WO2009118820A1 - 防眩性膜及びその製造方法 - Google Patents

防眩性膜及びその製造方法 Download PDF

Info

Publication number
WO2009118820A1
WO2009118820A1 PCT/JP2008/055513 JP2008055513W WO2009118820A1 WO 2009118820 A1 WO2009118820 A1 WO 2009118820A1 JP 2008055513 W JP2008055513 W JP 2008055513W WO 2009118820 A1 WO2009118820 A1 WO 2009118820A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic resin
acrylate
antiglare film
film
Prior art date
Application number
PCT/JP2008/055513
Other languages
English (en)
French (fr)
Inventor
正樹 林
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to CN2008801282154A priority Critical patent/CN101981472A/zh
Priority to PCT/JP2008/055513 priority patent/WO2009118820A1/ja
Priority to US12/920,429 priority patent/US20110003093A1/en
Priority to KR1020107023623A priority patent/KR20100127293A/ko
Priority to EP08738808A priority patent/EP2261697A1/en
Publication of WO2009118820A1 publication Critical patent/WO2009118820A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to an antiglare film used for various high-definition image displays used for image display of computers, word processors, televisions and the like, and a method for producing the same.
  • CTR cathode ray tube display
  • liquid crystal displays liquid crystal displays
  • plasma displays touch panel input devices
  • organic or inorganic EL (electroluminescence) displays organic or inorganic EL (electroluminescence) displays
  • FEDs field emission displays
  • Patent Document 1 essentially consists of resin beads having a refractive index of 1.40 to 1.60 and an ionizing radiation curable resin composition on a transparent substrate.
  • An anti-scratch anti-glare film having an anti-glare layer formed on is disclosed.
  • Japanese Patent Laid-Open No. 10-20103 discloses at least a base film and transparent particles having an average particle size of 0.5 to 1.5 ⁇ m in an amount of 20 to 30 with respect to 100 parts by weight of the curable resin.
  • An antiglare film which is a laminated film with an antiglare layer containing parts by weight is disclosed. Further, in Japanese Patent No.
  • Patent Document 3 an anti-glare layer having fine irregularities on the surface composed of an ionizing radiation curable resin composition is formed on a transparent substrate.
  • a scratch-resistant antiglare film containing an organic filler is disclosed.
  • an antiglare layer of a type that forms an uneven shape on the surface of the antiglare layer by agglomeration of particles such as cohesive silica is also known.
  • anti-glare layers all have an uneven shape on the surface by a filler or the like, the uneven shape on the surface cannot be precisely controlled in the manufacturing process. In addition, it is difficult to stably form the shape, position, interval, size, and the like of the uneven shape on the surface. As a result, the position, size, shape, size, frequency, and the like of the uneven shape on the surface cannot be controlled, and the antiglare property of the obtained antiglare layer varies greatly.
  • an antiglare layer there is a type in which a film having a concavo-convex shape is laminated on the surface of the layer and the concavo-convex shape is transferred.
  • JP-A-6-16851 essentially discloses an ionizing radiation curable resin composition formed on a transparent substrate with a mat-shaped molding film having fine irregularities on the surface.
  • An anti-scratch anti-glare film having an anti-glare layer formed on is disclosed.
  • Japanese Patent Laid-Open No. 2000-206317 discloses an antiglare film in which an antiglare layer made of at least an ionizing radiation curable resin is laminated on one or both surfaces of a transparent substrate film.
  • an antiglare film is disclosed in which an irregular shape having periodicity is provided on the surface of the antiglare layer.
  • controlled surface irregularities can be formed by using a shaped film having a regular structure or a mat-shaped shaped film having a controlled surface irregularity shape.
  • an anti-glare film composed of at least an anti-glare layer, the anti-glare layer has a concavo-convex structure on the surface, and incident light is transmitted.
  • an antiglare film that is isotropically transmitted and scattered, has a scattering angle of 0.1 to 10 ° and exhibits a maximum value of scattered light intensity, and has a total light transmittance of 70 to 100%. ing.
  • This document describes a regular phase separation structure and a surface corresponding to the phase separation structure from a liquid phase containing a plurality of polymers, a polymer, a curable resin precursor, and a solvent by spinodal decomposition accompanying the evaporation of the solvent.
  • a manufacturing method for forming the concavo-convex structure is disclosed.
  • the anti-glare layer is produced by utilizing the self-ordering force that occurs naturally, so that even though the surface shape and arrangement are well controlled, the artificially formed minute uneven shape Unlike that, it is hard to cause iridescence due to interference of reflected light.
  • Patent Document 7 a solution containing at least one polymer, at least one curable resin precursor, and a solvent having a boiling point of 100 ° C. or higher is applied and dried.
  • a method for producing an antiglare film that cures a coating film after generating cellular rotational convection is disclosed.
  • at least two components of the polymer and the curable resin precursor may have phase separation properties, and the coating surface is raised by cellular rotational convection during the drying process.
  • a manufacturing method is disclosed in which a regular or periodic uneven shape is formed on the surface.
  • an anti-glare film is formed by successfully combining two kinds of naturally occurring self-ordering forces, phase separation and convection, and therefore the distance is controlled according to the size and arrangement of convection cells and An uneven shape having a good shape / height associated with the separation structure is formed. That is, an antiglare film having a sufficiently controlled shape, arrangement and size can be obtained.
  • the phase separation of the two components is strong, and the antiglare film obtained by convection has a dense structure with a narrow domain interval and a small number of plane parts (sea parts).
  • the low refractive index layer applied on the anti-glare film for the purpose cannot be formed along the uneven shape of the anti-glare film surface (or cannot be formed following it), and in a black display image (or image) It was difficult to further improve the blackness.
  • JP-A-6-18706 (Claim 1) Japanese Patent Laid-Open No. 10-20103 (Claim 1) Japanese Patent No.
  • an object of the present invention is to provide an antiglare film capable of preventing external light from being reflected on a display, suppressing white floating in a black display image, and displaying an image with a strong contrast feeling in which black is tightened. It is providing the anti-glare film using a film
  • Another object of the present invention is to provide an antiglare film that has high antiglare properties and can suppress iridescence due to interference of reflected light, an antiglare film using this film, and a method for producing the same.
  • Still another object of the present invention is to form a low refractive index layer with high follow-up along the surface shape of the antiglare film even if a low refractive index layer is laminated, and black in a black display image (or image).
  • An object of the present invention is to provide an antiglare film capable of improving the taste, an antiglare film using the film, and a method for producing the same.
  • the present inventor obtained a non-reactive (meth) acrylic resin, a (meth) acrylic resin having a polymerizable group, and a polyfunctional (meth) acrylate.
  • a string-like convex part is formed on the surface in a dispersed manner in a random direction, and an anti-glare film with a small area ratio of the string-like convex part can be formed.
  • the present invention has been completed by finding that it is possible to prevent reflection, suppress white floating in a black display image, and display an image with a strong contrast feeling in which black is tightened.
  • the antiglare film of the present invention has a non-reactive (meth) acrylic resin having a weight average molecular weight of 30,000 to 1,000,000, a weight average molecular weight of 1,000 to 100,000, and It is an anti-glare film composed of a cured product of a (meth) acrylic resin having a polymerizable group and a polyfunctional (meth) acrylate, and the string-like convex portions are dispersed in a random direction on the surface. It is formed and the area ratio of the said string-like convex part is 50% or less with respect to the whole surface.
  • the (meth) acrylic resin having a polymerizable group may be a (meth) acrylic resin having a (meth) acryloyl group in the side chain.
  • the average height of the string-like convex portions may be, for example, about 0.05 to 10 ⁇ m, and the average width may be, for example, about 0.1 to 30 ⁇ m.
  • the said string-like convex part may have the recessed part extended in a length direction.
  • This anti-glare film is composed of a (meth) acrylic resin, a (meth) acrylic resin having a polymerizable group, and a polyfunctional (meth) acrylate, in which at least two components undergo phase separation by spinodal decomposition and convection
  • a string-like convex part may be formed by producing.
  • the present invention includes a non-reactive (meth) acrylic resin having a weight average molecular weight of 30,000 to 1,000,000, a weight average molecular weight of 1,000 to 100,000, and having a polymerizable group
  • a non-reactive (meth) acrylic resin having a weight average molecular weight of 30,000 to 1,000,000, a weight average molecular weight of 1,000 to 100,000, and having a polymerizable group
  • Applying a solution containing a (meth) acrylic resin, a polyfunctional (meth) acrylate, and a solvent having a boiling point of 100 ° C. or higher a drying step for generating convection as the solvent evaporates, and curing the dried coating film
  • a method for producing an antiglare film comprising a curing step is also included.
  • the solution may further contain solvents having different boiling points.
  • the drying step among the (meth) acrylic resin, the (meth) acrylic resin having a polymerizable group, and the polyfunctional (meth) acrylate, at least two components are phase-separated by spinodal decomposition, and the solution is convected.
  • the string-like convex part may be formed by raising the surface by generating
  • the coating film may be cured by irradiating at least one selected from active energy rays and heat.
  • the present invention includes an antiglare film in which the antiglare film is formed on a transparent support.
  • a low refractive index layer may be further formed on the antiglare film.
  • This antiglare film is suitable for display devices such as a liquid crystal display device, a cathode ray tube display device, a plasma display, and a touch panel type input device.
  • resins having a polymerization component of a monomer selected from a methacrylic acid monomer and an acrylic monomer are collectively referred to as “(meth) acrylic resin”.
  • Monomers having a polymerizable group selected from a methacryloyl group and an acryloyl group are collectively referred to as “(meth) acrylate”.
  • the antiglare film of the present invention When the antiglare film of the present invention is applied to various display devices, it is possible to prevent external light from being reflected on the display, to suppress white floating in a black display image, and to display an image with a strong contrast feeling in which black is tightened. it can. Further, the antiglare property is high, and iridescence due to interference of reflected light can be suppressed. Furthermore, even if a low refractive index layer is laminated, the low refractive index layer can be formed with high followability along the surface shape of the antiglare film, and the blackness in a black display image (or image) can be improved.
  • FIG. 1 is a laser reflection micrograph (magnification 5 times) of an uneven surface shape of the antiglare film obtained in Example 2.
  • FIG. 2 is a laser reflection micrograph (5 times magnification) of the surface irregularity shape in the antiglare film obtained in Example 4.
  • FIG. 3 is a laser reflection micrograph (magnification 5 times) of the uneven surface of the antiglare film obtained in Comparative Example 2.
  • the antiglare film of the present invention can be produced by using convection (convection cell) associated with phase separation of a plurality of polymers, and more specifically, (meth) acrylic resin (“non-reactive (meth) acrylic resin”). And (meth) acrylic resin having a polymerizable group (“reactive (meth) acrylic resin having a polymerizable group", or simply "reactive (meth) acrylic resin”).
  • a polyfunctional (meth) acrylate, and a solution containing a solvent having a boiling point of 100 ° C. or higher a drying step for generating convection as the solvent evaporates, and the dried coating film is cured. It can be manufactured through a curing process. More specifically, it can be carried out usually by coating the solution on a support and evaporating the solvent from the coating layer. When a peelable support is used as the support, the coating film may be peeled from the support to form an antiglare film.
  • Non-reactive (meth) acrylic resin a single or copolymer of a (meth) acrylic monomer, a copolymer of a (meth) acrylic monomer and a copolymerizable monomer, or the like is used. it can.
  • (meth) acrylic monomers include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate, ( (Meth) acrylic acid isobutyl, (meth) acrylic acid hexyl, (meth) acrylic acid octyl, (meth) acrylic acid 2-ethylhexyl (meth) acrylic acid C 1-10 alkyl; (meth) acrylic acid phenyl ( (Meth) acrylic acid aryl; hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate; glycidyl (meth) acrylate; N, N-dialkylaminoalkyl (meth) acrylate; (meth) acrylonitrile Alicyclic hydrocarbons such as tricyclodecanyl groups Examples thereof include
  • copolymerizable monomer examples include styrene monomers, vinyl ester monomers (fatty acid vinyl ester monomers), maleic anhydride, maleic acid, and fumaric acid. These monomers can be used alone or in combination of two or more.
  • (meth) acrylic resins examples include poly (meth) acrylic esters such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer Examples thereof include methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, (meth) acrylic acid ester-styrene copolymer (MS resin, etc.), and the like.
  • Preferable (meth) acrylic resins include poly (meth) acrylic acid C 1-6 alkyl such as poly (meth) methyl acrylate, particularly methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100%). And a methyl methacrylate-based resin.
  • the weight average molecular weight of the (meth) acrylic resin is, for example, 30,000 to 1,000,000, preferably 100,000 to 700,000, more preferably 200,000 to 500,000 (particularly 300,000 to About 500,000).
  • Such a resin provides a good balance between the solubility in the dope solution and the film strength after curing.
  • compatibility with the (meth) acrylic resin having a functional group involved in the curing reaction is improved, and it becomes difficult to form a domain structure due to phase separation and convection.
  • the glass transition temperature of the (meth) acrylic resin is, for example, in the range of ⁇ 100 ° C. to 250 ° C., preferably ⁇ 50 ° C. to 230 ° C., more preferably about 0 to 200 ° C. (for example, about 50 to 180 ° C.). You can choose.
  • the glass transition temperature is advantageously 50 ° C. or higher (for example, about 70 to 200 ° C.), preferably 100 ° C. or higher (for example, about 100 to 170 ° C.).
  • ((Meth) acrylic resin having a polymerizable group) As the polymerizable group, a functional group involved in the curing reaction (a functional group capable of reacting with a polyfunctional (meth) acrylate described later) can be used. Such a polymerizable group may be included in the main chain of the (meth) acrylic resin, or may be included in the side chain. The polymerizable group may be introduced into the main chain by copolymerization or cocondensation, but is usually introduced into the side chain.
  • Such polymerizable groups include condensable or reactive functional groups (for example, hydroxyl group, acid anhydride group, carboxyl group, amino group or imino group, epoxy group, glycidyl group, isocyanate group, etc.), radical polymerizable A functional group (eg, a C 2-6 alkenyl group such as vinyl, propenyl, isopropenyl, butenyl, allyl, etc., a C 2-6 alkynyl group such as ethynyl, propynyl, butynyl, a C 2-6 alkenylidene group such as vinylidene, or the like And a functional group having a radical polymerizable functional group (such as a (meth) acryloyl group). Of these functional groups, radically polymerizable functional groups are preferred.
  • the (meth) acrylic resin having a polymerizable group in the side chain has, for example, a (meth) acrylic resin having a reactive group (such as the functional group exemplified in the above-mentioned condensable or reactive functional group).
  • the compound (ii) is obtained by reacting the resin (i), a reactive group with respect to the reactive group of the (meth) acrylic resin, and the compound (polymerizable compound) (ii) having the polymerizable group. It can be produced by introducing a polymerizable group into a (meth) acrylic resin.
  • Examples of the (meth) acrylic resin (i) having a reactive group include a thermoplastic resin having a carboxyl group or an acid anhydride group thereof (for example, (meth) acrylic resin (methyl methacrylate- (meth) acrylic acid).
  • (Meth) acrylic acid- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, etc.) such as a copolymer, (meth) acrylic resin having a hydroxyl group [(Meth) acrylic acid ester- (meth) acrylic acid hydroxyalkyl ester copolymer, etc.], (meth) acrylic resin having epoxy group [for example, (meth) acrylic resin having glycidyl group, etc.] it can.
  • the copolymer preferably contains 50 mol% or more of (meth) acrylic acid.
  • Said (meth) acrylic-type resin (i) can be used individually or in combination of 2 or more types.
  • the reactive group of the polymerizable compound (ii) a reactive group with respect to the reactive group of the (meth) acrylic resin (i), for example, the condensability or reaction exemplified in the section of the functional group of the polymer. And functional groups similar to the functional group.
  • Examples of the polymerizable compound (ii) include a polymerizable compound having an epoxy group [for example, an epoxy group-containing (meth) acrylate (epoxy C 3 -3 such as glycidyl (meth) acrylate, 1,2-epoxybutyl (meth) acrylate), etc.
  • an epoxy group-containing (meth) acrylate epoxy C 3 -3 such as glycidyl (meth) acrylate, 1,2-epoxybutyl (meth) acrylate
  • alkyl (meth) acrylate epoxycycloC 5-8 alkenyl (meth) acrylate such as epoxycyclohexenyl (meth) acrylate), allyl glycidyl ether, etc.
  • a compound having a hydroxyl group [hydroxyl group-containing (meth) acrylate, for example, hydroxy C 2-4 alkyl (meth) acrylates such as hydroxyethyl (meth) acrylate; and C 2-6 alkylene glycol mono (meth) acrylates such as ethylene glycol mono (meth) acrylate], organic amino group That the polymerizable compound [e.g., amino group-containing (meth) acrylate; C 3-6 alkenyl amines such as allylamine; 4-aminostyrene, etc.
  • aminostyrene such as di-aminostyrene
  • a polymerizable compound having an isocyanate group for example, Isocyanate group-containing (poly) urethane (meth) acrylate, vinyl isocyanate and the like
  • a polymerizable compound having a carboxyl group or an acid anhydride group thereof for example, an unsaturated carboxylic acid such as (meth) acrylic acid or maleic anhydride or the like
  • Anhydrate etc. can be exemplified.
  • These polymerizable compounds (ii) can be used alone or in combination of two or more.
  • examples of the combination of the reactive group of the (meth) acrylic resin (i) and the reactive group of the polymerizable compound (ii) include the following combinations.
  • an epoxy group-containing polymerizable compound such as an epoxy group-containing (meth) acrylate is particularly preferable.
  • the polymerizable group-containing polymer for example, a polymer in which a polymerizable unsaturated group is introduced into a part of the carboxyl group of the (meth) acrylic resin, is obtained from Daicel Chemical Industries, Ltd. as “Cyclomer P”, for example. it can. Cyclomer P is produced by reacting the epoxy group of 3,4-epoxycyclohexenylmethyl acrylate with a part of the carboxyl group of the (meth) acrylic acid- (meth) acrylic ester copolymer to form a side chain. It is a (meth) acrylic polymer into which a photopolymerizable unsaturated group is introduced.
  • the introduction amount of the polymerizable group with respect to the (meth) acrylic resin is 0.001 to 10 mol, preferably 0.01 to 5 mol, more preferably 0.02 to 3 with respect to 1 kg of the (meth) acrylic resin. It is about a mole.
  • the proportion of the (meth) acrylic monomer unit having a polymerizable group is, for example, 10 to It is 90 mol%, preferably 20 to 60 mol%, more preferably about 30 to 50 mol%.
  • the weight average molecular weight (total molecular weight including the polymerizable group) of the reactive (meth) acrylic resin having such a polymerizable group is, for example, 1,000 to 100,000, preferably 5,000 to 50, 000, more preferably about 10,000 to 30,000.
  • Such a resin has a good balance between the solubility in the dope solution and the curing reactivity.
  • Irregular shapes on the surface raised by convection are finally caused by actinic rays (ultraviolet rays, electron beams, etc.) or heat. Cure to form a cured resin. Therefore, scratch resistance can be imparted to the antiglare film, and durability can be improved.
  • the two types of (meth) acrylic resins are incompatible with each other and have weak phase separation properties, and are incompatible with each other near the processing temperature. With such a combination, convection can be generated with a weak phase separation action, and the area of the flat portion on the film surface can be increased. Since the (meth) acrylic resin has rigidity and high light resistance, it has very high durability as an antiglare film.
  • polymers such as styrene resins and organic acid vinyl esters can be used as the polymer for forming the phase separation structure, as long as the effects of the present invention are not impaired.
  • the polyfunctional (meth) acrylate is a compound having a functional group that reacts with heat or active energy rays (such as ultraviolet rays or EB (electron beam)), and has the polymerizable group by heat or active energy rays.
  • a resin particularly a cured or crosslinked resin
  • the functional group of the polyfunctional (meth) acrylate may be an epoxy group, isocyanate group, alkoxysilyl group, silanol group, polymerizable group (vinyl group, allyl group, (meth) acryloyl group, etc.), etc.
  • Photocurable groups that can be cured in a short time especially ultraviolet curable groups
  • radically polymerizable groups such as vinyl groups, allyl groups, (meth) acryloyl groups
  • photosensitive groups such as cinnamoyl groups
  • a radical polymerizable group is particularly preferable.
  • the polyfunctional (meth) acrylate has at least two (preferably about 2 to 6, more preferably about 2 to 4) polymerizable unsaturated bonds, such as alkylene glycol di (meth) acrylate [for example, , C 2-10 alkylene glycol di such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate (Meth) acrylate, etc.], polyoxyalkylene glycol di (meth) acrylate [for example, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyoxytetramethylene glycol di (meth) acrylate (Poly) oxyalkylene glycol di (meth) acrylate, etc.], di (meth) acrylate having
  • the polyfunctional (meth) acrylate may be an oligomer or a resin as long as it has two or more polymerizable unsaturated bonds, and examples thereof include (meth) acrylates of bisphenol A-alkylene oxide adducts, Epoxy (meth) acrylate (bisphenol A type epoxy (meth) acrylate, novolac type epoxy (meth) acrylate, etc.), polyester (meth) acrylate (for example, aliphatic polyester type (meth) acrylate, aromatic polyester type (meth) acrylate) Etc.), (poly) urethane (meth) acrylate (polyester type urethane (meth) acrylate, polyether type urethane (meth) acrylate, etc.), silicone (meth) acrylate, and the like.
  • (meth) acrylates of bisphenol A-alkylene oxide adducts Epoxy (meth) acrylate (bisphenol A type epoxy (meth) acrylate, no
  • polyfunctional (meth) acrylates can be used alone or in combination of two or more.
  • polyfunctional monomers having a polymerizable unsaturated bond of about 3 to 6 particularly dipentaerythritol tetra to hexa (dipentaerythritol hexa (meth) acrylate), etc.
  • Method (Meth) acrylate is preferred.
  • the molecular weight of the polyfunctional (meth) acrylate is about 5000 or less, preferably about 2000 or less, more preferably about 1000 or less in consideration of compatibility with the polymer.
  • the lower limit of the molecular weight of polyfunctional (meth) acrylate is the molecular weight of ethylene glycol di (meth) acrylate.
  • the multifunctional (meth) acrylate may be used in combination with a curing agent depending on the type.
  • the polyfunctional (meth) acrylate may be used in combination with a curing agent such as amines or polyvalent carboxylic acids, or may be used in combination with a photopolymerization initiator.
  • photopolymerization initiator examples include conventional components such as acetophenones or propiophenones, benzyls, benzoins, benzophenones, thioxanthones, and acylphosphine oxides.
  • the content of the curing agent such as a photocuring agent is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight, based on 100 parts by weight of the polyfunctional (meth) acrylate. Part (particularly 1 to 5 parts by weight), and may be about 3 to 8 parts by weight.
  • the polyfunctional (meth) acrylate may contain a curing accelerator or a crosslinking agent.
  • the polyfunctional (meth) acrylate may be combined with a photocuring accelerator such as a tertiary amine (such as a dialkylaminobenzoic acid ester) or a phosphine photopolymerization accelerator.
  • the polyfunctional (meth) acrylate is a monofunctional vinyl compound [(meth) acrylic monomer such as (meth) acrylic acid ester, such as alkyl (meth) acrylate (methyl (meth) acrylate, etc. C 1-6 alkyl (meth) acrylate, etc.), cycloalkyl (meth) acrylate, (meth) acrylate having a bridged cyclic hydrocarbon group (isobornyl (meth) acrylate, adamantyl (meth) acrylate, etc.), glycidyl (meth) Acrylate; vinyl ester such as vinyl acetate, vinyl monomer such as vinyl pyrrolidone, etc.].
  • acrylic monomer such as (meth) acrylic acid ester, such as alkyl (meth) acrylate (methyl (meth) acrylate, etc. C 1-6 alkyl (meth) acrylate, etc.), cycloalkyl (meth) acrylate, (meth
  • Benard-type convection is also called Benard-Rayleigh convection because it was discovered by Benard and theorized by Rayleigh.
  • the critical temperature difference ⁇ T is determined by the thickness d of the coating film, the kinematic viscosity coefficient ⁇ of the coating film (solution), the temperature conductivity ⁇ of the coating film, the volume expansion coefficient ⁇ of the coating film, and the gravitational acceleration g. Convection occurs when the Rayleigh number Ra defined by the following equation exceeds a specific critical value.
  • Ra ( ⁇ ⁇ g ⁇ ⁇ T ⁇ d 3 ) / ( ⁇ ⁇ ⁇ )
  • the convection generated in this manner regularly repeats ascending and descending movements, and convex shapes having substantially regular or periodic intervals on the film surface are arranged as random string domains. It is known that the aspect ratio (length ratio in the coating direction / thickness direction) of this domain is about 2/1 to 3/1.
  • the method of convection is not particularly limited and may be other convection, for example, Marangoni convection (density difference convection) due to non-uniform distribution of surface tension.
  • Marangoni convection is a flow having a surface tension difference ⁇ as a driving force. Since the surface tension generally varies greatly depending on the temperature and concentration, if there is a temperature / concentration gradient on the surface of the coated thin film, a Marangoni flow is generated from a point with a low surface tension to a point with a high surface tension.
  • the increase in the viscous resistance accompanying the solvent evaporation due to drying acts to suppress the Marangoni flow.
  • the critical condition for generating Marangoni convection can be expressed by the Marangoni number Ma, which is the ratio of surface tension to viscous force, and is given by the following equation according to temperature T, thermal diffusivity ⁇ of coating solution, film thickness h, and viscosity ⁇ . It is known that vortex convection occurs when the Marangoni number exceeds a certain critical value Mac, and often appears at the beginning of drying when the film thickness is large and the viscosity is low.
  • a convection domain is generated after coating.
  • phase separation occurs in each convection domain, and the structure of phase separation grows with time, but the growth of phase separation stops at adjacent convective domain walls.
  • the formation of domains is controlled at intervals according to the size and arrangement of the convection domains, and a concavo-convex shape having a good shape and height associated with the phase separation structure is formed. That is, an antiglare film having a sufficiently controlled shape, arrangement and size can be obtained.
  • the convection and phase separation can be performed by evaporating a solvent in a solution containing two kinds of (meth) acrylic resins and a polyfunctional (meth) acrylate.
  • the solvent is indispensable for stably generating convection. The reason is that it has an action of lowering the temperature of the coating film surface by the heat of vaporization accompanying evaporation, and further has a fluidity action for causing the generated convection without delay.
  • the solvent can be selected according to the type and solubility of the (meth) acrylic resin and polyfunctional (meth) acrylate to be used.
  • a mixed solvent at least one type is a solid component (two types of (meth) acrylic resins).
  • a polyfunctional (meth) acrylate, a reaction initiator, other additives) may be used as long as the solvent can be uniformly dissolved.
  • solvents examples include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons ( Cyclohexane, etc.), aromatic hydrocarbons (benzene, toluene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, etc.), water, alcohols (ethanol, isopropanol, butanol, cyclo Hexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, amides (dimethylformamide, dimethylacetamide, etc.) and the like.
  • ketones
  • JP 2004-126495 A discloses a method for producing a sheet by evaporating a solvent from a solution in which at least one polymer and at least one curable resin precursor are uniformly dissolved.
  • the solvent in order to generate such a convection domain, it is preferable to use a solvent having a boiling point of 100 ° C. or higher at normal pressure.
  • the solvent is preferably composed of at least two types of solvents having different boiling points.
  • the boiling point of the high boiling point solvent is 100 ° C. or more, usually about 100 to 200 ° C., preferably 105 to 150 ° C., more preferably 110 to 130 ° C. Degree.
  • the low boiling point solvent generates a temperature difference between the upper layer and the lower layer due to evaporation, and the high boiling point solvent remains in the coating film and maintains fluidity.
  • Examples of the solvent having a boiling point of 100 ° C. or higher at normal pressure include aromatic hydrocarbons (toluene, xylene, etc.), alcohols (C 4-8 alkyl alcohols, such as butanol, pentyl alcohol, hexyl alcohol), alkoxy alcohols, and the like. (C 1-6 alkoxy C 2-6 alkyl alcohols such as methoxyethanol, methoxypropanol, butoxyethanol, etc.), alkylene glycols (C 2-4 alkylene glycols such as ethylene glycol and propylene glycol), ketones (cyclohexanone, etc.) ), Sulfoxides (such as dimethyl sulfoxide), and the like.
  • aromatic hydrocarbons toluene, xylene, etc.
  • alcohols C 4-8 alkyl alcohols, such as butanol, pentyl alcohol, hexyl alcohol
  • alkoxy alcohols and the like.
  • C 4-8 alkyl alcohols such as n-butanol, C 1-6 alkoxy C 2-6 alkyl alcohols such as methoxypropanol and butoxyethanol, and C 2-4 alkylene glycols such as ethylene glycol are preferable.
  • a solvent having a boiling point of 100 ° C. or higher (alcohol such as n-butanol, alkoxy alcohol such as methoxypropanol) and a solvent having a boiling point of less than 100 ° C. (ketone such as acetone or methyl ethyl ketone) Combination with a boiling point solvent).
  • Solvents having a boiling point of less than 100 ° C. include, in addition to the above ketones, C 1-3 alkanols such as ethanol and isopropanol, nitriles such as acetonitrile, halogenated C 1-3 such as dichloromethane and dichloroethane.
  • Examples include alkanes, ethers such as isopropyl ether and dimethoxyethane, acetic acid C 1-3 alkyl esters such as ethyl acetate, and aliphatic hydrocarbons such as hexane, cyclopentane and cyclohexane.
  • the boiling point of the low boiling point solvent may be, for example, about 50 to 95 ° C., preferably about 55 to 90 ° C., more preferably about 60 to 85 ° C. (for example, 65 to 80 ° C.).
  • the ratio of solvents having different boiling points is not particularly limited, but when a solvent having a boiling point of 100 ° C. or higher and a solvent having a boiling point of less than 100 ° C. are used in combination (when two or more types are used in combination, respectively), for example,
  • the former / the latter 10/90 to 70/30, preferably 10/90 to 50/50, more preferably 15/85 to 40/60 (particularly about 20/80 to 40/60).
  • a solvent that does not dissolve, erode, or swell the transparent support may be selected according to the type of the transparent support.
  • a solvent that does not dissolve, erode, or swell the transparent support may be selected according to the type of the transparent support.
  • an antiglare film can be formed without impairing the properties of the film by using, for example, tetrahydrofuran, methyl ethyl ketone, isopropanol, toluene or the like as a solvent for a mixed solution or a coating solution. Can be formed.
  • At least two components of the two (meth) acrylate resins and the polyfunctional (meth) acrylate are phase-separated from each other near the processing temperature. If the compatibility of both of the phases to be separated is too low, the convection domain generated in the process of solvent evaporation has a narrow and dense structure, making it difficult to uniformly apply a low refractive index layer on the antiglare film It becomes.
  • the non-reactive (meth) acrylic resin and the polyfunctional (meth) acrylate are usually completely incompatible with each other or weakly compatible with each other.
  • the polyfunctional (meth) acrylate is compatible with the reactive (meth) acrylate resin having a polymerizable group and near the processing temperature. Further, when the polyfunctional (meth) acrylate is compatible with the non-reactive (meth) acrylic resin, the reactive (meth) acrylic resin having the polymerizable group and the polyfunctional (meth) acrylate are the main components.
  • the mixture may be phase-separated into at least two phases of a mixture composed mainly of a non-reactive (meth) acrylic resin and a polyfunctional (meth) acrylate.
  • the polyfunctional (meth) acrylate may be compatible with at least one of the (meth) acrylic resins, and may preferably be compatible with both (meth) acrylic resins.
  • both (meth) acrylic resins mixtures based on non-reactive (meth) acrylic resins and polyfunctional (meth) acrylates, reactive (meth) acrylic resins and polyfunctional Phase-separated into at least two phases with a mixture mainly composed of a soluble (meth) acrylate.
  • the polymer phase separation between (meth) acrylic resins and the phase separation between (meth) acrylic resin and polyfunctional (meth) acrylate can be obtained by using a good solvent for both components. In the process of preparing and gradually evaporating the solvent, it can be easily determined by visually confirming whether or not the residual solid content becomes cloudy.
  • the refractive index of a non-reactive (meth) acrylic resin and a cured or crosslinked resin produced by curing a reactive (meth) acrylic resin and a polyfunctional (meth) acrylate are usually different from each other. Further, the refractive indexes of the non-reactive (meth) acrylic resin and the reactive (meth) acrylic resin are also different from each other.
  • the difference in refractive index between the non-reactive (meth) acrylic resin and the cured or crosslinked resin, and the difference in refractive index between the non-reactive (meth) acrylic resin and the reactive (meth) acrylic resin are, for example, 0 It may be about 0.001 to 0.2, preferably about 0.05 to 0.15.
  • phase separation progresses, a co-continuous phase structure is formed, and when the phase separation further progresses, the continuous phase becomes discontinuous due to its surface tension, resulting in a droplet phase structure (spherical, true spherical, discoid or ellipsoidal) Sea island structure of independent phase). Therefore, an intermediate structure between the co-continuous phase structure and the droplet phase structure (phase structure in the process of transition from the co-continuous phase to the droplet phase) can be formed depending on the degree of phase separation.
  • the phase separation structure of the antiglare film may be a sea-island structure (droplet phase structure, or a phase structure in which one phase is independent or isolated), a co-continuous phase structure (or network structure), An intermediate structure in which a co-continuous phase structure and a droplet phase structure are mixed may be used. With these phase separation structures, fine irregularities can be formed on the surface of the antiglare film after solvent drying.
  • a droplet phase structure having at least island-like domains is advantageous from the viewpoint of forming a surface uneven structure and increasing the surface hardness.
  • the phase separation structure composed of the non-reactive (meth) acrylic resin and the cured or cross-linked resin is a sea-island structure
  • the non-reactive (meth) acrylic resin component forms a sea phase.
  • the non-reactive (meth) acrylic resin component forms island-like domains.
  • the total amount of non-reactive (meth) acrylic resin and reactive (meth) acrylic resin (amount of polymer component) and the ratio (weight ratio) of polyfunctional (meth) acrylate are not particularly limited,
  • the former / the latter 5/95 to 95/5, preferably 10/90 to 90/10, more preferably 20/80 to 80/20 (particularly 30/70 to 70/30).
  • the ratio of the reactive (meth) acrylic resin having a polymerizable group and the polyfunctional (meth) acrylate is not particularly limited.
  • the number of moles of the reactive groups is equimolar (for example, 0 .5 to 1.5 times mol, preferably 0.8 to 1.2 times mol).
  • the ratio of the total amount (curable resin precursor component) of the reactive (meth) acrylic resin having the polymerizable group and the polyfunctional (meth) acrylate and the non-reactive (meth) acrylic resin is
  • the former / the latter may be selected from the range of about 99.9 / 0.1 to 10/90, for example, about 99/1 to 30/70 (particularly about 98/2 to 50/50). It may be.
  • the ratio of the non-reactive (meth) acrylic resin in all components (solid content) is, for example, about 1 to 60% by weight, preferably about 3 to 30% by weight, and more preferably about 4 to 15% by weight. .
  • the solution viscosity when convection occurs is too low, the solution viscosity is preferably reasonably high and the convection does not stagnate in order to maintain the uneven shape of the surface raised by convection. In order to occur, it is preferred that the viscosity of the solution be reasonably low.
  • the solid content concentration of the solution is, for example, about 5 to 50% by weight, preferably about 10 to 50% by weight, and more preferably about 15 to 40% by weight.
  • the coating thickness of the solution is, for example, about 20 to 200 ⁇ m, preferably about 20 to 100 ⁇ m, and more preferably about 20 to 50 ⁇ m.
  • the solution is applied on the transparent support with a coating thickness of about 20 to 50 ⁇ m.
  • the coating When the coating is applied, a part of the low boiling point solvent in the solution evaporates, so that the coating thickness becomes thin and at the same time a temperature difference occurs between the upper layer and the lower layer of the coating, and the convection has a size of about 50 ⁇ m. Can be generated.
  • the solvent is used at a temperature lower than the boiling point of the solvent (for example, 1 to 120 ° C., preferably 5 to 80 ° C., particularly 10 to 60 ° C. lower than the boiling point of the high boiling solvent). It is preferred to induce convection and phase separation by evaporating. For example, it may be dried at a temperature of about 30 to 200 ° C. (for example, 30 to 100 ° C.), preferably 40 to 120 ° C., more preferably about 40 to 80 ° C., depending on the boiling point of the solvent.
  • a temperature lower than the boiling point of the solvent for example, 1 to 120 ° C., preferably 5 to 80 ° C., particularly 10 to 60 ° C. lower than the boiling point of the high boiling solvent. It is preferred to induce convection and phase separation by evaporating. For example, it may be dried at a temperature of about 30 to 200 ° C. (for example, 30 to 100 ° C.), preferably 40 to 120 ° C., more preferably about 40
  • a dryer such as an oven and dried, but for a certain time (for example, 1 second to 1). For 3 minutes, preferably 3 to 30 seconds, more preferably about 5 to 20 seconds), at room temperature or room temperature (eg, 0 to 40 ° C., preferably about 5 to 30 ° C.), and then put into a dryer. preferable.
  • the amount of dry air is not particularly limited, but if the air flow is too strong, it is dried and solidified before sufficient convection is generated, so it is 50 m / min or less (eg, 1 to 50 m / min, preferably 1 to 30 m). / Min., More preferably about 1 to 10 m / min).
  • the angle at which the drying air is applied to the antiglare film is not particularly limited, and may be, for example, parallel to or perpendicular to the antiglare film.
  • the coating film is cured or crosslinked by heat or active energy rays (such as ultraviolet rays or electron beams).
  • active energy rays such as ultraviolet rays or electron beams.
  • the curing method can be selected according to the type of the curable resin precursor component, but a method of curing by irradiation with light such as ultraviolet rays or electron beams is usually used.
  • a general-purpose exposure source is usually an ultraviolet irradiation device. Note that light irradiation may be performed in an inert gas atmosphere if necessary.
  • the antiglare film thus obtained has a string-like (or linear) shape on its surface at a relatively controlled interval according to the arrangement of the convection domains by convection accompanying phase separation of a plurality of polymers.
  • the convex portions are formed in a distributed manner in a random direction.
  • the shape of each string-like convex part (two-dimensional shape of the film surface) is usually a straight line or a string shape having a curved part partially or entirely. An intersecting shape may be formed.
  • Such string-like convex portions are evenly dispersed on the surface of the film and have a partially continuous structure as described above.
  • the surface of the film has a two-dimensional network structure (as if it is a mask It can be observed as forming a mesh pattern of melon skin.
  • a string-like convex part should just form the net-like structure, and forms the structure where the continuous part and the non-continuous part were mixed normally.
  • the average height of the string-like convex portions is, for example, about 0.05 to 10 ⁇ m, preferably about 0.1 to 5 ⁇ m, more preferably about 0.3 to 3 ⁇ m (especially 0.5 to 2 ⁇ m).
  • the average width of the string-like convex portions is, for example, about 0.1 to 30 ⁇ m, preferably about 1 to 20 ⁇ m, more preferably about 3 to 15 ⁇ m (particularly about 5 to 10 ⁇ m). If both the height and width of the string-like convex portion are too large, the followability to the low refractive index layer is lowered, and conversely, if it is too small, the antiglare performance is lowered.
  • the bulge region due to convection becomes such a string-like convex portion, and the area occupied on the film surface is also reduced.
  • the area ratio of the string-like convex portions is 50% or less (for example, 1 to 50%) with respect to the entire surface, preferably 10 to 48%, more preferably 20 to 45% (particularly 30%). ⁇ 45%).
  • the antiglare film of the present invention Since the area of the string-like convex part is in such a low range on the film surface, the antiglare film of the present invention has a large area of the flat part formed as the concave part, and the low refractive index layer of the antiglare film The follow-up performance with respect to is improved.
  • the area of the string-like convex part is calculated not based on the surface area of the three-dimensional string-like convex part but based on the two-dimensional area observed in the micrograph.
  • the said string-like convex part may have a recessed part (or depression) in the convex part surface.
  • the shape and number of the recesses are not particularly limited, but usually a string-like recess corresponding to the shape of the string-like projection is formed. That is, the string-like recesses are formed along the length direction of the string-like protrusions, and both side portions of the string-like protrusions are formed to extend like a bank (bank or ridge) along the length direction. Also good.
  • concave portion is formed together with the ridges of the string-like convex portions accompanying the phase separation and convection, and such concave portions make the intervals between the convex portions of the domains more uniform and uniform. It is particularly preferable because a concavo-convex shape having an appropriate interval can be formed.
  • the recessed part does not need to be formed according to the shape of a string-like convex part, for example, the dotted
  • the average depth of the recesses is, for example, about 0.001 to 5 ⁇ m, preferably about 0.005 to 3 ⁇ m, and more preferably about 0.01 to 2 ⁇ m (particularly 0.1 to 1 ⁇ m).
  • the irregular shape formed by convection usually has substantially regularity or periodicity in the interval.
  • the average convex distance Sm may be about 10 to 300 ⁇ m, preferably about 25 to 250 ⁇ m, and more preferably about 30 to 200 ⁇ m.
  • the average convex distance Sm can be controlled by, for example, the thickness of the coating film when convection occurs.
  • the total light transmittance of the antiglare film is, for example, 70 to 100%, preferably 80 to 100%, more preferably 85 to 100% (for example, 85 to 95%), particularly 90 to 100% (for example, 90%). ⁇ 99%).
  • the haze of the antiglare film is, for example, about 0.5 to 50%, preferably 1 to 40%, and more preferably about 2 to 35%. Further, when a low refractive index layer described later is coated on the antiglare film, the haze is generally about 1 to 10% lower than the haze of the antiglare alone.
  • the haze when the antiglare film and the low refractive index layer are combined is, for example, about 0.5 to 30%, preferably about 1 to 25%, more preferably about 1 to 20%, and usually 1 to 10%. %. In the case of forming a low refractive index layer, it is preferable to adjust the haze of the antiglare film in consideration of a decrease in haze.
  • the haze and total light transmittance can be measured using a NDH-300A haze meter manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7105.
  • the transmitted image definition of the antiglare film can be selected from a range of about 10 to 100% when an optical comb having a width of 0.5 mm is used, but is preferably 10% or more and less than 90%, and more preferably 20%. About 80%.
  • the transmitted image definition is a scale for quantifying blurring and distortion of light transmitted through the film.
  • the transmitted image definition is measured through an optical comb that moves the transmitted light from the film, and a value is calculated based on the amount of light in the bright and dark portions of the optical comb. That is, when the film blurs the transmitted light, the image of the slit formed on the optical comb becomes thick, so that the amount of light at the transmissive part is 100% or less, while the light leaks at the non-transmissive part, 0%. That's it.
  • the value C of the transmitted image definition is defined by the following equation from the maximum transmitted light value M of the transparent portion and the minimum transmitted light value m of the opaque portion of the optical comb.
  • C (%) [(M ⁇ m) / (M + m)] ⁇ 100 That is, as the value of C approaches 100%, the image blur due to the antiglare film is smaller [reference: Suga, Mitamura, painting technology, July 1985 issue].
  • the measuring device for measuring the transmitted image definition Suga Test Instruments Co., Ltd. image clarity measuring instrument ICM-1DP can be used.
  • the optical comb an optical comb having a width of 0.125 to 2 mm can be used.
  • the center line average roughness Ra is about 0.01 to 0.25 ⁇ m, preferably 0.01 to 0.2 ⁇ m, more preferably about 0.02 to 0.15 ⁇ m. It is. Moreover, when the low-refractive-index layer is coated on the anti-glare film, the value after coating the low-refractive-index layer is preferably within this range.
  • the thickness of the antiglare film may be, for example, about 0.3 to 25 ⁇ m, preferably about 1 to 20 ⁇ m (for example, 1 to 18 ⁇ m), in order to impart an appropriate hard coat property and surface unevenness. Usually, it is about 6 to 15 ⁇ m (particularly 8 to 15 ⁇ m).
  • the thickness of the antiglare film may be, for example, 1 to 100 ⁇ m, preferably 2 to 70 ⁇ m, more preferably about 3 to 50 ⁇ m. Good.
  • Anti-glare film By using a non-peelable support (preferably a transparent support) as a support for the antiglare film, a laminate comprising a support and an antiglare film formed on the support is used. An antiglare film having a structure can be obtained. Further, a low refractive index layer (thin film layer) can be further formed on the antiglare film of the antiglare film. Further, after laminating the low refractive index layer on the antiglare film, the support is peeled off from the antiglare film, or after the antiglare film is peeled off from the support, the low refractive index layer is applied to the antiglare layer.
  • an antiglare film having a laminated structure composed of an antiglare layer and a low refractive index layer can also be obtained.
  • a light-transmitting support for example, a transparent support such as a synthetic resin film is used.
  • the support body which has a light transmittance may be comprised with the transparent polymer film for forming an optical member.
  • transparent support examples include resin sheets in addition to glass and ceramics.
  • resin which comprises a transparent support body resin similar to the said glare-proof layer can be used.
  • Preferred transparent supports include transparent polymer films such as cellulose derivatives [cellulose triacetate (TAC), cellulose acetate such as cellulose diacetate, etc.], polyester resins [polyethylene terephthalate (PET), polybutylene terephthalate (PBT), Polyarylate resin, etc.], Polysulfone resin [Polysulfone, Polyethersulfone (PES), etc.], Polyetherketone resin [Polyetherketone (PEK), Polyetheretherketone (PEEK), etc.], Polycarbonate resin (PC ), Polyolefin resins (polyethylene, polypropylene, etc.), cyclic polyolefin resins (ARTON, ZEONEX, etc.), halogen-containing resins (poly Etc.
  • TAC cellulose triacetate
  • PET polyethylene terephthal
  • the transparent support may be uniaxially or biaxially stretched, but is preferably optically isotropic.
  • a preferred transparent support is a low birefringence support sheet or film.
  • the optically isotropic transparent support include unstretched sheets or films, such as polyesters (PET, PBT, etc.), cellulose esters, particularly cellulose acetates (cellulose diacetate, cellulose triacetate, etc.).
  • the thickness of the support having a two-dimensional structure can be selected from the range of, for example, about 5 to 2000 ⁇ m, preferably 15 to 1000 ⁇ m, and more preferably about 20 to 500 ⁇ m.
  • the material of the low refractive index layer is not particularly limited, and may be composed of a resin component, inorganic or organic particles, a combination thereof, or the like, but is generally composed of a low refractive index resin.
  • the refractive index of the low refractive index resin is, for example, about 1.20 to 1.49, preferably about 1.25 to 1.47, and more preferably about 1.30 to 1.45.
  • the low refractive index resin examples include fluorine resins such as methylpentene resin, diethylene glycol bis (allyl carbonate) resin, polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF).
  • the low refractive index layer usually preferably contains a fluorine-containing compound. When a fluorine-containing compound is used, the refractive index of the low refractive index layer can be reduced as desired.
  • the fluorine-containing compound has a fluorine atom and a functional group (such as a curable group such as a crosslinkable group or a polymerizable group) that reacts with heat, active energy rays (such as ultraviolet rays or electron beams), and the like. And a fluorine-containing resin precursor that can be cured or crosslinked by an active energy ray or the like to form a fluorine-containing resin (particularly a cured or crosslinked resin).
  • a fluorine-containing resin precursor that can be cured or crosslinked by an active energy ray or the like to form a fluorine-containing resin (particularly a cured or crosslinked resin).
  • fluorine-containing resin precursors examples include fluorine atom-containing thermosetting compounds or resins [with fluorine atoms, reactive groups (epoxy groups, isocyanate groups, carboxyl groups, hydroxyl groups, etc.), polymerizable groups (vinyl). Group, allyl group, (meth) acryloyl group, etc.)], fluorine atom-containing photocurable compound or resin (photocurable fluorine-containing monomer or oligomer, etc.) curable by actinic rays (such as ultraviolet rays) Examples thereof include ultraviolet curable compounds.
  • thermosetting compound or resin for example, a low molecular weight resin obtained using at least a fluorine-containing monomer, for example, a fluorine-containing polyol (particularly a diol) is used instead of a part or all of the polyol component as a constituent monomer.
  • a fluorine-containing monomer for example, a fluorine-containing polyol (particularly a diol) is used instead of a part or all of the polyol component as a constituent monomer.
  • Polyester-based fluorine-containing resin A urethane-based fluorine-containing resin obtained by using a fluorine atom-containing polyol and / or a polyisocyanate component instead of a part or all of the polyol and / or polyisocyanate component can be exemplified. These thermosetting compounds or resins can be used alone or in combination of two or more.
  • Examples of the photocurable compound include monomers and oligomers (or resins, particularly low molecular weight resins), and examples of the monomers include, for example, a monofunctional monomer as exemplified in the section of the antiglare layer.
  • Fluorine atom-containing monomers corresponding to isomers and polyfunctional monomers fluorine atom-containing (meth) acrylic monomers such as fluorinated alkyl esters of (meth) acrylic acid, vinyl-based monomers such as fluoroolefins, etc.
  • monofunctional monomers such as dimers; di (meth) acrylates of fluorinated alkylene glycols such as 1-fluoro-1,2-di (meth) acryloyloxyethylene].
  • the fluorine atom containing oligomer or resin corresponding to the oligomer or resin illustrated by the term of the said glare-proof layer can be used.
  • These photocurable compounds can be used alone or in combination of two or more.
  • the curable resin precursor of the fluorine-containing resin can be obtained, for example, in the form of a solution (coating liquid), and such a coating liquid is, for example, “TT1006A” and “JN7215” manufactured by Nippon Synthetic Rubber Co., Ltd. Available as “Defenser TR-330” manufactured by Dainippon Ink & Chemicals, Inc.
  • the thickness of the low refractive index layer is, for example, about 0.04 to 2 ⁇ m, preferably about 0.06 to 0.5 ⁇ m, and more preferably about 0.08 to 0.3 ⁇ m.
  • the antiglare film has a concavo-convex shape in which the size of each convex portion and the distance between the convex portions are controlled substantially uniformly by convection, and thus has a uniform and high-grade antiglare property. Furthermore, it has high scratch resistance (hard coat property) and can control the intensity distribution of transmitted scattered light. In particular, it is possible to increase the scattering intensity in a specific angle range while transmitting and scattering the transmitted light isotropically. Furthermore, the clarity of the transmitted image is excellent, and there is little blurring of characters on the display surface. In addition, when the low refractive index layer is formed, external light reflection can be efficiently prevented on the surface thereof.
  • the antiglare film of the present invention is suitable for uses such as an optical member, and the support can be composed of a transparent polymer film for forming various optical members.
  • the antiglare film obtained in combination with the transparent polymer film may be used as an optical member as it is, and various optical elements disposed in the optical path of an optical element (for example, a polarizing plate, a retardation plate, a light guide plate, etc.)
  • An optical member may be formed in combination with an element. That is, the antiglare film may be disposed or laminated on at least one optical path surface of the optical element.
  • an anti-glare film may be laminated on at least one surface of the retardation plate, and an anti-glare film may be disposed or laminated on the exit surface of the light guide plate.
  • the antiglare film to which scratch resistance is imparted can also function as a protective film. Therefore, the antiglare film of the present invention is a laminate (optical member) using an antiglare film instead of at least one of the two protective films of the polarizing plate, that is, at least the polarizing plate. It is suitable for use as a laminate (optical member) in which an antiglare film is laminated on one surface.
  • the antiglare film and the antiglare film of the present invention can be used for various display devices such as liquid crystal display (LCD) devices, plasma displays, and display devices with a touch panel.
  • These display devices include the antiglare film and the optical member (particularly, a laminate of a polarizing plate and an antiglare film) as optical elements.
  • LCD liquid crystal display
  • the optical member particularly, a laminate of a polarizing plate and an antiglare film
  • it can be preferably used for a liquid crystal display device.
  • the liquid crystal display device may be a reflective liquid crystal display device that illuminates a display unit including a liquid crystal cell using external light, and a transmissive type that includes a backlight unit for illuminating the display unit. It may be a liquid crystal display device.
  • incident light from outside can be taken in through the display unit, and the transmitted light that has passed through the display unit can be reflected by the reflecting member to illuminate the display unit.
  • the antiglare film and the optical member can be disposed in the optical path ahead of the reflective member.
  • the antiglare film or the optical member can be disposed or laminated between the reflecting member and the display unit, on the front surface of the display unit, or the like.
  • a backlight unit causes light from a light source (a tubular light source such as a cold cathode tube or a point light source such as a light-emitting diode) to enter from one side and exit from a front emission surface.
  • a light guide plate for example, a light guide plate having a wedge-shaped cross section
  • a prism sheet may be provided on the front side of the light guide plate.
  • a reflection member for reflecting light from the light source toward the emission surface is disposed on the back surface of the light guide plate.
  • the antiglare film and the optical member can usually be disposed or laminated in the optical path ahead from the light source.
  • the antiglare film or the optical member can be disposed or laminated between the light guide plate and the display unit, on the front surface of the display unit, or the like.
  • the present invention is useful as an optical element for various applications requiring anti-glare properties and light scattering properties, for example, display devices such as the optical members and liquid crystal display devices (particularly high-definition or high-definition display devices). is there.
  • Example 1 Acrylic resin having a polymerizable unsaturated group in the side chain [weight average molecular weight: 25,000, a part of the carboxyl group of the (meth) acrylic acid- (meth) acrylic acid ester copolymer, 3,4-epoxycyclohexane Compound to which hexenyl methyl acrylate is added; manufactured by Daicel Chemical Industries, Ltd., Cyclomer P (ACA) 320M, solid content 49.6% by weight, solvent: 1-methoxy-2-propanol (MMPG) (boiling point 119 ° C.) 5.65 parts by weight, polymethyl methacrylate (PMMA) (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88) 0.9 parts by weight, polyfunctional acrylic UV curing monomer (dipentaerythritol hexaacrylate; Daicel ⁇ 6.3 parts by weight, manufactured by UC Corporation, DPHA, photoinitiator (Ciba Specialt
  • PMMA and the acrylic resin which has a polymerizable unsaturated group do not show perfect compatibility, but this solution shows weak phase-separation property with concentration.
  • This solution was cast on a triacetylcellulose film using a wire bar # 24, and then allowed to stand at room temperature for 10 seconds. Immediately after that, the solution was placed in an explosion-proof oven at 70 ° C. and a wind speed of 3 m / min and held for 5 seconds. Then, a convection cell accompanying solvent evaporation was generated. This coating film was further dried in an oven for 2 minutes to generate a phase separation structure in the convection cell and to form a coating layer having a surface irregularity of about 9 ⁇ m in thickness.
  • the coating layer was subjected to UV curing treatment by irradiating ultraviolet rays from a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) for about 30 seconds to produce an antiglare film having hard coat properties and a surface uneven structure.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • Example 2 For the antiglare film of Example 1, a thermosetting fluorine-containing compound coating solution (manufactured by Nissan Chemical Co., Ltd., LR204-6, solid content 1% by weight) was used as a low refractive index layer using a wire bar # 5. After coating, drying, and thermosetting at 90 ° C. for 5 minutes, a low reflection antiglare film was produced.
  • a thermosetting fluorine-containing compound coating solution manufactured by Nissan Chemical Co., Ltd., LR204-6, solid content 1% by weight
  • Example 3 Acrylic resin having a polymerizable unsaturated group in the side chain [compound in which 3,4-epoxycyclohexenylmethyl acrylate is added to a part of the carboxyl group of (meth) acrylic acid- (meth) acrylic ester copolymer) Manufactured by Daicel Chemical Industries, Ltd., Cyclomer P (ACA) 320M, solid content 49.6 wt%, solvent: 1-methoxy-2-propanol (boiling point 119 ° C.)] 5.24 parts by weight, polymethyl methacrylate (PMMA) (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88) 0.9 parts by weight, polyfunctional acrylic UV curing monomer (manufactured by Daicel-UCB, Inc., DPHA) 6.5 parts by weight, 0.5 part by weight of a photoinitiator (Ciba Specialty Chemicals, Irgacure 184) is 36.8 parts
  • PMMA and the acrylic resin which has a polymerizable unsaturated group do not show perfect compatibility, but this solution shows weak phase-separation property with concentration.
  • This solution was cast on a triacetyl cellulose film using a wire bar # 34, left at room temperature for 10 seconds, and then immediately put in an explosion-proof oven at 60 ° C. and a wind speed of 3 m / min and held for 5 seconds. Then, a convection cell accompanying solvent evaporation was generated. This coating film was further dried in an oven for 2 minutes to generate a phase separation structure in the convection cell and to form a coating layer having a concavo-convex shape on the surface and a thickness of about 9 ⁇ m.
  • the coating layer was subjected to UV curing treatment by irradiating ultraviolet rays from a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) for about 30 seconds, thereby producing a hard coat property and an antiglare film having an uneven structure on the surface.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • Example 4 For the antiglare film of Example 3, a thermosetting fluorine-containing compound coating solution (manufactured by Nissan Chemical Co., Ltd., LR204-6, solid content of 1% by weight) was used as a low refractive index layer using a wire bar # 5. After coating, drying, and thermosetting at 90 ° C. for 5 minutes, a low reflection antiglare film was produced.
  • a thermosetting fluorine-containing compound coating solution manufactured by Nissan Chemical Co., Ltd., LR204-6, solid content of 1% by weight
  • the acrylic resin which has a cellulose unsaturated propionate and a polymerizable unsaturated group is incompatible, and this solution shows phase-separation property with concentration.
  • This solution was cast on a triacetylcellulose film using a wire bar # 24, and then allowed to stand at room temperature for 10 seconds. Immediately after that, the solution was placed in an explosion-proof oven at 70 ° C. and a wind speed of 3 m / min and held for 5 seconds. Then, a convection cell accompanying solvent evaporation was generated. This coating film was further dried in an oven for 2 minutes to generate a phase separation structure in the convection cell and to form a coating layer having a surface irregularity of about 9 ⁇ m in thickness.
  • the coating layer was subjected to UV curing treatment by irradiating ultraviolet rays from a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) for about 30 seconds to produce an antiglare film having hard coat properties and a surface uneven structure.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • Comparative Example 2 For the anti-glare film of Comparative Example 1, a thermosetting fluorine-containing compound coating solution (manufactured by Nissan Chemical Co., Ltd., LR204-6, solid content 1% by weight) was used as the low refractive index layer. After coating, drying, and thermosetting at 90 ° C. for 5 minutes, a low reflection antiglare film was produced.
  • a thermosetting fluorine-containing compound coating solution manufactured by Nissan Chemical Co., Ltd., LR204-6, solid content 1% by weight
  • the low molecular weight PMMA and the acrylic resin having a polymerizable unsaturated group exhibit complete compatibility, and no phase separation is induced by concentration in this solution.
  • This solution was cast on a triacetyl cellulose film using a wire bar # 34, left at room temperature for 10 seconds, and then immediately put in an explosion-proof oven at 60 ° C. and a wind speed of 3 m / min and held for 5 seconds. Then, a convection cell accompanying solvent evaporation was generated.
  • This coating film was further dried in an oven for 2 minutes to generate a phase separation structure in the convection cell and to form a coating layer having a concavo-convex shape on the surface and a thickness of about 9 ⁇ m.
  • the coating layer was subjected to UV curing treatment by irradiating ultraviolet rays from a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) for about 30 seconds, thereby producing a hard coat property and an antiglare film having an uneven structure on the surface.
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • Table 1 shows the results of measuring the total light transmittance, haze, and transmitted image clarity of the antiglare films of the antiglare films obtained in Examples 1 to 4 and Comparative Examples 1 to 3.
  • the antiglare property, white floating (sink of black display), and image contrast are under the light environment illuminated by outside light.
  • the antiglare films obtained were each mounted on the surface of a VA (vertical alignment) type LCD panel having a front luminance of 450 cd / m 2 , a contrast of 400 to 1, 20 type, and a resolution of 60 ppi, and visually evaluated according to the following criteria: did.
  • the antiglare films of Examples 1 to 4 have no whitening, and have high antiglare properties and image contrast.
  • the black display looks white and the contrast of the image is low.
  • the film of Comparative Example 2 has a high haze value and low image definition.
  • the film of Comparative Example 3 is intensely reflected and has low antiglare properties.
  • FIGS. 1 to 3 are photographs of an objective lens magnification of 5 times with a laser reflection microscope having surface irregularities in the antiglare films obtained in Examples 2, 4 and Comparative Example 2, respectively.
  • the films of Examples 2 and 4 are formed by dispersing the string-like convex portions closed on the film surface in random directions, so that the irregular shape is formed by convection. It can be confirmed that it is formed.
  • the film of Comparative Example 2 has a dense structure in which the domain interval is narrow and the plane part (sea part) is small.

Abstract

 ディスプレイへの映り込みを防止できるとともに、黒表示の映像における白浮きを抑制でき、黒色が引き締まったコントラスト感の強い画像を表示できる防眩性膜を提供する。  重量平均分子量30,000~1,000,000の非反応性(メタ)アクリル系樹脂と、重量平均分子量1,000~100,000であり、かつ重合性基を有する(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートと、沸点100°C以上の溶媒とを含む溶液を塗布し、溶媒の揮散に伴って対流を発生させることにより、表面において紐状凸部がランダムな方向に分散して形成され、かつ前記紐状凸部の面積割合が全表面に対して50%以下の防眩性膜を得る。前記紐状凸部の平均高さが0.05~10μmであり、平均幅が0.1~30μmであってもよい。前記紐状凸部は、長さ方向に延びる凹部を有していてもよい。

Description

防眩性膜及びその製造方法
 本発明は、コンピュータ、ワードプロセッサ、テレビジョンなどの画像表示に用いる各種の高精細画像用ディスプレイに用いられる防眩性膜及びその製造方法に関する。
 近年、陰極管表示装置(CRT)ディスプレイ、液晶ディスプレイ、プラズマディスプレイ、タッチパネル式入力装置、有機又は無機EL(エレクトロルミネッセンス)ディスプレイ、FED(フィールドエミッションディスプレイ)などのディスプレイにおいて、蛍光灯や太陽光などの外部光源がディスプレイ表面に映り込むと、この反射光が邪魔で画面が見えにくくなる。すなわち、このような映り込みにより視認性が著しく劣るために、各種ディスプレイには、反射光をある程度拡散するための防眩層をディスプレイ表面に設けている。
 防眩層として、例えば、特開平6-18706号公報(特許文献1)には、透明基板上に、屈折率1.40~1.60の樹脂ビーズと電離放射線硬化型樹脂組成物から本質的に構成される防眩層が形成された耐擦傷性防眩フィルムが開示されている。また、特開平10-20103号公報(特許文献2)には、少なくとも基材フィルムと、平均粒径が0.5~1.5μmの透明粒子を、硬化型樹脂100重量部に対し20~30重量部含む防眩層との積層フィルムである防眩フィルムが開示されている。さらに、特許第3314965号公報(特許文献3)には、透明基板上に、電離放射線硬化型樹脂組成物から構成される表面が微細な凹凸を有する防眩層が形成され、前記防眩層に有機フィラーが含まれている耐擦傷性防眩フィルムが開示されている。その他、凝集性シリカ等の粒子の凝集によって防眩層の表面に凹凸形状を形成するタイプの防眩層も知られている。
 しかし、これらの防眩層は、いずれもフィラーなどによって、表面に凹凸形状を形成するため、製造工程上、表面の凹凸形状を緻密に制御できない。また、表面の凹凸形状の形、位置、間隔、サイズなどを安定して形成するのが困難である。その結果、表面の凹凸形状は、位置、サイズ、形、大きさ、頻度などを制御できず、得られた防眩層の防眩性は変動が大きくなる。また、防眩層として、層表面に凹凸形状を有するフィルムをラミネートして凹凸形状を転写するタイプもあるが、製造工程に転写過程が必要であり、工程が増えるとともに生産設備も必要となる。
 さらに、特開平6-16851号公報(特許文献4)には、透明基板上に、表面が微細な凹凸を有するマット状の賦型フィルムで賦形された電離放射線硬化型樹脂組成物から本質的に構成される防眩層が形成された耐擦傷性防眩フィルムが開示されている。また、特開2000-206317号公報(特許文献5)には、透明基板フィルムの一方又は両方の面に、少なくとも電離線放射線硬化型樹脂からなる防眩層を積層してなる防眩フィルムであって、前記防眩層の表面に周期性を有する凹凸形状を設けた防眩フィルムが開示されている。これらの製造方法では、規則正しい構造を有する賦型フィルム、又は表面凹凸形状を制御したマット状賦型フィルムを使用することにより、制御された良好な表面凹凸を形成することができる。
 しかし、このようなマット状賦型フィルム自身を製造することは困難であるため、量産性が低い。また、このように人工的に規則性の配列を行った場合、必然的に反射光が干渉を起こし、虹色化を起こすことも知られている。
 一方、特開2004-126495公報(特許文献6)では、少なくとも防眩層で構成された防眩性フィルムであって、前記防眩層が、表面に凹凸構造を有しており、入射光を等方的に透過して散乱し、かつ散乱光強度の極大値を示す散乱角が0.1~10°であるとともに、全光線透過率が70~100%である防眩性フィルムが開示されている。この文献には、複数のポリマー同士、ポリマーと硬化性樹脂前駆体と溶媒を含む液相から、前記溶媒の蒸発に伴うスピノーダル分解により、規則的な相分離構造及びその相分離構造に対応した表面の凹凸構造を形成する製造方法が開示されている。この方法では、自然に生じる自己秩序形成力をうまく利用して防眩層を製造するため、表面の形状及び配列が充分に制御されているにも拘わらず、人工的に形成した微小な凹凸形状とは異なり、反射光の干渉による虹色化を起こしにくい。
 しかし、この方法においても、相分離性の制御は難しく、原料のロット、ポリマー組成などのわずかな変化により、相分離構造のサイズが大きく変化してしまうため、防眩シートの安定した製造は困難である。
 さらに、特開2006-106224号公報(特許文献7)では、少なくとも1つのポリマーと、少なくとも1つの硬化性樹脂前駆体と、沸点100℃以上の溶媒とを含む溶液を塗布し、乾燥の過程で細胞状回転対流を発生させた後、その塗膜を硬化する防眩性膜の製造方法が開示されている。この文献に記載された方法では、前記ポリマー及び硬化性樹脂前駆体のうち少なくとも2つの成分が、互いに相分離性を有してもよく、乾燥過程において、細胞状回転対流により塗膜表面を隆起させて、表面に規則的又は周期的な凹凸形状を形成する製造方法が開示されている。この方法においては、相分離と対流という2種類の自然に生じる自己秩序形成力をうまく組み合わせて防眩性膜を形成しているため、対流細胞のサイズ・配列に応じた間隔に制御され且つ相分離構造に伴う良好な形・高さを有する凹凸形状が形成される。すなわち、形、配列、大きさともに、充分に制御された防眩性膜が得られる。
 しかし、この方法では、2つ成分の相分離性が強く、対流によって得られた防眩性膜は、ドメインの間隔が狭く平面部(海部)が少ない密な構造となるため、反射光低減の目的で防眩性膜上に塗布される低屈折率層が、防眩性膜表面の凹凸形状に沿って形成できず(又は追従して形成できず)、黒表示映像(又は画像)での黒味をさらに向上させるのは困難であった。
特開平6-18706号公報(請求項1) 特開平10-20103号公報(請求項1) 特許第3314965号公報(請求項1) 特開平6-16851号公報(請求項1) 特開2000-206317号公報(請求項1) 特開2004-126495号公報(請求項1、21、段落番号[0090]) 特開2006-106224号公報(請求項1、図1~4)
 従って、本発明の目的は、ディスプレイへの外光の映り込みを防止できるとともに、黒表示の映像における白浮きを抑制でき、黒色が引き締まったコントラスト感の強い画像を表示できる防眩性膜、この膜を用いた防眩性フィルム及びその製造方法を提供することにある。
 本発明の他の目的は、防眩性が高く、反射光の干渉による虹色化を抑制できる防眩性膜、この膜を用いた防眩性フィルム及びその製造方法を提供することにある。
 本発明のさらに他の目的は、低屈折率層を積層しても防眩性膜の表面形状に沿って高い追従性で低屈折率層を形成でき、黒表示映像(又は画像)での黒味を向上できる防眩性膜、この膜を用いた防眩性フィルム及びその製造方法を提供することにある。
 本発明者は、前記課題を達成するため鋭意検討した結果、非反応性の(メタ)アクリル系樹脂と、重合性基を有する(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートとを含む塗膜を硬化させると、表面に紐状凸部がランダムな方向に分散して形成され、かつ前記紐状凸部の面積割合が小さい防眩性膜を形成でき、ディスプレイへの外光の映り込みを防止できるとともに、黒表示の映像における白浮きを抑制でき、黒色が引き締まったコントラスト感の強い画像を表示できることを見いだし、本発明を完成した。
 すなわち、本発明の防眩性膜は、重量平均分子量30,000~1,000,000の非反応性の(メタ)アクリル系樹脂と、重量平均分子量1,000~100,000であり、かつ重合性基を有する(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートとの硬化物で構成された防眩性膜であって、表面において紐状凸部がランダムな方向に分散して形成され、かつ前記紐状凸部の面積割合が全表面に対して50%以下である。重合性基を有する(メタ)アクリル系樹脂は、側鎖に(メタ)アクリロイル基を有する(メタ)アクリル系樹脂であってもよい。前記紐状凸部の平均高さは、例えば、0.05~10μm程度であり、かつ平均幅は、例えば、0.1~30μm程度であってもよい。前記紐状凸部は、長さ方向に延びる凹部を有していてもよい。この防眩性膜は、(メタ)アクリル系樹脂、重合性基を有する(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートのうち、少なくとも2つの成分がスピノーダル分解により相分離するとともに、対流を生じることにより紐状凸部が形成されてもよい。
 本発明には、重量平均分子量30,000~1,000,000の非反応性の(メタ)アクリル系樹脂と、重量平均分子量1,000~100,000であり、かつ重合性基を有する(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートと、沸点100℃以上の溶媒とを含む溶液を塗布し、溶媒の揮散に伴って対流を発生させる乾燥工程と、乾燥した塗膜を硬化する硬化工程とで構成された防眩性膜の製造方法も含まれる。前記溶液は、さらに沸点の異なる溶媒を含んでいてもよい。前記乾燥工程において、(メタ)アクリル系樹脂、重合性基を有する(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートのうち、少なくとも2つの成分がスピノーダル分解により相分離するとともに、溶液が対流を発生することにより表面を隆起させて紐状凸部を形成してもよい。前記硬化工程において、活性エネルギー線及び熱から選択された少なくとも一種を照射して、塗膜を硬化してもよい。
 本発明には、透明性支持体の上に、前記防眩性膜が形成されている防眩性フィルムも含まれる。この防眩性フィルムにおいて、前記防眩性膜の上に、さらに低屈折率層が形成されていてもよい。この防眩性フィルムは、液晶表示装置、陰極管表示装置、プラズマディスプレイ、タッチパネル式入力装置などの表示装置に適している。
 なお、本明細書において、メタクリル酸系単量体及びアクリル系単量体から選択された単量体を重合成分とする樹脂を、「(メタ)アクリル系樹脂」と総称する。また、メタクリロイル基及びアクリロイル基から選択された重合性基を有する単量体を「(メタ)アクリレート」と総称する。
 本発明の防眩性膜を各種表示装置に適用すると、ディスプレイへの外光の映り込みを防止できるとともに、黒表示の映像における白浮きを抑制でき、黒色が引き締まったコントラスト感の強い画像を表示できる。また、防眩性が高く、反射光の干渉による虹色化を抑制できる。さらに、低屈折率層を積層しても防眩性膜の表面形状に沿って高い追従性で低屈折率層を形成でき、黒表示映像(又は画像)での黒味を向上できる。
 図1は、実施例2で得られた防眩性フィルムにおける表面凹凸形状のレーザー反射顕微鏡写真(倍率5倍)である。
 図2は、実施例4で得られた防眩性フィルムにおける表面凹凸形状のレーザー反射顕微鏡写真(倍率5倍)である。
 図3は、比較例2で得られた防眩性フィルムにおける表面凹凸形状のレーザー反射顕微鏡写真(倍率5倍)である。
発明の詳細な説明
 本発明の防眩性膜は、複数のポリマーの相分離に伴う対流(対流セル)を利用して製造でき、詳しくは、(メタ)アクリル系樹脂(「非反応性(メタ)アクリル系樹脂」と称する場合もある)と、重合性基を有する(メタ)アクリル系樹脂(「重合性基を有する反応性(メタ)アクリル系樹脂」、又は単に「反応性(メタ)アクリル系樹脂」と称する場合もある)と、多官能性(メタ)アクリレートと、沸点100℃以上の溶媒とを含む溶液を塗布し、溶媒の揮散に伴って対流を発生させる乾燥工程、及び乾燥した塗膜を硬化する硬化工程とを経て製造できる。より具体的には、通常、前記溶液を支持体にコーティングし、塗布層から溶媒を蒸発させることにより行うことができる。前記支持体として剥離性支持体を用いる場合には、支持体から塗膜を剥離して、防眩性膜としてもよい。
 (非反応性(メタ)アクリル系樹脂)
 非反応性(メタ)アクリル系樹脂としては、(メタ)アクリル系単量体の単独又は共重合体、(メタ)アクリル系単量体と共重合性単量体との共重合体などが使用できる。(メタ)アクリル系単量体には、例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸C1-10アルキル;(メタ)アクリル酸フェニルなどの(メタ)アクリル酸アリール;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;グリシジル(メタ)アクリレート;N,N-ジアルキルアミノアルキル(メタ)アクリレート;(メタ)アクリロニトリル;トリシクロデカニル基などの脂環式炭化水素基を有する(メタ)アクリレートなどが例示できる。共重合性単量体には、スチレン系単量体、ビニルエステル系単量体(脂肪酸ビニルエステル系単量体)、無水マレイン酸、マレイン酸、フマル酸などが例示できる。これらの単量体は、単独で又は二種以上組み合わせて使用できる。
 (メタ)アクリル系樹脂としては、例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル-スチレン共重合体(MS樹脂など)などが挙げられる。好ましい(メタ)アクリル系樹脂としては、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキル、特にメタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%程度)とするメタクリル酸メチル系樹脂が挙げられる。
 (メタ)アクリル系樹脂の重量平均分子量は、例えば、30,000~1,000,000、好ましくは100,000~700,000、さらに好ましくは200,000~500,000(特に300,000~500,000)程度である。このような樹脂は、ドープ液中の溶解性と硬化後の膜強度とのバランスが良くなる。特に、分子量が小さすぎると、硬化反応に関与する官能基を有する(メタ)アクリル系樹脂との相溶性が向上し、相分離及び対流の発生によるドメイン構造の形成が困難となる。
 (メタ)アクリル系樹脂のガラス転移温度は、例えば、-100℃~250℃、好ましくは-50℃~230℃、さらに好ましくは0~200℃程度(例えば、50~180℃程度)の範囲から選択できる。
 なお、表面硬度の観点から、ガラス転移温度は、50℃以上(例えば、70~200℃程度)、好ましくは100℃以上(例えば、100~170℃程度)であるのが有利である。
 (重合性基を有する(メタ)アクリル系樹脂)
 重合性基としては、硬化反応に関与する官能基(後述する多官能性(メタ)アクリレートと反応可能な官能基)を用いることができる。このような重合性基は、(メタ)アクリル系樹脂の主鎖に有していてもよく、側鎖に有していてもよい。前記重合性基は、共重合や共縮合などにより主鎖に導入されてもよいが、通常、側鎖に導入される。このような重合性基としては、縮合性又は反応性官能基(例えば、ヒドロキシル基、酸無水物基、カルボキシル基、アミノ基又はイミノ基、エポキシ基、グリシジル基、イソシアネート基など)、ラジカル重合性官能基(例えば、ビニル、プロペニル、イソプロペニル、ブテニル、アリルなどのC2-6アルケニル基、エチニル、プロピニル、ブチニルなどのC2-6アルキニル基、ビニリデンなどのC2-6アルケニリデン基、又はこれらのラジカル重合性官能基を有する官能基((メタ)アクリロイル基など)など)などが挙げられる。これらの官能基のうち、ラジカル重合性官能基が好ましい。
 重合性基を側鎖に有する(メタ)アクリル系樹脂は、例えば、反応性基(前記縮合性又は反応性官能基の項で例示の官能基と同様の基など)を有する(メタ)アクリル系樹脂(i)と、この(メタ)アクリル系樹脂の反応性基に対する反応性基と、前記重合性基とを有する化合物(重合性化合物)(ii)とを反応させ、化合物(ii)が有する重合性基を(メタ)アクリル系樹脂に導入することにより製造できる。
 前記反応性基を有する(メタ)アクリル系樹脂(i)としては、カルボキシル基又はその酸無水物基を有する熱可塑性樹脂[例えば、(メタ)アクリル系樹脂(メタクリル酸メチル-(メタ)アクリル酸共重合体などの(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体など)、ヒドロキシル基を有する(メタ)アクリル系樹脂[(メタ)アクリル酸エステル-(メタ)アクリル酸ヒドロキシアルキルエステル共重合体など]、エポキシ基を有する(メタ)アクリル系樹脂[例えば、グリシジル基を有する(メタ)アクリル系樹脂など]などが例示できる。なお、前記(メタ)アクリル系樹脂(i)のうち、前記共重合体は、(メタ)アクリル酸を50モル%以上含有するのが好ましい。前記(メタ)アクリル系樹脂(i)は、単独で又は二種以上組み合わせて使用できる。
 重合性化合物(ii)の反応性基としては、(メタ)アクリル系樹脂(i)の反応性基に対して反応性の基、例えば、前記ポリマーの官能基の項で例示した縮合性又は反応性官能基と同様の官能基などが挙げられる。
 前記重合性化合物(ii)としては、エポキシ基を有する重合性化合物[例えば、エポキシ基含有(メタ)アクリレート(グリシジル(メタ)アクリレート、1,2-エポキシブチル(メタ)アクリレートなどのエポキシC3-8アルキル(メタ)アクリレート;エポキシシクロヘキセニル(メタ)アクリレートなどのエポキシシクロC5-8アルケニル(メタ)アクリレートなど)、アリルグリシジルエーテルなど]、ヒドロキシル基を有する化合物[ヒドロキシル基含有(メタ)アクリレート、例えば、ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシC2-4アルキル(メタ)アクリレート;エチレングリコールモノ(メタ)アクリレートなどのC2-6アルキレングリコールモノ(メタ)アクリレートなど]、アミノ基を有する重合性化合物[例えば、アミノ基含有(メタ)アクリレート;アリルアミンなどのC3-6アルケニルアミン;4-アミノスチレン、ジアミノスチレンなどのアミノスチレン類など]、イソシアネート基を有する重合性化合物[例えば、イソシアネート基含有(ポリ)ウレタン(メタ)アクリレートやビニルイソシアネートなど]、カルボキシル基又はその酸無水物基を有する重合性化合物[例えば、(メタ)アクリル酸や無水マレイン酸などの不飽和カルボン酸又はその無水物など]が例示できる。これらの重合性化合物(ii)は、単独で又は二種以上組み合わせて使用できる。
 なお、(メタ)アクリル系樹脂(i)の反応性基と重合性化合物(ii)の反応性基との組合せとしては、例えば、以下の組合せなどが挙げられる。
 (i-1)(メタ)アクリル系樹脂(i)の反応性基:カルボキシル基又はその酸無水物基
   重合性化合物(ii)の反応性基:エポキシ基、ヒドロキシル基、アミノ基、イソシアネート基
 (i-2)(メタ)アクリル系樹脂(i)の反応性基:ヒドロキシル基
   重合性化合物(ii)の反応性基:カルボキシル基又はその酸無水物基、イソシアネート基
 (i-3)(メタ)アクリル系樹脂(i)の反応性基:アミノ基
   重合性化合物(ii)の反応性基:カルボキシル基又はその酸無水物基、エポキシ基、イソシアネート基
 (i-4)(メタ)アクリル系樹脂(i)の反応性基:エポキシ基
   重合性化合物(ii)の反応性基:カルボキシル基又はその酸無水物基、アミノ基。
 重合性化合物(ii)のうち、特に、エポキシ基含有重合性化合物(エポキシ基含有(メタ)アクリレートなど)が好ましい。
 前記重合性基含有ポリマー、例えば、(メタ)アクリル系樹脂のカルボキシル基の一部に重合性不飽和基を導入したポリマーは、例えば、「サイクロマーP」などとしてダイセル化学工業(株)から入手できる。なお、サイクロマーPは、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4-エポキシシクロヘキセニルメチルアクリレートのエポキシ基を反応させて、側鎖に光重合性不飽和基を導入した(メタ)アクリル系ポリマーである。
 (メタ)アクリル系樹脂に対する重合性基の導入量は、(メタ)アクリル系樹脂1kgに対して、0.001~10モル、好ましくは0.01~5モル、さらに好ましくは0.02~3モル程度である。
 重合性基を側鎖に導入した場合、重合性基を有する(メタ)アクリル系単量体単位(単量体に対応する単位)の割合は、全単量体単位のうち、例えば、10~90モル%、好ましくは20~60モル%、さらに好ましくは30~50モル%程度である。
 このような重合性基を有する反応性(メタ)アクリル系樹脂の重量平均分子量(重合性基も含めた総分子量)は、例えば、1,000~100,000、好ましくは5,000~50,000、さらに好ましくは10,000~30,000程度である。このような樹脂は、ドープ液中の溶解性と硬化反応性とのバランスが良くなる。
 対流によって隆起した表面の凹凸形状(例えば、対流ドメインにより配列、サイズを制御された相分離構造によって隆起した表面の凹凸形状)は、活性光線(紫外線、電子線など)や熱などにより最終的に硬化し、硬化樹脂を形成する。そのため、防眩性膜に耐擦傷性を付与でき、耐久性を向上できる。
 非反応性(メタ)アクリル系樹脂と、重合性基を有する反応性(メタ)アクリル系樹脂との割合(重量比)は、例えば、前者/後者=1/99~90/10、好ましくは3/97~70/30、さらに好ましくは5/95~50/50(特に10/90~40/60)程度である。
 本発明では、前記2種類の(メタ)アクリル系樹脂は、互いに非相溶で弱い相分離性を有しており、加工温度付近で互いに非相溶である。このような組み合わせとすることにより、弱い相分離作用で対流を発生させることができ、膜表面における平坦部の面積を大きくできる。(メタ)アクリル樹脂は、剛性があり、耐光性も高いため、防眩性膜として非常に高い耐久性を有している。
 なお、相分離構造を形成するためのポリマーとしては、前記非相溶な2つのポリマー以外にも、本発明の効果を損なわない範囲で、他のポリマー、例えば、スチレン系樹脂、有機酸ビニルエステル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、オレフィン系樹脂(脂環式オレフィン系樹脂を含む)、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン系樹脂(ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル系樹脂(2,6-キシレノールの重合体など)、セルロース誘導体(セルロースエステル類、セルロースカーバメート類、セルロースエーテル類など)、シリコーン樹脂(ポリジメチルシロキサン、ポリメチルフェニルシロキサンなど)、ゴム又はエラストマー(ポリブタジエン、ポリイソプレンなどのジエン系ゴム、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、アクリルゴム、ウレタンゴム、シリコーンゴムなど)などが含まれていてもよい。
 (多官能性(メタ)アクリレート)
 多官能性(メタ)アクリレートは、熱や活性エネルギー線(紫外線やEB(電子線)など)などにより反応する官能基を有する化合物であり、熱や活性エネルギー線などにより、前記重合性基を有する(メタ)アクリル系樹脂と硬化又は架橋して樹脂(特に硬化又は架橋樹脂)を形成できる。
 多官能性(メタ)アクリレートの官能基は、エポキシ基、イソシアネート基、アルコキシシリル基、シラノール基、重合性基(ビニル基、アリル基、(メタ)アクリロイル基など)などであってもよく、通常、短時間で硬化できる光硬化性基(特に紫外線硬化性基)、例えば、ラジカル重合性基(ビニル基、アリル基、(メタ)アクリロイル基など)や感光性基(シンナモイル基など)であり、特にラジカル重合性基が好ましい。
 多官能性(メタ)アクリレートは、少なくとも2つ(好ましくは2~6、さらに好ましくは2~4程度)の重合性不飽和結合を有しており、例えば、アルキレングリコールジ(メタ)アクリレート[例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレートなどのC2-10アルキレングリコールジ(メタ)アクリレートなど]、ポリオキシアルキレングリコールジ(メタ)アクリレート[例えば、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリオキシテトラメチレングリコールジ(メタ)アクリレートなどの(ポリ)オキシアルキレングリコールジ(メタ)アクリレートなど]、橋架環式炭化水素基を有するジ(メタ)アクリレート[例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、アダマンタンジ(メタ)アクリレートなど]、3~6程度の重合性不飽和結合を有する多官能性単量体[例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなど]が例示できる。さらに、多官能性(メタ)アクリレートは、2以上の重合性不飽和結合を有していれば、オリゴマー又は樹脂であってもよく、例えば、ビスフェノールA-アルキレンオキサイド付加体の(メタ)アクリレート、エポキシ(メタ)アクリレート(ビスフェノールA型エポキシ(メタ)アクリレート、ノボラック型エポキシ(メタ)アクリレートなど)、ポリエステル(メタ)アクリレート(例えば、脂肪族ポリエステル型(メタ)アクリレート、芳香族ポリエステル型(メタ)アクリレートなど)、(ポリ)ウレタン(メタ)アクリレート(ポリエステル型ウレタン(メタ)アクリレート、ポリエーテル型ウレタン(メタ)アクリレートなど)、シリコーン(メタ)アクリレートなどであってもよい。これらの多官能性(メタ)アクリレートは単独で又は二種以上組み合わせて使用できる。これらの多官能性(メタ)アクリレートのうち、3~6程度の重合性不飽和結合を有する多官能性単量体、特に、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのジペンタエリスリトールテトラ乃至ヘキサ(メタ)アクリレートが好ましい。
 多官能性(メタ)アクリレートの分子量としては、ポリマーとの相溶性を考慮して5000以下、好ましくは2000以下、さらに好ましくは1000以下程度である。なお、多官能性(メタ)アクリレートの分子量の下限値は、エチレングリコールジ(メタ)アクリレートの分子量である。
 多官能性(メタ)アクリレートは、その種類に応じて、硬化剤と組み合わせて用いてもよい。例えば、多官能性(メタ)アクリレートは、アミン類、多価カルボン酸類などの硬化剤と組み合わせて用いてもよく、光重合開始剤と組み合わせて用いてもよい。
 前記光重合開始剤としては、慣用の成分、例えば、アセトフェノン類又はプロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類、アシルホスフィンオキシド類などが例示できる。
 光硬化剤などの硬化剤の含有量は、多官能性(メタ)アクリレート100重量部に対して0.1~20重量部、好ましくは0.5~10重量部、さらに好ましくは1~8重量部(特に1~5重量部)程度であり、3~8重量部程度であってもよい。
 多官能性(メタ)アクリレートは硬化促進剤や架橋剤を含んでいてもよい。例えば、多官能性(メタ)アクリレートは、光硬化促進剤、例えば、第三級アミン類(ジアルキルアミノ安息香酸エステルなど)、ホスフィン系光重合促進剤などと組み合わせてもよい。
 さらに、多官能性(メタ)アクリレートは、単官能性ビニル系化合物[(メタ)アクリル酸エステルなどの(メタ)アクリル系単量体、例えば、アルキル(メタ)アクリレート(メチル(メタ)アクリレートなどのC1-6アルキル(メタ)アクリレートなど)、シクロアルキル(メタ)アクリレート、橋架環式炭化水素基を有する(メタ)アクリレート(イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなど)、グリシジル(メタ)アクリレート;酢酸ビニルなどのビニルエステル、ビニルピロリドンなどのビニル系単量体など]を含んでいてもよい。
 (対流)
 本発明では、前記2種類の(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを含む溶液を塗布した後、対流により、塗膜表面を隆起させて、膜表面において、紐状凸部がランダムな方向に分散して形成される。一般に、対流は、溶媒の蒸発乾燥とともに塗膜の表面付近が蒸発熱により冷却された結果、塗膜の上層と下層との間で限界以上の温度差が生じることにより発生する。このような対流は、ベナール型対流と称されている。また、ベナール型対流は、ベナールによって発見され、レイリーによって理論体系付けられたため、ベナール・レイリー対流とも称される。その限界温度差ΔTは、塗膜の厚さd、塗膜(溶液)の動粘性係数ν、塗膜の温度伝導率κ、塗膜の体積膨張係数α、重力加速度gによって決定される。対流は、以下の式で定義されるレイリー数Raが、特定の臨界値を超えると発生する。
   Ra=(α・g・ΔT・d)/(κ・ν)
 このようにして発生した対流は、規則正しく上昇運動と下降運動とが繰り返され、膜表面に略規則的又は周期的な間隔を有する凸形状がランダムな紐状ドメインとして配列される。このドメインのアスペクト比(塗布方向/厚み方向の長さ比)は2/1~3/1程度になることが知られている。
 また、対流の方式は特に限定されず、他の対流であってもよく、例えば、表面張力の不均一分布によるマランゴニ対流(密度差対流)であってもよい。マランゴニ対流とは、表面張力差Δσを駆動力とする流れである。表面張力は一般的に温度及び濃度によって大きく変化するので、塗布薄膜表面に温度・濃度勾配が存在すると、表面張力の低い点から高い点へ向かうマランゴニ流れが発生する。その一方で、乾燥による溶媒蒸発に伴う粘性抵抗力の増加はマランゴニ流れを抑制する方向に作用する。マランゴニ対流の発生臨界条件は表面張力と粘性力との比であるマランゴニ数Maで表現でき、温度T、塗布液の熱拡散率α、膜厚h、粘度μによって以下の式で与えられる。マランゴニ数がある臨界値Macを超えると渦対流が発生することが知られており、膜厚が大きく、粘度が低い乾燥初期に現れることが多い。
   Ma=Δσh/(αμ)
 (対流と相分離の併用)
 本発明では、このように対流を発生させ、対流の流れ及び固形分濃度差によって生じる表面の凹凸形状を形成するが、このような対流とともに、2種類の(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを含有する溶液を用いて、これらの成分のうち少なくとも2つの成分を相分離し、相分離構造を形成してもよい。対流と相分離との併用における詳しいメカニズムは解明できていないが、次のように推定できる。
 対流と相分離とを併用することにより、まず、塗布後に対流ドメインが発生する。次に、それぞれの対流ドメイン内で相分離が発生し、相分離の構造は時間とともに巨大化していくが、隣接して対流するドメイン壁で相分離の成長は止まる。その結果として、対流ドメインのサイズ、配列に応じた間隔にドメイン形成が制御され、相分離構造に伴う良好な形・高さの凹凸形状が形成される。すなわち、形、配列、大きさともに、充分に制御された防眩性膜が得られる。
 (溶媒)
 本発明では、2種の(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを含む溶液中の溶媒を蒸発させることにより、前記対流や相分離を行うことができる。特に、溶液に含まれる成分の中でも、溶媒は、安定的に対流を発生させるために必要不可欠である。その理由は、蒸発に伴う気化熱により塗膜表面の温度を低下させる作用を有するからであり、さらに、発生した対流を滞りなく生じさせるための流動性の作用を有するためである。
 溶媒は、用いる(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートの種類及び溶解性に応じて選択でき、混合溶媒の場合、少なくとも1種類は固形分(2種類の(メタ)アクリル系樹脂及び多官能性(メタ)アクリレート、反応開始剤、その他添加剤)を均一に溶解できる溶媒であればよい。そのような溶媒としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(ベンゼン、トルエンなど)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタンなど)、エステル類(酢酸メチル、酢酸エチルなど)、水、アルコール類(エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)などが例示できる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。
 なお、特開2004-126495号公報には、本発明と同様に、少なくとも1つのポリマーと少なくとも一つの硬化性樹脂前駆体とを均一に溶解した溶液から溶媒を蒸発させてシートを製造する方法において、適当な条件でスピノーダル分解させ、その後前記前駆体を硬化させることにより防眩層を作製する方法が開示されている。この文献では、スピノーダル分解での相分離により、防眩性フィルムの表面に凹凸形状を形成する方法は開示されているが、対流については記載されていない。
 本発明では、このような対流ドメインを発生させるために、溶媒として、常圧で沸点100℃以上の溶媒を用いるのが好ましい。さらに、対流セルを発生させるためには、溶媒が少なくとも2種類の沸点の異なる溶媒で構成されているのが好ましい。また、2種類の沸点の異なる溶媒を用いる場合、高沸点の溶媒の沸点は100℃以上であり、通常、100~200℃程度であり、好ましくは105~150℃、さらに好ましくは110~130℃程度である。特に、対流セルと相分離とを併用させる観点から、沸点100℃以上の溶媒を少なくとも1種と、沸点100℃未満の溶媒を少なくとも1種とを組み合わせて用いるのが好ましい。このような混合溶媒を用いると、低沸点の溶媒が、蒸発に伴う上層と下層との温度差を発生させ、高沸点の溶媒が塗膜中に残留し、流動性を維持する。
 常圧で沸点100℃以上の溶媒としては、例えば、芳香族炭化水素類(トルエン、キシレンなど)、アルコール類(ブタノール、ペンチルアルコール、ヘキシルアルコールなどのC4-8アルキルアルコールなど)、アルコキシアルコール類(メトキシエタノール、メトキシプロパノール、ブトキシエタノールなどのC1-6アルコキシC2-6アルキルアルコールなど)、アルキレングリコール類(エチレングリコールやプロピレングリコールなどのC2-4アルキレングリコールなど)、ケトン類(シクロヘキサノンなど)、スルホキシド類(ジメチルスルホキシドなど)などが挙げられる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。これらのうち、n-ブタノールなどのC4-8アルキルアルコール、メトキシプロパノールやブトキシエタノールなどのC1-6アルコキシC2-6アルキルアルコール、エチレングリコールなどのC2-4アルキレングリコールなどが好ましい。
 好ましい組み合わせとしては、例えば、沸点100℃以上の溶媒(n-ブタノールなどのアルコール類、メトキシプロパノールなどのアルコキシアルコール類など)と、沸点100℃未満の溶媒(アセトン、メチルエチルケトンなどのケトン類などの低沸点溶媒)との組み合わせなどが挙げられる。沸点100℃未満の溶媒(低沸点溶媒)としては、上記ケトン類に加えて、エタノール、イソプロパノールなどのC1-3アルカノール類、アセトニトリルなどのニトリル類、ジクロロメタン、ジクロロエタンなどのハロゲン化C1-3アルカン類、イソプロピルエーテル、ジメトキシエタンなどのエーテル類、酢酸エチルなどの酢酸C1-3アルキルエステル、ヘキサン、シクロペンタン、シクロヘキサンなどの脂肪族炭化水素類などが挙げられる。なお、低沸点溶媒の沸点は、例えば、50~95℃、好ましくは55~90℃、さらに好ましくは60~85℃(例えば、65~80℃)程度であってもよい。
 沸点の異なる溶媒の比率としては、特に限定されないが、沸点100℃以上の溶媒と、沸点100℃未満の溶媒を併用した場合(それぞれ、2種以上併用した場合は合計の重量比として)、例えば、前者/後者=10/90~70/30、好ましくは10/90~50/50、さらに好ましくは15/85~40/60(特に20/80~40/60程度)である。
 また、混合液又は塗布液を透明支持体に塗布する場合、透明支持体の種類に応じて、透明支持体を溶解や侵食、又は膨潤させない溶媒を選択してもよい。例えば、透明支持体としてトリアセチルセルロースフィルムを用いる場合、混合液又は塗布液の溶媒として、例えば、テトラヒドロフラン、メチルエチルケトン、イソプロパノール、トルエンなどを用いると、フィルムの性質を損なうことなく、防眩性膜を形成できる。
 本発明において、2種の(メタ)アクリレート系樹脂及び多官能性(メタ)アクリレートのうち、少なくとも2成分が、加工温度付近で互いに相分離する。相分離させる両者の相溶性が低過ぎる場合、溶媒を蒸発させる過程で発生した対流ドメインの間隔が狭く密な構造となり、防眩性膜の上に低屈折率層を均一に塗布するのが困難となる。なお、非反応性(メタ)アクリル系樹脂と多官能性(メタ)アクリレートとは、通常、互いに完全に非相溶であるか、弱い相溶性を示す。
 多官能性(メタ)アクリレートは、重合性基を有する反応性(メタ)アクリレート系樹脂と加工温度付近で互いに相溶する。さらに、多官能性(メタ)アクリレートが非反応性(メタ)アクリル系樹脂とも相溶する場合、前記重合性基を有する反応性(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを主成分とした混合物と、非反応性(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを主成分とした混合物との少なくとも二相に相分離してもよい。この場合も、2種の(メタ)アクリル系樹脂同士の相溶性が低すぎる場合、溶媒を蒸発させる過程で発生した対流ドメインの間隔が狭く密な構造となり、防眩性膜の上に低屈折率層を均一に塗布するのが困難となる。
 2種の(メタ)アクリル系樹脂が互いに非相溶である場合、少なくとも1成分の(メタ)アクリル系樹脂と多官能性(メタ)アクリレートとが加工温度付近で互いに相溶する組合せで使用される。すなわち、多官能性(メタ)アクリレートは少なくともいずれかの(メタ)アクリル系樹脂と相溶すればよく、好ましくは、両方の(メタ)アクリル系樹脂と相溶してもよい。両方の(メタ)アクリル系樹脂に相溶する場合、非反応性(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを主成分とした混合物と、反応性(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートを主成分とした混合物との少なくとも二相に相分離する。
 なお、(メタ)アクリル系樹脂同士のポリマー相分離性、及び(メタ)アクリル系樹脂と多官能性(メタ)アクリレートとの相分離性は、それぞれ双方の成分に対する良溶媒を用いて均一溶液を調製し、溶媒を徐々に蒸発させる過程で、残存固形分が白濁するか否かを目視にて確認することにより簡便に判定できる。
 さらに、通常、非反応性(メタ)アクリル系樹脂と、反応性(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートの硬化により生成した硬化又は架橋樹脂とは互いに屈折率が異なる。また、非反応性(メタ)アクリル系樹脂と反応性(メタ)アクリル系樹脂との屈折率も互いに異なる。非反応性(メタ)アクリル系樹脂と硬化又は架橋樹脂との屈折率の差、非反応性(メタ)アクリル系樹脂と反応性(メタ)アクリル系樹脂との屈折率の差は、例えば、0.001~0.2、好ましくは0.05~0.15程度であってもよい。
 相分離の進行に伴って共連続相構造を形成し、さらに相分離が進行すると、連続相が自らの表面張力により非連続化し、液滴相構造(球状、真球状、円盤状や楕円体状などの独立相の海島構造)となる。従って、相分離の程度によって、共連続相構造と液滴相構造との中間的構造(上記共連続相から液滴相に移行する過程の相構造)も形成できる。本発明において、防眩性膜の相分離構造は、海島構造(液滴相構造、又は一方の相が独立または孤立した相構造)、共連続相構造(又は網目構造)であってもよく、共連続相構造と液滴相構造とが混在した中間的構造であってもよい。これらの相分離構造により溶媒乾燥後には防眩性膜の表面に微細な凹凸を形成できる。
 前記相分離構造において、表面凹凸構造を形成し、かつ表面硬度を高める点からは、少なくとも島状ドメインを有する液滴相構造であるのが有利である。なお、非反応性(メタ)アクリル系樹脂と前記硬化又は架橋樹脂とで構成された相分離構造が海島構造である場合、非反応性(メタ)アクリル系樹脂成分が海相を形成してもよいが、表面硬度の観点から、非反応性(メタ)アクリル系樹脂成分が島状ドメインを形成するのが好ましい。なお、島状ドメインの形成により、乾燥後には防眩層の表面に微細な凹凸を形成できる。
 非反応性(メタ)アクリル系樹脂及び反応性(メタ)アクリル系樹脂の合計量(ポリマー成分の量)と、多官能性(メタ)アクリレートとの割合(重量比)は、特に制限されず、例えば、前者/後者=5/95~95/5、好ましくは10/90~90/10、さらに好ましくは20/80~80/20(特に30/70~70/30)程度である。
 前記重合性基を有する反応性(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートとの割合は、特に限定されないが、例えば、両者の反応性基のモル数が等モル(例えば、0.5~1.5倍モル、好ましくは0.8~1.2倍モル)程度に調整してもよい。さらに、前記重合性基を有する反応性(メタ)アクリル系樹脂と多官能性(メタ)アクリレートの合計量(硬化性樹脂前駆体成分)と、非反応性(メタ)アクリル系樹脂との割合は、特に限定されず、前者/後者=99.9/0.1~10/90程度の範囲から選択すればよく、例えば、99/1~30/70(特に98/2~50/50)程度であってもよい。また、非反応性(メタ)アクリル系樹脂の全成分中(固形分)の割合は、例えば、1~60重量%、好ましくは3~30重量%、さらに好ましくは4~15重量%程度である。
 (溶液の粘度及び濃度)
 本発明によれば、対流が発生した際の溶液粘度が低すぎると、対流に伴い隆起した表面の凹凸形状を保持するために、溶液の粘度は適度に高いのが好ましく、かつ対流が滞りなく生じるためには適度に溶液の粘度は低いのが好ましい。このような溶液の粘度にするために、溶液の固形分濃度は、例えば、5~50重量%、好ましくは10~50重量%、さらに好ましくは15~40重量%程度である。
 (塗布厚み)
 所望のサイズの対流ドメインを発生させるためには、溶液の塗布厚みは、例えば、20~200μm、好ましくは20~100μm、さらに好ましくは20~50μm程度である。例えば、凹凸形状の凸間距離(特に凸部と凸部との間の平坦部としての凹部の距離)を50μm程度にする場合は、20~50μm程度の塗布厚みで、透明支持体上に溶液を塗布すれば、溶液中の低沸点溶媒の一部が蒸発することにより、塗膜厚みが薄くなると同時に塗膜の上層と下層との間で温度差が発生し、50μm程度のサイズを有する対流を発生させることができる。
 (乾燥温度)
 前記溶液を流延又は塗布した後、溶媒の沸点よりも低い温度(例えば、高沸点溶媒の沸点よりも1~120℃、好ましくは5~80℃、特に10~60℃程度低い温度)で溶媒を蒸発させることにより、対流および相分離を誘起するのが好ましい。例えば、溶媒の沸点に応じて、30~200℃、(例えば、30~100℃)、好ましくは40~120℃、さらに好ましくは40~80℃程度の温度で乾燥させてもよい。
 特に、対流を発生させるためには、支持体上に塗布して流延又は塗布させた後、直ちにオーブンなどの乾燥機に投入して乾燥させるのではなく、一定時間(例えば、1秒~1分間、好ましくは3~30秒間、さらに好ましくは5~20秒間程度)、常温又は室温(例えば、0~40℃、好ましくは5~30℃程度)で放置した後に、乾燥機に投入するのが好ましい。また、乾燥風量は、特に限定されないが、風量が強すぎると、対流が充分に発生する前に乾燥して固化するため、50m/分以下(例えば、1~50m/分、好ましくは1~30m/分、さらに好ましくは1~10m/分程度)の風量で乾燥するのが好ましい。乾燥風を防眩性膜に当てる角度は、特に限定されず、例えば、防眩性膜に対して平行であってもよいし、垂直であってもよい。
 (硬化処理)
 前記溶液を乾燥した後、熱や活性エネルギー線(紫外線や電子線など)により、塗膜を硬化又は架橋する。硬化方法は、前記硬化性樹脂前駆体成分の種類に応じて選択できるが、通常、紫外線や電子線などの光照射により硬化する方法が用いられる。汎用的な露光源は、通常、紫外線照射装置である。なお、光照射は、必要であれば、不活性ガス雰囲気中で行ってもよい。
 (防眩性膜の特性)
 このようにして得られた防眩性膜は、複数のポリマーの相分離に伴う対流により、対流ドメインの配列に応じた比較的制御された間隔で、その表面において、紐状(又は線状)凸部がランダムな方向に分散して形成されている。各紐状凸部の形状(膜表面の二次元形状)は、通常、略直線状であるか、部分的又は全体的に曲線部を有する紐状であり、部分的な重複により、楕円形状や交差形状を形成していてもよい。このような紐状凸部は、膜の表面で満遍なく分散し、前述の如く、部分的に連続した構造となっているため、膜の表面は、二次元ネットワーク的に網目状構造(あたかも、マスクメロンの皮の網目状模様)を形成しているように観察できる。なお、このような紐状凸部は、おおよそ網目状構造を形成していればよく、通常、連続部分と非連続部分とが混在した構造を形成している。
 紐状凸部の平均高さは、例えば、0.05~10μm、好ましくは0.1~5μm、さらに好ましくは0.3~3μm(特に0.5~2μm)程度である。紐状凸部の平均幅は、例えば、0.1~30μm、好ましくは1~20μm、さらに好ましくは3~15μm(特に5~10μm)程度である。紐状凸部の高さ及び幅ともに、大きすぎると、低屈折率層に対する追従性が低下し、逆に、小さすぎると防眩性能が低下する。
 本発明では、特定の(メタ)アクリル系樹脂を選定し、相分離及び対流を発生させているため、対流による隆起領域は、このような紐状凸部となり、膜表面において占める面積も低くなる。具体的には、紐状凸部の面積割合は、全表面に対して50%以下(例えば、1~50%)であり、好ましくは10~48%、さらに好ましくは20~45%(特に30~45%)程度である。紐状凸部の面積は、膜表面において、このような低い範囲あるため、本発明の防眩性膜は、凹部として形成される平坦部の面積が大きく、防眩性膜の低屈折率層に対する追従性が向上する。なお、本発明では、この紐状凸部の面積は、立体的な紐状凸部の表面積ではなく、顕微鏡写真で観察される二次元的な面積に基づいて算出されている。
 さらに、前記紐状凸部は、その凸部表面において、凹部(又は窪地)を有していてもよい。凹部の形状や個数は特に限定されないが、通常、紐状凸部の形状に応じた紐状凹部が形成されている。すなわち、紐状凹部が紐状凸部の長さ方向に沿って形成され、紐状凸部の両側部は長さ方向に沿って堤防(土手又は畝)のように延出して形成されていてもよい。このような凹部が形成される理由は明確ではないが、相分離及び対流に伴った紐状凸部の隆起とともに形成され、このような凹部により、ドメインの凸部間隔がより均等になり、均一な間隔を有する凹凸形状が形成できるため、特に好ましい。なお、凹部は、紐状凸部の形状に応じて形成されていなくてもよく、例えば、点状凹部が形成されていてもよい。
 凹部の平均深さは、例えば、0.001~5μm、好ましくは0.005~3μm、さらに好ましくは0.01~2μm(特に0.1~1μm)程度である。
 対流によって形成された凹凸形状は、通常、その間隔において、実質的に規則性又は周期性を有している。例えば、平均凸間距離Smが10~300μm程度であってもよく、好ましくは25~250μm、さらに好ましくは30~200μm程度である。平均凸間距離Smは、例えば、対流発生時の塗膜厚みによって制御可能である。
 防眩性膜の全光線透過率は、例えば、70~100%、好ましくは80~100%、さらに好ましくは85~100%(例えば、85~95%)、特に90~100%(例えば、90~99%)程度である。
 防眩性膜のヘイズは、例えば、0.5~50%、好ましくは1~40%、さらに好ましくは2~35%程度である。また、防眩性膜の上に後述する低屈折率層をコーティングした場合には、ヘイズは防眩性単独のヘイズよりも一般的に1~10%程度低下する。防眩性膜と低屈折率層とを組み合わせた場合のヘイズは、例えば、0.5~30%、好ましくは1~25%、さらに好ましくは1~20%程度であり、通常、1~10%程度である。低屈折率層を形成する場合には、ヘイズの低下を考慮して、防眩性膜のヘイズを調節するのが好ましい。
 ヘイズ及び全光線透過率は、JIS K7105に準拠して、日本電色工業(株)製、NDH-300Aヘイズメーターを用いて測定できる。
 防眩性膜の透過像鮮明度は、0.5mm幅の光学櫛を使用した場合、10~100%程度の範囲から選択できるが、好ましくは10%以上90%未満であり、さらに好ましくは20~80%程度である。
 透過像鮮明度とは、膜を透過した光のボケや歪みを定量化する尺度である。透過像鮮明度は、膜からの透過光を移動する光学櫛を通して測定し、光学櫛の明暗部の光量により値を算出する。すなわち、膜が透過光をぼやかす場合、光学櫛上に結像されるスリットの像は太くなるため、透過部での光量は100%以下となり、一方、不透過部では光が漏れるため0%以上となる。透過像鮮明度の値Cは光学櫛の透明部の透過光最大値Mと不透明部の透過光最小値mから次式により定義される。
   C(%)=[(M-m)/(M+m)]×100
 すなわち、Cの値が100%に近づく程、防眩性膜による像のボケが小さい[参考文献;須賀、三田村,塗装技術,1985年7月号]。
 前記透過像鮮明度測定の測定装置としては、スガ試験機(株)製写像性測定器ICM-1DPが使用できる。光学櫛としては、0.125~2mm幅の光学櫛を用いることができる。
 防眩性膜の粗さとしては、中心線平均粗さRaが、0.01~0.25μm程度であり、好ましくは0.01~0.2μm、さらに好ましくは0.02~0.15μm程度である。また、防眩性膜に低屈折率層がコートされている場合は、低屈折率層をコートした後の値がこの範囲にあるのが好ましい。
 防眩性膜の厚みは、適度なハードコート性と表面の凹凸形状を付与するために、例えば、0.3~25μm、好ましくは1~20μm(例えば、1~18μm)程度であってもよく、通常、6~15μm(特に8~15μm)程度である。なお、支持体と組み合わすことなく、防眩性膜単独で用いる場合、防眩性膜の厚みは、例えば、1~100μm、好ましくは2~70μm、さらに好ましくは3~50μm程度であってもよい。
 [防眩性フィルム]
 前記防眩性膜の支持体として、非剥離性支持体(好ましくは透明支持体)を用いることにより、支持体と、この支持体の上に形成された防眩性膜とで構成された積層構造の防眩性フィルムとすることができる。また、この防眩性フィルムの防眩性膜の上に、さらに低屈折率層(薄膜層)を形成することもできる。さらに、低屈折率層を防眩性膜に積層した後、支持体を防眩性膜から剥離したり、支持体から防眩性膜を剥離した後、低屈折率層を前記防眩層に積層したりすることにより防眩層及び低屈折率層で構成された積層構造の防眩性フィルムを得ることもできる。支持体としては、光透過性を有する支持体、例えば、合成樹脂フィルムなどの透明支持体が使用される。また、光透過性を有する支持体は、光学部材を形成するための透明ポリマーフィルムで構成されていてもよい。
 (透明支持体)
 透明支持体(又は基材シート)としては、ガラス、セラミックスの他、樹脂シートが例示できる。透明支持体を構成する樹脂としては、前記防眩層と同様の樹脂が使用できる。好ましい透明支持体としては、透明性ポリマーフィルム、例えば、セルロース誘導体[セルローストリアセテート(TAC)、セルロースジアセテートなどのセルロースアセテートなど]、ポリエステル系樹脂[ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアリレート系樹脂など]、ポリスルホン系樹脂[ポリスルホン、ポリエーテルスルホン(PES)など]、ポリエーテルケトン系樹脂[ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)など]、ポリカーボネート系樹脂(PC)、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、環状ポリオレフィン系樹脂[アートン(ARTON)、ゼオネックス(ZEONEX)など]、ハロゲン含有樹脂(ポリ塩化ビニリデンなど)、(メタ)アクリル系樹脂、スチレン系樹脂(ポリスチレンなど)、酢酸ビニル又はビニルアルコール系樹脂(ポリビニルアルコールなど)などで形成されたフィルムが挙げられる。透明支持体は1軸又は2軸延伸されていてもよいが、光学的に等方性であるのが好ましい。好ましい透明支持体は、低複屈折率の支持シート又はフィルムである。光学的に等方性の透明支持体には、未延伸シート又はフィルムが例示でき、例えば、ポリエステル(PET、PBTなど)、セルロースエステル類、特にセルロースアセテート類(セルロースジアセテート、セルローストリアセテートなどのセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースアセテートC3-4有機酸エステル)などで形成されたシート又はフィルムが例示できる。二次元的構造の支持体の厚みは、例えば、5~2000μm、好ましくは15~1000μm、さらに好ましくは20~500μm程度の範囲から選択できる。
 (低屈折率層)
 低屈折率層は、その材質は特に限定されず、樹脂成分や無機又は有機粒子及びこれらの組み合わせなどで構成されていてもよいが、通常、低屈折率樹脂で構成されている。低屈折率層を前記防眩層の少なくとも一方の面に積層することにより、光学部材などにおいて、低屈折率層を最表面となるように配設した場合などに、外部からの光(外部光源など)が、防眩性フィルムの表面で反射するのを有効に防止できる。
 低屈折率樹脂の屈折率は、例えば、1.20~1.49、好ましくは1.25~1.47、さらに好ましくは1.30~1.45程度である。
 低屈折率樹脂としては、例えば、メチルペンテン樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)などのフッ素樹脂などが挙げられる。また、低屈折率層は、通常、フッ素含有化合物を含有するのが好ましく、フッ素含有化合物を用いると、低屈折率層の屈折率を所望に応じて低減できる。
 前記フッ素含有化合物としては、フッ素原子と、熱や活性エネルギー線(紫外線や電子線など)などにより反応する官能基(架橋性基又は重合性基などの硬化性基など)とを有し、熱や活性エネルギー線などにより硬化又は架橋してフッ素含有樹脂(特に硬化又は架橋樹脂)を形成可能なフッ素含有樹脂前駆体が挙げられる。
 このようなフッ素含有樹脂前駆体としては、例えば、フッ素原子含有熱硬化性化合物又は樹脂[フッ素原子とともに、反応性基(エポキシ基、イソシアネート基、カルボキシル基、ヒドロキシル基など)、重合性基(ビニル基、アリル基、(メタ)アクリロイル基など)などを有する低分子量化合物]、活性光線(紫外線など)により硬化可能なフッ素原子含有光硬化性化合物又は樹脂(光硬化性フッ素含有モノマー又はオリゴマーなどの紫外線硬化性化合物など)などが例示できる。
 前記熱硬化性化合物又は樹脂としては、例えば、少なくともフッ素含有モノマーを用いて得られる低分子量樹脂、例えば、構成モノマーとしてのポリオール成分の一部又は全部に代えてフッ素含有ポリオール(特にジオール)を用いて得られるエポキシ系フッ素含有樹脂;同様に、ポリオール及び/又はポリカルボン酸成分の一部又は全部に代えて、フッ素原子含有ポリオール及び/又はフッ素原子含有ポリカルボン酸成分を用いて得られる不飽和ポリエステル系フッ素含有樹脂;ポリオール及び/又はポリイソシアネート成分の一部又は全部に代えて、フッ素原子含有ポリオール及び/又はポリイソシアネート成分を用いて得られるウレタン系フッ素含有樹脂などが例示できる。これらの熱硬化性化合物又は樹脂は、単独で又は二種以上組み合わせて使用できる。
 前記光硬化性化合物には、例えば、単量体、オリゴマー(又は樹脂、特に低分子量樹脂)が含まれ、単量体としては、例えば、前記防眩層の項で例示の単官能性単量体及び多官能性単量体に対応するフッ素原子含有単量体[(メタ)アクリル酸のフッ化アルキルエステルなどのフッ素原子含有(メタ)アクリル系単量体、フルオロオレフィン類などのビニル系単量体などの単官能性単量体;1-フルオロ-1,2-ジ(メタ)アクリロイルオキシエチレンなどのフッ化アルキレングリコールのジ(メタ)アクリレートなど]が例示できる。また、オリゴマー又は樹脂としては、前記防眩層の項で例示のオリゴマー又は樹脂に対応するフッ素原子含有オリゴマー又は樹脂などが使用できる。これらの光硬化性化合物は単独で又は二種以上組み合わせて使用できる。
 フッ素含有樹脂の硬化性樹脂前駆体は、例えば、溶液(コート液)状の形態で入手でき、このようなコート液は、例えば、日本合成ゴム(株)製「TT1006A」及び「JN7215」や、大日本インキ化学工業(株)製「ディフェンサTR-330」などとして入手できる。
 低屈折率層の厚みは、例えば、0.04~2μm、好ましくは0.06~0.5μm、さらに好ましくは0.08~0.3μm程度である。
 [光学部材]
 前記防眩性膜は、対流により、各凸部の大きさ及び凸部間距離が略均一に制御された凹凸形状を有するため、均質で高品位な防眩性を有している。さらに、高い耐擦傷性(ハードコート性)を有するとともに、透過散乱光の強度分布を制御できる。特に、透過光を等方的に透過して散乱させながら、特定の角度範囲での散乱強度を大きくできる。さらに、透過像の鮮明性に優れており、表示面での文字ボケも少ない。また、低屈折率層を形成した場合は、その表面では、外光反射を効率よく防止できる。そのため、本発明の防眩性膜は、光学部材等の用途に適しており、前記支持体を、種々の光学部材を形成するための透明ポリマーフィルムで構成することもできる。透明ポリマーフィルムと組み合わせて得られた防眩性フィルムは、そのまま光学部材として用いてもよく、光学要素(例えば、偏光板、位相差板、導光板などの光路内に配設される種々の光学要素)と組み合わせて光学部材を形成してもよい。すなわち、光学要素の少なくとも一方の光路面に前記防眩性フィルムを配設又は積層してもよい。例えば、前記位相差板の少なくとも一方の面に防眩性フィルムを積層してもよく、導光板の出射面に防眩性フィルムを配設又は積層してもよい。
 耐擦傷性が付与されている防眩性フィルムは、保護フィルムとしても機能させることができる。そのため、本発明の防眩性フィルムは、偏光板の2枚の保護フィルムのうち少なくとも一方の保護フィルムに代えて、防眩性フィルムを用いた積層体(光学部材)、すなわち、偏光板の少なくとも一方の面に防眩性フィルムが積層された積層体(光学部材)として利用するのに適している。
 [表示装置]
 本発明の防眩性膜及び防眩性フィルムは、種々の表示装置、例えば、液晶表示(LCD)装置、プラズマディスプレイ、タッチパネル付き表示装置などの表示装置に使用できる。これらの表示装置は、前記防眩性フィルムや光学部材(特に偏光板と防眩性フィルムとの積層体など)を光学要素として備えている。特に、高精細又は高精彩液晶ディスプレイなどの大型液晶表示装置に装着しても映り込みを防止できるため、液晶表示装置に好ましく使用できる。
 なお、液晶表示装置は、外部光を利用して、液晶セルを備えた表示ユニットを照明する反射型液晶表示装置であってもよく、表示ユニットを照明するためのバックライトユニットを備えた透過型液晶表示装置であってもよい。前記反射型液晶表示装置では、外部からの入射光を、表示ユニットを介して取り込み、表示ユニットを透過した透過光を反射部材により反射して表示ユニットを照明できる。反射型液晶表示装置では、前記反射部材から前方の光路内に前記防眩性フィルムや光学部材(特に偏光板と防眩性フィルムとの積層体)を配設できる。例えば、反射部材と表示ユニットとの間、表示ユニットの前面などに前記防眩性フィルムや光学部材を配設又は積層できる。
 透過型液晶表示装置において、バックライトユニットは、光源(冷陰極管などの管状光源,発光ダイオードなどの点状光源など)からの光を一方の側部から入射させて前面の出射面から出射させるための導光板(例えば、断面楔形状の導光板)を備えていてもよい。また、必要であれば、導光板の前面側にはプリズムシートを配設してもよい。なお、通常、導光板の裏面には、光源からの光を出射面側へ反射させるための反射部材が配設されている。このような透過型液晶表示装置では、通常、光源から前方の光路内に前記防眩性フィルムや光学部材を配設又は積層できる。例えば、導光板と表示ユニットとの間、表示ユニットの前面などに前記防眩性フィルムや光学部材を配設又は積層できる。
 本発明は、防眩性及び光散乱性が必要とされる種々の用途、例えば、前記光学部材や、液晶表示装置(特に高精細又は高精彩表示装置)などの表示装置の光学要素として有用である。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1
 側鎖に重合性不飽和基を有するアクリル樹脂[重量平均分子量:25,000、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4-エポキシシクロヘキセニルメチルアクリレートを付加させた化合物;ダイセル化学工業(株)製、サイクロマーP(ACA)320M、固形分49.6重量%、溶剤:1-メトキシ-2-プロパノール(MMPG)(沸点119℃)]5.65重量部、ポリメタクリル酸メチル(PMMA)(重量平均分子量480000;三菱レイヨン(株)製、BR88)0.9重量部、多官能アクリル系UV硬化モノマー(ジペンタエリスリトールヘキサアクリレート;ダイセル・ユ-シービー(株)製、DPHA)6.3重量部、光開始剤(チバスペシャルティーケミカルズ社製、イルガキュア184)0.5重量部をメチルエチルケトン(MEK)(沸点80℃)20.1重量部、1-ブタノール(BuOH)(沸点113℃)5.4重量部、1-メトキシ-2-プロパノール(沸点119℃)1.89重量部に溶解した。なお、PMMAと重合性不飽和基を有するアクリル樹脂とは完全な相溶性を示さず、この溶液は濃縮とともに弱い相分離性を示す。この溶液を、ワイヤーバー#24を用いてトリアセチルセルロースフィルム上に流延した後、10秒間室温中で放置し、その後直ちに、70℃、風速3m/分の防爆オーブン内に入れ、5秒間保持し、溶媒蒸発に伴う対流セルを発生させた。この塗膜をさらにオーブン中で2分間乾燥させることにより、対流セル中に相分離構造を発生させ、表面凹凸を有する厚さ約9μmのコート層を形成させた。そして、コート層に、メタルハライドランプ(アイグラフィックス社製)からの紫外線を約30秒間照射することによりUV硬化処理し、ハードコート性および表面凹凸構造を有する防眩性フィルムを作製した。
 実施例2
 実施例1の防眩性フィルムに、低屈折率層として、熱硬化性含フッ素化合物塗工液(日産化学(株)製、LR204-6、固形分1重量%)をワイヤーバー#5を用いて塗布し、乾燥後、90℃で5分間熱硬化させ、低反射防眩フィルムを作製した。
 実施例3
 側鎖に重合性不飽和基を有するアクリル樹脂[(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4-エポキシシクロヘキセニルメチルアクリレートを付加させた化合物;ダイセル化学工業(株)製、サイクロマーP(ACA)320M、固形分49.6重量%、溶媒:1-メトキシ-2-プロパノール(沸点119℃)]5.24重量部、ポリメタクリル酸メチル(PMMA)(重量平均分子量480000;三菱レイヨン(株)製、BR88)0.9重量部、多官能アクリル系UV硬化モノマー(ダイセル・ユ-シービー(株)製、DPHA)6.5重量部、光開始剤(チバスペシャルティーケミカルズ社製、イルガキュア184)0.5重量部をMEK(沸点80℃)36.8重量部、1-ブタノール(沸点113℃)7.73重量部に溶解した。なお、PMMAと重合性不飽和基を有するアクリル樹脂とは完全な相溶性を示さず、この溶液は濃縮とともに弱い相分離性を示す。この溶液を、ワイヤーバー#34を用いてトリアセチルセルロースフィルム上に流延した後、10秒間室温中で放置し、その後直ちに、60℃、風速3m/分の防爆オーブン内に入れ、5秒間保持し、溶媒蒸発に伴う対流セルを発生させた。この塗膜をさらにオーブン中で2分間乾燥させることにより、対流セル中に相分離構造を発生させ、表面に凹凸形状を有する厚さ約9μmのコート層を形成させた。そして、コート層に、メタルハライドランプ(アイグラフィックス社製)からの紫外線を約30秒間照射することによりUV硬化処理し、ハードコート性および表面に凹凸構造を有する防眩性フィルムを作製した。
 実施例4
 実施例3の防眩性フィルムに、低屈折率層として、熱硬化性含フッ素化合物塗工液(日産化学(株)製、LR204-6、固形分1重量%)をワイヤーバー#5を用いて塗布し、乾燥後、90℃で5分間熱硬化させ、低反射防眩フィルムを作製した。
 比較例1
 側鎖に重合性不飽和基を有するアクリル樹脂[(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4-エポキシシクロヘキセニルメチルアクリレートを付加させた化合物;ダイセル化学工業(株)製、サイクロマーP(ACA)320M、固形分49.6重量%、溶剤:1-メトキシ-2-プロパノール(MMPG)(沸点119℃)]5.65重量部、セルロースアセテートプロピオネート(アセチル化度=2.5%、プロピオニル化度=46%、ポリスチレン換算数平均分子量75000;イーストマン社製、CAP-482-20)0.9重量部、多官能アクリル系UV硬化モノマー(ダイセル・ユ-シービー(株)製、DPHA)6.3重量部、光開始剤(チバスペシャルティーケミカルズ社製、イルガキュア184)0.5重量部をメチルエチルケトン(MEK)(沸点80℃)20.1重量部、1-ブタノール(BuOH)(沸点113℃)5.4重量部、1-メトキシ-2-プロパノール(沸点119℃)1.89重量部に溶解した。なお、セルロースアセテートプロピオネートと重合性不飽和基を有するアクリル樹脂は非相溶であり、この溶液は濃縮とともに相分離性を示す。この溶液を、ワイヤーバー#24を用いてトリアセチルセルロースフィルム上に流延した後、10秒間室温中で放置し、その後直ちに、70℃、風速3m/分の防爆オーブン内に入れ、5秒間保持し、溶媒蒸発に伴う対流セルを発生させた。この塗膜をさらにオーブン中で2分間乾燥させることにより、対流セル中に相分離構造を発生させ、表面凹凸を有する厚さ約9μmのコート層を形成させた。そして、コート層に、メタルハライドランプ(アイグラフィックス社製)からの紫外線を約30秒間照射することによりUV硬化処理し、ハードコート性および表面凹凸構造を有する防眩性フィルムを作製した。
 比較例2
 比較例1の防眩性フィルムに、低屈折率層として、熱硬化性含フッ素化合物塗工液(日産化学(株)製、LR204-6、固形分1重量%)をワイヤーバー#5を用いて塗布し、乾燥後、90℃で5分間熱硬化させ、低反射防眩フィルムを作製した。
 比較例3
 側鎖に重合性不飽和基を有するアクリル樹脂[(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体のカルボキシル基の一部に、3,4-エポキシシクロヘキセニルメチルアクリレートを付加させた化合物;ダイセル化学工業(株)製、サイクロマーP(ACA)320M、固形分49.6重量%、溶媒:1-メトキシ-2-プロパノール(沸点119℃)]5.24重量部、ポリメタクリル酸メチル(PMMA)(重量平均分子量25000;三菱レイヨン(株)製、BR87)0.9重量部、多官能アクリル系UV硬化モノマー(ダイセル・ユ-シービー(株)製、DPHA)6.5重量部、光開始剤(チバスペシャルティーケミカルズ社製、イルガキュア184)0.5重量部をMEK(沸点80℃)36.8重量部、1-ブタノール(沸点113℃)7.73重量部に溶解した。なお、低分子量PMMAと重合性不飽和基を有するアクリル樹脂とは完全な相溶性を示し、この溶液は濃縮によって相分離が誘起されない。この溶液を、ワイヤーバー#34を用いてトリアセチルセルロースフィルム上に流延した後、10秒間室温中で放置し、その後直ちに、60℃、風速3m/分の防爆オーブン内に入れ、5秒間保持し、溶媒蒸発に伴う対流セルを発生させた。この塗膜をさらにオーブン中で2分間乾燥させることにより、対流セル中に相分離構造を発生させ、表面に凹凸形状を有する厚さ約9μmのコート層を形成させた。そして、コート層に、メタルハライドランプ(アイグラフィックス社製)からの紫外線を約30秒間照射することによりUV硬化処理し、ハードコート性および表面に凹凸構造を有する防眩性フィルムを作製した。
 実施例1~4及び比較例1~3で得られた防眩性フィルムの防眩性膜における全光線透過率、ヘイズ、透過像鮮明度を測定した結果を表1に示す。
 実施例1~4及び比較例1~3で得られた防眩性フィルムの性能については、防眩性、白浮き(黒表示の沈み)、画像のコントラストは、外光の照らす光環境下で、得られた防眩性フィルムを、それぞれ、正面輝度450cd/m、コントラスト400対1、20型、解像度60ppiのVA(垂直配向)型LCDパネルの表面に実装し、以下の基準で目視評価した。
 (防眩性)
  A:映り込みがない
  B:わずかな映り込みがある
  C:映り込みが激しい。
 (白浮き)
  A:黒表示が鮮明に見える
  B:黒表示がやや白味がかって見える
  C:黒表示が白味がかって見える
  D:黒表示が白く見える。
 (画像のコントラスト)
  A:鮮明に見える
  B:ほぼ鮮明に見える
  C:見える
  D:見えにくい。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1~4の防眩性フィルムは、白浮きがなく、防眩性及び画像のコントラストも高い。これに対して、比較例1のフィルムは、黒表示が白味がかかって見え、画像のコントラストも低い。また、比較例2のフィルムは、ヘイズ値が高く、画像鮮明度も低い。さらに、比較例3のフィルムは、映り込みが激しく、防眩性が低い。
 さらに、実施例2、4及び比較例2で得られた防眩性フィルムの裏側に黒フィルムを貼り合せ、レーザー反射顕微鏡にて観察することにより、表面の凹凸形状を写した写真を示す。図1~3は、それぞれ、実施例2、4、比較例2で得られた防眩性フィルムにおける表面凹凸形状のレーザー反射顕微鏡による対物レンズ倍率5倍の写真である。
 図1及び2の写真から明らかなように、実施例2及び4のフィルムは、膜表面に閉じた紐状凸部が、ランダムな方向で分散して形成されているため、対流により凹凸形状が形成されているのが確認できる。
 これに対して図3の写真から明らかなように、比較例2のフィルムでは、ドメインの間隔が狭く平面部(海部)が少ない密な構造が形成されている。

Claims (12)

  1.  重量平均分子量30,000~1,000,000の非反応性(メタ)アクリル系樹脂と、重量平均分子量1,000~100,000であり、かつ重合性基を有する(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートとの硬化物で構成された防眩性膜であって、表面において紐状凸部がランダムな方向に分散して形成され、かつ前記紐状凸部の面積割合が全表面に対して50%以下である防眩性膜。
  2.  重合性基を有する(メタ)アクリル系樹脂が、側鎖に(メタ)アクリロイル基を有する(メタ)アクリル系樹脂である請求項1記載の防眩性膜。
  3.  紐状凸部の平均高さが0.05~10μmであり、かつ平均幅が0.1~30μmである請求項1記載の防眩性膜。
  4.  紐状凸部が、長さ方向に延びる凹部を有している請求項1記載の防眩性膜。
  5.  非反応性(メタ)アクリル系樹脂、重合性基を有する(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートのうち、少なくとも2つの成分がスピノーダル分解により相分離するとともに、対流を生じることにより紐状凸部が形成された請求項1記載の防眩性膜。
  6.  重量平均分子量30,000~1,000,000の非反応性(メタ)アクリル系樹脂と、重量平均分子量1,000~100,000であり、かつ重合性基を有する(メタ)アクリル系樹脂と、多官能性(メタ)アクリレートと、沸点100℃以上の溶媒とを含む溶液を塗布し、溶媒の揮散に伴って対流を発生させる乾燥工程と、乾燥した塗膜を硬化する硬化工程とで構成された防眩性膜の製造方法。
  7.  溶液が、さらに沸点の異なる溶媒を含有する請求項6記載の製造方法。
  8.  乾燥工程において、非反応性(メタ)アクリル系樹脂、重合性基を有する(メタ)アクリル系樹脂及び多官能性(メタ)アクリレートのうち、少なくとも2つの成分がスピノーダル分解により相分離するとともに、溶液が対流を発生することにより表面を隆起させて紐状凸部を形成する請求項6記載の製造方法。
  9.  硬化工程において、活性エネルギー線及び熱から選択された少なくとも一種を照射して、塗膜を硬化する請求項6記載の製造方法。
  10.  透明性支持体の上に、請求項1記載の防眩性膜が形成されている防眩性フィルム。
  11.  防眩性膜の上に、さらに低屈折率層が形成されている請求項10記載の防眩性フィルム。
  12.  液晶表示装置、陰極管表示装置、プラズマディスプレイ及びタッチパネル式入力装置から選択された少なくとも一種の表示装置に用いられる請求項10記載の防眩性フィルム。
PCT/JP2008/055513 2008-03-25 2008-03-25 防眩性膜及びその製造方法 WO2009118820A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008801282154A CN101981472A (zh) 2008-03-25 2008-03-25 防眩性薄膜及其制备方法
PCT/JP2008/055513 WO2009118820A1 (ja) 2008-03-25 2008-03-25 防眩性膜及びその製造方法
US12/920,429 US20110003093A1 (en) 2008-03-25 2008-03-25 Anti-glare film and process for producing the same
KR1020107023623A KR20100127293A (ko) 2008-03-25 2008-03-25 방현성막 및 그의 제조 방법
EP08738808A EP2261697A1 (en) 2008-03-25 2008-03-25 Antiglare film and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055513 WO2009118820A1 (ja) 2008-03-25 2008-03-25 防眩性膜及びその製造方法

Publications (1)

Publication Number Publication Date
WO2009118820A1 true WO2009118820A1 (ja) 2009-10-01

Family

ID=41113060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055513 WO2009118820A1 (ja) 2008-03-25 2008-03-25 防眩性膜及びその製造方法

Country Status (5)

Country Link
US (1) US20110003093A1 (ja)
EP (1) EP2261697A1 (ja)
KR (1) KR20100127293A (ja)
CN (1) CN101981472A (ja)
WO (1) WO2009118820A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073080A (zh) * 2009-11-18 2011-05-25 惠和株式会社 光学薄片以及使用它的背光单元
JP2011215515A (ja) * 2010-04-02 2011-10-27 Nof Corp 防眩性フィルム
KR101087552B1 (ko) 2009-11-18 2011-11-29 케이와 인코포레이티드 광학 시트 및 이것을 사용한 백라이트 유닛
JP2012022190A (ja) * 2010-07-15 2012-02-02 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2014085371A (ja) * 2012-10-19 2014-05-12 Daicel Corp 防眩フィルム及びその製造方法
WO2017213071A1 (ja) * 2016-06-06 2017-12-14 株式会社ダイセル 光拡散フィルム及びその製造方法並びに表示装置
JP2021024926A (ja) * 2019-08-02 2021-02-22 三菱ケミカル株式会社 硬化膜、その製造方法及び積層体

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110096403A1 (en) * 2009-10-22 2011-04-28 Lin Cheng Anti-glare optical module and method for manufacturing the same
TWI510826B (zh) * 2013-04-09 2015-12-01 Chi Mei Corp 導光板、發光單元以及具有該發光單元的液晶顯示元件
DE102013209104A1 (de) * 2013-05-16 2014-11-20 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur spektroskopischen Analyse
JP6439446B2 (ja) * 2013-06-27 2018-12-19 東レ株式会社 シート、無機物積層シートおよびそれを用いてなる電子デバイス
CN103543877A (zh) * 2013-09-23 2014-01-29 昆山鑫宏达电子科技有限公司 一种用于智能手机上的触摸屏
JP6367577B2 (ja) * 2014-02-28 2018-08-01 ソマール株式会社 ハードコート膜用コーティング組成物
US9891352B2 (en) * 2014-04-17 2018-02-13 Daicel Corporation Anti-glare film and process for producing the same
TWI544253B (zh) * 2015-04-02 2016-08-01 奇美實業股份有限公司 具突出部之光透過性基材
CN107123747B (zh) * 2017-06-14 2021-04-23 京东方科技集团股份有限公司 透明基板及其制备方法、和oled显示器件
JP7335716B2 (ja) * 2017-12-11 2023-08-30 株式会社ダイセル 防眩フィルム並びにその製造方法及び用途
JP7335719B2 (ja) * 2017-12-11 2023-08-30 株式会社ダイセル 防眩フィルム並びにその製造方法及び用途
JP2019105695A (ja) * 2017-12-11 2019-06-27 株式会社ダイセル 防眩フィルム並びにその製造方法及び用途
JP2019105692A (ja) * 2017-12-11 2019-06-27 株式会社ダイセル 防眩フィルム並びにその製造方法及び用途
TWI721767B (zh) * 2020-01-31 2021-03-11 友達光電股份有限公司 光學膜片及使用此光學膜片的顯示模組
JPWO2021221178A1 (ja) * 2020-04-30 2021-11-04
WO2021261602A1 (ja) * 2020-06-26 2021-12-30 日本板硝子株式会社 表示装置
CN114231158A (zh) * 2021-12-24 2022-03-25 惠州合益创光学材料有限公司 一种用于高精细防眩涂层的组合物及其高精细防眩膜
CN116694250B (zh) * 2023-06-25 2023-12-22 东莞市赛越新材料科技有限公司 一种车载防爆膜的制备工艺及产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616851A (ja) 1991-11-25 1994-01-25 Dainippon Printing Co Ltd 耐擦傷性防眩フィルム、偏光板及びその製造方法
JPH0618706A (ja) 1992-01-24 1994-01-28 Dainippon Printing Co Ltd 耐擦傷性防眩フィルム、偏光板及びその製造方法
JPH1020103A (ja) 1996-07-05 1998-01-23 Dainippon Printing Co Ltd 防眩フィルム
JP2000206317A (ja) 1999-01-14 2000-07-28 Dainippon Printing Co Ltd 防眩フィルム、偏光板、表示装置及び防眩フィルムの製造方法
JP2004126495A (ja) 2001-12-17 2004-04-22 Daicel Chem Ind Ltd 防眩性フィルム、それを用いた光学部材及び液晶表示装置
JP2006106224A (ja) 2004-10-01 2006-04-20 Daicel Chem Ind Ltd 防眩性膜の製造方法
JP2006103070A (ja) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd 防眩性フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387463A (en) * 1992-01-24 1995-02-07 Dai Nippon Printing Co., Ltd. Transparent protective substrate provided with hard coating having glare reducing property, method for producing the same and polarizing plate
JP4059710B2 (ja) * 2001-10-23 2008-03-12 シャープ株式会社 防眩性フィルム及び偏光素子及び表示装置の製造方法
JP4217097B2 (ja) * 2003-04-03 2009-01-28 ダイセル化学工業株式会社 防眩性フィルム
JP2005024885A (ja) * 2003-07-02 2005-01-27 Fuji Photo Film Co Ltd 液晶表示装置
TWI406770B (zh) * 2005-02-21 2013-09-01 Dainippon Printing Co Ltd Anti-glare optical laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616851A (ja) 1991-11-25 1994-01-25 Dainippon Printing Co Ltd 耐擦傷性防眩フィルム、偏光板及びその製造方法
JP3314965B2 (ja) 1991-11-25 2002-08-19 大日本印刷株式会社 耐擦傷性防眩フィルム、偏光板及びその製造方法
JPH0618706A (ja) 1992-01-24 1994-01-28 Dainippon Printing Co Ltd 耐擦傷性防眩フィルム、偏光板及びその製造方法
JPH1020103A (ja) 1996-07-05 1998-01-23 Dainippon Printing Co Ltd 防眩フィルム
JP2000206317A (ja) 1999-01-14 2000-07-28 Dainippon Printing Co Ltd 防眩フィルム、偏光板、表示装置及び防眩フィルムの製造方法
JP2004126495A (ja) 2001-12-17 2004-04-22 Daicel Chem Ind Ltd 防眩性フィルム、それを用いた光学部材及び液晶表示装置
JP2006106224A (ja) 2004-10-01 2006-04-20 Daicel Chem Ind Ltd 防眩性膜の製造方法
JP2006103070A (ja) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd 防眩性フィルム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073080A (zh) * 2009-11-18 2011-05-25 惠和株式会社 光学薄片以及使用它的背光单元
KR101087552B1 (ko) 2009-11-18 2011-11-29 케이와 인코포레이티드 광학 시트 및 이것을 사용한 백라이트 유닛
JP2011215515A (ja) * 2010-04-02 2011-10-27 Nof Corp 防眩性フィルム
JP2012022190A (ja) * 2010-07-15 2012-02-02 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2014085371A (ja) * 2012-10-19 2014-05-12 Daicel Corp 防眩フィルム及びその製造方法
WO2017213071A1 (ja) * 2016-06-06 2017-12-14 株式会社ダイセル 光拡散フィルム及びその製造方法並びに表示装置
JP2017219622A (ja) * 2016-06-06 2017-12-14 株式会社ダイセル 光拡散フィルム及びその製造方法並びに表示装置
JP2021024926A (ja) * 2019-08-02 2021-02-22 三菱ケミカル株式会社 硬化膜、その製造方法及び積層体
JP7156204B2 (ja) 2019-08-02 2022-10-19 三菱ケミカル株式会社 硬化膜、その製造方法及び積層体

Also Published As

Publication number Publication date
US20110003093A1 (en) 2011-01-06
EP2261697A1 (en) 2010-12-15
CN101981472A (zh) 2011-02-23
KR20100127293A (ko) 2010-12-03

Similar Documents

Publication Publication Date Title
WO2009118820A1 (ja) 防眩性膜及びその製造方法
JP5038748B2 (ja) 防眩性膜及びその製造方法
JP5015462B2 (ja) 防眩性フィルム及びその製造方法
JP4739720B2 (ja) 防眩性膜の製造方法
KR101025113B1 (ko) 방현성 필름
JP5139781B2 (ja) 機能性フィルム及び表示装置
JP5015912B2 (ja) 防眩性フィルム
JP5789963B2 (ja) 光学フィルム及びタッチパネル
KR100964425B1 (ko) 방현성 필름용 조성물 및 방현성 필름의 제조 방법
TWI406770B (zh) Anti-glare optical laminate
TWI411817B (zh) Optical laminates
JP2008058723A (ja) 防眩性フィルム及び液晶表示装置
JP4709520B2 (ja) 防眩性フィルム
JP2010066470A (ja) 防眩性フィルムおよびその製造方法
JP2010066469A (ja) 防眩性フィルムおよびその製造方法
JP4739719B2 (ja) 防眩性フィルム
US20200233119A1 (en) Anti-glare film, method for producing same, and use of same
JP2024001168A (ja) 防眩フィルム並びにその製造方法及び用途
TW201930082A (zh) 防眩薄膜以及其製造方法及用途
US11772365B2 (en) Anti-glare film, method for producing same, and use of same
JP7296196B2 (ja) ニュートンリング防止フィルム並びにその製造方法及び用途
JP2023164889A (ja) 防眩フィルム並びにその製造方法及び用途
JP2019113874A (ja) 防眩フィルム並びにその製造方法及び用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128215.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12920429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008738808

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107023623

Country of ref document: KR

Kind code of ref document: A