WO2009116520A1 - エンジンの冷却装置 - Google Patents

エンジンの冷却装置 Download PDF

Info

Publication number
WO2009116520A1
WO2009116520A1 PCT/JP2009/055145 JP2009055145W WO2009116520A1 WO 2009116520 A1 WO2009116520 A1 WO 2009116520A1 JP 2009055145 W JP2009055145 W JP 2009055145W WO 2009116520 A1 WO2009116520 A1 WO 2009116520A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heater
cooling
engine
cooling jacket
Prior art date
Application number
PCT/JP2009/055145
Other languages
English (en)
French (fr)
Inventor
英樹 寺田
孝夫 奥野
Original Assignee
ダイハツ工業株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイハツ工業株式会社, トヨタ自動車株式会社 filed Critical ダイハツ工業株式会社
Priority to US12/864,434 priority Critical patent/US20100288213A1/en
Priority to DE112009000330T priority patent/DE112009000330T5/de
Priority to CN2009801022541A priority patent/CN101918690B/zh
Publication of WO2009116520A1 publication Critical patent/WO2009116520A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops

Definitions

  • the present invention relates to an engine cooling device, and more particularly, to an engine cooling device including a heater circulation channel that circulates coolant in a heater core and a bypass channel that bypasses the heater core.
  • the engine cooling device includes a cooling liquid circulation passage having a cooling jacket, a radiator, and a water pump provided in the engine, and heats the cooling liquid through the cooling jacket to cool the cooling liquid through the radiator, It is configured to return to the cooling jacket with a water pump.
  • the coolant circulation passage is usually provided with a bypass passage that returns the coolant to the cooling jacket without passing through the radiator during engine warm-up.
  • the upstream portion of the water pump in the coolant flow direction there is known one in which a thermostat device is arranged (see, for example, Patent Document 1).
  • a cooling device for the engine there is provided a heater circulation passage that circulates a part of the coolant in the cooling jacket through the heater core of the air conditioner for the passenger compartment, and a main circulation passage and a heater circulation passage that pass through these radiators.
  • an on-off valve is provided in the bypass channel together with the thermostat device, and the on-off valve is opened when the liquid temperature of the coolant is high and closed when the temperature is low. It is known (see, for example, Patent Document 2).
  • a main circulation passage 25 in which a cooling jacket 21 of an engine, a radiator 22, a thermostat device 23 having a differential pressure valve function and a water pump 24 are connected in this order, and the cooling jacket 21 to the heater core 26.
  • the opening degree of the main circulation passage 25 is adjusted, the heater circulation passage 27 is always opened, and the bypass passage 28 is the difference when the engine pressure is increased and the coolant pressure is increased during warm-up.
  • An arrangement configured to open by a pressure valve function is also known. In FIG.
  • the thermostat device 23 is a well-known device that is widely used, and a specific configuration example thereof is a configuration similar to the thermostat 12 described in Patent Document 3, for example, (a configuration in which the heater circulation channel 27 is always open). Is not displayed.) Is described.
  • a pipe 28a constituting the bypass flow path 28 is connected to a coolant outlet provided in the cooling jacket 21 of the engine. It is configured by arranging to connect between the di 29 and the thermostat device 23. For this reason, two pipes 27a and 28a are required, and there are problems that the number of parts and the number of work steps are increased, the cost is increased, the weight is increased, and the layout of the pipes is difficult.
  • the differential pressure valve mechanism 23b is located in the vicinity of the water pump 24, it is susceptible to pulsation from the water pump 24, so that there is a problem that its durability is lowered.
  • the present invention can reduce the number of piping for circulating the coolant, reduce the cost and weight, facilitate the layout, and improve the durability of the differential pressure valve.
  • An object is to provide an apparatus.
  • the engine cooling device of the present invention is cooled by a water pump in a coolant circulation passage having at least a heater circulation passage that circulates between a cooling jacket provided in at least one of the cylinder head and cylinder block of the engine and a heater core.
  • a bypass flow path is provided to communicate the cooling jacket and the downstream portion of the heater core of the heater circulation flow path, and the cooling jacket outlet side of the cooling jacket to the bypass flow path is provided on the cooling jacket side.
  • a differential pressure valve is provided that opens when the hydraulic pressure exceeds a predetermined value.
  • the bypass flow path for bypassing the heater core is connected to the downstream portion of the heater core in the heater circulation flow path, and the flow path from the connection portion to the thermostat device disposed in the vicinity of the water pump is connected to the heater circulation flow. Since it is also used in the road, it is not necessary to arrange the pipe that forms the bypass flow path to the thermostat device, and it is only necessary to arrange a single pipe that forms the heater circulation flow path. The number of points and work man-hours can be reduced, the cost and weight can be reduced, and the piping layout can be facilitated.
  • the differential pressure valve that opens the bypass flow path when the liquid pressure on the cooling jacket side exceeds a predetermined value is provided at the cooling liquid outlet of the cooling jacket, the flow path length from the water pump to the differential pressure valve Becomes longer and the differential pressure valve becomes less susceptible to the pulsation of the water pump, and the durability of the differential pressure valve is improved.
  • the heater circulation flow path and the bypass flow path are configured by a single pipe, so that the diameter of the heater circulation flow path can be increased, and the resistance of the heater circulation flow path is reduced, resulting in improved heater performance. Can be improved.
  • the bypass flow path is connected to the heater circulation flow path, and the flow path from the connection portion to the thermostat device is also used as the heater circulation flow path. It is possible to reduce the number of parts and work man-hours, reduce the cost and weight, simplify the piping layout, and cool the differential pressure valve that opens the bypass flow path. Since it is disposed at the coolant outlet of the jacket, the flow path length from the water pump to the differential pressure valve becomes longer, making the differential pressure valve less susceptible to the pulsation of the water pump and improving the durability of the differential pressure valve. .
  • the block diagram of one Embodiment of the cooling device of the engine of this invention The perspective view which shows the piping state of the heater circulation flow path and bypass flow path of the embodiment. Explanatory drawing of the circulation path of the cooling fluid in each operation state of an engine.
  • the block diagram of the cooling device of the engine of a prior art example The perspective view which shows the piping state of the heater circulation channel and bypass channel of the prior art example.
  • the engine cooling device of the present embodiment includes a main circulation passage 5 in which an engine cooling jacket 1, a radiator 2, a thermostat device 3, and a water pump 4 are connected in this order, and a heater core 6 from the cooling jacket 1.
  • These main circulation passage 5 and the heater circulation A coolant circulation channel 9 is constituted by the channel 7 and the bypass channel 8.
  • the thermostat device 3 adjusts the opening degree of the main circulation flow path 5 according to the liquid temperature of the cooling liquid, passes the cooling liquid through the radiator 2 according to the liquid temperature, and keeps the liquid temperature of the cooling liquid in the cooling jacket 1 constant. Configured to maintain.
  • Reference numeral 3a denotes a temperature sensing unit that senses the coolant temperature and adjusts the valve opening. Further, the heater circulation flow path 7 is configured to be always conductive.
  • the bypass flow path 8 is configured to connect the cooling jacket 1 and the downstream portion of the heater core 6 of the heater circulation flow path 7 to bypass the heater core 6 from the cooling jacket 1 and to merge the coolant into the heater circulation flow path 7.
  • the pipe 8 a forming the bypass flow path 8 is in contrast to the straight pipe section 7 b in the downstream portion of the heater core 6 of the pipe 7 a forming the heater circulation flow path 7.
  • the connection portion 10 of the pipe 8a to the straight pipe portion 7b of the heater circulation flow path 7 is disposed at a position near the coolant outlet portion to the bypass flow path 8 of the cooling jacket 1, and the bypass flow path 8 is It is formed relatively short.
  • a differential pressure valve 11 is provided at the coolant outlet portion of the cooling jacket 1 to the bypass flow path 8 and opens when the liquid pressure of the cooling liquid on the cooling jacket 1 side exceeds a predetermined value to bypass the coolant. It is comprised so that it may flow toward 8. Specifically, as shown in FIG. 2, a differential pressure valve 11 is provided in a connection flange 12 that connects a pipe 8 a forming the bypass flow path 8 to a coolant outlet of the cooling jacket 1.
  • the liquid temperature of the cooling liquid in the cooling jacket 1 is low, so the main circulation path 5 is closed by the thermostat device 3 and the cooling liquid is not cooled by the radiator 2. .
  • the coolant passes through only the heater circulation channel 7 as shown by a thick solid line in FIG. As it passes, it passes through the thermostat device 3 and circulates, so that the vehicle interior is quickly heated.
  • the liquid pressure of the cooling liquid in the cooling jacket 1 is high.
  • the differential pressure valve 11 When the differential pressure valve 11 is opened, the coolant flows through the heater circulation channel 7 and an excessive amount of coolant flows through the bypass channel 8 with respect to the heater core 6.
  • the coolant flows through the heater circulation flow path 7 at the connection portion 10 with the flow path 7, and flows toward the thermostat device 3 through the heater circulation flow path 7.
  • the pipe 7 a that forms the heater circulation channel 7 in this embodiment is the heater circulation flow of the conventional example.
  • a thing with a diameter larger than the piping of the road is applied.
  • the inner diameter of the bypass passage 8 is 8 mm and the inner diameter of the heater circulation passage 27 of the conventional example is 14.6 mm
  • the inner diameter of the heater circulation passage 7 of the present embodiment. Is set to 16.6 mm.
  • the main circulation flow path 5 is opened in the thermostat device 3, and the cooling liquid in the cooling jacket 1 is mainly as shown by a thick solid line in FIG. It circulates through the main circulation channel 5 and the heater circulation channel 7.
  • the differential pressure valve 11 is closed and the cooling liquid does not flow into the bypass flow path 8.
  • the engine operates at high speed.
  • the liquid pressure of the cooling liquid in the cooling jacket 1 is increased, the differential pressure valve 11 is opened, and the cooling liquid flows through the bypass channel 8.
  • the bypass flow path 8 that bypasses the heater core 6 is connected to the downstream portion of the heater core 6 in the heater circulation flow path 7, and the vicinity of the water pump 4 from the connection portion 10. Since the heater circulation channel 7 also serves as the flow path to the thermostat device 3 disposed in the pipe 8, it is not necessary to provide the pipe 8a forming the bypass flow path 8 to the thermostat device 3, and the heater Since it is only necessary to arrange a single pipe 7a that forms the circulation flow path 7, the number of parts and work man-hours can be reduced, the cost and weight can be reduced, and the layout of the pipe can be facilitated. Can do.
  • the differential pressure valve 11 that opens the bypass passage 8 when the hydraulic pressure on the cooling jacket 1 side becomes a predetermined value or more is disposed at the cooling liquid outlet portion of the cooling jacket 1, the differential pressure valve from the water pump 4 is provided.
  • the length of the flow path up to 11 is increased, so that the differential pressure valve 11 is not easily affected by the pulsation of the water pump 4, and the durability of the differential pressure valve 11 is improved.
  • the pipe 8a forming the bypass flow path 8 is crossed and connected to the straight pipe portion 7b downstream of the heater core 6 in the heater circulation flow path 7, the pressure pulsation from the water pump 4 is reduced. Even if the heater circulation path 7 is traced back, it is difficult to enter the bypass flow path 8 and does not affect the differential pressure valve 11 disposed at the start end of the heater circulation path 7, thereby further enhancing the durability of the differential pressure valve 11. Can be improved.
  • bypass flow path 8 is also used as the heater circulation flow path 7 and is constituted by a single pipe 7a of the heater circulation flow path 7, if the diameter of the pipe 7a of the heater circulation flow path 7 is increased accordingly. As a result, since the flow resistance of the heater circulation flow path 7 becomes small when the coolant does not pass through the bypass flow path 8, an effect that the heater performance can be improved is also exhibited.
  • the bypass flow path is connected to the heater circulation flow path, and the flow path from the connecting portion to the thermostat device is also used as the heater circulation flow path. It is possible to reduce the number of parts and work man-hours, reduce the cost and weight, simplify the piping layout, and install a differential pressure valve that opens the bypass channel on the cooling jacket. Since it is arranged at the coolant outlet, the flow path length from the water pump to the differential pressure valve becomes longer, making the differential pressure valve less susceptible to the pulsation of the water pump, and improving the durability of the differential pressure valve. It can be suitably used for an engine cooling device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Hydraulic Turbines (AREA)

Abstract

 冷却液循環用の配管を少なくできてコスト及び重量を低下できるとともにレイアウトを容易にでき、また差圧弁の耐久性を向上することができるエンジンの冷却装置を提供する。エンジンのシリンダヘッドとシリンダブロックの少なくとも一方に設けられた冷却ジャケット1とヒータコア6の間を循環するヒータ循環流路7を少なくとも有する冷却液循環流路9にウォータポンプ4にて冷却液を循環させるエンジンの冷却装置において、冷却ジャケット1とヒータ循環流路7のヒータコア6の下流部とを連通するバイパス流路8を設け、冷却ジャケット1のバイパス流路8への冷却液出口部に、冷却ジャケット1側の液圧が所定値以上になると開弁する差圧弁11を配設した。

Description

エンジンの冷却装置
 本発明は、エンジンの冷却装置に関し、特にヒータコアに冷却液を循環させるヒータ循環流路とヒータコアをバイパスするバイパス流路とを備えたエンジンの冷却装置に関するものである。
 エンジンの冷却装置は、エンジンに設けられた冷却ジャケットとラジエータとウォータポンプとを有する冷却液循環流路を備え、冷却ジャケットで熱交換して高温となった冷却液をラジエータに通して冷却し、ウォータポンプにて冷却ジャケットに戻すように構成されている。また、冷却液循環流路には、エンジンの暖機中に冷却液をラジエータを通さずに冷却ジャケットに戻すバイパス流路が通常設けられている。そして、冷却液の液温に応じて、冷却液循環流路におけるラジエータを通る主循環流路とバイパス流路に対して適切に冷却液を通すために、ウォータポンプの冷却液の流れ方向上流部にサーモスタット装置を配置したものが知られている(例えば、特許文献1参照)。
 また、エンジンの冷却装置として、冷却ジャケットの冷却液の一部を車室用空調装置のヒータコアを経て循環させるヒータ循環流路を設け、これらのラジエータを通る主循環流路とヒータ循環流路とバイパス流路とに対する冷却液の流れを制御するため、サーモスタット装置とともにバイパス流路に開閉弁を配設し、開閉弁を冷却液の液温が高いときに開き、低いときには閉じるようにした構成が知られている(例えば、特許文献2参照)。
 また、特許文献2の構成では、冷却液の液温が低いときには、サーモスタット装置にてラジエータを通る主循環流路が閉じられるとともに開閉弁にてバイパス流路も閉じられ、冷却液はヒータ循環流路にしか流れないので、その状態でエンジンの回転数を増加させると、冷却液の圧力が増加して不具合を生じる恐れがあるため、サーモスタット装置に冷却液の圧力が設定圧力以上になると開動作する差圧弁機能を持たせるとともに、主循環流路の冷却ジャケットとラジエータの間の位置でヒータ循環流路をバイパスするバイパス流路を設け、バイパス流路に、サーモスタット装置の上記設定圧力よりも低い圧力以上になると開く制御弁(差圧弁)を配設したものが知られている(例えば、特許文献3参照)。
 また、図4に示すように、エンジンの冷却ジャケット21とラジエータ22と差圧弁機能を付加したサーモスタット装置23とウォータポンプ24とをこの順に接続した主循環流路25と、冷却ジャケット21からヒータコア26を通してサーモスタット装置23に冷却液を流通させるヒータ循環流路27と、冷却液を冷却ジャケット21からサーモスタット装置23にバイパスさせるバイパス流路28を設け、サーモスタット装置23を、冷却液の液温に応じて主循環流路25の開度を調整し、ヒータ循環流路27は常時開き、バイパス流路28は、暖機中にエンジンの回転数を増加させて冷却液の圧力が増加したときにその差圧弁機能によって開くように構成したものも知られている。図4において、23aはサーモスタット装置23の感温部、23bは差圧弁機構部である。なお、サーモスタット装置23は汎用されている周知のものであり、その具体的な構成例は、例えば上記特許文献3にサーモスタット12として類似した構成(ヒータ循環流路27を常時開いた状態にする構成は表示されていない。)が記載されている。
実開平3-127029号公報 特開2000-289444号公報 特開2007-120381号公報
 ところで、図4に記載した構成や特許文献3に記載された構成では、冷却液が低温の暖機中にエンジンの回転数が増加して冷却液の圧力が増加したときには、サーモスタット装置23の差圧弁機能が作動してヒータ循環通路27とバイパス流路28の両方に冷却液が流れることによって、冷却液の圧力が過大になって支障を生じる恐れを解消することができるが、図4の構成ではバイパス流路28を開閉する差圧弁機構部23bがウォータポンプ24の近傍に配設されているサーモスタット装置23と一体的に設けられているので、バイパス流路28は、図5に示すように、ヒータ循環通路27を構成する配管27aとは別に、バイパス流路28を構成する配管28aを、エンジンの冷却ジャケット21に設けた冷却液出口に接続したフランジ29とサーモスタット装置23との間を接続するように配設して構成されている。そのため、2本の配管27a、28aが必要となり、部品点数及び作業工数が多くなってコスト高になるとともに重量が大きくなり、また配管のレイアウトも困難になるという問題がある。また、差圧弁機構部23bがウォータポンプ24の近傍に位置しているため、ウォータポンプ24からの脈動を受け易いために、その耐久性を低下させるという問題がある。
 また、特許文献3に記載された構成でも、ヒータ循環流路とは別に、主循環流路の冷却ジャケットとラジエータの間の位置とサーモスタット装置を接続するバイパス流路を配管するとともに、そのバイパス流路に制御弁(差圧弁)を配設しているため、部品点数及び作業工数が多いためにコスト高になるとともに重量が大きくなり、また配管のレイアウトも困難になるという問題がある。
 本発明は、上記従来の問題点に鑑み、冷却液循環用の配管を少なくできてコスト及び重量を低下できるとともにレイアウトを容易にでき、また差圧弁の耐久性を向上することができるエンジンの冷却装置を提供することを目的とする。
 本発明のエンジンの冷却装置は、エンジンのシリンダヘッドとシリンダブロックの少なくとも一方に設けられた冷却ジャケットとヒータコアの間を循環するヒータ循環流路を少なくとも有する冷却液循環流路にウォータポンプにて冷却液を循環させるエンジンの冷却装置において、冷却ジャケットとヒータ循環流路のヒータコアの下流部とを連通するバイパス流路を設け、冷却ジャケットのバイパス流路への冷却液出口部に、冷却ジャケット側の液圧が所定値以上になると開弁する差圧弁を配設したものである。
 この構成によると、ヒータコアをバイパスするバイパス流路を、ヒータ循環流路におけるヒータコアの下流部に接続し、その接続部からウォータポンプの近傍に配設されるサーモスタット装置までの流路をヒータ循環流路にて兼用するようにしているので、バイパス流路を形成する配管をサーモスタット装置まで配設する必要がなく、ヒータ循環流路を形成する単一の配管を配設するだけで良いので、部品点数及び作業工数を低減できてコスト及び重量を低減することができるとともに、配管のレイアウトの容易化を図ることができる。また、冷却ジャケット側の液圧が所定値以上になったときにバイパス流路を開く差圧弁を冷却ジャケットの冷却液出口部に配設しているので、ウォータポンプから差圧弁までの流路長が長くなって差圧弁がウォータポンプの脈動の影響を受け難くなり、差圧弁の耐久性が向上する。また、ヒータ循環流路とバイパス流路を単一の配管にて構成する分、ヒータ循環流路の配管径を大きくすることができ、ヒータ循環流路の流路抵抗が小さくなってヒータ性能を向上することができる。
 また、バイパス流路は、ヒータ循環流路のヒータコアの下流部の直線状配管部に対して交叉させて接続すると、ウォータポンプからの圧力脈動がヒータ循環流路を遡ってきても、バイパス流路には入って行き難く、差圧弁の耐久性を一層向上することができる。
 本発明のエンジンの冷却装置によれば、バイパス流路をヒータ循環流路に接続してその接続部からサーモスタット装置までの流路をヒータ循環流路にて兼用しているので、単一の配管を配設するだけで良くなり、部品点数及び作業工数を低減できてコスト及び重量を低減することができるとともに配管のレイアウトの容易化を図ることができ、またバイパス流路を開く差圧弁を冷却ジャケットの冷却液出口部に配設しているので、ウォータポンプから差圧弁までの流路長が長くなって差圧弁がウォータポンプの脈動の影響を受け難くなり、差圧弁の耐久性が向上する。
本発明のエンジンの冷却装置の一実施形態の構成図。 同実施形態のヒータ循環流路とバイパス流路の配管状態を示す斜視図。 エンジンの各作動状態における冷却液の循環経路の説明図。 従来例のエンジンの冷却装置の構成図。 同従来例のヒータ循環流路とバイパス流路の配管状態を示す斜視図。
符号の説明
 1 冷却ジャケット
 3 サーモスタット装置
 4 ウォータポンプ
 6 ヒータコア
 7 ヒータ循環流路
 7b 直線状配管部
 8 バイパス流路
 9 冷却液循環流路
 10 接続部
 11 差圧弁
 以下、本発明のエンジンの冷却装置の一実施形態について、図1~図3を参照して説明する。
 図1において、本実施形態のエンジンの冷却装置は、エンジンの冷却ジャケット1とラジエータ2とサーモスタット装置3とウォータポンプ4とをこの順に接続した主循環流路5と、冷却ジャケット1からヒータコア6を通ってサーモスタット装置3に冷却液を流通させるヒータ循環流路7と、冷却ジャケット1からヒータコア6をバイパスして冷却液を流通させるバイパス流路8とを備え、これら主循環流路5とヒータ循環流路7とバイパス流路8にて冷却液循環流路9が構成されている。
 サーモスタット装置3は、冷却液の液温に応じて主循環流路5の開度を調整して冷却液を液温に応じてラジエータ2に通し、冷却ジャケット1内の冷却液の液温を一定に維持するように構成されている。3aは、冷却液の液温を感知して弁開度を調整する感温部である。また、ヒータ循環流路7は常時導通した状態となるように構成されている。
 バイパス流路8は、冷却ジャケット1とヒータ循環流路7のヒータコア6の下流部とを接続して冷却ジャケット1からヒータコア6をバイパスして冷却液をヒータ循環流路7に合流させるように構成されている。具体的には、図2に示すように、バイパス流路8を形成する配管8aが、ヒータ循環流路7を形成している配管7aのヒータコア6の下流部における直線状配管部7bに対して交叉するように接続されている。また、このヒータ循環流路7の直線状配管部7bに対する配管8aの接続部10は、冷却ジャケット1のバイパス流路8への冷却液出口部に近い位置に配設され、バイパス流路8が比較的短く形成されている。
 冷却ジャケット1のバイパス流路8への冷却液出口部には差圧弁11が配設され、冷却ジャケット1側の冷却液の液圧が所定値以上になると開弁して冷却液をバイパス流路8に向けて流出させるように構成されている。具体的には、図2に示すように、バイパス流路8を形成する配管8aを冷却ジャケット1の冷却液出口に接続する接続フランジ12に差圧弁11を内蔵させて配設されている。
 以上の構成において、エンジン起動直後の暖機運転状態では、冷却ジャケット1内の冷却液の液温が低いため、サーモスタット装置3にて主循環経路5が閉じられ、冷却液はラジエータ2で冷却されない。また、その状態でエンジンが低速回転数ないし中速回転数(~4000rpm)で作動されている時には、冷却液は、図3(a)に太い実線で示すように、ヒータ循環流路7のみを通り、サーモスタット装置3を通過して循環し、車室内の暖房が速やかに行われる。
 また、この暖機運転状態で、エンジンが高速回転数(4000~6000rpm)で作動された時には、図3(b)に太い実線で示すように、冷却ジャケット1内の冷却液の液圧が高くなって差圧弁11が開くことで、冷却液はヒータ循環流路7を通るとともにヒータコア6に対して過剰量の冷却液がバイパス流路8を通って流通し、このバイパス流路8のヒータ循環流路7との接続部10でヒータ循環流路7を流通する冷却液に合流し、ヒータ循環流路7を通ってサーモスタット装置3に向けて流れる。このように、バイパス流路8を通った冷却液がヒータ循環流路7を通る冷却液に合流するため、本実施形態におけるヒータ循環流路7を形成する配管7aは、従来例のヒータ循環流路の配管よりも太い直径のものが適用されている。具体例を示すと、バイパス流路8の流路内径が8mm、従来例のヒータ循環流路27の流路内径が14.6mmの場合に、本実施形態のヒータ循環流路7の流路内径は16.6mmに設定される。
 ジャッケット1内の冷却液の液温が高くなると、サーモスタット装置3にて主循環流路5が開かれ、図3(c)に太い実線で示すように、冷却ジャッケット1内の冷却液は主として、主循環流路5とヒータ循環流路7を通って循環する。この状態では通常は冷却ジャッケット1内の冷却液の液圧が高くないので、差圧弁11が閉じて冷却液はバイパス流路8に流れない。なお、この状態の場合でも、サーモスタット装置3にて主循環流路5を流通する冷却液の流量が大きく絞られ、ヒータ循環流路7への冷却液の流量が絞られている時にエンジンが高速回転数で作動された場合には冷却ジャケット1内の冷却液の液圧が高くなって差圧弁11が開き、冷却液はバイパス流路8を通って流通する。
 以上の本実施形態のエンジンの冷却装置によれば、ヒータコア6をバイパスするバイパス流路8を、ヒータ循環流路7におけるヒータコア6の下流部に接続し、その接続部10からウォータポンプ4の近傍に配設されたサーモスタット装置3までの流路をヒータ循環流路7にて兼用するようにしているので、バイパス流路8を形成する配管8aをサーモスタット装置3まで配設する必要がなく、ヒータ循環流路7を形成する単一の配管7aを配設するだけで良いので、部品点数及び作業工数を低減できてコスト及び重量を低減することができるとともに、配管のレイアウトの容易化を図ることができる。
 また、冷却ジャケット1側の液圧が所定値以上になったときにバイパス流路8を開く差圧弁11を冷却ジャケット1の冷却液出口部に配設しているので、ウォータポンプ4から差圧弁11までの流路長が長くなり、そのため差圧弁11がウォータポンプ4の脈動の影響を受け難くなり、差圧弁11の耐久性が向上する。特に、バイパス流路8を形成する配管8aを、ヒータ循環流路7のヒータコア6の下流部の直線状配管部7bに対して交叉させて接続しているので、ウォータポンプ4からの圧力脈動がヒータ循環流路7を遡ってきても、バイパス流路8には入って行き難く、その始端部に配設されている差圧弁11に影響を与えることはなく、差圧弁11の耐久性を一層向上することができる。
 また、バイパス流路8をヒータ循環流路7に兼用させ、ヒータ循環流路7の単一の配管7aにて構成しているので、その分ヒータ循環流路7の配管7aの径を大きくすると、その結果バイパス流路8を冷却液が通らないときにヒータ循環流路7の流路抵抗が小さくなるため、ヒータ性能を向上することができるという効果も発揮される。
 本発明のエンジンの冷却装置は、バイパス流路をヒータ循環流路に接続してその接続部からサーモスタット装置までの流路をヒータ循環流路にて兼用しているので、単一の配管を配設するだけで良くなり、部品点数及び作業工数を低減できてコスト及び重量を低減することができるとともに配管のレイアウトの容易化を図ることができ、またバイパス流路を開く差圧弁を冷却ジャケットの冷却液出口部に配設しているので、ウォータポンプから差圧弁までの流路長が長くなって差圧弁がウォータポンプの脈動の影響を受け難くなり、差圧弁の耐久性が向上するため、エンジンの冷却装置に好適に利用できる。

Claims (2)

  1.  エンジンのシリンダヘッドとシリンダブロックの少なくとも一方に設けられた冷却ジャケットとヒータコアの間を循環するヒータ循環流路を少なくとも有する冷却液循環流路にウォータポンプにて冷却液を循環させるエンジンの冷却装置において、冷却ジャケットとヒータ循環流路のヒータコアの下流部とを連通するバイパス流路を設け、冷却ジャケットのバイパス流路への冷却液出口部に、冷却ジャケット側の液圧が所定値以上になると開弁する差圧弁を配設したことを特徴とするエンジンの冷却装置。
  2.  バイパス流路は、ヒータ循環流路のヒータコアの下流部の直線状配管部に対して交叉させて接続したことを特徴とする請求項1記載のエンジンの冷却装置。
PCT/JP2009/055145 2008-03-19 2009-03-17 エンジンの冷却装置 WO2009116520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/864,434 US20100288213A1 (en) 2008-03-19 2009-03-17 Cooling device for engine
DE112009000330T DE112009000330T5 (de) 2008-03-19 2009-03-17 Kühlvorrichtung für einen Verbrennungsmotor
CN2009801022541A CN101918690B (zh) 2008-03-19 2009-03-17 发动机的冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008070685A JP4384230B2 (ja) 2008-03-19 2008-03-19 エンジンの冷却装置
JP2008-070685 2008-03-19

Publications (1)

Publication Number Publication Date
WO2009116520A1 true WO2009116520A1 (ja) 2009-09-24

Family

ID=41090921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055145 WO2009116520A1 (ja) 2008-03-19 2009-03-17 エンジンの冷却装置

Country Status (5)

Country Link
US (1) US20100288213A1 (ja)
JP (1) JP4384230B2 (ja)
CN (1) CN101918690B (ja)
DE (1) DE112009000330T5 (ja)
WO (1) WO2009116520A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180565A (zh) * 2010-11-01 2013-06-26 丰田自动车株式会社 内燃机的冷却系统
JP5936868B2 (ja) * 2012-01-31 2016-06-22 日本サーモスタット株式会社 サーモスタット装置
DE102017200878A1 (de) * 2016-11-14 2018-05-17 Mahle International Gmbh Kraftfahrzeug
JP6848728B2 (ja) * 2017-07-05 2021-03-24 トヨタ自動車株式会社 内燃機関の冷却システムの制御装置
KR20190073174A (ko) * 2017-12-18 2019-06-26 현대자동차주식회사 차량의 분리 냉각 시스템
GB2581474B (en) * 2019-02-13 2021-09-22 Jaguar Land Rover Ltd Engine cooling circuit and method of cooling an engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177491A (ja) * 1994-12-27 1996-07-09 Toyota Motor Corp 内燃機関の冷却装置
JP2000289444A (ja) * 1999-04-07 2000-10-17 Mitsubishi Heavy Ind Ltd 車両用冷却水量制御装置、車両用ヒータ装置及び車両用空気調和装置
JP2007120381A (ja) * 2005-10-27 2007-05-17 Aisin Seiki Co Ltd エンジン冷却装置
JP2007291928A (ja) * 2006-04-24 2007-11-08 Mazda Motor Corp エンジンの冷却装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229456A (en) * 1960-12-19 1966-01-18 Gratzmuller Jean Louis Cooling systems for internal combustion engines
US3208438A (en) * 1964-03-20 1965-09-28 Ford Motor Co Cooling system for an internal combustion engine
DE2847057A1 (de) * 1978-10-28 1980-05-08 Daimler Benz Ag Verbrennungskraftmaschine mit kuehlsystem
JPH03127029A (ja) 1989-10-13 1991-05-30 Matsushita Electric Ind Co Ltd スペーサ材とシール材と液晶パネル製造方法
DE10025500B4 (de) * 2000-05-23 2013-05-29 Bosch Mahle Turbo Systems Gmbh & Co. Kg Brennkraftmaschine mit Kühlkreislauf und einem an diesen angeschlossenen Heizungswärmetauscher
SE525988C2 (sv) * 2003-10-24 2005-06-07 Volvo Lastvagnar Ab Kylsystem för en i ett fordon monterad förbränningsmotor
JP4663473B2 (ja) 2005-09-30 2011-04-06 財団法人福岡県産業・科学技術振興財団 半導体装置設計支援装置、半導体装置設計支援方法、その方法をコンピュータにより実行可能なプログラム、及び、そのプログラムを記録した記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177491A (ja) * 1994-12-27 1996-07-09 Toyota Motor Corp 内燃機関の冷却装置
JP2000289444A (ja) * 1999-04-07 2000-10-17 Mitsubishi Heavy Ind Ltd 車両用冷却水量制御装置、車両用ヒータ装置及び車両用空気調和装置
JP2007120381A (ja) * 2005-10-27 2007-05-17 Aisin Seiki Co Ltd エンジン冷却装置
JP2007291928A (ja) * 2006-04-24 2007-11-08 Mazda Motor Corp エンジンの冷却装置

Also Published As

Publication number Publication date
JP4384230B2 (ja) 2009-12-16
DE112009000330T5 (de) 2012-01-05
JP2009222042A (ja) 2009-10-01
US20100288213A1 (en) 2010-11-18
CN101918690B (zh) 2012-09-26
CN101918690A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
US9321479B2 (en) Vehicle power steering waste heat recovery
JP4384230B2 (ja) エンジンの冷却装置
CN103184925B (zh) 运行冷却液回路的方法
EP1674688B1 (en) Cooling system for an engine
DE10025500B4 (de) Brennkraftmaschine mit Kühlkreislauf und einem an diesen angeschlossenen Heizungswärmetauscher
JP4456162B2 (ja) エンジンの冷却装置
JP4457848B2 (ja) 車両搭載パワーユニットの冷却装置
JP2009209913A (ja) 排気熱回収装置
CN102695857A (zh) 内燃机冷却系统及内燃机冷却系统中的故障判定方法
JP4716049B2 (ja) 内燃機関の冷却回路
ITTO970205A1 (it) Sistema di raffreddamento per un motore a combustione interna, parti- colarmente per autoveicoli
JP3374715B2 (ja) 内燃機関の冷却水循環装置
JP2006161806A (ja) 液冷式内燃機関の冷却装置
JP5668318B2 (ja) 車両の冷却装置
JP5137135B2 (ja) 排気ガス浄化触媒用還元剤供給装置
JP2004084882A (ja) トランスミッションの油温制御装置
JP5517814B2 (ja) エンジン冷却系システム
JP4285116B2 (ja) 車両用内燃機関のヒータ用冷却水通路分岐構造
JP2017155672A (ja) 車両の液体循環システム
JP2013072350A (ja) エンジンの冷却装置
JP6604540B2 (ja) エンジン冷却装置
JP4352882B2 (ja) エンジン冷却装置
JP5848906B2 (ja) 車両の熱交換装置
JP6875881B2 (ja) 内燃機関の冷却水系統の構造
JP6315009B2 (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102254.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721877

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12864434

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09721877

Country of ref document: EP

Kind code of ref document: A1