301 and 302, sense NMOS transistors 303 and 304, sense amplifier activation NMOS transistor 305, and sensed data to a data line. Transfer transistors 306 and 307 are provided.
  • the transistor 301 has a gate connected to the input terminal of the precharge signal PRE, a drain connected to the power supply, and a source connected to the signal line Bit.
  • the transistor 302 has a gate connected to the input terminal of the precharge signal PRE, a drain connected to the power supply, and a source connected to the signal line BitB.
  • the transistor 303 has a gate connected to the signal line BitB and the drain of the transistor 304, and a source connected to the drain of the transistor 305.
  • the transistor 304 has a gate connected to the signal line Bit and the drain of the transistor 303, and a source connected to the drain of the transistor 305.
  • the transistor 305 has a gate connected to an input terminal of a sense amplifier activation signal (hereinafter referred to as “sense signal SEN”), and a source connected to a reference potential.
  • the transistor 306 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the drain of the transistor 303.
  • the transistor 307 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the drain of the transistor 304.
  • FIG. 1 is a timing chart showing the operation of the configuration shown in FIG.
  • the transistors 301 and 302 are activated and the signal lines Bit and BitB are gradually charged.
  • “H” is input to the input terminal of the sense signal SEN and the input terminal of the word line WL of the selection signal for transferring the sense data to the data line DL and the data line inversion signal line DLB, and the sense signal SEN and the word line
  • the selection signal input to WL is “L”.
  • the data line DL and the data line inversion signal line DLB are also gradually charged to “H” in accordance with the signal lines Bit and BitB charged by the transistors 301 and 302.
  • the data line DL and the data line inversion signal line DLB are precharged at the same timing as the precharge signal PRE by a separately provided data line precharge circuit.
  • the precharge circuit 600 shown in the following embodiment can be applied. Details will be described later.
  • the nonvolatile semiconductor memory element 201 is in the off state, 202 is in the on state, and the common source S is the reference potential (0 V).
  • a current flows to the common source S through the semiconductor memory element 202, and a minute voltage difference between the signal lines Bit and BitB cannot be detected, and there is a possibility of causing a malfunction.
  • the rising waveform of the sense signal SEN needs to rise relatively slowly as shown in the figure.
  • it is desirable that the voltage of the input terminal of the sense signal SEN is set near the threshold value of the transistor 305 so that the transistor 305 operates at a low current.
  • the operating current of the transistor 305 has a relationship with the sensing speed, and the sensing speed becomes slow when the current is limited by operating the transistor 305 at a low current.
  • “H” is input to the input terminal of the sense signal SEN, and the sense signal SEN becomes “H”.
  • the potentials of the signal lines Bit and BitB are determined.
  • the word line WL becomes “H”.
  • the transistors 306 and 307 are activated, and the potentials of the data line DL and the data line inversion signal line DLB are determined according to the state in which the signal lines Bit and BitB are charged. Ends.
  • FIG. 13 shows a seventh embodiment which is a modified form from the sixth embodiment.
  • the parts changed in the seventh embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted by referring to the sixth embodiment.
  • a high-sensitivity sense amplifier 400 (signal holding unit) that replaces the high-sensitivity sense amplifier 300 shown in the sixth embodiment, a precharge circuit 600 (precharge unit), and an amplifier unit 700 (amplification detection unit) are provided.
  • the storage unit 200a is the same, and is connected to the high-sensitivity sense amplifier 400 via the signal lines Bit and BitB.
  • the high-speed sense amplifier 400 transfers (reads) the sense NMOS transistors 401 and 402, the sense amplifier activation NMOS transistors 403 and 404, and the sensed data to the data line DL and the data line inversion signal line DLB. Transfer transistors 405 and 406 are provided.
  • the transistor 401 has a gate connected to the signal line BitB and the drain of the transistor 402, and a source connected to the drains of the transistors 403 and 404.
  • the transistor 402 has a gate connected to the signal line Bit and the drain of the transistor 401, and a source connected to the drains of the transistors 403 and 404.
  • the transistor 403 has a gate connected to the input terminal of the sense signal SEN and a source connected to the reference potential.
  • the transistor 404 has a gate connected to the input terminal of the sense signal SENd and a source connected to the reference potential.
  • the transistor 405 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the drain of the transistor 401.
  • the transistor 406 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the drain of the transistor 402.
  • the precharge circuit 600 includes transistors 601, 602, and 603.
  • the transistor 601 has a gate connected to the input terminal of the precharge control signal PRE, a drain connected to the power supply, and a source connected to the data line DL.
  • the transistor 602 has a gate connected to the input terminal of the precharge control signal PRE, a drain connected to the power supply, and a source connected to the data line inversion signal line DLB.
  • the transistor 603 has a gate connected to the input terminal of the precharge control signal PRE, a drain connected to the data line DL, and a source connected to the data line inversion signal line DLB.
  • a high-sensitivity sense amplifier 400 is provided instead of the high-sensitivity sense amplifier 300.
  • the high-sensitivity sense amplifier 400 is different from the sixth embodiment shown in FIG. 11 in that the precharge transistors 301 and 302 provided in the high-speed sense amplifier 300 are deleted and the activation transistors are newly separated into 403 and 404. It is to have done. Further, the precharge circuit 600 is provided only on the data line DL and the data line inversion signal line DLB side.
  • the precharge control signal PRE when “L” is input to the input terminal to which the precharge control signal PRE is input, the precharge control signal PRE becomes “L”.
  • the data line DL and the data line inversion signal line DLB can be charged through the transistors 601 and 602.
  • the transistor 603 is activated together with the transistors 601 and 602 and functions to balance the potential charged in the data line DL and the data line inversion signal line DLB.
  • the amplifier unit 700 is an amplifier that reads data transmitted via the data line DL and the data line inversion signal line DLB at a higher speed and a circuit for latching the read data.
  • the activation transistor in the high-speed sense amplifier 400 includes a transistor 403 that performs an initial sense operation (sense 1) and a transistor 404 that performs this sense operation (sense 2).
  • FIG. 1 is a timing chart showing the operation of the configuration shown in FIG.
  • “L” is input to the input terminal of the precharge signal PRE
  • the input terminals of the sense signals SEN and SENd and “H” is input to the word line WL
  • the precharge signal PRE The sense signals SEN and SENd are “L” and the word line WL is “H”.
  • the transistors 405 and 406 are turned on, and the precharge circuit 600 also performs a charge state operation.
  • the precharge circuit 600 precharges the data line DL and the data line inversion signal line DLB, and the signal lines Bit and BitB are also charged through the transistors 405 and 406.
  • “H” is input to the input terminal of the precharge signal PRE and the input terminal of the sense signal SEN, and the precharge signal PRE and the sense signal SEN are set to “H”.
  • the precharge circuit 600 ends the precharge. Further, a potential slightly lowered from the “H” level is input to the word line WL, and the potential of the word line WL is slightly decreased from the “H” level, so that the transistors 405 and 406 are turned off. Become. Further, an “H” level potential is input to the input terminal of the sense signal SEN, and the sense signal SEN becomes “H”.
  • the transistor 403 is operated at a constant current, or the capacity of the transistor is small and the drain current is reduced. Thereby, the sensitivity of the sensing operation is improved, and a minute potential difference between the signal lines Bit and BitB is expanded.
  • “H” is input to the input terminal of the sense signal SEN, and the sense signal SEN becomes “H”.
  • the potential difference between the signal lines Bit and BitB has increased to some extent, when “H” is input to the input terminal of the sense signal SENd at time t33 and the sense signal SENd becomes “H”, the potentials of the signal lines Bit and BitB are Confirm quickly.
  • the transistors 405 and 406 are completely turned on. Thereby, the potentials of the data line DL and the data line inversion signal line DLB are determined.
  • the determined potential is input to the amplifier unit 700.
  • the amplifier unit 700 determines at high speed, latches the data, and finishes reading.
  • FIG. 15 shows an eighth embodiment which is a modified form from the seventh embodiment.
  • the parts changed in the eighth embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted by referring to the seventh embodiment.
  • the high-speed sense amplifier 400 and the precharge circuits 600 and 700 shown in the seventh embodiment are the same except that the storage unit 200c is used instead of the storage unit 200a.
  • the storage unit 200a the sources of the nonvolatile semiconductor memory elements 201 and 202 are directly connected to the common control signal terminal S. However, in the storage unit 200c, each source is connected to the common control signal terminal S via a resistor. .
  • the storage unit 200c further includes resistors 205 (first resistor) and 206 (second resistor), and the sources of the nonvolatile semiconductor memory elements 201 and 202 are connected to the control signal terminal S via the resistors 205 and 206, respectively. Connected.
  • resistors 205 and 206 By providing the resistors 205 and 206, even if the control signal terminal S is shared, a wide operation margin (reading allowable range) can be secured.
  • the write / erase voltage needs to be set to about 6V to 7V. Therefore, depending on the case, the injection amount of electrons or holes may be reduced, and the read margin may be reduced, so care must be taken in voltage optimization.
  • the nonvolatile semiconductor memory element 201 performs writing (electron injection) and the nonvolatile semiconductor memory element 202 performs erasing (hole injection). . Since the current due to hot electrons flows through the nonvolatile semiconductor memory element 201 to be written about 100 ⁇ A, 6 V is applied to the source of the nonvolatile semiconductor memory element 201.
  • FIG. 16 shows a ninth embodiment which is a modified form from the second embodiment.
  • the parts changed in the ninth embodiment will be described, and parts not changed will be denoted by the same reference numerals and the description thereof will be omitted.
  • a high-sensitivity sense amplifier 500 (signal holding unit) is provided instead of the SRAM unit 100 (sense unit) shown in the second embodiment.
  • the storage unit 200a is the same, and is connected to the high-sensitivity sense amplifier 500 via the signal lines Bit and BitB.
  • the form shown in this figure is a form using a high-sensitivity / high-speed sense amplifier as the high-sensitivity sense amplifier 500, and has a latch function in accordance with the high-sensitivity / high-speed sense amplifier function.
  • the high sensitivity sense amplifier 500 includes PMOS transistors 501, 502, 503, 504, and 505.
  • the transistor 501 (power supply transistor) has a gate connected to the terminal of the activation signal SET, a drain connected to the power supply, and a source connected to the drains of the transistors 502 and 503.
  • the gate of the transistor 502 is connected to the signal line Bit and the source of the transistor 503.
  • the gate of the transistor 503 is connected to the signal line BitB and the source of the transistor 502.
  • the transistor 504 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the source of the transistor 502.
  • the transistor 505 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the drain of the transistor 503.
  • the PMOS transistor 501 receives an activation signal SET for setting and activating the sense amplifier at the gate.
  • the PMOS transistors 502 and 503 are sense and latch transistors, and the transistors 504 and 505 are transfer transistors for reading data to the data line DL and the data line inversion signal line DLB.
  • FIG. 17 shows operation waveforms of the form shown in FIG. Data line DL and data line inversion signal line DLB are precharged in advance. It is assumed that the nonvolatile semiconductor memory element 201 is written and the nonvolatile semiconductor memory element 202 is erased. At time t41, when “L” is input to the input terminal of the activation signal SET and the activation signal SET becomes “L”, the high sensitivity sense amplifier 500 is activated. Thereby, the potential of the signal line Bit is kept almost “L” and the signal line BitB is charged, so that the potentials of the signal lines Bit and BitB are determined at high speed. After that, when “H” is input to the word line WL at time t42 and the potential of the word line WL becomes “H”, the potentials of the data line DL and the data line inversion signal line DLB are determined, and reading can be completed.
  • FIG. 18 shows a tenth embodiment which is a modified form from the ninth embodiment.
  • the parts changed in the tenth embodiment will be described, and parts not changed will be given the same reference numerals and the description will be omitted by referring to the ninth embodiment.
  • the high-speed sense amplifier 500 shown in the ninth embodiment is the same, but includes a storage unit 200d instead of the storage unit 200a.
  • the storage unit 200c shown in the eighth embodiment is similar to the storage unit 200d. The description of the storage unit 200d will be described in comparison with the storage unit 200c.
  • the storage unit 200d includes nonvolatile semiconductor memory elements 201 and 202 and transistors 207 and 208.
  • the nonvolatile semiconductor memory element 201 has a drain connected to the high speed sense amplifier 500 via a signal line BitB, and a source connected to the drain of the transistor 207.
  • the nonvolatile semiconductor memory element 202 has a drain connected to the high speed sense amplifier 500 via a signal line Bit and a source connected to the drain of the transistor 208.
  • the transistor 207 has a gate connected to the input terminal of the signal SEL and a source connected to the control signal terminal S.
  • the transistor 208 has a gate connected to the input terminal of the signal SEL and a source connected to the control signal terminal S.
  • the memory unit 200d is replaced with transistors 207 and 208 that can pass an appropriate current instead of the resistors 205 and 206 provided in the memory unit 200c.
  • the transistors 207 and 208 are operated at a constant current, or the drain current is reduced by reducing the capacity of the transistor.
  • a signal SEL that also serves as a selection signal is input to the gate terminals of the transistors 207 and 208.
  • the transistor configuration has an advantage that the layout area can be made smaller than that of the resistor and that the memory cell activated by the signal SEL can be selected. For example, the control signal terminal S of all the memory cells can be made common in the matrix configuration of FIG. 8 or FIG. 10, and selection by the signal SEL is performed.
  • a nonvolatile semiconductor memory that is, a nonvolatile semiconductor memory element and a semiconductor device using the same
  • a nonvolatile semiconductor memory can be realized by a standard logic CMOS process. Therefore, by mounting the nonvolatile semiconductor memory of the present invention on the standard logic, a logic embedded memory can be realized easily and inexpensively.
  • the present invention is not limited to the above-described embodiments, and can be changed without departing from the spirit of the present invention.
  • the number of active elements in the semiconductor device of the present invention and the connection form are not particularly limited.
  • a non-volatile semiconductor memory element having a single-layer polysilicon cell structure and a semiconductor device using the same can be realized by a standard logic CMOS process, and a logic-embedded memory can be easily and inexpensively realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Disclosed is a semiconductor device provided with: a storage part which stores one bit of information by means of a first nonvolatile semiconductor memory element and a second nonvolatile semiconductor memory element which stores the logical inverse of the bit of information stored in the first nonvolatile semiconductor memory element; and a sensor which, through a first signal wire and second signal wire which form a pair, reads the bit stored in the first and second nonvolatile semiconductor memory elements. The semiconductor device is characterized in that the first and second nonvolatile semiconductor memory elements each comprise at least a floating gate, a drain, and a source formed on top of a semiconductor substrate. The semiconductor device is further characterized by being configured so that: writing is performed by applying a voltage between the source and the drain, thereby injecting and accumulating charge in the floating gate; and erasure is performed by applying a voltage between the semiconductor substrate and either the source or the drain, thereby generating band-band hot carriers in the semiconductor substrate, and erasing the charge accumulated in the floating gate by means of the hot carriers.

Description

不揮発性半導体メモリ素子および半導体装置Nonvolatile semiconductor memory device and semiconductor device
 本発明は、標準CMOS(complementary metal-oxide semiconductor)プロセスで製造できる1層ポリシリコンのセル構造で書き換え可能な不揮発性半導体メモリ素子および半導体装置に関する。
 本願は、2008年3月25日に、日本に出願された特願2008-079058号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a nonvolatile semiconductor memory element and a semiconductor device which can be rewritten with a single-layer polysilicon cell structure which can be manufactured by a standard CMOS (complementary metal-oxide semiconductor) process.
This application claims priority on March 25, 2008 based on Japanese Patent Application No. 2008-079058 filed in Japan, the contents of which are incorporated herein by reference.
 EEPROM(Electrically Erasable Programmable Read Only Memory)に代表される不揮発性半導体メモリは、電源を切っても情報が消えないことから、多くの用途に用いられてきた。例えば、EEPROMの代表的な用途としては、ICカードがある。また、いつでも用途に応じて書き換えが出来る便利さから、マイコン内のマスクROMの置き換えとしてEEPROMやフラッシュメモリが使われている。さらに、近年では、システムLSIや、論理ICの一部に不揮発性半導体メモリを取り込んだ、埋め込み型の所謂、ロジック混載メモリ(Embedded Memory)が必要になってきた。さらには、アナログ回路に組み込んで、高精度のアナログ回路のチューニング等を行うための調整用スイッチとして、数百ビットから数Kビット程度の小規模の不揮発性半導体メモリも必要になってきている。 Nonvolatile semiconductor memories represented by EEPROM (Electrically-Erasable-Programmable-Read-Only Memory) have been used in many applications because information does not disappear even when the power is turned off. For example, a typical application of an EEPROM is an IC card. Also, EEPROM and flash memory are used as a replacement for the mask ROM in the microcomputer because it can be rewritten at any time according to the application. Furthermore, in recent years, there has been a need for a so-called embedded memory (embedded memory) in which a nonvolatile semiconductor memory is incorporated in a part of a system LSI or logic IC. Furthermore, a small-sized non-volatile semiconductor memory of about several hundred bits to several K bits is also required as an adjustment switch that is incorporated in an analog circuit and performs tuning and the like of a high-precision analog circuit.
 しかしながら、不揮発性半導体メモリは2層ポリシリコンあるいは3層ポリシリコンを用いたセル構造が一般的で、製造工程は標準CMOSロジックプロセスより複雑で製造工程も多く、不揮発性半導体メモリと標準ロジックを1チップの中に同時に埋め込もうとすると、製造工程が多く、歩留まりも低下し、製品の価格(コスト)が上る問題が生じていた。 However, a non-volatile semiconductor memory generally has a cell structure using two-layer polysilicon or three-layer polysilicon, and the manufacturing process is more complicated and requires more manufacturing processes than the standard CMOS logic process. Attempting to embed them in the chip at the same time has caused many problems in the manufacturing process, yield decreases, and the product price (cost) increases.
 この問題を解決するひとつの手段として、1層ポリシリコンを用いたEEPROMが提案されている。(特許文献1)。この1層ポリシリコンEEPROMを用いれば、従来の2層ポリシリコンプロセスより製造工程を削減できる。
特開平10-289959号公報
As one means for solving this problem, an EEPROM using one-layer polysilicon has been proposed. (Patent Document 1). If this one-layer polysilicon EEPROM is used, the number of manufacturing steps can be reduced as compared with the conventional two-layer polysilicon process.
JP-A-10-289959
 しかしながら、上記技術では、コントロールゲートとして使用されている2層目のポリシリコンを省略したために、フローティングゲートの下に拡散層からなるコントロールゲートを埋め込む必要があり、ロジックで用いられる標準CMOSプロセスより複雑な製造工程となってしまう。さらに、高濃度で埋め込まれた拡散層を酸化すると、質の悪い酸化膜となり、不良の発生する確率が高く、信頼性も問題となる。また、書き込みに高電圧を必要とする等、書き込み、消去も複雑であった。 However, in the above technique, since the second-layer polysilicon used as the control gate is omitted, it is necessary to embed a control gate made of a diffusion layer under the floating gate, which is more complicated than the standard CMOS process used in logic. It becomes a difficult manufacturing process. Furthermore, if the diffusion layer embedded at a high concentration is oxidized, an oxide film of poor quality is formed, and the probability of occurrence of a defect is high, and reliability is also a problem. In addition, writing and erasing are complicated, such as requiring a high voltage for writing.
 本発明は、上記事情に鑑みてなされたものであり、標準CMOSプロセスで製造できる1層ポリシリコンのセル構造の不揮発性半導体メモリ素子およびそれを用いた半導体装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-volatile semiconductor memory element having a single-layer polysilicon cell structure that can be manufactured by a standard CMOS process and a semiconductor device using the same.
 上記課題を解決するため、本発明は、第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態の情報を記憶する第2の不揮発性半導体メモリ素子と、により1つの情報を記憶する記憶部と、1対となる第1の信号線と第2の信号線を介して前記第1および第2の不揮発性半導体メモリ素子に記憶される情報を読み出すセンス部と、を備える半導体装置であって、前記第1および第2の不揮発性半導体メモリ素子の各々は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含み、書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成されることを特徴とする半導体装置である。 In order to solve the above-described problems, the present invention provides a first nonvolatile semiconductor memory element, a second nonvolatile semiconductor memory element that stores information on a logic state opposite to the first nonvolatile semiconductor memory element, and , And a sense unit for reading out information stored in the first and second nonvolatile semiconductor memory elements via a pair of first signal line and second signal line. Each of the first and second nonvolatile semiconductor memory elements includes at least a floating gate, a drain, and a source formed on a semiconductor substrate, and the source is set in a write state. -A voltage is applied between the drain and the charge is injected into the floating gate and stored, and in the erased state, the charge is stored in the floating gate. When erasing the charged charge, a voltage is applied between the semiconductor substrate and the drain or source to generate hot carriers between the bands, and the charge accumulated in the floating gate is erased by the hot carriers. The semiconductor device is configured as described above.
 また、本発明は、前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが第1の制御信号端子に接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが第2の制御信号端子に接続され、前記第1および第2の不揮発性半導体メモリ素子のソースが各々接続される前記第1の制御信号端子と前記第2の制御信号端子は、互いに独立に構成され、書き込み時ならびに消去時にそれぞれ異なる電位をとり、読み出し時にはそれぞれ基準電位となることを特徴とする。 According to the present invention, the first nonvolatile semiconductor memory element has a drain connected to the second signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element A drain connected to the first signal line, a source connected to a second control signal terminal, and a source of the first and second nonvolatile semiconductor memory elements connected to the first control signal terminal; The second control signal terminals are configured independently of each other, have different potentials at the time of writing and erasing, and respectively have a reference potential at the time of reading.
 また、本発明は、前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが前記第1の制御信号端子に接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが前記第1の制御信号端子に接続され、共通に接続される前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位に接続となることを特徴とする。 According to the present invention, the first nonvolatile semiconductor memory element has a drain connected to the second signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element The drain is connected to the first signal line, the source is connected to the first control signal terminal, and the first control signal terminal connected in common takes a predetermined potential at the time of erasing and writing to read Sometimes connected to a reference potential.
 また、本発明は、第1および第2のトランジスタをさらに備え、前記第1の不揮発性半導体メモリ素子は、ドレインが第1のトランジスタのソースに、ソースが前記第1の制御信号端子に接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが第2のトランジスタのソースに、ソースが前記第1の制御信号端子に接続され、前記第1のトランジスタは、ゲートが活性化信号入力端子に、ドレインが前記第2の信号線に、ソースが前記第1の不揮発性半導体メモリ素子のドレインに接続され、前記第2のトランジスタは、ゲートが前記活性化信号入力端子に、ドレインが前記第1の信号線に、ソースが前記第2の不揮発性半導体メモリ素子のドレインに接続され、共通に接続される前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となり、前記活性化信号入力端子に入力される活性化信号により、前記第1および第2のトランジスタをオン状態として、前記第1または前記第2の不揮発性半導体メモリ素子を消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成されることを特徴とする。 The present invention further includes first and second transistors, wherein the first nonvolatile semiconductor memory element has a drain connected to a source of the first transistor and a source connected to the first control signal terminal. The second nonvolatile semiconductor memory element has a drain connected to the source of the second transistor, a source connected to the first control signal terminal, and a gate connected to the activation signal input terminal of the first transistor. , The drain is connected to the second signal line, the source is connected to the drain of the first nonvolatile semiconductor memory element, the second transistor has a gate connected to the activation signal input terminal and a drain connected to the first signal line. The first control signal terminal connected in common to the signal line is connected to the drain of the second nonvolatile semiconductor memory element, and is connected during erasing and writing The first and second non-volatile transistors are turned on by the activation signal input to the activation signal input terminal, and the first and second transistors are turned on by the activation signal input to the activation signal input terminal. When the charge stored in the floating gate is erased with the conductive semiconductor memory device in the erased state, a voltage is applied between the semiconductor substrate and the drain or source to generate hot carriers between the bands between the semiconductor substrate and the semiconductor substrate. The electric charge accumulated in the floating gate is erased by the hot carriers.
 また、本発明は、第1および第2の抵抗をさらに備え、前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが第1の抵抗を介して前記第1の制御信号端子に接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが第2の抵抗を介して前記第1の制御信号端子に接続され、前記制御信号端子Sは、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となることを特徴とする。 The present invention further includes first and second resistors, wherein the first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the first resistor via the first resistor. The second nonvolatile semiconductor memory element has a drain connected to the first signal line and a source connected to the first control signal terminal via a second resistor, The control signal terminal S has a predetermined potential at the time of erasing and writing, and is a reference potential at the time of reading.
 また、本発明は、第1および第2のトランジスタをさらに備え、前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが第1のトランジスタのドレインに接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが第2のトランジスタのドレインに接続され、前記第1のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、前記第2のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、前記活性化信号の入力によって前記第1および第2のトランジスタは、活性化され、前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となることを特徴とする。 The present invention further includes first and second transistors, wherein the first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the drain of the first transistor, In the second nonvolatile semiconductor memory element, a drain is connected to the first signal line, a source is connected to a drain of the second transistor, and a gate of the first transistor is connected to an input terminal of an activation signal. The source is connected to the first control signal terminal, and the second transistor has a gate connected to an input terminal of an activation signal, a source connected to the first control signal terminal, and an input of the activation signal. The first and second transistors are activated, and the first control signal terminal takes a predetermined potential during erasing and writing, and becomes a reference potential during reading. The features.
 また、本発明は、前記センス部は、電源供給線が電源用トランジスタを介して接続され、信号を保持するフリップフロップ回路を含み、前記フリップフロップ回路は、前記電源用トランジスタのオン状態・オフ状態が制御されることにより前記電源に電圧が印加され、前記第1および第2の不揮発性半導体メモリ素子からの出力信号を保持するように構成されること、を特徴とする。 In the present invention, the sense unit includes a flip-flop circuit in which a power supply line is connected via a power transistor and holds a signal, and the flip-flop circuit includes an on state and an off state of the power transistor. Is controlled so that a voltage is applied to the power supply to hold output signals from the first and second nonvolatile semiconductor memory elements.
 また、本発明は、前記センス部は、電源用トランジスタを介して電源に接続され、接地用トランジスタを介して基準電位に接続され、前記記憶部と前記1対の第1および第2の信号線を介して接続されるフリップフロップ回路と、前記フリップフロップ回路からの出力信号を増幅する信号増幅部と、を備えることを特徴とする。 According to the present invention, the sense unit is connected to a power source through a power transistor, and is connected to a reference potential through a ground transistor, and the memory unit and the pair of first and second signal lines And a signal amplifier for amplifying an output signal from the flip-flop circuit.
 また、本発明は、前記記憶部と前記センス部とを組み合わせたメモリセルを備える半導体装置であって、前記メモリセルが行および列方向に配列したマトリックスアレイと、センスアンプと、を少なくとも含み、前記メモリセルの各々は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含む第1および第2の不揮発性半導体メモリ素子を備える記憶部と、電源用トランジスタを介して電源に接続されるフリップフロップ回路により信号を保持するセンス部と、を含み、前記第1および第2の不揮発性半導体メモリ素子は、フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、前記フリップフロップ回路は、活性化信号によって前記電源用トランジスタのオン状態・オフ状態を制御することにより前記フリップフロップ回路に電源を印加するように構成されるセンス部と、前記第1および第2の不揮発性半導体メモリ素子のソースを行ごとに接続するソース線と、前記センス部の選択信号および前記活性化信号を行毎に伝送する行線と、前記センス部の情報を列毎に伝送するビット線と、を備え、前記センスアンプは、前記ビット線に前記センス部から出力される信号を列毎に接続し、前記ビット線および前記行線によって指定される不揮発性半導体メモリ素子のフローティングゲートに蓄積された電荷の状態によって記憶される情報を読み出す読み出し手段を備えることを特徴とする。 The present invention is a semiconductor device including a memory cell in which the storage unit and the sense unit are combined, and includes at least a matrix array in which the memory cells are arranged in a row and a column direction, and a sense amplifier. Each of the memory cells is connected to a power supply through a power supply transistor, and a storage unit including first and second nonvolatile semiconductor memory elements including at least a floating gate, a drain, and a source formed on a semiconductor substrate. A flip-flop circuit for holding a signal, and the first and second nonvolatile semiconductor memory elements are arranged between the semiconductor substrate and the drain or source when erasing charges accumulated in the floating gate. A voltage is applied to generate hot carriers between the bands in the semiconductor substrate. And the charge stored in the floating gate is erased by the hot carriers, and the flip-flop circuit controls the on / off state of the power supply transistor by an activation signal. A sense unit configured to apply power to the circuit; a source line connecting the sources of the first and second nonvolatile semiconductor memory elements for each row; a selection signal for the sense unit and the activation signal; And a bit line for transmitting information of the sense unit for each column, and the sense amplifier connects a signal output from the sense unit to the bit line for each column. And the charge accumulated in the floating gate of the nonvolatile semiconductor memory device specified by the bit line and the row line. Characterized in that it comprises a reading means for reading information stored me.
 また、本発明は、前記記憶部と前記センス部とを組み合わせたメモリセルを備える半導体装置であって、前記メモリセルが行および列方向に配列したマトリックスアレイと、センスアンプと、を少なくとも含み、前記メモリセルの各々は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含む第1および第2の不揮発性半導体メモリ素子と、前記第1および第2の不揮発性半導体メモリ素子の各々に直列接続され、オン状態又はオフ状態とすることで前記第1および第2の不揮発性半導体メモリ素子の選択又は非選択を制御する第1および第2のトランジスタと、を含む記憶部と、電源用トランジスタを介して電源に接続されるフリップフロップ回路により信号を保持するセンス部を備えるセンス部と、前記第1および第2のトランジスタをオン状態として、前記第1および第2の不揮発性半導体メモリ素子のソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積し、前記第1および第2の不揮発性半導体メモリ素子のフローティングゲートに蓄積された電荷の消去時に、前記半導体基板と前記第1および第2の不揮発性半導体メモリ素子のドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成された不揮発性半導体メモリ素子と、前記フリップフロップ回路は、電源制御によって前記電源用トランジスタのオン状態・オフ状態を制御して前記フリップフロップ回路に電源を印加するように構成されるセンス部と、前記第1および第2の不揮発性半導体メモリ素子のソースを行毎に接続するソース線と、前記第1および第2のトランジスタのゲートを制御する制御信号、前記活性化信号、前記センス部の選択信号を行毎に伝送する行線と、前記センス部の情報を列毎に伝送するビット線と、を備え、前記センスアンプは、前記ビット線にセンス部から出力される信号を列毎に接続し、前記行線に入力される信号により前記不揮発性半導体メモリ素子と前記センス部とを選択的に遮断でき、前記ビット線および前記行線によって指定される不揮発性半導体メモリ素子のフローティングゲートに蓄積された電荷の状態によって記憶される情報を読み出す読み出し手段を備えることを特徴とする。 The present invention is a semiconductor device including a memory cell in which the storage unit and the sense unit are combined, and includes at least a matrix array in which the memory cells are arranged in a row and a column direction, and a sense amplifier. Each of the memory cells includes a first and second nonvolatile semiconductor memory elements each including at least a floating gate, a drain, and a source formed on a semiconductor substrate, and each of the first and second nonvolatile semiconductor memory elements. A storage unit including a first transistor and a second transistor which are connected in series to control selection or non-selection of the first and second nonvolatile semiconductor memory elements by being turned on or off, and a power source A sense unit comprising a sense unit for holding a signal by a flip-flop circuit connected to a power supply via a transistor The first and second transistors are turned on, a voltage is applied between the source and drain of the first and second nonvolatile semiconductor memory elements to inject charges into the floating gate and accumulate, When erasing charges accumulated in the floating gates of the first and second nonvolatile semiconductor memory elements, a voltage is applied between the semiconductor substrate and the drains or sources of the first and second nonvolatile semiconductor memory elements. A non-volatile semiconductor memory device configured to generate hot carriers between bands in the semiconductor substrate and erase charges accumulated in the floating gate by the hot carriers, and the flip-flop circuit has power control To control the on / off state of the power supply transistor to control the flip-flop. A sense unit configured to apply power to a logic circuit, a source line connecting the sources of the first and second nonvolatile semiconductor memory elements for each row, and gates of the first and second transistors A control signal that controls the activation signal, a row line that transmits the selection signal of the sense unit for each row, and a bit line that transmits the information of the sense unit for each column, and the sense amplifier includes: A signal output from a sense unit is connected to the bit line for each column, and the nonvolatile semiconductor memory element and the sense unit can be selectively cut off by a signal input to the row line. Readout means for reading out information stored in accordance with the state of electric charge accumulated in the floating gate of the nonvolatile semiconductor memory element designated by the row line is provided.
 また、本発明は、第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子とを備える記憶部と、活性化信号入力端子を有し、入力された活性化信号により前記記憶部からの情報を読み出すセンス回路と、前記センス回路により読み出した情報を保持して出力するフリップフロップ回路とを備える信号保持部と、前記記憶部の情報を読み出す際に前記信号保持部を充電するプリチャージ部と、前記信号保持部から出力される信号を増幅して出力する増幅検出部と、を備え、前記第1および第2の不揮発性半導体メモリ素子は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースからなり、それぞれのソースが前記第1の制御信号端子に接続されるトランジスタ構成であり、書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成されることを特徴とする。 According to another aspect of the present invention, there is provided a storage unit including a first nonvolatile semiconductor memory element and a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element; A signal holding unit having a signal input terminal and comprising a sense circuit that reads information from the storage unit by an input activation signal, and a flip-flop circuit that holds and outputs the information read by the sense circuit; A precharge unit that charges the signal holding unit when reading information from the storage unit; and an amplification detection unit that amplifies and outputs a signal output from the signal holding unit, and the first and second The nonvolatile semiconductor memory element includes a floating gate, a drain, and a source formed on a semiconductor substrate, each source being the first control signal terminal. In a transistor configuration to be connected, a voltage is applied between the source and the drain in a writing state to inject and accumulate charges in the floating gate, and an erasing state erases the charges accumulated in the floating gate. Sometimes, a voltage is applied between the semiconductor substrate and the drain or source, hot carriers between bands are generated in the semiconductor substrate, and charges accumulated in the floating gate are erased by the hot carriers. It is characterized by being.
 また、本発明は、第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子を備える記憶部と、1対の第1および第2の信号線を介して前記記憶部と接続され、活性化回路を併せ持つフリップフロップ回路によって前記記憶部から読み出した情報を保持して、出力する信号保持部と、を備え、前記第1および第2の不揮発性半導体メモリ素子は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースからなり、それぞれのソースが前記第1の制御信号端子に接続されるトランジスタ構成であり、書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、前記第1の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが前記第1の制御信号端子に接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが前記第1の制御信号端子に接続され、共通に接続される前記制御信号端子Sは、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となり、前記信号保持部は、前記フリップフロップ回路の電源側に接続される電源用トランジスタを備える活性化回路を備えること、を特徴とする。 In addition, the present invention provides a first nonvolatile semiconductor memory element, a storage unit including a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element, and a pair of A signal holding unit that is connected to the storage unit via first and second signal lines and holds and outputs information read from the storage unit by a flip-flop circuit having an activation circuit, and The first and second nonvolatile semiconductor memory elements have a transistor configuration including a floating gate, a drain, and a source formed on a semiconductor substrate, and each source is connected to the first control signal terminal. As a state, a voltage is applied between the source and drain to inject charges into the floating gate for accumulation, and an erase state is set. When erasing charges accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source to generate hot carriers between bands between the semiconductor substrate and the floating gate by the hot carriers. The first nonvolatile semiconductor memory element has a drain connected to the first signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element. In the nonvolatile semiconductor memory device, the drain is connected to the second signal line, the source is connected to the first control signal terminal, and the control signal terminal S connected in common is predetermined when erasing and writing. The potential is taken and becomes a reference potential at the time of reading, and the signal holding unit is connected to the power supply side of the flip-flop circuit. Providing the activating circuit comprises a static, characterized.
 また、本発明は、第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子と、第1の不揮発性半導体メモリ素子と直列に接続される第1のトランジスタと、第2の不揮発性半導体メモリ素子と直列に接続される第2のトランジスタと、を備える記憶部と、活性化回路を備えるフリップフロップ回路によって構成される信号保持部と、を備え、前記第1および第2の不揮発性半導体メモリ素子は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースからなり、それぞれのソースが前記第1の制御信号端子に接続されるトランジスタ構成であり、書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、前記記憶部は、第1の不揮発性半導体メモリ素子は、ドレインが第2の信号線を介して高速センスアンプに、ソースが前記第1のトランジスタのドレインに接続され、第2の不揮発性半導体メモリ素子は、ドレインが第1の信号線を介して高速センスアンプに、ソースが前記第2のトランジスタのドレインに接続され、前記第1のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、前記第2のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となり、前記信号保持部は、前記フリップフロップ回路の電源側に接続される電源用トランジスタを備える活性化回路を備え、前記信号保持部は、前記活性化回路に与える制御信号によって、前記不揮発半導体メモリ素子に記憶されている情報を増幅して検出し、読み出した情報を保持して出力することを特徴とする。 The present invention also provides a first nonvolatile semiconductor memory element, a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element, and a first nonvolatile semiconductor memory. The memory unit includes a first transistor connected in series with the element and a second transistor connected in series with the second nonvolatile semiconductor memory element, and a flip-flop circuit including an activation circuit. And the first and second nonvolatile semiconductor memory elements include a floating gate, a drain, and a source formed on a semiconductor substrate, each source being the first control signal terminal In the writing state, a voltage is applied between the source and drain to charge the float. A voltage is applied between the semiconductor substrate and the drain or source when erasing charges stored in the floating gate as an erased state while being injected into the gate and accumulated, and hot carriers due to band-to-band are transferred to the semiconductor substrate. The storage unit is configured to erase the electric charge generated in the floating gate by the hot carriers, and the storage unit includes a first nonvolatile semiconductor memory element, and a drain is connected via the second signal line. The high-speed sense amplifier has a source connected to the drain of the first transistor, and the second nonvolatile semiconductor memory element has a drain connected to the high-speed sense amplifier via the first signal line and a source connected to the second transistor. The first transistor has a gate connected to an activation signal input terminal and a source connected to the first transistor. The second transistor has a gate connected to an activation signal input terminal, a source connected to the first control signal terminal, and the first control signal terminal at the time of erasing and It takes a predetermined potential during writing and becomes a reference potential during reading. The signal holding unit includes an activation circuit including a power transistor connected to the power source side of the flip-flop circuit, and the signal holding unit includes the activation potential The information stored in the non-volatile semiconductor memory element is amplified and detected by a control signal supplied to the control circuit, and the read information is held and output.
 本発明によれば、本発明における半導体装置では、第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子とを備える記憶部であって、前記第1および第2の不揮発性半導体メモリ素子は、半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含み、書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、1対となる第1の信号線と第2の信号線を介して前記第1および第2の不揮発性半導体メモリ素子に記憶される情報を読み出すセンス部を備えることとした。 According to the present invention, in the semiconductor device according to the present invention, a first nonvolatile semiconductor memory element and a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element are provided. The first and second nonvolatile semiconductor memory elements include at least a floating gate, a drain, and a source formed on a semiconductor substrate, and a voltage is applied between the source and drain in a writing state. Apply and inject charge into the floating gate for accumulation, and in the erased state, when erasing the charge accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source, and band-to-band Generated in the semiconductor substrate, and the flow by the hot carrier Information stored in the first and second nonvolatile semiconductor memory elements via a pair of first signal line and second signal line configured to erase charges accumulated in the scanning gate It was decided to provide a sense unit for reading out.
 これにより、ゲート信号入力を備えないことで、第2層のポリシリコンプロセスを不要としたことにより必要となるフローティングゲートの下部の拡散層によるコントロールゲートの埋め込む処理を省くために、オン状態として、ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、オフ状態として、フローティングゲートに蓄積された電荷の消去時に、半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成することができ、標準ロジックのCMOSプロセスで不揮発性半導体メモリ素子およびそれを用いた半導体装置が実現でき、ロジック混載メモリを容易に、また安価に実現できる。 Thereby, in order to omit the process of embedding the control gate by the diffusion layer below the floating gate, which is required by eliminating the need for the second-layer polysilicon process by not providing a gate signal input, A voltage is applied between the source and drain to inject and accumulate charges in the floating gate, and in the off state, a voltage is applied between the semiconductor substrate and the drain or source when erasing the charges accumulated in the floating gate. A non-volatile semiconductor memory device can be configured to generate hot carriers between bands in a semiconductor substrate and to erase charges accumulated in the floating gate by the hot carriers, using a standard logic CMOS process. And a semiconductor device using the same, The logic embedded memory easily, also can be realized inexpensively.
本発明による不揮発性半導体メモリ素子の実施の形態を示す図である。It is a figure which shows embodiment of the non-volatile semiconductor memory element by this invention. 本発明による不揮発性半導体メモリ素子の実施の形態を示す図である。It is a figure which shows embodiment of the non-volatile semiconductor memory element by this invention. 本発明による不揮発性半導体メモリ素子の実施の形態を示す図である。It is a figure which shows embodiment of the non-volatile semiconductor memory element by this invention. 図1A~図1Cの実施の形態の等化回路を示す図である。FIG. 2 is a diagram showing an equalization circuit according to the embodiment of FIGS. 1A to 1C. 図1A~図1Cの実施の形態の特性を説明するための図である。FIG. 2 is a diagram for explaining characteristics of the embodiment of FIGS. 1A to 1C. 図1A~図1Cの実施の形態の動作を説明するための図である。FIG. 2 is a diagram for explaining the operation of the embodiment of FIGS. 1A to 1C. 図1A~図1Cの実施の形態の動作を説明するための図である。FIG. 2 is a diagram for explaining the operation of the embodiment of FIGS. 1A to 1C. 図1A~図1Cの不揮発性半導体メモリ素子の実施の形態(実施形態1)の構成を示す図である。FIG. 2 is a diagram showing a configuration of an embodiment (Embodiment 1) of the nonvolatile semiconductor memory element of FIGS. 1A to 1C. 図1A~図1Cの不揮発性半導体メモリ素子の実施の形態(実施形態1)の構成を示す図である。FIG. 2 is a diagram showing a configuration of an embodiment (Embodiment 1) of the nonvolatile semiconductor memory element of FIGS. 1A to 1C. 実施形態1における図5A、図5Bの実施の形態の動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the embodiment of FIGS. 5A and 5B in the first embodiment. 実施形態2における不揮発性半導体メモリ素子の応用例の構成を示す図である。6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2. FIG. 実施形態2における不揮発性半導体メモリ素子の応用例の構成を示す図である。6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2. FIG. 実施形態2における不揮発性半導体メモリ素子の応用例の構成を示す図である。6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 2. FIG. 実施形態3における図7A~図7Cの実施の形態を用いてマトリックスアレイを構成した場合を示す図である。7 is a diagram showing a case where a matrix array is configured using the embodiment of FIGS. 7A to 7C in Embodiment 3. FIG. 実施形態4における不揮発性半導体メモリ素子の応用例の構成を示す図である。6 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 4. FIG. 実施形態5における図9の実施の形態を用いてマトリックスアレイを構成した場合を示す図である。It is a figure which shows the case where a matrix array is comprised using Embodiment of FIG. 9 in Embodiment 5. FIG. 実施形態6における不揮発性半導体メモリ素子の応用例の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in a sixth embodiment. 実施形態6における図11の実施の形態の動作を説明するための図である。It is a figure for demonstrating the operation | movement of embodiment of FIG. 11 in Embodiment 6. FIG. 実施形態7における不揮発性半導体メモリ素子の応用例の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in a seventh embodiment. 実施形態7における図13の実施の形態の動作を説明するための図である。It is a figure for demonstrating the operation | movement of embodiment of FIG. 13 in Embodiment 7. FIG. 実施形態8における不揮発性半導体メモリ素子の応用例の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in an eighth embodiment. 実施形態9における不揮発性半導体メモリ素子の応用例の構成を示す図である。FIG. 25 is a diagram showing a configuration of an application example of a nonvolatile semiconductor memory element in Embodiment 9. 実施形態9における図16の実施の形態の動作を説明するための図である。It is a figure for demonstrating the operation | movement of embodiment of FIG. 16 in Embodiment 9. FIG. 実施形態10における不揮発性半導体メモリ素子の応用例の構成を示す図である。FIG. 32 is a diagram illustrating a configuration of an application example of a nonvolatile semiconductor memory element in a tenth embodiment.
符号の説明Explanation of symbols
100…SRAM部 200…記憶部 101、102、103…PMOSトランジスタ 104、105…NMOSトランジスタ 106、107…トランスファーゲートNMOSトランジスタ DESCRIPTION OF SYMBOLS 100 ... SRAM part 200 ... Memory | storage part 101,102,103 ... PMOS transistor 104,105 ... NMOS transistor 106,107 ... Transfer gate NMOS transistor
 以下、図面を参照して本発明の実施の形態について説明する。
[動作原理]
 図1Aに、本発明の実施の形態で用いる不揮発性半導体メモリ素子を構成する1個のトランジスタの平面図を、図1Bには図1Aの断面図を、図1Cには図1Aの等価回路図を示す。図1A~図1Cに示す不揮発性半導体メモリ素子は、1層ポリシリコンのセル構造を用いて半導体基板SUB(電位Vsub)上に形成されたフローティングゲートFG、ドレインDおよびソースSから構成される。このフローティングゲートFGが電荷保持領域となるものであり、電極は設けられておらず、基板SUB上に形成されたゲート絶縁層の上にポリシリコンからなるフローティングゲートFGが形成されている。
 また、ドレインDおよびソースSは、それぞれ基板SUB上に形成された拡散領域であり、それぞれコンタクトを介して電極が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
[Operating principle]
1A is a plan view of one transistor constituting the nonvolatile semiconductor memory element used in the embodiment of the present invention, FIG. 1B is a cross-sectional view of FIG. 1A, and FIG. 1C is an equivalent circuit diagram of FIG. 1A. Indicates. 1A to 1C includes a floating gate FG, a drain D, and a source S formed on a semiconductor substrate SUB (potential Vsub) using a single-layer polysilicon cell structure. This floating gate FG serves as a charge holding region, no electrode is provided, and a floating gate FG made of polysilicon is formed on a gate insulating layer formed on the substrate SUB.
The drain D and the source S are diffusion regions formed on the substrate SUB, and electrodes are provided through contacts.
 図2に、図1A~図1Cに示す不揮発性半導体メモリ素子のカップリング系の等価回路を示す。フローティングゲートFGにある電荷Qが入っているとすると、この系のトータルチャージがQということになるので、
Figure JPOXMLDOC01-appb-I000001
となる。ただし、VFG、VD、VS、Vchは、それぞれフローティングゲートFGの電位、ドレインDの電位、ソースSの電位、チャネルCHの電位である。また、C(FB)はフローティングゲートFGと基板SUB間の容量、C(FD)はフローティングゲートFGとドレインD間の容量、C(FS)はフローティングゲートFGとソースS間の容量、C(FC)はフローティングゲートFGとチャネルCH間の容量である。ここで、容量の合計をCT(トータル)と定義すれば、
Figure JPOXMLDOC01-appb-I000002
であり、
Figure JPOXMLDOC01-appb-I000003
となる。ただし、Q/CTはフローティングゲートに電荷が注入されているときの電位を示す。ここで、Vsub=0V(基準電位、以下同じ)とすると、
Figure JPOXMLDOC01-appb-I000004
となる。ここで、各容量の比は、プロセスによっても多少異なるが、概略、C(FD):C(FS):C(FC)=0.1:0.1:0.8程度となる。
 ここで、フローティングゲートFG内の電荷量をQ/CT=-ΔVFGとすると、CT=1として、
Figure JPOXMLDOC01-appb-I000005
となる。
FIG. 2 shows an equivalent circuit of the coupling system of the nonvolatile semiconductor memory device shown in FIGS. 1A to 1C. If there is a charge Q in the floating gate FG, the total charge of this system is Q.
Figure JPOXMLDOC01-appb-I000001
It becomes. However, VFG, VD, VS, and Vch are the potential of the floating gate FG, the potential of the drain D, the potential of the source S, and the potential of the channel CH, respectively. C (FB) is a capacitance between the floating gate FG and the substrate SUB, C (FD) is a capacitance between the floating gate FG and the drain D, C (FS) is a capacitance between the floating gate FG and the source S, and C (FC ) Is a capacitance between the floating gate FG and the channel CH. If the total capacity is defined as CT (total),
Figure JPOXMLDOC01-appb-I000002
And
Figure JPOXMLDOC01-appb-I000003
It becomes. However, Q / CT represents a potential when charge is injected into the floating gate. Here, when Vsub = 0V (reference potential, the same applies hereinafter),
Figure JPOXMLDOC01-appb-I000004
It becomes. Here, the ratio of the capacities varies somewhat depending on the process, but is roughly about C (FD): C (FS): C (FC) = 0.1: 0.1: 0.8.
Here, if the charge amount in the floating gate FG is Q / CT = −ΔVFG, CT = 1,
Figure JPOXMLDOC01-appb-I000005
It becomes.
 ここで、図1A~図1Cの不揮発性半導体メモリ素子の消去を説明する。この不揮発性半導体メモリ素子を構成するトランジスタのチャネルCHの閾値は0.5Vとする。消去は、VD=8V、VS=open(オープン)とする。ソースがopenなので、このトランジスタのチャネルCH部分には空乏層が広がり、フローティングゲートFGと基板SUBとの容量は非常に小さくなるので、無視すると、消去時のフローティングゲート電位VFG(Erase)は、ΔVFG=0として、
Figure JPOXMLDOC01-appb-I000006
となる。ドレインDに電圧を印加すると、図4Aに示すように、まず初めに、ドレインD近傍にて空乏層の電界集中が起こり、いわゆる高エネルギーによるBand to Band(BtoB)の電流が流れ、ホールと電子のペアが発生する。高エネルギーを持ったホール(ホットキャリア)が一部フローティングゲートFGに取り込まれ、さらに電圧を上げると、酸化膜が比較的厚い場合には、ファウラーノルトハイム(Fauler-Nordheim)のトンネル電流が流れる前にジャンクションブレークダウンが起こり、大電流が基板SUBに流れる。このブレークダウン電圧をVBDとする。
Here, erasing of the nonvolatile semiconductor memory device of FIGS. 1A to 1C will be described. The threshold value of the channel CH of the transistor constituting this nonvolatile semiconductor memory element is 0.5V. Erasing is performed with VD = 8V and VS = open (open). Since the source is open, a depletion layer spreads in the channel CH portion of this transistor, and the capacitance between the floating gate FG and the substrate SUB becomes very small. If neglected, the floating gate potential VFG (Erase) at the time of erasing is ΔVFG = 0,
Figure JPOXMLDOC01-appb-I000006
It becomes. When a voltage is applied to the drain D, as shown in FIG. 4A, first, an electric field concentration in the depletion layer occurs in the vicinity of the drain D, and a so-called high energy band-to-band (BtoB) current flows. The pair occurs. When some holes with high energy (hot carriers) are taken into the floating gate FG and the voltage is further increased, if the oxide film is relatively thick, before the tunnel current of Fowler-Nordheim flows A junction breakdown occurs and a large current flows through the substrate SUB. This breakdown voltage is assumed to be VBD.
 なお、バンド-バンド間(BtoB)電流の詳細は、「文献:『フラッシュメモリ技術ハンドブック』、編者:舛岡富士雄、発行所:株式会社サイエンスフォーラム、1993年8月15日第1版第1刷発行。第5章第2節 不揮発性メモリセルにおけるバンド間トンネル現象の解析、P206~215」を参照。また、図4Aは横軸がドレイン電位VD、縦軸がドレイン電流IDで、ドレイン電位VDを変化させた場合のドレイン電流IDの変化についてフローティングゲート電位VFGをパラメータとして模式的に表したものである。 For details of the band-to-band (BtoB) current, refer to “Reference:“ Flash Memory Technology Handbook ”, Editor: Fujio Takaoka, Publisher: Science Forum Inc., August 15, 1993, 1st edition, 1st edition issued. See Chapter 5, Section 2, Analysis of Band-to-Band Tunneling in Nonvolatile Memory Cells, pages 206-215. FIG. 4A schematically shows the change in the drain current ID when the drain potential VD is changed with the horizontal axis being the drain potential VD and the vertical axis being the drain current ID, using the floating gate potential VFG as a parameter. .
 ここで、BtoBおよびブレークダウンはある一定電界で起こるので、フローティングゲートFGの電位に依存する。図4Aに示すように、VFGが低いとVBDも低くなり、VFGが高いとVBDも高くなる。 Here, since BtoB and breakdown occur in a certain electric field, it depends on the potential of the floating gate FG. As shown in FIG. 4A, VBD is low when VFG is low, and VBD is high when VFG is high.
 フローティングゲートに蓄積された電荷の消去について説明する。
 ゲートとドレインの電位差においてBtoBが起こる限界電位を5Vとすると、VD=8Vでは、フローティングゲート電位VFGは3Vになるまで消去される、言い換えれば、ホットキャリアが注入される。初期のVFGは0.8Vとなるので、消去後3Vとなると、消去時の変化量ΔVFG(E)は+2.2Vとなる。
Deletion of charge accumulated in the floating gate will be described.
Assuming that the limit potential at which BtoB occurs in the potential difference between the gate and drain is 5V, when VD = 8V, the floating gate potential VFG is erased until it reaches 3V. In other words, hot carriers are injected. Since the initial VFG is 0.8V, when it becomes 3V after erasure, the change amount ΔVFG (E) at the time of erasure becomes + 2.2V.
 一方、書き込みは、VD=5V、VS=0Vとする。このとき、書き込み前の状態は通常消去状態で、フローティングゲートFG内にはホールが入っているとすると、このトランジスタはオン状態なので、チャネルは飽和領域で動作している。したがって、チャネル面積は約半分と仮定するとで、書き込み時のフローティングゲート電位VFG(Program)は、(式1)より、
Figure JPOXMLDOC01-appb-I000007
となり、ホットエレクトロンが発生し、書き込みが行われる。ここで、このトランジスタの閾値が0.5Vなので、フローティングゲートFGの電位VFGが0.5Vになると電流が流れなくなり、書き込みが終了する。このとき、ゲート電圧が、2.5Vから0.5Vに変化するので、書き込み時の変化量ΔVFG(P)は-2.0Vとなる。
On the other hand, writing is performed with VD = 5V and VS = 0V. At this time, if the state before writing is a normal erasing state and a hole is in the floating gate FG, this transistor is in an on state, so that the channel operates in the saturation region. Therefore, assuming that the channel area is about half, the floating gate potential VFG (Program) at the time of writing is calculated from (Equation 1):
Figure JPOXMLDOC01-appb-I000007
Thus, hot electrons are generated and writing is performed. Here, since the threshold value of this transistor is 0.5V, when the potential VFG of the floating gate FG becomes 0.5V, no current flows and writing is completed. At this time, since the gate voltage changes from 2.5 V to 0.5 V, the change amount ΔVFG (P) at the time of writing becomes −2.0 V.
 図3を参照して、この消去および書き込み状態のトランジスタ特性を説明する。
 この図は、横軸がフローティングゲート電位VFG、縦軸がドレインDの電流IDで、消去、中性および書き込みの3つの状態においてフローティングゲート電位VFGを変化させた場合のゲート電流IDの変化を模式的に表したものである。
With reference to FIG. 3, the transistor characteristics in the erased and written states will be described.
In this figure, the horizontal axis is the floating gate potential VFG, the vertical axis is the current ID of the drain D, and the change of the gate current ID when the floating gate potential VFG is changed in the three states of erase, neutral and write is schematically shown. It is a representation.
 次に読み出しの説明を行う。読み出しはVD=1V、VS=0Vとする。このとき、フローティングゲートFGにΔVFGの電荷が入っていたとすると、読み出し時のフローティングゲート電位VFG(Read)は、
Figure JPOXMLDOC01-appb-I000008
となる。“0”読み出しの場合は、チャネルがオフしているので、Vch=0Vとなり、 “0”読み出し時のフローティングゲート電位VFG(“0”)は、
Figure JPOXMLDOC01-appb-I000009
となる。一方、“1”読み出しの場合は、チャネルがオンしているので、Vch=1Vとなり、 “1”読み出し時のフローティングゲート電位VFG(“1”)は、
Figure JPOXMLDOC01-appb-I000010
となる。
 “0”読み出しの場合は、書き込み時にフローティングゲートFG内に電子が-Δ2.0V分注入されているので、(式4-1)より、“0”読み出し時のフローティングゲート電位VFG(“0”)は、
Figure JPOXMLDOC01-appb-I000011
となる。一方、“1”読み出しの場合は、消去時にフローティングゲートFG内にホールがΔ2.2V分入っているので、(式4-2)より、“1”読み出し時のフローティングゲート電位VFG(“1”)は、
Figure JPOXMLDOC01-appb-I000012
となる。図4Bに、この不揮発性半導体メモリ素子の動作をまとめる。なお、ドレインとソースの動作は互いに逆の動作とすることが可能である。
Next, reading will be described. Reading is performed with VD = 1V and VS = 0V. At this time, if the charge of ΔVFG is in the floating gate FG, the floating gate potential VFG (Read) at the time of reading is
Figure JPOXMLDOC01-appb-I000008
It becomes. In the case of “0” reading, since the channel is off, Vch = 0V, and the floating gate potential VFG (“0”) at the time of “0” reading is
Figure JPOXMLDOC01-appb-I000009
It becomes. On the other hand, in the case of “1” reading, since the channel is on, Vch = 1V, and the floating gate potential VFG (“1”) at the time of “1” reading is
Figure JPOXMLDOC01-appb-I000010
It becomes.
In the case of “0” reading, since electrons are injected into the floating gate FG by −Δ2.0 V at the time of writing, the floating gate potential VFG (“0”) at the time of “0” reading is calculated from (Equation 4-1). )
Figure JPOXMLDOC01-appb-I000011
It becomes. On the other hand, in the case of “1” reading, the floating gate FG includes Δ2.2V in the floating gate FG at the time of erasing, so that the floating gate potential VFG at the time of “1” reading (“1”) )
Figure JPOXMLDOC01-appb-I000012
It becomes. FIG. 4B summarizes the operation of this nonvolatile semiconductor memory element. Note that the operations of the drain and the source can be reversed.
[実施形態1]
 図5Aおよび図5Bに、図1A、図1B、図1Cなどを参照して説明した不揮発性半導体メモリ素子の応用例である実施形態1を示す。
 本メモリセルは、SRAM部100(センス部)と、不揮発性半導体メモリ素子201(第1の不揮発性半導体メモリ素子)、202(第2の不揮発性半導体メモリ素子)から構成される記憶部200を備える。
 SRAM部100は、記憶部200のデータをセンスおよびラッチしておくためのものであり、記憶部200は、書き込み、消去可能な記憶部である。
 SRAM部100は、このSRAM部100を活性化して記憶部200のデータをセンス/確定するための活性化信号(SET)が入力されるPMOSトランジスタ101、ラッチ部を構成するPMOSトランジスタ102、103、NMOSトランジスタ104、105、このメモリセルのデータを外部に読み出すためのトランスファーゲートNMOSトランジスタ106、107を備える。
 また、記憶部200は、不揮発性半導体メモリ素子201および202を備え、それぞれが反対の論理を示すデータを記憶する。
[Embodiment 1]
5A and 5B show Embodiment 1 which is an application example of the nonvolatile semiconductor memory element described with reference to FIGS. 1A, 1B, and 1C.
The memory cell includes a storage unit 200 including an SRAM unit 100 (sense unit), a nonvolatile semiconductor memory element 201 (first nonvolatile semiconductor memory element), and 202 (second nonvolatile semiconductor memory element). Prepare.
The SRAM unit 100 is for sensing and latching data in the storage unit 200, and the storage unit 200 is a writable / erasable storage unit.
The SRAM unit 100 activates the SRAM unit 100 and receives an activation signal (SET) for sensing / determining data in the storage unit 200, and PMOS transistors 102 and 103 constituting a latch unit. NMOS transistors 104 and 105, and transfer gate NMOS transistors 106 and 107 for reading data of the memory cells to the outside.
The storage unit 200 includes nonvolatile semiconductor memory elements 201 and 202, and stores data indicating the opposite logic.
 SRAM部100と記憶部200の接続について述べる。
 SRAM部100では、トランジスタ102とトランジスタ104、トランジスタ103とトランジスタ105はそれぞれインバータとして接続される。そして、この2つのインバータを接続して、フリップフロップ回路を形成する。
 すなわち、トランジスタ102は、ゲートがトランジスタ104のゲートと接続され、ソースがトランジスタ104のドレインに接続される。
トランジスタ104は、ソースが基準電位に接続される。
また、トランジスタ103は、ゲートがトランジスタ105のゲートと接続され、ソースがトランジスタ105のドレインに接続される。
トランジスタ105は、ゲートがトランジスタ102のソースに、ドレインがトランジスタ102のゲートに、ソースが基準電位に接続される。
The connection between the SRAM unit 100 and the storage unit 200 will be described.
In the SRAM unit 100, the transistor 102 and the transistor 104, and the transistor 103 and the transistor 105 are connected as inverters, respectively. The two inverters are connected to form a flip-flop circuit.
That is, the transistor 102 has a gate connected to the gate of the transistor 104 and a source connected to the drain of the transistor 104.
The source of the transistor 104 is connected to the reference potential.
The transistor 103 has a gate connected to the gate of the transistor 105 and a source connected to the drain of the transistor 105.
The transistor 105 has a gate connected to the source of the transistor 102, a drain connected to the gate of the transistor 102, and a source connected to a reference potential.
 このインバータの組み合わせによって形成されたフリップフロップ回路の電源端子は、トランジスタ101を介して電源に接続される。すなわち、トランジスタ101は、ゲートが活性化信号SETの入力端子に接続され、ドレインが電源に接続され、ソースがトランジスタ102、103のドレインに接続される。
 また、トランジスタ106とトランジスタ107によって、ワード線WL、データ線DL、データ線反転信号線DLBに接続される。
 トランジスタ106は、ゲートがワード線WLに接続され、ドレインがデータ線DLに接続され、ソースがトランジスタ102のソースに接続される。
 トランジスタ107は、ゲートがワード線WLに接続され、ドレインがデータ線反転信号線DLBに接続され、ソースがトランジスタ103のソースに接続される。
A power supply terminal of the flip-flop circuit formed by the combination of the inverters is connected to the power supply via the transistor 101. That is, the transistor 101 has a gate connected to the input terminal of the activation signal SET, a drain connected to the power supply, and a source connected to the drains of the transistors 102 and 103.
Further, the transistor 106 and the transistor 107 are connected to the word line WL, the data line DL, and the data line inversion signal line DLB.
The transistor 106 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the source of the transistor 102.
The transistor 107 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the source of the transistor 103.
 記憶部200の不揮発性半導体メモリ素子201および202は、信号線BitおよびBitBを介して、SRAM部100と接続される。
 不揮発性半導体メモリ素子201は、ソースが制御信号端子Sに、ドレインが信号線BitBを介してSRAM部100のトランジスタ102のゲート端子に接続される。
 不揮発性半導体メモリ素子202は、ソースが制御信号端子SBに、ドレインが信号線Bitを介してSRAM部100のトランジスタ103のゲート端子に接続される。
Nonvolatile semiconductor memory elements 201 and 202 of the storage unit 200 are connected to the SRAM unit 100 via signal lines Bit and BitB.
The nonvolatile semiconductor memory element 201 has a source connected to the control signal terminal S and a drain connected to the gate terminal of the transistor 102 of the SRAM unit 100 via the signal line BitB.
The nonvolatile semiconductor memory element 202 has a source connected to the control signal terminal SB and a drain connected to the gate terminal of the transistor 103 of the SRAM unit 100 via the signal line Bit.
 図5Bを参照し、記憶部200の動作を説明する。
図5Bでは、書き込み動作と消去動作、読み出し動作を順に示している。
 書き込み動作時には、ワード線WL、活性化信号SETの入力端子、データ線DLにそれぞれ2Vの電位を、データ線反転信号線DLBに0Vの電位が入力されると、トランスファートランジスタ106および107を介して信号線BitおよびBitBにデータ線DL、データ線反転信号線DLBの電位が伝わり、信号線Bitの電位が約1V、信号線BItBの電位が0Vとなる。
 このとき、制御信号端子S、制御信号端子SBにS=5V、SB=8Vの電位をそれぞれ印加すると、不揮発性半導体メモリ素子201は書き込み状態に、不揮発性半導体メモリ素子202は消去状態となり、不揮発性半導体メモリ素子201のフローティングゲートには電子が注入され、不揮発性半導体メモリ素子202のフローティングゲートには正孔が注入される。
The operation of the storage unit 200 will be described with reference to FIG. 5B.
FIG. 5B shows a write operation, an erase operation, and a read operation in order.
During a write operation, when a 2 V potential is input to the word line WL, the input terminal for the activation signal SET, and the data line DL, and a 0 V potential is input to the data line inversion signal line DLB, the transfer transistors 106 and 107 are used. The potential of the data line DL and the data line inversion signal line DLB is transmitted to the signal lines Bit and BitB, the potential of the signal line Bit is about 1V, and the potential of the signal line BItB is 0V.
At this time, when potentials of S = 5 V and SB = 8 V are applied to the control signal terminal S and the control signal terminal SB, respectively, the nonvolatile semiconductor memory element 201 is in a writing state and the nonvolatile semiconductor memory element 202 is in an erasing state. Electrons are injected into the floating gate of the volatile semiconductor memory device 201, and holes are injected into the floating gate of the nonvolatile semiconductor memory device 202.
 一方、消去動作時には、逆に、データ線DLに0Vの電位を、データ線反転信号線DLBに2Vの電位を与えると、トランスファートランジスタ106および107を介して信号線Bitの電位が0V、信号線BitBの電位が1Vとなる。
 このとき、制御信号端子S、制御信号端子SBに、S=8V、SB=5Vの電位をそれぞれ印加すると、不揮発性半導体メモリ素子201は消去状態に、不揮発性半導体メモリ素子202は書き込み状態となる。
On the other hand, during the erase operation, when a potential of 0V is applied to the data line DL and a potential of 2V is applied to the data line inversion signal line DLB, the potential of the signal line Bit is set to 0V via the transfer transistors 106 and 107. The potential of BitB becomes 1V.
At this time, when potentials of S = 8V and SB = 5V are applied to the control signal terminal S and the control signal terminal SB, respectively, the nonvolatile semiconductor memory element 201 is in an erased state and the nonvolatile semiconductor memory element 202 is in a written state. .
 図6を参照しながら、この記憶部200に設定されたデータを読み出し動作について説明する。
 図6は、記憶部200の読み出し動作を示すタイミングチャートである。
 図6は、活性化信号SETの入力端子、ワード線WL、信号線Bit、BitB、データ線DL、データ線反転信号線DLBの各信号線の電圧の変化について時間を追って示している。
With reference to FIG. 6, the operation of reading data set in the storage unit 200 will be described.
FIG. 6 is a timing chart showing a read operation of the storage unit 200.
FIG. 6 shows the change in voltage of each signal line of the activation signal SET, the word line WL, the signal line Bit, BitB, the data line DL, and the data line inversion signal line DLB with time.
 この記憶部200に書き込みが行われている場合、すなわち“0”データを読み出す場合についての例を示す。
 まず、データ線DL、データ線反転信号線DLBの電圧は2Vに予めチャージ(プリチャージ)しておく。
 制御信号端子S、制御信号端子SBの入力端子の端子電圧は、S=SB=0Vとする。
 時刻t11から、活性化信号SETの入力端子の端子電圧を、2Vから徐々に0Vへと変化させると、活性化信号SETの電位が2Vから徐々に0Vへと変化する。これにより、SRAM部100が活性化して、信号線Bit、BitBが充電され信号線Bit、BitBの電圧が徐々に高くなる。
 記憶部200には、“0”データが書き込まれているため、不揮発性半導体メモリ素子201がオフ状態、不揮発性半導体メモリ素子202がオン状態となっている。それにより、信号線Bitの電位は、「L(Low:ロー)」レベル側に引かれ、信号線BitBの電位は、充電され、信号線Bitが“0”に、B信号線BitBが“1”にセットされる(時刻t12)。
 時刻t13で、ワード線WLの電圧を2Vにすると、トランスファートランジスタ106、107がオン状態となり、データ線DLの電圧が0V、データ線反転信号線DLBの電圧が2Vとなり読み出し動作が終了する。
An example of the case where writing to the storage unit 200 is performed, that is, the case of reading “0” data is shown.
First, the voltage of the data line DL and the data line inversion signal line DLB is charged (precharged) to 2V in advance.
The terminal voltage of the input terminals of the control signal terminal S and the control signal terminal SB is S = SB = 0V.
When the terminal voltage of the input terminal of the activation signal SET is gradually changed from 2V to 0V from time t11, the potential of the activation signal SET gradually changes from 2V to 0V. Thereby, the SRAM unit 100 is activated, the signal lines Bit and BitB are charged, and the voltages of the signal lines Bit and BitB gradually increase.
Since “0” data is written in the storage unit 200, the nonvolatile semiconductor memory element 201 is in an off state and the nonvolatile semiconductor memory element 202 is in an on state. Thereby, the potential of the signal line Bit is pulled to the “L (Low)” level side, the potential of the signal line BitB is charged, the signal line Bit is “0”, and the B signal line BitB is “1”. "(Time t12).
When the voltage of the word line WL is set to 2V at time t13, the transfer transistors 106 and 107 are turned on, the voltage of the data line DL is set to 0V, the voltage of the data line inversion signal line DLB is set to 2V, and the read operation is finished.
 この記憶部200が消去されている場合、すなわち“1”データを読み出す場合については、それぞれ状態を示す信号が逆の動作を示すことになり、信号線Bitの電圧が2V、信号線BitBの電圧が0V、データ線DLの電圧が2V、データ線反転信号線DLBの電圧が0Vとなり読み出し動作が終了する。 When the storage unit 200 is erased, that is, when “1” data is read, the signal indicating the state indicates the reverse operation, the voltage of the signal line Bit is 2 V, and the voltage of the signal line BitB Is 0V, the voltage of the data line DL is 2V, the voltage of the data line inversion signal line DLB is 0V, and the read operation is completed.
 活性化信号SETの入力端子の端子電圧が「H」から「L」になり始めてから、データ線DL、データ線反転信号線DLBの電圧が確定するまで、すなわち時刻t11からt13の間がセンス期間となる。 The sense period is from the time when the terminal voltage of the input terminal of the activation signal SET starts to change from “H” to “L” until the voltage of the data line DL and the data line inversion signal line DLB is determined, that is, from time t11 to t13. It becomes.
 この構成のメリットは、構成をシンプルにすることができる点である。また、高電圧が印加されるのは、不揮発性半導体メモリ素子201、202の制御信号端子S、制御信号端子SBに接続される部分であり、SRAM部100(センス部)には高電圧が印加されないので、センス部には微細プロセスを採用できる。
 例えば、SRAM部100(センス部)ではロジック標準プロセスにおける65μmプロセスを用いて、また、不揮発性半導体メモリ素子201、202ではロジック標準プロセスにおけるI/Oトランジスタプロセス(使用電圧3~5V,実質耐圧8V~9V)を採用することによりシンプルで微小な不揮発性メモリを提供できる。
The merit of this configuration is that the configuration can be simplified. The high voltage is applied to the portions connected to the control signal terminal S and the control signal terminal SB of the nonvolatile semiconductor memory elements 201 and 202, and the high voltage is applied to the SRAM unit 100 (sense unit). Therefore, a fine process can be adopted for the sense portion.
For example, the SRAM unit 100 (sense unit) uses a 65 μm process in the logic standard process, and the nonvolatile semiconductor memory elements 201 and 202 use an I / O transistor process (usage voltage 3 to 5 V, actual withstand voltage 8 V in the logic standard process). By adopting (˜9V), a simple and minute non-volatile memory can be provided.
[実施形態2]
 図7A、図7Bおよび図7Cに、実施形態1からの変形した形態である実施形態2を示す。
 図7Aは、実施形態2におけるブロック図である。
 実施形態2で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態1を参照することとし説明を省略する。
 実施形態1に示したSRAM部100(センス部)は同じであるが、記憶部200では、不揮発性半導体メモリ素子201(第1の不揮発性半導体メモリ素子)と202(第2の不揮発性半導体メモリ素子)のソースは、制御信号端子Sと制御信号端子SBとに分離して設定したが、本実施形態の記憶部200aでは、不揮発性半導体メモリ素子201と202のソースは、それぞれ共通の制御信号端子Sに接続する。
[Embodiment 2]
7A, 7B, and 7C show a second embodiment that is a modified form of the first embodiment.
FIG. 7A is a block diagram according to the second embodiment.
The parts changed in the second embodiment will be described, and parts not changed are denoted by the same reference numerals and the description thereof will be omitted.
The SRAM unit 100 (sense unit) shown in the first embodiment is the same, but the storage unit 200 includes a nonvolatile semiconductor memory element 201 (first nonvolatile semiconductor memory element) and 202 (second nonvolatile semiconductor memory). The source of the element) is set separately for the control signal terminal S and the control signal terminal SB. However, in the storage unit 200a of the present embodiment, the sources of the nonvolatile semiconductor memory elements 201 and 202 are the common control signal. Connect to terminal S.
 ソースを共通とする場合には、書き込み動作と消去動作を両立させるための制御信号端子電圧VSの最適化が必要になる。 When using a common source, it is necessary to optimize the control signal terminal voltage VS to achieve both the write operation and the erase operation.
 図7Bおよび図7Cに制御信号端子電圧VSの印加電圧を変えた場合の例を示している。
 図7Bは、制御信号端子電圧VSを7Vとした場合について示している。
 再度、(式2)、(式3)、(式4-1)、(式4-2)を確認する。ここで、ドレインと、ソースは入れ替わっているのでVDの代わりにVSが入る。
FIGS. 7B and 7C show an example in which the applied voltage of the control signal terminal voltage VS is changed.
FIG. 7B shows a case where the control signal terminal voltage VS is 7V.
Again, (Formula 2), (Formula 3), (Formula 4-1), and (Formula 4-2) are confirmed. Here, since the drain and the source are interchanged, VS enters instead of VD.
消去時のフローティングゲートFGの初期状態は、(式2)より、
Figure JPOXMLDOC01-appb-I000013
となり、フローティングゲートFGの最終状態は、7V-5V=2Vとなるので、その変化量は、+1.3Vとなる。
 また、書き込み時のフローティングゲートFGの初期状態は、(式3)より、
Figure JPOXMLDOC01-appb-I000014
となり、最終状態は、FG=2Vで消去が始まるので、FG=2Vとまでとすると、変化量は、+1.5Vとなる。
 したがって、“0”読み出しのフローティングゲートFGの初期状態は、(式4-1)より、
Figure JPOXMLDOC01-appb-I000015
となる。
 また、“1”読み出しのフローティングゲートFGの初期状態は、(式4-2)より、
Figure JPOXMLDOC01-appb-I000016
となる。
 これにより、不揮発性半導体メモリ素子201、202としての閾値は、0.5Vなので、十分に動作可能である。
The initial state of the floating gate FG at the time of erasing is from (Equation 2)
Figure JPOXMLDOC01-appb-I000013
Thus, the final state of the floating gate FG is 7V-5V = 2V, and the amount of change is + 1.3V.
Also, the initial state of the floating gate FG at the time of writing is from (Equation 3):
Figure JPOXMLDOC01-appb-I000014
In the final state, erasure starts with FG = 2V. Therefore, when FG = 2V, the amount of change is + 1.5V.
Therefore, the initial state of the “0” read floating gate FG is as follows:
Figure JPOXMLDOC01-appb-I000015
It becomes.
Further, the initial state of the floating gate FG for “1” reading is expressed by (Equation 4-2):
Figure JPOXMLDOC01-appb-I000016
It becomes.
As a result, the threshold value of the nonvolatile semiconductor memory elements 201 and 202 is 0.5 V, so that it can operate sufficiently.
 図7Cは、制御信号端子電圧VSを6Vとした場合について示す。
消去時のフローティングゲートFGの初期状態は、(式2)より、
Figure JPOXMLDOC01-appb-I000017
となり、フローティングゲートFGの最終状態は、6V-5V=1Vとなるので、その変化量は、+0.4Vとなる。
 また、書き込み時のフローティングゲートFGの初期状態は、(式3)より、
Figure JPOXMLDOC01-appb-I000018
となり、最終状態は、FG=1Vで消去が始まるので、FG=1Vとまでとすると、変化量は、―2.0Vとなる。
 したがって、“0”読み出しのフローティングゲートFGの初期状態は、(式4-1)より、
Figure JPOXMLDOC01-appb-I000019
となる。
 また、“1”読み出しのフローティングゲートFGの初期状態は、(式4-2)より、
Figure JPOXMLDOC01-appb-I000020
となる。
 これにより、不揮発性半導体メモリ素子201および202としての閾値は、0.5Vなので、“1”読み出し動作でのマージンが厳しく(読み出しの許容範囲が狭く)なる。ただし、この場合には、不揮発性半導体メモリ素子201および202の閾値を0V付近に設定しておけば、読み出しは可能である。
 このように、ソースを共通にする場合には、VS=6Vから7V近辺に最適な電圧がある。
FIG. 7C shows a case where the control signal terminal voltage VS is 6V.
The initial state of the floating gate FG at the time of erasing is from (Equation 2)
Figure JPOXMLDOC01-appb-I000017
Thus, since the final state of the floating gate FG is 6V-5V = 1V, the amount of change is + 0.4V.
Also, the initial state of the floating gate FG at the time of writing is from (Equation 3):
Figure JPOXMLDOC01-appb-I000018
In the final state, erasure starts with FG = 1V. Therefore, when FG = 1V is reached, the amount of change is −2.0V.
Therefore, the initial state of the “0” read floating gate FG is as follows:
Figure JPOXMLDOC01-appb-I000019
It becomes.
Further, the initial state of the floating gate FG for “1” reading is expressed by (Equation 4-2):
Figure JPOXMLDOC01-appb-I000020
It becomes.
As a result, the threshold value as the nonvolatile semiconductor memory elements 201 and 202 is 0.5 V, so that the margin for the “1” read operation becomes strict (the permissible read range is narrow). However, in this case, reading is possible if the threshold values of the nonvolatile semiconductor memory elements 201 and 202 are set to around 0V.
Thus, when the source is shared, there is an optimum voltage in the vicinity of VS = 6V to 7V.
[実施形態3]
図8にさらに別の実施形態3を示す。
 本実施形態は、実施形態2のメモリセルを複数個マトリックス状に並べてメモリアレイセルを構成してある。すなわち、メモリセルM11~Mmnは、それぞれがSRAM部100(センス部)と記憶部200aとを備えるメモリセルであり、内部の詳細の説明は、実施形態2の説明によるものとする。変更のない部分については同じ符号をつけ実施形態2を参照することとし説明を省略する。
[Embodiment 3]
FIG. 8 shows still another embodiment 3.
In the present embodiment, a plurality of memory cells of the second embodiment are arranged in a matrix to form a memory array cell. That is, each of the memory cells M11 to Mmn is a memory cell including the SRAM unit 100 (sense unit) and the storage unit 200a, and the details of the inside are as described in the second embodiment. Parts that are not changed are denoted by the same reference numerals, and description thereof is omitted with reference to the second embodiment.
 メモリセルアレイは、(m×n)個のメモリセルM11~Mmnと、n個のセンスアンプ800-1~800-nを備える。 The memory cell array includes (m × n) memory cells M11 to Mmn and n sense amplifiers 800-1 to 800-n.
 また、ワード線WL1を共通にして、メモリセルM11~M1nが配置され、ワード線WLmを共通にしてメモリセルMm1~Mmnが配置される。また、M11~Mm1のデータ線DL1およびDLB1が共通に接続され、M1n~Mmnのデータ線DLnおよびDLBnが共通に接続される。
 また、ワード線方向に、ソースが共通に接続され、それぞれソース線S1~Smとなる。
 SRAM部100を活性化する活性化信号SETの端子も、ワード線方向にゲート線SET1~SETmで接続される。
 各データ線DL1、DLB1乃至DLn、DLBnは、センスアンプ800-1~800-nにそれぞれ接続される。
Memory cells M11 to M1n are arranged with the word line WL1 in common, and memory cells Mm1 to Mmn are arranged with the word line WLm in common. Further, the data lines DL1 and DLB1 of M11 to Mm1 are connected in common, and the data lines DLn and DLBn of M1n to Mmn are connected in common.
Further, the sources are commonly connected in the word line direction, and become source lines S1 to Sm, respectively.
The terminal of the activation signal SET for activating the SRAM unit 100 is also connected by the gate lines SET1 to SETm in the word line direction.
The data lines DL1, DLB1 to DLn, DLBn are connected to sense amplifiers 800-1 to 800-n, respectively.
 ワード線WL1~WLm(行線)は、各行ごとに接続されたSRAM部100ごとに選択する選択信号を各SRAM部100の行ごとに供給する信号線である。
 ゲート線SET1~SETm(行線)は、SRAM部100を活性化させる活性化信号SETを、各SRAM部100の行ごとに供給する信号線である。
 データ線DL1、DLB1~DLn、DLBnは、SRAM部100から読み出す情報、あるいは、書き込む情報を列ごとに伝送する信号線である。
 ソース線S1~Sm(線)は、記憶部200aの情報を書き込み・消去・読み出しを行う制御信号を行ごとに供給する信号線である。
 このアレイ構成では、例えば、ワード線WL1、ゲート線SET1、ソース線S1で選択されるメモリセルM11~M1nが同時に書き込み/消去或いは読み出しが可能となり、所謂ページ書き換え、ページ読み出しが可能となり、高速書き換え、高速読み出しが可能となる。
The word lines WL1 to WLm (row lines) are signal lines for supplying a selection signal for selecting each SRAM unit 100 connected to each row for each row of the SRAM unit 100.
Gate lines SET1 to SETm (row lines) are signal lines for supplying an activation signal SET for activating the SRAM unit 100 for each row of the SRAM unit 100.
The data lines DL1, DLB1 to DLn, DLBn are signal lines that transmit information read from the SRAM unit 100 or information to be written for each column.
The source lines S1 to Sm (lines) are signal lines that supply control signals for writing, erasing, and reading information in the storage unit 200a for each row.
In this array configuration, for example, the memory cells M11 to M1n selected by the word line WL1, the gate line SET1, and the source line S1 can be simultaneously written / erased or read, so-called page rewrite, page read is possible, and high-speed rewrite is possible. High-speed reading is possible.
 [実施形態4]
 図9に、実施形態1からの変形した形態である実施形態4を示す。
 実施形態4で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態1を参照することとし説明を省略する。
 実施形態1に示したSRAM部100(センス部)は同じであるが、記憶部200では、不揮発性半導体メモリ素子201(第1の不揮発性半導体メモリ素子)および202(第2の不揮発性半導体メモリ素子)のソースは、制御信号端子Sと制御信号端子SBは分離して設定していた点と、不揮発性半導体メモリ素子201および202が直接SRAM部100と接続されていた点が、本実施形態の記憶部200bとしている点が異なる。
 不揮発性半導体メモリ素子201および202のソースを共通の制御信号端子Sに接続する点については、実施形態2に示した記憶部200aでの説明を参照することとする。
[Embodiment 4]
FIG. 9 shows a fourth embodiment which is a modified form from the first embodiment.
The parts changed in the fourth embodiment will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted.
The SRAM unit 100 (sense unit) shown in the first embodiment is the same, but the storage unit 200 includes a nonvolatile semiconductor memory element 201 (first nonvolatile semiconductor memory element) and 202 (second nonvolatile semiconductor memory). In this embodiment, the source of the device is that the control signal terminal S and the control signal terminal SB are set separately, and the nonvolatile semiconductor memory devices 201 and 202 are directly connected to the SRAM unit 100. The storage unit 200b is different.
For the point of connecting the sources of the nonvolatile semiconductor memory elements 201 and 202 to the common control signal terminal S, refer to the description in the storage unit 200a shown in the second embodiment.
 記憶部200bは、SRAM部100と不揮発性半導体メモリ素子201および202との間に、データトランスファー用のNMOSトランジスタ203、204を備えている。 The storage unit 200b includes NMOS transistors 203 and 204 for data transfer between the SRAM unit 100 and the nonvolatile semiconductor memory elements 201 and 202.
 不揮発性半導体メモリ素子201は、ドレインがトランジスタ203のソースに、ソースが制御信号端子Sに接続される。
 不揮発性半導体メモリ素子202は、ドレインがトランジスタ204のソースに、ソースが制御信号端子Sに接続される。
 トランジスタ203は、ゲートがトランスファー信号TRFの入力端子に接続され、ドレインはSRAM部100と信号線BitBを介して接続される。
 トランジスタ204は、ゲートがトランスファー信号TRFの入力端子に接続され、ドレインはSRAM部100と信号線Bitを介して接続される。
The nonvolatile semiconductor memory element 201 has a drain connected to the source of the transistor 203 and a source connected to the control signal terminal S.
The nonvolatile semiconductor memory element 202 has a drain connected to the source of the transistor 204 and a source connected to the control signal terminal S.
The transistor 203 has a gate connected to the input terminal of the transfer signal TRF, and a drain connected to the SRAM unit 100 via the signal line BitB.
The transistor 204 has a gate connected to the input terminal of the transfer signal TRF, and a drain connected to the SRAM unit 100 via the signal line Bit.
 トランジスタ203および204のゲートには、書き込み時、消去時および、不揮発性半導体メモリ素子201および202のデータをSRAMに転送するときに選択されるトランスファー信号TRFが「H」として入力される。
 この構成では、メモリセルの大きさは多少大きくなるが、記憶データがSRAM部に転送された後は、トランスファー信号TRFが「L」を入力され不揮発性半導体メモリ素子201および202がSRAM部100から切り離されるので、ドレインに電圧が供給されず、不必要な電圧がかからなくなり、信頼性が向上するというメリットがある。
A transfer signal TRF selected as “H” is input to the gates of the transistors 203 and 204 at the time of writing, erasing, and transferring data of the nonvolatile semiconductor memory elements 201 and 202 to the SRAM.
In this configuration, although the size of the memory cell is slightly increased, after the storage data is transferred to the SRAM unit, the transfer signal TRF is inputted with “L”, and the nonvolatile semiconductor memory elements 201 and 202 are transferred from the SRAM unit 100. Since they are disconnected, there is an advantage that no voltage is supplied to the drain, unnecessary voltage is not applied, and reliability is improved.
[実施形態5]
 図10にさらに別の実施形態5を示す。
 実施形態5で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態4を参照することとし説明を省略する。
 本実施形態は、実施形態3で示したメモリセルアレイにおけるメモリセルM11~Mmnの代わりに、メモリセルMA11~MAmnとした実施形態である。
メモリセルアレイは、(m×n)個のメモリセルMA11~MAmnとn個のセンスアンプ800-1~800-nを備える。
 メモリセルM11~Mmnと、メモリセルMA11~MAmnとの違いは、記憶部の形態が異なる。
 メモリセルM11~Mmnは、SRAM部100(センス部)と記憶部200aを備えていたが、メモリセルMA11~MAmnは、SRAM部100(センス部)および記憶部200bを備えている。すなわち、モリセルMA11~MAmnが備えるメモリセルは、実施形態4に示したメモリセルと同じ形態である。
[Embodiment 5]
FIG. 10 shows still another embodiment 5.
The parts changed in the fifth embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted by referring to the fourth embodiment.
In the present embodiment, memory cells MA11 to MAmn are used instead of the memory cells M11 to Mmn in the memory cell array shown in the third embodiment.
The memory cell array includes (m × n) memory cells MA11 to MAmn and n sense amplifiers 800-1 to 800-n.
The difference between the memory cells M11 to Mmn and the memory cells MA11 to MAmn is different in the form of the storage unit.
The memory cells M11 to Mmn include the SRAM unit 100 (sense unit) and the storage unit 200a. However, the memory cells MA11 to MAmn include the SRAM unit 100 (sense unit) and the storage unit 200b. That is, the memory cells included in the memory cells MA11 to MAmn have the same form as the memory cell shown in the fourth embodiment.
 実施形態5で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態3および4を参照することとし説明を省略する。 The parts changed in the fifth embodiment will be described, and the same parts are denoted by the same reference numerals, and the description thereof will be omitted by referring to the third and fourth embodiments.
 メモリセルMA11~MAmnに記憶されたデータを一括で読み出せる形態である。
 例えば、データ転送用のトランスファー信号TRF1~TRFmを「L」とすることによって、トランスファー信号TRF1~TRFmに「L」が入力された行線に接続されたメモリセルを非選択にすることができる。これにより、メモリセルをSRAM部100から切り離せば、その後は、このメモリはSRAM部100と同等に動作することができる。
 なお、全メモリセルを同時にデータ転送すると、過度にSRAM部100に流れる電流が集中して過大電流が流れるおそれがある。この場合は、活性化信号SETの入力端子への活性化信号SETの入力タイミングを順にずらしてそれぞれのメモリセルMA11~MAmnの活性化タイミングをずらせば、ピーク電流を抑えることができる。
In this mode, data stored in the memory cells MA11 to MAmn can be read at once.
For example, by setting the transfer signals TRF1 to TRFm for data transfer to “L”, the memory cells connected to the row line in which “L” is input to the transfer signals TRF1 to TRFm can be deselected. Thus, if the memory cell is separated from the SRAM unit 100, the memory can operate in the same manner as the SRAM unit 100 thereafter.
If data is transferred to all the memory cells at the same time, excessive current may flow due to excessive concentration of current flowing in the SRAM unit 100. In this case, the peak current can be suppressed by shifting the activation timings of the memory cells MA11 to MAmn by sequentially shifting the input timing of the activation signal SET to the input terminal of the activation signal SET.
[実施形態6]
図11に、実施形態2から変形した形態である実施形態6を示す。
 実施形態6で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態2を参照することとし説明を省略する。
 実施形態2に示したSRAM部100の代わりに高感度センスアンプ300(センス部)を備えている。また、記憶部200aは同じであり、信号線BitおよびBitBを介して、高感度センスアンプ300と接続される。
[Embodiment 6]
FIG. 11 shows a sixth embodiment which is a modification of the second embodiment.
The parts changed in the sixth embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted.
Instead of the SRAM unit 100 shown in the second embodiment, a high-sensitivity sense amplifier 300 (sense unit) is provided. The storage unit 200a is the same, and is connected to the high-sensitivity sense amplifier 300 via the signal lines Bit and BitB.
 SRAM部100の代わりとなる、設けられた高感度センスアンプ300について示す。
 高感度センスアンプ300は、プリチャージ用PMOSトランジスタ301および302、センス用NMOSトランジスタ303および304、センスアンプ活性化用NMOSトランジスタ305、および、センスされたデータをデータ線に転送する(読み出す)ためのトランスファートランジスタ306および307を備える。
A high-sensitivity sense amplifier 300 provided instead of the SRAM unit 100 will be described.
The high-sensitivity sense amplifier 300 transfers (reads) precharge PMOS transistors 301 and 302, sense NMOS transistors 303 and 304, sense amplifier activation NMOS transistor 305, and sensed data to a data line. Transfer transistors 306 and 307 are provided.
 トランジスタ301は、ゲートがプリチャージ信号PREの入力端子に、ドレインが電源に接続され、ソースが信号線Bitに接続される。
 トランジスタ302は、ゲートがプリチャージ信号PREの入力端子に、ドレインが電源に接続され、ソースが信号線BitBに接続される。
 トランジスタ303は、ゲートが信号線BitBとトランジスタ304のドレインに、ソースがトランジスタ305のドレインに接続される。
 トランジスタ304は、ゲートが信号線Bitとトランジスタ303のドレインに、ソースがトランジスタ305のドレインに接続される。
 トランジスタ305は、ゲートがセンスアンプ活性化信号(以下、「センス信号SEN」という)の入力端子に接続され、ソースが基準電位に接続される。
 トランジスタ306は、ゲートがワード線WLに接続され、ドレインがデータ線DLに接続され、ソースがトランジスタ303のドレインに接続される。
 トランジスタ307は、ゲートがワード線WLに接続され、ドレインがデータ線反転信号線DLBに接続され、ソースがトランジスタ304のドレインに接続される。
The transistor 301 has a gate connected to the input terminal of the precharge signal PRE, a drain connected to the power supply, and a source connected to the signal line Bit.
The transistor 302 has a gate connected to the input terminal of the precharge signal PRE, a drain connected to the power supply, and a source connected to the signal line BitB.
The transistor 303 has a gate connected to the signal line BitB and the drain of the transistor 304, and a source connected to the drain of the transistor 305.
The transistor 304 has a gate connected to the signal line Bit and the drain of the transistor 303, and a source connected to the drain of the transistor 305.
The transistor 305 has a gate connected to an input terminal of a sense amplifier activation signal (hereinafter referred to as “sense signal SEN”), and a source connected to a reference potential.
The transistor 306 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the drain of the transistor 303.
The transistor 307 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the drain of the transistor 304.
 図12を参照し、動作を説明する。
 この図は、図11に示した構成の動作を示すタイミングチャートである。
まず、時刻t21でプリチャージ信号PREの入力端子に「L」が入力され、プリチャージ信号PREが「L」になると、トランジスタ301および302が活性化して、徐々に信号線Bit、BitBが充電され、「H」となる。
 このときセンス信号SENの入力端子およびセンスデータをデータ線DL、データ線反転信号線DLBに転送するための選択信号のワード線WLの入力端子は「L」が入力され、センス信号SENおよびワード線WLに入力された選択信号は「L」になる。
 また、トランジスタ301および302により充電されている信号線Bit、BitBに合わせて、データ線DLおよびデータ線反転信号線DLBも徐々に充電され、「H」となる。
 データ線DLおよびデータ線反転信号線DLBの充電は、別に設けたデータ線プリチャージ回路によりプリチャージ信号PREと同一のタイミングでプリチャージされる。データ線プリチャージ回路については、次の実施形態で示すプリチャージ回路600などが適用できる。詳細の説明は後述することとする。
The operation will be described with reference to FIG.
This figure is a timing chart showing the operation of the configuration shown in FIG.
First, when “L” is input to the input terminal of the precharge signal PRE at time t21 and the precharge signal PRE becomes “L”, the transistors 301 and 302 are activated and the signal lines Bit and BitB are gradually charged. , “H”.
At this time, “L” is input to the input terminal of the sense signal SEN and the input terminal of the word line WL of the selection signal for transferring the sense data to the data line DL and the data line inversion signal line DLB, and the sense signal SEN and the word line The selection signal input to WL is “L”.
The data line DL and the data line inversion signal line DLB are also gradually charged to “H” in accordance with the signal lines Bit and BitB charged by the transistors 301 and 302.
The data line DL and the data line inversion signal line DLB are precharged at the same timing as the precharge signal PRE by a separately provided data line precharge circuit. As the data line precharge circuit, the precharge circuit 600 shown in the following embodiment can be applied. Details will be described later.
 時刻t22でプリチャージ信号PREの入力端子に「H」が入力され、プリチャージ信号PREが、「H」となる。トランジスタ301および302による充電が停止され、プリチャージが終了する。ここで、センス信号SENの入力端子に徐々に「L」から「H」となる信号が入力され、センス信号SENが徐々に「L」から「H」に変化することにより、高感度センスアンプ300のセンスアンプが活性化する。 At time t22, “H” is input to the input terminal of the precharge signal PRE, and the precharge signal PRE becomes “H”. The charging by the transistors 301 and 302 is stopped, and the precharging is finished. Here, a signal that gradually changes from “L” to “H” is input to the input terminal of the sense signal SEN, and the sense signal SEN gradually changes from “L” to “H”. The sense amplifier is activated.
 このとき記憶部200に書き込まれているデータが“0”データとすると、不揮発性半導体メモリ素子201がオフ状態、202がオン状態で、かつ共通ソースSは、基準電位(0V)なので、不揮発性半導体メモリ素子202を介して電流が共通ソースSに流れて、信号線BitとBitBの微小な電圧差が検出できずに誤動作を起こす可能性がある。
誤動作を避けるためには、センス信号SENの立ち上がり波形は、図示するように、比較的ゆっくりと立ち上げる必要がある。
 理想的には、センス信号SENの入力端子の電圧をトランジスタ305の閾値近傍に設定して、トランジスタ305を低電流動作させるのが望ましい。しかし、トランジスタ305の動作電流はセンス速度との関係があり、トランジスタ305を低電流動作させて電流が制限された状態では、センス速度が遅くなる。
If the data written in the storage unit 200 at this time is “0” data, the nonvolatile semiconductor memory element 201 is in the off state, 202 is in the on state, and the common source S is the reference potential (0 V). A current flows to the common source S through the semiconductor memory element 202, and a minute voltage difference between the signal lines Bit and BitB cannot be detected, and there is a possibility of causing a malfunction.
In order to avoid malfunction, the rising waveform of the sense signal SEN needs to rise relatively slowly as shown in the figure.
Ideally, it is desirable that the voltage of the input terminal of the sense signal SEN is set near the threshold value of the transistor 305 so that the transistor 305 operates at a low current. However, the operating current of the transistor 305 has a relationship with the sensing speed, and the sensing speed becomes slow when the current is limited by operating the transistor 305 at a low current.
 時刻t23で、センス信号SENの入力端子に「H」が入力され、センス信号SENは「H」となる。この間に、信号線BitとBitBの電位が確定する。時刻t24で、信号線BitとBitBの電位が確定している状態で、ワード線WLに「H」が入力されると、ワード線WLが「H」となる。ワード線WLが「H」となることにより、トランジスタ306および307が活性化し、信号線Bit、BitBに充電された状態により、データ線DLおよびデータ線反転信号線DLBの電位が確定し、読み出し動作が終了する。 At time t23, “H” is input to the input terminal of the sense signal SEN, and the sense signal SEN becomes “H”. During this time, the potentials of the signal lines Bit and BitB are determined. When “H” is input to the word line WL while the potentials of the signal lines Bit and BitB are fixed at time t24, the word line WL becomes “H”. When the word line WL becomes “H”, the transistors 306 and 307 are activated, and the potentials of the data line DL and the data line inversion signal line DLB are determined according to the state in which the signal lines Bit and BitB are charged. Ends.
[実施形態7]
 図13は、実施形態6からの変形した形態である実施形態7を示す。
 実施形態7で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態6を参照することとし説明を省略する。
 実施形態6に示した高感度センスアンプ300の代わりとなる高感度センスアンプ400(信号保持部)と、プリチャージ回路600(プリチャージ部)、アンプ部700(増幅検出部)を備えている。また、記憶部200aは同じであり、信号線Bit、BitBを介して、高感度センスアンプ400と接続される。
[Embodiment 7]
FIG. 13 shows a seventh embodiment which is a modified form from the sixth embodiment.
The parts changed in the seventh embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted by referring to the sixth embodiment.
A high-sensitivity sense amplifier 400 (signal holding unit) that replaces the high-sensitivity sense amplifier 300 shown in the sixth embodiment, a precharge circuit 600 (precharge unit), and an amplifier unit 700 (amplification detection unit) are provided. The storage unit 200a is the same, and is connected to the high-sensitivity sense amplifier 400 via the signal lines Bit and BitB.
 高速センスアンプ400は、センス用NMOSトランジスタ401、402、センスアンプ活性化用NMOSトランジスタ403、404、および、センスされたデータをデータ線DLおよびデータ線反転信号線DLBに転送する(読み出す)ためのトランスファートランジスタ405、406を備える。 The high-speed sense amplifier 400 transfers (reads) the sense NMOS transistors 401 and 402, the sense amplifier activation NMOS transistors 403 and 404, and the sensed data to the data line DL and the data line inversion signal line DLB. Transfer transistors 405 and 406 are provided.
 トランジスタ401は、ゲートが信号線BitBとトランジスタ402のドレインに、ソースがトランジスタ403および404のドレインに接続される。
 トランジスタ402は、ゲートが信号線Bitとトランジスタ401のドレインに、ソースがトランジスタ403および404のドレインに接続される。
 トランジスタ403は、ゲートがセンス信号SENの入力端子に接続され、ソースが基準電位に接続される。
 トランジスタ404は、ゲートがセンス信号SENdの入力端子に接続され、ソースが基準電位に接続される。
 トランジスタ405は、ゲートがワード線WLに接続され、ドレインがデータ線DLに接続され、ソースがトランジスタ401のドレインに接続される。
 トランジスタ406は、ゲートがワード線WLに接続され、ドレインがデータ線反転信号線DLBに接続され、ソースがトランジスタ402のドレインに接続される。
The transistor 401 has a gate connected to the signal line BitB and the drain of the transistor 402, and a source connected to the drains of the transistors 403 and 404.
The transistor 402 has a gate connected to the signal line Bit and the drain of the transistor 401, and a source connected to the drains of the transistors 403 and 404.
The transistor 403 has a gate connected to the input terminal of the sense signal SEN and a source connected to the reference potential.
The transistor 404 has a gate connected to the input terminal of the sense signal SENd and a source connected to the reference potential.
The transistor 405 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the drain of the transistor 401.
The transistor 406 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the drain of the transistor 402.
 プリチャージ回路600は、トランジスタ601、602、603を備える。
 トランジスタ601は、ゲートがプリチャージ制御信号PREの入力端子に、ドレインが電源に、ソースがデータ線DLに接続される。
 トランジスタ602は、ゲートがプリチャージ制御信号PREの入力端子に、ドレインが電源に、ソースがデータ線反転信号線DLBに接続される。
 トランジスタ603は、ゲートがプリチャージ制御信号PREの入力端子に、ドレインがデータ線DLに、ソースがデータ線反転信号線DLBに接続される。
The precharge circuit 600 includes transistors 601, 602, and 603.
The transistor 601 has a gate connected to the input terminal of the precharge control signal PRE, a drain connected to the power supply, and a source connected to the data line DL.
The transistor 602 has a gate connected to the input terminal of the precharge control signal PRE, a drain connected to the power supply, and a source connected to the data line inversion signal line DLB.
The transistor 603 has a gate connected to the input terminal of the precharge control signal PRE, a drain connected to the data line DL, and a source connected to the data line inversion signal line DLB.
 高感度センスアンプ300の代わりとなる高感度センスアンプ400を設けた実施形態である。
 高感度センスアンプ400は、図11で示した実施形態6と異なる点は、高速センスアンプ300で備えていたプリチャージトランジスタ301、302を削除し、新たに、活性化トランジスタを403と404に分離したことにある。
 さらに、プリチャージ回路600をデータ線DLおよびデータ線反転信号線DLB側にのみに設けたことである。
In this embodiment, a high-sensitivity sense amplifier 400 is provided instead of the high-sensitivity sense amplifier 300.
The high-sensitivity sense amplifier 400 is different from the sixth embodiment shown in FIG. 11 in that the precharge transistors 301 and 302 provided in the high-speed sense amplifier 300 are deleted and the activation transistors are newly separated into 403 and 404. It is to have done.
Further, the precharge circuit 600 is provided only on the data line DL and the data line inversion signal line DLB side.
 なお、プリチャージ回路600は、プリチャージ制御信号PREが入力される入力端子に「L」が入力されると、プリチャージ制御信号PREが「L」となる。これにより、トランジスタ601、602を介して、データ線DLおよびデータ線反転信号線DLBを充電することができる。トランジスタ603は、トランジスタ601、602とともに活性化し、データ線DLおよびデータ線反転信号線DLBに充電される電位のバランスをとる働きをする。 In the precharge circuit 600, when “L” is input to the input terminal to which the precharge control signal PRE is input, the precharge control signal PRE becomes “L”. Thus, the data line DL and the data line inversion signal line DLB can be charged through the transistors 601 and 602. The transistor 603 is activated together with the transistors 601 and 602 and functions to balance the potential charged in the data line DL and the data line inversion signal line DLB.
 なお、アンプ部700は、データ線DLおよびデータ線反転信号線DLBを介して送られるデータをさらに高速に読み出すアンプと読み出したデータをラッチするための回路である。 The amplifier unit 700 is an amplifier that reads data transmitted via the data line DL and the data line inversion signal line DLB at a higher speed and a circuit for latching the read data.
 高速センスアンプ400における活性化トランジスタは、初期センス動作(センス1)を行うトランジスタ403と、本センス動作(センス2)を行うトランジスタ404とで構成される。 The activation transistor in the high-speed sense amplifier 400 includes a transistor 403 that performs an initial sense operation (sense 1) and a transistor 404 that performs this sense operation (sense 2).
 次に、図14を参照し、動作を説明する。
 この図は、図13に示した構成の動作を示すタイミングチャートである。
 まず、時刻t31で始まるプリチャージ時においては、プリチャージ信号PREの入力端子、センス信号SEN、SENdの各入力端子に「L」、ワード線WLに「H」が入力され、プリチャージ信号PRE、センス信号SEN、SENdが「L」、ワード線WLが「H」となる。
 これにより、トランジスタ405、406はオン状態となり、プリチャージ回路600も充電状態動作を行う。プリチャージ回路600によって、データ線DLおよびデータ線反転信号線DLBがプリチャージされ、トランジスタ405、406を介して信号線Bit、BitBも充電される。
Next, the operation will be described with reference to FIG.
This figure is a timing chart showing the operation of the configuration shown in FIG.
First, at the time of precharge starting at time t31, “L” is input to the input terminal of the precharge signal PRE, the input terminals of the sense signals SEN and SENd, and “H” is input to the word line WL, and the precharge signal PRE, The sense signals SEN and SENd are “L” and the word line WL is “H”.
Accordingly, the transistors 405 and 406 are turned on, and the precharge circuit 600 also performs a charge state operation. The precharge circuit 600 precharges the data line DL and the data line inversion signal line DLB, and the signal lines Bit and BitB are also charged through the transistors 405 and 406.
 時刻t32でプリチャージ信号PREの入力端子、センス信号SENの入力端子に「H」が入力され、プリチャージ信号PRE、センス信号SENが「H」となる。
 プリチャージ回路600は、プリチャージを終了させる。また、ワード線WLには、「H」レベルから少し下げた電位が入力され、ワード線WLの電位が「H」レベルより少し低下した電位となったことにより、トランジスタ405、406はオフ状態となる。さらに、センス信号SENの入力端子に「H」レベルの電位が入力され、センス信号SENが「H」となる。
At time t32, “H” is input to the input terminal of the precharge signal PRE and the input terminal of the sense signal SEN, and the precharge signal PRE and the sense signal SEN are set to “H”.
The precharge circuit 600 ends the precharge. Further, a potential slightly lowered from the “H” level is input to the word line WL, and the potential of the word line WL is slightly decreased from the “H” level, so that the transistors 405 and 406 are turned off. Become. Further, an “H” level potential is input to the input terminal of the sense signal SEN, and the sense signal SEN becomes “H”.
 このときのトランジスタ403は定電流動作をさせるか、あるいは、トランジスタの容量を小容量のものとしてドレイン電流を少なくする。これにより、センス動作の感度を向上させて、信号線BitおよびBitBの微小な電位差を拡大させる。 At this time, the transistor 403 is operated at a constant current, or the capacity of the transistor is small and the drain current is reduced. Thereby, the sensitivity of the sensing operation is improved, and a minute potential difference between the signal lines Bit and BitB is expanded.
 センス信号SENの入力端子に「H」が入力されて、センス信号SENを「H」となる。
 信号線BitとBitBの電位差がある程度拡大した後に、時刻t33で、センス信号SENdの入力端子に「H」が入力されて、センス信号SENdが「H」となると、信号線BitおよびBitBの電位は急速に確定する。
 ここで、ワード線WLの入力端子に「H」が入力されて、ワード線WLの電位が「H」となると、トランジスタ405、406を完全なオン状態とする。これにより、データ線DLおよびデータ線反転信号線DLBの電位が確定する。その確定した電位をアンプ部700に入力し、アンプ部700は高速に判定して、データをラッチして読み出しを終了する。
“H” is input to the input terminal of the sense signal SEN, and the sense signal SEN becomes “H”.
After the potential difference between the signal lines Bit and BitB has increased to some extent, when “H” is input to the input terminal of the sense signal SENd at time t33 and the sense signal SENd becomes “H”, the potentials of the signal lines Bit and BitB are Confirm quickly.
Here, when “H” is input to the input terminal of the word line WL and the potential of the word line WL becomes “H”, the transistors 405 and 406 are completely turned on. Thereby, the potentials of the data line DL and the data line inversion signal line DLB are determined. The determined potential is input to the amplifier unit 700. The amplifier unit 700 determines at high speed, latches the data, and finishes reading.
[実施形態8]
 図15に、実施形態7からの変形した形態である実施形態8を示す。
 実施形態8で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態7を参照することとし説明を省略する。
 実施形態7に示した高速センスアンプ400、プリチャージ回路600、700は同じであるが、記憶部200aの代わりに記憶部200cとする点が異なる。
 記憶部200aでは、不揮発性半導体メモリ素子201と202のソースは、共通の制御信号端子Sに直接接続していたが、記憶部200cでは、共通の制御信号端子Sにそれぞれ抵抗を介して接続する。
[Embodiment 8]
FIG. 15 shows an eighth embodiment which is a modified form from the seventh embodiment.
The parts changed in the eighth embodiment will be described, and the parts that are not changed are denoted by the same reference numerals and the description thereof will be omitted by referring to the seventh embodiment.
The high-speed sense amplifier 400 and the precharge circuits 600 and 700 shown in the seventh embodiment are the same except that the storage unit 200c is used instead of the storage unit 200a.
In the storage unit 200a, the sources of the nonvolatile semiconductor memory elements 201 and 202 are directly connected to the common control signal terminal S. However, in the storage unit 200c, each source is connected to the common control signal terminal S via a resistor. .
 記憶部200cは、抵抗205(第1の抵抗)、206(第2の抵抗)をさらに備え、それぞれの不揮発性半導体メモリ素子201、202のソースが抵抗205、206を介して制御信号端子Sに接続される。
 この抵抗205、206を設けることにより、制御信号端子Sを共通にしても、動作マージン(読み出し許容範囲)を広く確保することができる。
 実施形態2において説明したとおり、制御信号端子Sを共通化すると、書き込み消去電圧は、6Vから7V程度に設定する必要がある。そのため、場合によっては、電子或いは正孔の注入量が少なくなり、読み出しマージンが少なくなるおそれがあり、電圧の最適化に注意を要する。
 本実施形態では、例えば、不揮発性半導体メモリ素子201が書き込み(電子注入)、不揮発性半導体メモリ素子202が消去(正孔注入)を行うこととして、制御信号端子Sに8Vを印加する場合を考える。書き込みを行う不揮発性半導体メモリ素子201には、ホットエレクトロンによる電流が約100μA程度流れるため、不揮発性半導体メモリ素子201のソースには、6V印加されることになる。
The storage unit 200c further includes resistors 205 (first resistor) and 206 (second resistor), and the sources of the nonvolatile semiconductor memory elements 201 and 202 are connected to the control signal terminal S via the resistors 205 and 206, respectively. Connected.
By providing the resistors 205 and 206, even if the control signal terminal S is shared, a wide operation margin (reading allowable range) can be secured.
As described in the second embodiment, when the control signal terminal S is shared, the write / erase voltage needs to be set to about 6V to 7V. Therefore, depending on the case, the injection amount of electrons or holes may be reduced, and the read margin may be reduced, so care must be taken in voltage optimization.
In the present embodiment, for example, a case where 8 V is applied to the control signal terminal S is considered, in which the nonvolatile semiconductor memory element 201 performs writing (electron injection) and the nonvolatile semiconductor memory element 202 performs erasing (hole injection). . Since the current due to hot electrons flows through the nonvolatile semiconductor memory element 201 to be written about 100 μA, 6 V is applied to the source of the nonvolatile semiconductor memory element 201.
 一方、消去を行う不揮発性半導体メモリ素子202には電流が流れないので、不揮発性半導体メモリ素子202のソースには8Vが印加される。
 したがって、書き込み時の電圧は図7Cの6Vのケースで示したように、“0”の読み出し時には、フローティングゲートは-1.9Vとなり、また、消去時の電圧は、図4Bの8Vのケースで示したように、“1”の読み出し時、フローティングゲートFGは+2.7Vとなる。“0”の読み出しも、“1”の読み出しも十分マージンを確保することができる。
On the other hand, since no current flows through the nonvolatile semiconductor memory element 202 that performs erasing, 8 V is applied to the source of the nonvolatile semiconductor memory element 202.
Therefore, as shown in the case of 6V in FIG. 7C, the voltage at the time of writing is −1.9V at the time of reading “0”, and the voltage at the time of erasing is the case of 8V in FIG. 4B. As shown, at the time of reading “1”, the floating gate FG becomes + 2.7V. A sufficient margin can be secured for both “0” reading and “1” reading.
[実施形態9]
 図16に、実施形態2からの変形した形態である実施形態9を示す。
 実施形態9で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態2を参照することとし説明を省略する。
 実施形態2に示したSRAM部100(センス部)の代わりに高感度センスアンプ500(信号保持部)を備えている。また、記憶部200aは同じであり、信号線Bit、BitBを介して、高感度センスアンプ500と接続される。
[Embodiment 9]
FIG. 16 shows a ninth embodiment which is a modified form from the second embodiment.
The parts changed in the ninth embodiment will be described, and parts not changed will be denoted by the same reference numerals and the description thereof will be omitted.
A high-sensitivity sense amplifier 500 (signal holding unit) is provided instead of the SRAM unit 100 (sense unit) shown in the second embodiment. The storage unit 200a is the same, and is connected to the high-sensitivity sense amplifier 500 via the signal lines Bit and BitB.
 SRAM部100の代わりとなる、高感度センスアンプ500を設けた実施形態である。 This is an embodiment in which a high-sensitivity sense amplifier 500 is provided in place of the SRAM unit 100.
 この図に示す形態は、高感度センスアンプ500として高感度・高速センスアンプを用いた形態であり、高感度・高速センスアンプ機能に合わせてラッチ機能を備えている。高感度センスアンプ500は、PMOSトランジスタ501、502、503、504、505を備える。 The form shown in this figure is a form using a high-sensitivity / high-speed sense amplifier as the high-sensitivity sense amplifier 500, and has a latch function in accordance with the high-sensitivity / high-speed sense amplifier function. The high sensitivity sense amplifier 500 includes PMOS transistors 501, 502, 503, 504, and 505.
 トランジスタ501(電源用トランジスタ)は、ゲートが活性化信号SETの端子に、ドレインが電源に接続され、ソースがトランジスタ502と503のドレインに接続される。
 トランジスタ502は、ゲートが信号線Bitとトランジスタ503のソースに接続される。
 トランジスタ503は、ゲートが信号線BitBとトランジスタ502のソースに接続される。
 トランジスタ504は、ゲートがワード線WLに接続され、ドレインがデータ線DLに接続され、ソースがトランジスタ502のソースに接続される。
 トランジスタ505は、ゲートがワード線WLに接続され、ドレインがデータ線反転信号線DLBに接続され、ソースがトランジスタ503のドレインに接続される。
The transistor 501 (power supply transistor) has a gate connected to the terminal of the activation signal SET, a drain connected to the power supply, and a source connected to the drains of the transistors 502 and 503.
The gate of the transistor 502 is connected to the signal line Bit and the source of the transistor 503.
The gate of the transistor 503 is connected to the signal line BitB and the source of the transistor 502.
The transistor 504 has a gate connected to the word line WL, a drain connected to the data line DL, and a source connected to the source of the transistor 502.
The transistor 505 has a gate connected to the word line WL, a drain connected to the data line inversion signal line DLB, and a source connected to the drain of the transistor 503.
 PMOSトランジスタ501は、ゲートには、センスアンプのセットおよび活性化を行う活性化信号SETが入力される。PMOSトランジスタ502、503はセンス&ラッチのトランジスタであり、トランジスタ504、505はデータをデータ線DLおよびデータ線反転信号線DLBに読み出すためのトランスファートランジスタである。 The PMOS transistor 501 receives an activation signal SET for setting and activating the sense amplifier at the gate. The PMOS transistors 502 and 503 are sense and latch transistors, and the transistors 504 and 505 are transfer transistors for reading data to the data line DL and the data line inversion signal line DLB.
 図17に図16に示した形態の動作波形を示す。
 予めデータ線DLおよびデータ線反転信号線DLBはプリチャージされている。不揮発性半導体メモリ素子201が書き込み、不揮発性半導体メモリ素子202が消去されているとする。
 時刻t41で、活性化信号SETの入力端子に「L」が入力され、活性化信号SETが「L」となると、高感度センスアンプ500が活性化される。これにより、信号線Bitの電位はほぼ「L」のまま保たれ、信号線BitBが充電されるため、高速に信号線BitおよびBitBの電位が確定する。
 その後、時刻t42でワード線WLに「H」が入力され、ワード線WLの電位が「H」になると、データ線DLおよびデータ線反転信号線DLBの電位が確定し、読み出しを終了できる。
FIG. 17 shows operation waveforms of the form shown in FIG.
Data line DL and data line inversion signal line DLB are precharged in advance. It is assumed that the nonvolatile semiconductor memory element 201 is written and the nonvolatile semiconductor memory element 202 is erased.
At time t41, when “L” is input to the input terminal of the activation signal SET and the activation signal SET becomes “L”, the high sensitivity sense amplifier 500 is activated. Thereby, the potential of the signal line Bit is kept almost “L” and the signal line BitB is charged, so that the potentials of the signal lines Bit and BitB are determined at high speed.
After that, when “H” is input to the word line WL at time t42 and the potential of the word line WL becomes “H”, the potentials of the data line DL and the data line inversion signal line DLB are determined, and reading can be completed.
[実施形態10]
 図18に、実施形態9からの変形した形態である実施形態10を示す。
 実施形態10で変更した部分について説明し、変更のない部分については同じ符号をつけ実施形態9を参照することとし説明を省略する。
 実施形態9に示した高速センスアンプ500は同じであるが、記憶部200aに代わり、記憶部200dを備える。また、記憶部200dに似ている形態に、実施形態8で示した記憶部200cがある。
 記憶部200dの説明は、記憶部200cと対比して説明することとする。
[Embodiment 10]
FIG. 18 shows a tenth embodiment which is a modified form from the ninth embodiment.
The parts changed in the tenth embodiment will be described, and parts not changed will be given the same reference numerals and the description will be omitted by referring to the ninth embodiment.
The high-speed sense amplifier 500 shown in the ninth embodiment is the same, but includes a storage unit 200d instead of the storage unit 200a. Further, the storage unit 200c shown in the eighth embodiment is similar to the storage unit 200d.
The description of the storage unit 200d will be described in comparison with the storage unit 200c.
 記憶部200dは、不揮発性半導体メモリ素子201、202、トランジスタ207、208を備える。
 不揮発性半導体メモリ素子201は、ドレインが信号線BitBを介して高速センスアンプ500に、ソースがトランジスタ207のドレインに接続される。
 不揮発性半導体メモリ素子202は、ドレインが信号線Bitを介して高速センスアンプ500に、ソースがトランジスタ208のドレインに接続される。
 トランジスタ207は、ゲートが信号SELの入力端子に、ソースが制御信号端子Sに接続される。
 トランジスタ208は、ゲートが信号SELの入力端子に、ソースが制御信号端子Sに接続される。
The storage unit 200d includes nonvolatile semiconductor memory elements 201 and 202 and transistors 207 and 208.
The nonvolatile semiconductor memory element 201 has a drain connected to the high speed sense amplifier 500 via a signal line BitB, and a source connected to the drain of the transistor 207.
The nonvolatile semiconductor memory element 202 has a drain connected to the high speed sense amplifier 500 via a signal line Bit and a source connected to the drain of the transistor 208.
The transistor 207 has a gate connected to the input terminal of the signal SEL and a source connected to the control signal terminal S.
The transistor 208 has a gate connected to the input terminal of the signal SEL and a source connected to the control signal terminal S.
 記憶部200dは、記憶部200cが備えた抵抗205、206の代わりに、適当な電流を流すことのできるトランジスタ207、208とする。このトランジスタ207、208は、定電流動作をさせるか、あるいは、トランジスタの容量を小容量のものとしてドレイン電流を少なくする。トランジスタ207、208のゲート端子には、選択信号も兼ねる信号SELが入力される。
 トランジスタでの構成されるほうが、抵抗で構成されるよりもレイアウト面積が小さくできることと、信号SELによって活性化させるメモリセルを選択することが可能となる利点がある。例えば、図8あるいは図10のマトリクス構成で、全てのメモリセルの制御信号端子Sを共通とすることが可能となり、信号SELでの選択が行われる。
The memory unit 200d is replaced with transistors 207 and 208 that can pass an appropriate current instead of the resistors 205 and 206 provided in the memory unit 200c. The transistors 207 and 208 are operated at a constant current, or the drain current is reduced by reducing the capacity of the transistor. A signal SEL that also serves as a selection signal is input to the gate terminals of the transistors 207 and 208.
The transistor configuration has an advantage that the layout area can be made smaller than that of the resistor and that the memory cell activated by the signal SEL can be selected. For example, the control signal terminal S of all the memory cells can be made common in the matrix configuration of FIG. 8 or FIG. 10, and selection by the signal SEL is performed.
 上述したように、本発明の各実施の形態によれば、標準ロジックのCMOSプロセスで不揮発性半導体メモリ(すなわち不揮発性半導体メモリ素子およびそれを用いた半導体装置)が実現できる。したがって、標準ロジックに本発明の不揮発性半導体メモリを搭載することで、ロジック混載メモリを容易に、また安価に実現できる。 As described above, according to each embodiment of the present invention, a nonvolatile semiconductor memory (that is, a nonvolatile semiconductor memory element and a semiconductor device using the same) can be realized by a standard logic CMOS process. Therefore, by mounting the nonvolatile semiconductor memory of the present invention on the standard logic, a logic embedded memory can be realized easily and inexpensively.
 なお、本発明は、上記の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。本発明の半導体装置における能動素子の構成数や接続形態についても特に限定されるものではない。 The present invention is not limited to the above-described embodiments, and can be changed without departing from the spirit of the present invention. The number of active elements in the semiconductor device of the present invention and the connection form are not particularly limited.
 本発明により、標準ロジックのCMOSプロセスで1層ポリシリコンのセル構造の不揮発性半導体メモリ素子およびそれを用いた半導体装置が実現でき、ロジック混載メモリを容易に、また安価に実現できる。 According to the present invention, a non-volatile semiconductor memory element having a single-layer polysilicon cell structure and a semiconductor device using the same can be realized by a standard logic CMOS process, and a logic-embedded memory can be easily and inexpensively realized.

Claims (13)

  1.  第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態の情報を記憶する第2の不揮発性半導体メモリ素子と、により1つの情報を記憶する記憶部と、
     1対となる第1の信号線と第2の信号線を介して前記第1および第2の不揮発性半導体メモリ素子に記憶される情報を読み出すセンス部と、
     を備える半導体装置であって、
     前記第1および第2の不揮発性半導体メモリ素子の各々は、
     半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含み、
     書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、
     消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成されることを特徴とする半導体装置。
    A first nonvolatile semiconductor memory element; and a second nonvolatile semiconductor memory element that stores information on a logic state that is opposite to the first nonvolatile semiconductor memory element; and a storage unit that stores one piece of information ,
    A sense unit that reads information stored in the first and second nonvolatile semiconductor memory elements via a pair of first signal line and second signal line;
    A semiconductor device comprising:
    Each of the first and second nonvolatile semiconductor memory elements includes:
    Including at least a floating gate, a drain and a source formed on the semiconductor substrate;
    As a writing state, a voltage is applied between the source and drain to inject charges into the floating gate and accumulate,
    As an erased state, when erasing the charge accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source, and hot carriers between bands are generated in the semiconductor substrate. A semiconductor device configured to erase charges accumulated in the floating gate.
  2.  前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが第1の制御信号端子に接続され、
     前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが第2の制御信号端子に接続され、
     前記第1および第2の不揮発性半導体メモリ素子のソースが各々接続される前記第1の制御信号端子と前記第2の制御信号端子は、互いに独立に構成され、書き込み時ならびに消去時にそれぞれ異なる電位をとり、読み出し時にはそれぞれ基準電位となることを特徴とする請求項1に記載の半導体装置。
    The first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the first control signal terminal,
    The second nonvolatile semiconductor memory element has a drain connected to the first signal line and a source connected to a second control signal terminal,
    The first control signal terminal and the second control signal terminal to which the sources of the first and second nonvolatile semiconductor memory elements are respectively connected are configured independently of each other, and have different potentials at the time of writing and erasing. 2. The semiconductor device according to claim 1, wherein each of the semiconductor devices has a reference potential during reading.
  3.  前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが前記第1の制御信号端子に接続され、
     前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが前記第1の制御信号端子に接続され、
     共通に接続される前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となることを特徴とする請求項1に記載の半導体装置。
    The first nonvolatile semiconductor memory element has a drain connected to the second signal line, and a source connected to the first control signal terminal,
    The second nonvolatile semiconductor memory element has a drain connected to the first signal line and a source connected to the first control signal terminal,
    2. The semiconductor device according to claim 1, wherein the first control signal terminals connected in common take a predetermined potential at the time of erasing and writing, and become a reference potential at the time of reading.
  4.  第1および第2のトランジスタをさらに備え、
     前記第1の不揮発性半導体メモリ素子は、ドレインが第1のトランジスタのソースに、ソースが前記第1の制御信号端子に接続され、
     前記第2の不揮発性半導体メモリ素子は、ドレインが第2のトランジスタのソースに、ソースが前記第1の制御信号端子に接続され、
     前記第1のトランジスタは、ゲートが活性化信号入力端子に、ドレインが前記第2の信号線に、ソースが前記第1の不揮発性半導体メモリ素子のドレインに接続され、
     前記第2のトランジスタは、ゲートが前記活性化信号入力端子に、ドレインが前記第1の信号線に、ソースが前記第2の不揮発性半導体メモリ素子のドレインに接続され、
     共通に接続される前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となり、
     前記活性化信号入力端子に入力される活性化信号により、前記第1および第2のトランジスタをオン状態として、前記第1または前記第2の不揮発性半導体メモリ素子を消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成されるこ とを特徴とする請求項1に記載の半導体装置。
    Further comprising first and second transistors;
    The first nonvolatile semiconductor memory element has a drain connected to a source of the first transistor and a source connected to the first control signal terminal,
    The second nonvolatile semiconductor memory element has a drain connected to a source of a second transistor, a source connected to the first control signal terminal,
    The first transistor has a gate connected to an activation signal input terminal, a drain connected to the second signal line, and a source connected to the drain of the first nonvolatile semiconductor memory element,
    The second transistor has a gate connected to the activation signal input terminal, a drain connected to the first signal line, and a source connected to the drain of the second nonvolatile semiconductor memory element,
    The first control signal terminal connected in common takes a predetermined potential at the time of erasing and writing, and becomes a reference potential at the time of reading,
    In response to an activation signal input to the activation signal input terminal, the first and second transistors are turned on, the first or second nonvolatile semiconductor memory element is erased, and the floating gate is supplied to the floating gate. When erasing the accumulated charge, a voltage is applied between the semiconductor substrate and the drain or source to generate hot carriers between bands between the semiconductor substrate, and the charges accumulated in the floating gate by the hot carriers are generated. The semiconductor device according to claim 1, wherein the semiconductor device is configured to erase the data.
  5.  第1および第2の抵抗をさらに備え、
     前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが第1の抵抗を介して前記第1の制御信号端子に接続され、
     前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが第2の抵抗を介して前記第1の制御信号端子に接続され、
     前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となることを特徴とする請求項1に記載の半導体装置。
    A first resistor and a second resistor;
    The first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the first control signal terminal via a first resistor,
    The second nonvolatile semiconductor memory element has a drain connected to the first signal line and a source connected to the first control signal terminal via a second resistor,
    2. The semiconductor device according to claim 1, wherein the first control signal terminal takes a predetermined potential at the time of erasing and writing, and becomes a reference potential at the time of reading.
  6.  第1および第2のトランジスタをさらに備え、
     前記第1の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが第1のトランジスタのドレインに接続され、
     前記第2の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが第2のトランジスタのドレインに接続され、
     前記第1のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、
     前記第2のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、
     前記活性化信号の入力によって前記第1および第2のトランジスタは、活性化され、
     前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となることを特徴とする請求項1に記載の半導体装置。
    Further comprising first and second transistors;
    The first nonvolatile semiconductor memory element has a drain connected to the second signal line and a source connected to the drain of the first transistor,
    The second nonvolatile semiconductor memory element has a drain connected to the first signal line and a source connected to the drain of the second transistor,
    The first transistor has a gate connected to an input terminal of an activation signal and a source connected to the first control signal terminal,
    The second transistor has a gate connected to an activation signal input terminal and a source connected to the first control signal terminal.
    The first and second transistors are activated by the input of the activation signal,
    2. The semiconductor device according to claim 1, wherein the first control signal terminal takes a predetermined potential at the time of erasing and writing, and becomes a reference potential at the time of reading.
  7.  前記センス部は、
     電源供給線が電源用トランジスタを介して接続され、信号を保持するフリップフロップ回路を含み、
     前記フリップフロップ回路は、前記電源用トランジスタのオン状態・オフ状態が制御されることにより前記電源に電圧が印加され、
     前記第1および第2の不揮発性半導体メモリ素子からの出力信号を保持するように構成されることを特徴とする請求項1ないし請求項6のいずれか1項に記載の半導体装置。
    The sense part is
    A power supply line is connected via a power transistor, and includes a flip-flop circuit that holds a signal,
    In the flip-flop circuit, a voltage is applied to the power supply by controlling the on / off state of the power transistor,
    7. The semiconductor device according to claim 1, wherein the semiconductor device is configured to hold output signals from the first and second nonvolatile semiconductor memory elements.
  8.  前記センス部は、
     電源用トランジスタを介して電源に接続され、接地用トランジスタを介して基準電位に接続され、前記記憶部と前記1対の第1および第2の信号線を介して接続されるフリップフロップ回路と、
     前記フリップフロップ回路からの出力信号を増幅する信号増幅部と、
     を備えることを特徴とする請求項1ないし請求項6のいずれか1項に記載の半導体装置。
    The sense part is
    A flip-flop circuit connected to a power source via a power transistor, connected to a reference potential via a ground transistor, and connected to the memory unit via the pair of first and second signal lines;
    A signal amplifier for amplifying an output signal from the flip-flop circuit;
    The semiconductor device according to claim 1, further comprising:
  9.  前記記憶部と前記センス部とを組み合わせたメモリセルを備える半導体装置であって、
     前記メモリセルが行および列方向に配列したマトリックスアレイと、センスアンプと、を少なくとも含み、
     前記メモリセルの各々は、
     半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含む第1および第2の不揮発性半導体メモリ素子を備える記憶部と、
     電源用トランジスタを介して電源に接続されるフリップフロップ回路により信号を保持するセンス部と、
     を含み、
     前記第1および第2の不揮発性半導体メモリ素子は、
     フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、
     前記フリップフロップ回路は、
     活性化信号によって前記電源用トランジスタのオン状態・オフ状態を制御することにより前記フリップフロップ回路に電源を印加するように構成されるセンス部と、
     前記第1および第2の不揮発性半導体メモリ素子のソースを行ごとに接続するソース線と、
     前記センス部の選択信号および前記活性化信号を行毎に伝送する行線と、
     前記センス部の情報を列毎に伝送するビット線と、
     を備え、
     前記センスアンプは、前記ビット線に前記センス部から出力される信号を列毎に接続し、
     前記ビット線および前記行線によって指定される不揮発性半導体メモリ素子のフローティングゲートに蓄積された電荷の状態によって記憶される情報を読み出す読み出し手段を備えることを特徴とする半導体装置。
    A semiconductor device comprising a memory cell in which the storage unit and the sense unit are combined,
    A matrix array in which the memory cells are arranged in the row and column directions, and a sense amplifier;
    Each of the memory cells
    A storage unit including first and second nonvolatile semiconductor memory elements including at least a floating gate, a drain, and a source formed on a semiconductor substrate;
    A sense unit for holding a signal by a flip-flop circuit connected to a power supply via a power transistor;
    Including
    The first and second nonvolatile semiconductor memory elements are:
    When erasing the charge accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source to generate hot carriers between bands between the semiconductor substrate and accumulate in the floating gate by the hot carriers. Configured to erase the generated charge,
    The flip-flop circuit is
    A sense unit configured to apply power to the flip-flop circuit by controlling an on state and an off state of the power transistor by an activation signal;
    Source lines connecting the sources of the first and second nonvolatile semiconductor memory elements for each row;
    A row line for transmitting the selection signal of the sense unit and the activation signal for each row;
    A bit line for transmitting the information of the sense part for each column;
    With
    The sense amplifier connects the signal output from the sense unit to the bit line for each column,
    A semiconductor device, comprising: a reading unit that reads information stored in accordance with a state of electric charge accumulated in a floating gate of a nonvolatile semiconductor memory element designated by the bit line and the row line.
  10.  前記記憶部と前記センス部とを組み合わせたメモリセルを備える半導体装置であって、
     前記メモリセルが行および列方向に配列したマトリックスアレイと、センスアンプと、を少なくとも含み、
     前記メモリセルの各々は、
     半導体基板上に形成されたフローティングゲート、ドレインおよびソースを少なくとも含む第1および第2の不揮発性半導体メモリ素子と、前記第1および第2の不揮発性半導体メモリ素子の各々に直列接続され、オン状態又はオフ状態とすることで前記第1および第2の不揮発性半導体メモリ素子の選択又は非選択を制御する第1および第2のトランジスタと、を含む記憶部と、
     電源用トランジスタを介して電源に接続されるフリップフロップ回路により信号を保持するセンス部と、
     を含み、
     前記第1および第2のトランジスタをオン状態として、前記第1および第2の不揮発性半導体メモリ素子のソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積し、
     前記第1および第2の不揮発性半導体メモリ素子のフローティングゲートに蓄積された電荷の消去時に、前記半導体基板と前記第1および第2の不揮発性半導体メモリ素子のドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成された不揮発性半導体メモリ素子と、
     前記フリップフロップ回路は、活性化信号によって前記電源用トランジスタのオン状態・オフ状態を制御して前記フリップフロップ回路に電源を印加するように構成されるセンス部と、
     前記第1および第2の不揮発性半導体メモリ素子のソースを行毎に接続するソース線と、
     前記第1および第2のトランジスタのゲートを制御する制御信号、前記活性化信号、前記センス部の選択信号を行毎に伝送する行線と、
     前記センス部の情報を列毎に伝送するビット線と、
     を備え、 前記行線に入力される信号により前記不揮発性半導体メモリ素子と前記センス部とを選択的に遮断でき、
     前記ビット線および前記行線によって指定される不揮発性半導体メモリ素子のフローティングゲートに蓄積された電荷の状態によって記憶される情報を読み出す読み出し手段を備えることを特徴とする半導体装置。
    A semiconductor device comprising a memory cell in which the storage unit and the sense unit are combined,
    A matrix array in which the memory cells are arranged in the row and column directions, and a sense amplifier;
    Each of the memory cells
    First and second nonvolatile semiconductor memory elements including at least a floating gate, a drain, and a source formed on a semiconductor substrate, and each of the first and second nonvolatile semiconductor memory elements connected in series and turned on Or a first and a second transistor for controlling selection or non-selection of the first and second nonvolatile semiconductor memory elements by turning them off, and a storage unit including:
    A sense unit for holding a signal by a flip-flop circuit connected to a power supply via a power transistor;
    Including
    The first and second transistors are turned on, a voltage is applied between the source and drain of the first and second nonvolatile semiconductor memory elements to inject charges into the floating gate and accumulate,
    A voltage is applied between the semiconductor substrate and the drains or sources of the first and second nonvolatile semiconductor memory elements when erasing charges accumulated in the floating gates of the first and second nonvolatile semiconductor memory elements. A non-volatile semiconductor memory device configured to generate hot carriers between bands in the semiconductor substrate and to erase charges accumulated in the floating gate by the hot carriers;
    The flip-flop circuit is configured to control the on / off state of the power transistor by an activation signal and apply power to the flip-flop circuit;
    Source lines connecting the sources of the first and second nonvolatile semiconductor memory elements for each row;
    A control signal for controlling the gates of the first and second transistors, the activation signal, and a row line for transmitting a selection signal of the sense unit for each row;
    A bit line for transmitting the information of the sense part for each column;
    The nonvolatile semiconductor memory element and the sense unit can be selectively cut off by a signal input to the row line,
    A semiconductor device, comprising: a reading unit that reads information stored in accordance with a state of electric charge accumulated in a floating gate of a nonvolatile semiconductor memory element designated by the bit line and the row line.
  11.  第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子とを備える記憶部と、
     活性化信号入力端子を有し、入力された活性化信号により前記記憶部からの情報を読み出すセンス回路と、前記センス回路により読み出した情報を保持して出力するフリップフロップ回路とを備える信号保持部と、
     前記記憶部の情報を読み出す際に前記信号保持部を充電するプリチャージ部と、
     前記信号保持部から出力される信号を増幅して出力する増幅検出部と、
     を備え、
     前記第1および第2の不揮発性半導体メモリ素子は、
     半導体基板上に形成されたフローティングゲート、ドレインおよびソースからなり、それぞれのソースが前記第1の制御信号端子に接続されるトランジスタ構成であり、
     書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、
     消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成されることを特徴とする半導体装置。
    A storage unit comprising: a first nonvolatile semiconductor memory element; and a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element;
    A signal holding unit having an activation signal input terminal and comprising a sense circuit that reads information from the storage unit by an input activation signal, and a flip-flop circuit that holds and outputs information read by the sense circuit When,
    A precharge unit that charges the signal holding unit when reading information from the storage unit;
    An amplification detector that amplifies and outputs the signal output from the signal holding unit;
    With
    The first and second nonvolatile semiconductor memory elements are:
    A transistor structure comprising a floating gate, a drain and a source formed on a semiconductor substrate, each source connected to the first control signal terminal,
    As a writing state, a voltage is applied between the source and drain to inject charges into the floating gate and accumulate,
    As an erased state, when erasing the charge accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source, and hot carriers between bands are generated in the semiconductor substrate. A semiconductor device configured to erase charges accumulated in the floating gate.
  12.  第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子とを備える記憶部と、
     1対の第1および第2の信号線を介して前記記憶部と接続され、活性化回路を併せ持つフリップフロップ回路によって前記記憶部から読み出した情報を保持して、出力する信号保持部と、
     を備え、
     前記第1および第2の不揮発性半導体メモリ素子は、
     半導体基板上に形成されたフローティングゲート、ドレインおよびソースからなり、それぞれのソースが前記第1の制御信号端子に接続されるトランジスタ構成であり、
     書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、
     消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、
     前記第1の不揮発性半導体メモリ素子は、ドレインが前記第1の信号線に、ソースが前記第1の制御信号端子に接続され、前記第2の不揮発性半導体メモリ素子は、ドレインが前記第2の信号線に、ソースが前記第1の制御信号端子に接続され、共通に接続される前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となり、
     前記信号保持部は、前記フリップフロップ回路の電源側に接続される電源用トランジスタを備える活性化回路を備えることを特徴とする半導体装置。
    A storage unit comprising: a first nonvolatile semiconductor memory element; and a second nonvolatile semiconductor memory element having a logic state opposite to the first nonvolatile semiconductor memory element;
    A signal holding unit that is connected to the storage unit via a pair of first and second signal lines and holds and outputs information read from the storage unit by a flip-flop circuit having an activation circuit;
    With
    The first and second nonvolatile semiconductor memory elements are:
    A transistor structure comprising a floating gate, a drain and a source formed on a semiconductor substrate, each source connected to the first control signal terminal,
    As a writing state, a voltage is applied between the source and drain to inject charges into the floating gate and accumulate,
    As an erased state, when erasing the charge accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source, and hot carriers between bands are generated in the semiconductor substrate. Configured to erase charges accumulated in the floating gate;
    The first nonvolatile semiconductor memory element has a drain connected to the first signal line, a source connected to the first control signal terminal, and the second nonvolatile semiconductor memory element has a drain connected to the second signal line. The first control signal terminal is connected to the first control signal terminal, and the first control signal terminal connected in common takes a predetermined potential at the time of erasing and writing, and becomes a reference potential at the time of reading,
    The semiconductor device according to claim 1, wherein the signal holding unit includes an activation circuit including a power transistor connected to a power source side of the flip-flop circuit.
  13.  第1の不揮発性半導体メモリ素子と、前記第1の不揮発性半導体メモリ素子に対し相反する論理状態を有する第2の不揮発性半導体メモリ素子と、第1の不揮発性半導体メモリ素子と直列に接続される第1のトランジスタと、第2の不揮発性半導体メモリ素子と直列に接続される第2のトランジスタと、を備える記憶部と、
     活性化回路を備えるフリップフロップ回路によって構成される信号保持部と、
     を備え、
     前記第1および第2の不揮発性半導体メモリ素子は、
     半導体基板上に形成されたフローティングゲート、ドレインおよびソースからなり、それぞれのソースが前記第1の制御信号端子に接続されるトランジスタ構成であり、
     書き込み状態として、前記ソース-ドレイン間に電圧を印加して電荷を前記フローティングゲートに注入して蓄積すると共に、
     消去状態として、前記フローティングゲートに蓄積された電荷の消去時に、前記半導体基板とドレイン又はソース間に電圧を印加し、バンド-バンド間によるホットキャリアを前記半導体基板中に発生させ、該ホットキャリアにより前記フローティングゲートに蓄積された電荷を消去するように構成され、
     前記記憶部は、
     第1の不揮発性半導体メモリ素子は、ドレインが第2の信号線を介して高速センスアンプに、ソースが前記第1のトランジスタのドレインに接続され、
     第2の不揮発性半導体メモリ素子は、ドレインが第1の信号線を介して高速センスアンプに、ソースが前記第2のトランジスタのドレインに接続され、
     前記第1のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、
     前記第2のトランジスタは、ゲートが活性化信号の入力端子に、ソースが前記第1の制御信号端子に接続され、
    前記第1の制御信号端子は、消去時および書き込み時に所定の電位をとり、読み出し時には基準電位となり、
     前記信号保持部は、前記フリップフロップ回路の電源側に接続される電源用トランジスタを備える活性化回路を備え、
     前記信号保持部は、前記活性化回路に与える制御信号によって、前記不揮発半導体メモリ素子に記憶されている情報を増幅して検出し、読み出した情報を保持して出力することを特徴とする半導体装置。
    A first non-volatile semiconductor memory element; a second non-volatile semiconductor memory element having a logic state opposite to the first non-volatile semiconductor memory element; and the first non-volatile semiconductor memory element connected in series. A storage unit, and a second transistor connected in series with the second nonvolatile semiconductor memory element;
    A signal holding unit configured by a flip-flop circuit including an activation circuit;
    With
    The first and second nonvolatile semiconductor memory elements are:
    A transistor structure comprising a floating gate, a drain and a source formed on a semiconductor substrate, each source connected to the first control signal terminal,
    As a writing state, a voltage is applied between the source and drain to inject charges into the floating gate and accumulate,
    As an erased state, when erasing the charge accumulated in the floating gate, a voltage is applied between the semiconductor substrate and the drain or source, and hot carriers between bands are generated in the semiconductor substrate. Configured to erase charges accumulated in the floating gate;
    The storage unit
    The first nonvolatile semiconductor memory element has a drain connected to a high-speed sense amplifier via a second signal line, and a source connected to the drain of the first transistor.
    The second nonvolatile semiconductor memory element has a drain connected to the high-speed sense amplifier via the first signal line, and a source connected to the drain of the second transistor,
    The first transistor has a gate connected to an input terminal of an activation signal and a source connected to the first control signal terminal,
    The second transistor has a gate connected to an activation signal input terminal and a source connected to the first control signal terminal.
    The first control signal terminal takes a predetermined potential at the time of erasing and writing, and becomes a reference potential at the time of reading,
    The signal holding unit includes an activation circuit including a power transistor connected to a power source side of the flip-flop circuit,
    The signal holding unit amplifies and detects information stored in the nonvolatile semiconductor memory element according to a control signal applied to the activation circuit, holds and outputs the read information. .
PCT/JP2009/055942 2008-03-25 2009-03-25 Nonvolatile semiconductor memory element and semiconductor device WO2009119658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505723A JP5240291B2 (en) 2008-03-25 2009-03-25 Nonvolatile semiconductor memory device and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008079058 2008-03-25
JP2008-079058 2008-03-25

Publications (1)

Publication Number Publication Date
WO2009119658A1 true WO2009119658A1 (en) 2009-10-01

Family

ID=41113850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055942 WO2009119658A1 (en) 2008-03-25 2009-03-25 Nonvolatile semiconductor memory element and semiconductor device

Country Status (3)

Country Link
JP (1) JP5240291B2 (en)
TW (1) TW201001420A (en)
WO (1) WO2009119658A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129793A (en) * 2011-05-20 2012-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device and signal processing circuit
JP2013008437A (en) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Memory device and signal processing circuit
WO2014061425A1 (en) * 2012-10-19 2014-04-24 株式会社フローディア Non-volatile semiconductor storage device
JP2015207326A (en) * 2014-04-18 2015-11-19 株式会社フローディア Nonvolatile semiconductor memory device
JP2023038897A (en) * 2021-09-07 2023-03-17 旺宏電子股▲ふん▼有限公司 Three-dimensional semiconductor structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206877A (en) * 1986-03-07 1987-09-11 Seiko Instr & Electronics Ltd Semiconductor nonvolatile ram
JPH01293655A (en) * 1988-05-23 1989-11-27 Seiko Instr Inc Nonvolatile ram
JPH0453094A (en) * 1990-06-20 1992-02-20 Seiko Instr Inc Non-volatile ram
JP2001358313A (en) * 2000-06-14 2001-12-26 Hitachi Ltd Semiconductor device
JP2008103011A (en) * 2006-10-18 2008-05-01 National Institute Of Advanced Industrial & Technology Semiconductor nonvolatile memory circuit and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122693A (en) * 1982-01-14 1983-07-21 Nippon Telegr & Teleph Corp <Ntt> Memory circuit
JPH084114B2 (en) * 1986-06-20 1996-01-17 工業技術院長 Semiconductor non-volatile RAM
JPH0281398A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Semiconductor memory
JPH0676582A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Semiconductor device
JPH11135738A (en) * 1997-10-29 1999-05-21 Nec Corp Microcomputer housing flash memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206877A (en) * 1986-03-07 1987-09-11 Seiko Instr & Electronics Ltd Semiconductor nonvolatile ram
JPH01293655A (en) * 1988-05-23 1989-11-27 Seiko Instr Inc Nonvolatile ram
JPH0453094A (en) * 1990-06-20 1992-02-20 Seiko Instr Inc Non-volatile ram
JP2001358313A (en) * 2000-06-14 2001-12-26 Hitachi Ltd Semiconductor device
JP2008103011A (en) * 2006-10-18 2008-05-01 National Institute Of Advanced Industrial & Technology Semiconductor nonvolatile memory circuit and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129793A (en) * 2011-05-20 2012-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device and signal processing circuit
JP2013008436A (en) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Memory device and signal processing circuit
JP2013008437A (en) * 2011-05-20 2013-01-10 Semiconductor Energy Lab Co Ltd Memory device and signal processing circuit
US9536574B2 (en) 2011-05-20 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Memory device and signal processing circuit
KR101960097B1 (en) * 2011-05-20 2019-03-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device and signal processing circuit
WO2014061425A1 (en) * 2012-10-19 2014-04-24 株式会社フローディア Non-volatile semiconductor storage device
US9502109B2 (en) 2012-10-19 2016-11-22 Floadia Corporation Non-volatile semiconductor storage device
JP2015207326A (en) * 2014-04-18 2015-11-19 株式会社フローディア Nonvolatile semiconductor memory device
JP2023038897A (en) * 2021-09-07 2023-03-17 旺宏電子股▲ふん▼有限公司 Three-dimensional semiconductor structures

Also Published As

Publication number Publication date
JP5240291B2 (en) 2013-07-17
JPWO2009119658A1 (en) 2011-07-28
TW201001420A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
US9899089B1 (en) Memory architecture having two independently controlled voltage pumps
KR100458412B1 (en) Level shifter for transforming voltage level and semiconductor memory device having the level shifter
JP5235422B2 (en) Nonvolatile semiconductor memory device
KR100349433B1 (en) Semiconductor Memory Device
JP3920943B2 (en) Nonvolatile semiconductor memory device
US6134157A (en) Nonvolatile semiconductor memory device capable of preventing data from being written in error
US6947325B2 (en) Non-volatile semiconductor memory device and controlling method of the same
JP5240291B2 (en) Nonvolatile semiconductor memory device and semiconductor device
JP4398986B2 (en) Voltage bias circuit
US6535427B1 (en) Nonvolatile semiconductor memory device with initialization circuit and control method thereof
US5253210A (en) Paritioned bit line structure of EEPROM and method of reading data therefrom
JP5477483B2 (en) Nonvolatile semiconductor memory device and nonvolatile semiconductor memory device
JP2735498B2 (en) Non-volatile memory
JP3615041B2 (en) Nonvolatile semiconductor memory device
JP5313487B2 (en) Nonvolatile semiconductor memory element and nonvolatile semiconductor memory device
JP3993581B2 (en) Semiconductor memory device
JP5422886B2 (en) Semiconductor device
KR940005695B1 (en) Row decoder circuit of non-volatile memory device
JP5487539B2 (en) Nonvolatile semiconductor memory element
JP3181478B2 (en) Nonvolatile semiconductor memory device
JP3993582B2 (en) Voltage bias circuit
JP5341412B2 (en) Read circuit for semiconductor memory device
JP5522296B2 (en) Nonvolatile semiconductor memory device
JPH0581883A (en) Semiconductor memory
JPH06112443A (en) Nonvolatile semiconductor storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505723

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723691

Country of ref document: EP

Kind code of ref document: A1