WO2009114966A1 - 他米巴罗汀ii型结晶的制备方法 - Google Patents

他米巴罗汀ii型结晶的制备方法 Download PDF

Info

Publication number
WO2009114966A1
WO2009114966A1 PCT/CN2008/070537 CN2008070537W WO2009114966A1 WO 2009114966 A1 WO2009114966 A1 WO 2009114966A1 CN 2008070537 W CN2008070537 W CN 2008070537W WO 2009114966 A1 WO2009114966 A1 WO 2009114966A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
crystal
tamibarotene
acid
organic acid
Prior art date
Application number
PCT/CN2008/070537
Other languages
English (en)
French (fr)
Inventor
孙飘扬
陈永江
李语如
郁光亮
Original Assignee
江苏恒瑞医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒瑞医药股份有限公司 filed Critical 江苏恒瑞医药股份有限公司
Priority to PCT/CN2008/070537 priority Critical patent/WO2009114966A1/zh
Publication of WO2009114966A1 publication Critical patent/WO2009114966A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/65Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Definitions

  • the present invention relates to a pharmaceutical and organic chemistry, particularly a method for preparing a specific high purity cerium type crystal of Tamibarotene
  • Tamibarotene is a retinoid compound discovered and first synthesized by Professor Shoji of the University of Tokyo (Jpn J Cancer Res 79: 473-483, 1988; J Med Chem 31: 2182-2192, 1988, etc.). On November 27, 1998, the drug was designated as a rare disease drug due to its predictable efficacy and efficacy against acute promyelocytic leukemia (acute pre-myeloid leukemia). In 2005, the drug was approved for marketing in Japan.
  • Hemibarrotin is a white crystalline powder, soluble in DMF, soluble in methanol, ethanol, etc., slightly insoluble in ether, insoluble in ethyl acetate, insoluble in water. It is poorly soluble or does not dissolve at all in various buffer solutions (pH 3 ⁇ 7).
  • type III the crystal structure of mixed crystals of type I, type II, and type I and type II (hereinafter referred to as type III) has been confirmed.
  • Type I crystals melt at 193 ° C (see JP3001632B2) and are generally unstable. After physical action (such as impact or heating) or long-term placement, they tend to become ⁇ or type III; type II crystals at 233 ° C.
  • the crystals melted at 193 ° C disclosed in Japanese Patent No. 3001632B1 can be prepared by using a mixture of methanol and water as a recrystallization solvent, although the crystal form has a characteristic that the residual methanol can be extremely lowered, however, at 193 ° C.
  • the molten crystal is liable to be converted into a crystal form by physical impact, and it is extremely difficult to prepare a uniform crystal. It is not suitable as a raw material for preparing a large number of uniform pharmaceutical products.
  • the type III crystals melted at 205.5 to 206.5 ° C can be prepared by using a mixture of ethyl acetate and hexane as a recrystallization solvent.
  • the present invention relates to a process for the preparation of Tamibarotin type II crystals having a single endothermic peak in the vicinity of 233 ° C in differential scanning calorimetry, which comprises any crystalline or amorphous Tamiba
  • the solid is crystallized with an aqueous solution of a lower organic acid or a lower organic acid to obtain a pure crystal of Tamibarotin type II.
  • the lower acid refers to a lower organic acid having a carbon number of less than 6 and which can be volatilized and used as a crystallization solvent, preferably acetic acid or formic acid, or a combination thereof.
  • the ratio of both the acid to the water may be arbitrary, but is generally limited to 20:80 to 98:2, preferably 50:50 to 90:10.
  • the method further comprises drying at 100-140 ° C, preferably 120 ° C under reduced pressure to remove residual low-grade organic acid.
  • the present invention relates to a process for the preparation of Tamibarotene quinone type crystals having a single endothermic peak in the vicinity of 233 ° C in differential scanning calorimetry, characterized in that 180 ° C which does not easily cause degradation is required.
  • high purity type II crystals can be obtained.
  • the present invention provides a method for selectively preparing a ruthenium-type crystal of Tamibarotene, and strives to obtain a type II smelt which melts at 233 ° C with a high content and low solvent residue using a low toxicity solvent.
  • the present inventors conducted extensive and intensive studies in order to solve the above-mentioned crystallization problem.
  • the inventors carried out a series of crystallization research work on common solvents such as ethanol, methanol, isopropanol, acetone and their respective mixtures with water, according to different design schemes, as a crystallization solvent of Tamibarotene;
  • the crystal form of the obtained Tamibarotene crystal was studied by melting point measurement, differential scanning calorimetry (DSC), and X-ray diffraction pattern measurement.
  • the mixture with water selectively gives a known relatively pure Form I crystal which melts at 193 °C.
  • Patent CN1449376A discloses an auxiliary method for the preparation of pure cerium-type crystals of Tamibarotene, which can be heated at a temperature of about 200 ° C, so that it is at 193 ° in differential scanning calorimetry.
  • the crystal of Tamibarotene which has an endothermic peak near C and near 233 ° C can be heated and the crystal form is converted to obtain pure quinone crystal.
  • the present inventors conducted a more extensive and in-depth study on various solvents suitable for the crystallization of Tamibarotin type II.
  • the inventors have surprisingly found that a lower organic acid solvent used as a crystallization solvent has satisfactory results for the crystallization of Tamibarotene.
  • the resulting Tamibarotene crystals have a single endothermic peak near 233 ° C in differential scanning thermal analysis; further, the present invention provides a single endothermic near 233 ° C in differential scanning calorimetry.
  • the peak of Tamibarotene crystals after drying at 120 ⁇ 140 ° C, preferably 120 ° C under reduced pressure, the residual formic acid and acetic acid are below 500 ppm, more satisfactory, if the drying time is long enough At the time, residual formic acid and acetic acid could not be detected. Moreover, the method does not require a high-temperature conversion process of 180 ° C or more which is liable to cause degradation, and a high-purity quinoid type crystal can be obtained.
  • the present invention provides a crystal of Tamibarotin type II crystal having a single endothermic peak in the vicinity of 233 ° C in differential scanning calorimetry, characterized by containing no hexane and/or ethyl acetate or ethanol as a residual solvent. , can be used for pharmaceutical preparation. As a medicine, it can be used for the treatment of acute promyelocytic leukemia.
  • the type of the Tamibarotene crystal which can be used as a raw material in the method of the present invention is not particularly limited, and a crystalline or amorphous solid of any crystal form can be used.
  • the confirmation of the crystal form can be carried out reliably by powder X-ray diffractometry in addition to differential scanning calorimetry, and the melting point data measured by the capillary method can also be used as an important reference.
  • the results of thermal analysis of the above type I crystal and type II crystal are described in the above patent documents, respectively. It is to be noted that the experimental error in melting point measurement or differential scanning thermal analysis or the like is about several ° C, usually within 2 ° C, preferably within 1 ° C.
  • the process according to the invention is characterized in that a lower organic acid is used, preferably an organic carboxylic acid having a carbon number of less than 6, which can be volatilized and used as a crystallization solvent, or a mixture thereof; more preferably acetic acid or formic acid or a mixture thereof, Or a mixture of them with water as a recrystallization solvent for his mibarotene crystals.
  • a lower organic acid preferably an organic carboxylic acid having a carbon number of less than 6, which can be volatilized and used as a crystallization solvent, or a mixture thereof; more preferably acetic acid or formic acid or a mixture thereof, Or a mixture of them with water as a recrystallization solvent for his mibarotene crystals.
  • pure acetic acid or formic acid may be used, or a mixed solvent of acid and water may be used.
  • the ratio of the ratio of the acid to the water is not limited, and may be any, generally limited to 20:80 to 98:2, but
  • the method of recrystallization is not particularly limited and can be carried out by a usual recrystallization operation method.
  • the raw material tamambarotene crystals may be completely dissolved in pure acetic acid or a mixture of acetic acid and water, and then slowly cooled and crystallized, and then the precipitated crystals may be collected by filtration; in order to crystallize the object efficiently, it may be added.
  • the number of seed crystals is not particularly limited; the crystals to be collected are usually dried under reduced pressure at a temperature of about 100 to 140 ° C, preferably at 120 ° C, to obtain an effect of removing the recrystallization solvent.
  • the Tamibarotene crystals prepared according to the process of the present invention contain no or only a lower level of acetic acid or formic acid.
  • Acetic acid and formic acid are the third type of low toxicity solvent among the residual solvents of pharmaceutical products prescribed by the National Pharmacopoeia, and thus the crystal of the present invention can be preferably used as a pharmaceutical active ingredient.
  • Figure 1-1 DSC spectrum of Mibarotin I crystal form (methanol-water refining)
  • Figure 1-2 X-ray powder diffraction spectrum of Mibarotin I crystal form (methanol-water refining)
  • Figure 2-1 DSC spectrum of Tamibarrotin III crystal form (ethanol-water refining)
  • Figure 2-2 X-ray powder diffraction spectrum of his mibarotine III crystal form (refined by ethanol-water)
  • Figure 3-1 DSC spectrum of the crystalline form of Tamibarotin II (ethanol-water refining heating and crystal transformation)
  • Figure 3-2 X-ray powder diffraction spectrum of the crystalline form of Tamibarotene II (ethanol-water refining heating and crystallizing)
  • FIG. 4-1 DSC spectrum of his mibaroline II crystal form (acetic acid refining)
  • Figure 4-2 X-ray powder diffraction spectrum of his Tambarrotin II crystal form (acetic acid refining)
  • Figure 5-1 DSC spectrum of the former Tambarrotin II crystal form (formic acid refining)
  • the mixed crystal obtained above (HPLC 99.85%, single impurity less than 0.1%) was heated at 200 to 205 ° C for 2 hours under reduced pressure.
  • a single endothermic peak was given at around 233 ° C (see Fig. 3-1). It can be confirmed that it is type II crystal.
  • the purity of the sample detected by HPLC decreased to 99.50%, the pre-mixed amount reached 0.1% or more, and the other pre-mixed amount reached 0.2% or more.
  • the mibaroline lO.Og was added to acetic acid (130 ml), dissolved by heating, and then slowly cooled, and the precipitated crystals were collected by filtration.
  • the crystals thus obtained were dried at 120 to 130 ° C for 4 hours under reduced pressure to give 7.5 g of crystals.
  • differential crystallization thermal analysis was performed on this crystal, a single endothermic peak was given at around 233 °C.
  • the melting point was determined by a capillary method at 231-3 ° C, and the acetic acid solvent remained at 420 ppm. Then, the sample was further dried under reduced pressure at 140 ° C for 20 hours, and the residual acetic acid solvent was not detected.
  • the mibaroline lO.Og was added to a mixture of 400 ml of acetic acid and 200 ml of water, dissolved by heating, and then slowly cooled, and the precipitated crystals were collected by filtration. The obtained crystals were dried under reduced pressure at 120 to 130 ° C for 2 hours to obtain 8 g of crystals. Differential scanning thermal analysis of this crystallization, A single endothermic peak is given near 233 °C. The melting point of the powder was measured at 231.3 ° C by a capillary method, and the powder X-ray diffraction pattern of the crystal was the same as that of the powder X-ray diffraction pattern obtained in Example 1, and it was confirmed that it was a type II crystal.
  • the mibaroline lO.Og was added to 120 ml of formic acid, dissolved by heating, and then slowly cooled, and the precipitated crystals were collected by filtration. The obtained crystal was dried under reduced pressure at 120 to 130 ° C for 4 hours to obtain 7 g of crystals. A differential scanning thermal analysis of this crystallization gave a single endothermic peak around 233 °C (see Figure 5-2). The melting point was 231-3 °C by capillary method and 470 ppm of formic acid solvent. The crystal powder X-ray diffraction pattern (see Fig. 5-2) was compared with the powder X-ray diffraction pattern obtained in Example 1 (see Fig. 4-2), and it was confirmed that it was a type II crystal.
  • the mibaroline lO.Og was added to a mixture of 300 ml of formic acid and 200 ml of water, and the mixture was warmed and then slowly cooled, and the precipitated crystals were collected by filtration. The obtained wet crystals were dried at 120 to 130 ° C for 3 hours under reduced pressure to give 7.2 g of crystals. When a differential scanning thermal analysis was performed on this crystal, a single endothermic peak was given at around 233 °C. The melting point of the powder was measured by a capillary method at 231-4 ° C, and the powder X-ray diffraction pattern of the crystal was the same as that of the powder X-ray diffraction pattern obtained in Example 3, and it was confirmed that it was a type II crystal. Schedule 1. Preparation of different crystal forms of Tamibarotene and corresponding spectral results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

他米巴罗汀 II型结晶的制备方法 技术领域
本发明涉及药学和有机化学, 特别是他米巴罗汀特定高纯度 Π型 结晶的制备方法
背景技术
他米巴罗汀 (tamibarotene) 是由东京大学首藤教授发现并首次合 成出来的维甲酸类化合物 (Jpn J Cancer Res 79: 473-483, 1988; J Med Chem 31: 2182-2192,1988等)。 1998年 11月 27日该药品由于对急性早幼 粒细胞性白血病 (急性前骨髓球性白血病) 的可以预计的效能和效果 而被指定为罕见疾病用药。 2005年, 该药在日本被批准上市。
他米巴罗汀为白色结晶性粉末, 易溶于 DMF, 溶于甲醇、 乙醇等, 稍难溶于乙醚, 难溶于乙晴, 不溶于水。 在各种缓冲溶液 (pH3~7 ) 中 难溶或者根本不溶解。 在他米巴罗汀研发早期, I型、 II型以及 I型和 II 型的混合结晶 (以下称 III型) 的晶型结构已经得到了确认。 I型结晶在 193°C熔化 (参见 JP3001632B2) , 通常不稳定, 在物理作用下 (例如撞击 或加热)或者长时间放置后, 容易变成 Π型或 III型; II型结晶, 在 233°C熔 化 (参见 JP2000264733 ); III型结晶从乙酸乙酯 /正己垸混合溶剂中精制 而得, 在 205.5〜206.5°C熔融 (参见 US703110,1984)。 III型中的 I型和 II型 的含量每次都不相同, 没有固定的规律。
日本专利 JP3001632B1中公开的在 193 °C熔融的结晶可以用甲醇与 水的混合物作为重结晶溶剂来制备, 尽管该晶型有可以使残留甲醇降到 极低这样的特征, 然而, 在 193°C熔融的结晶容易因物理冲击而使晶形 转化, 有极难以制备均一结晶这样的问题, 不太适合于作为大量制备均 一规格医药品的原料。 在 205.5〜206.5°C熔融的 III型结晶可以用乙酸乙 酯与己垸的混合物作为重结晶溶剂来制备。对于该结晶来说, 进一步的 研究证明它是晶型 Π和晶型 III的混合晶型, 同时结晶中乙酸乙酯和正己 垸的残留率分别为 1200ppm和 190ppm,有难以满足药典规定的残留溶剂 基准值(乙酸乙酯: 5000ppm以下; 己垸: 290ppm)这样的问题; 与之 相比, 在 233°C熔融的 II型结晶体, 不仅对物理冲击具有高稳定性, 而且 对热、 温度、 光等也是具有高稳定性的。 在 JP20002647 (CN1449376) 公开的制备方法中, 在 233°C熔融的结晶可以用乙醇与水的混合物作为 重结晶溶剂来制备, 缺点是难以制备得到高纯度的 Π型结晶。 仍然需要 用高温加热转化晶型的方法来得到纯的 Π型结晶, 该方法也存在的明显 缺陷, 这就是加热转化晶型的温度很高, 通常转化温度在 180°C以上; 而高温导致了产生降解。 发明内容
本发明涉及一种在差示扫描热分析中在 233°C附近有单一吸热峰的 他米巴罗汀 II型结晶的制备方法, 该方法包括将任意晶型或无定型的 他米巴罗汀固体用低级有机酸类或低级有机酸的水溶液结晶得到纯的 他米巴罗汀 II型结晶的步骤。
其中,所述的低级酸指的是含碳原子数小于 6同时能够挥发并可用 作结晶溶剂的低级有机酸类, 优选为乙酸或甲酸, 或它们的组合。
当选用的结晶溶剂为有机酸的水溶液时, 酸与水两者的比例, 可以 是任意的, 但一般限定在 20: 80至 98: 2, 优选 50: 50至 90: 10内。
该方法进一步包括在减压下在 100-140°C, 优选 120°C进行干燥以除 去残留的低级有机酸。
另一方面, 本发明涉及在差示扫描热分析中在 233°C附近有单一吸 热峰的他米巴罗汀 Π型结晶的制备方法,其特征在于不需经容易引起降 解的 180°C以上的高温转化过程, 即可得到高纯度的 II型结晶。 发明详述
本发明的内容是提供选择性制备他米巴罗汀的 Π型结晶体的方法, 力求使用低毒性溶剂,得到含量高、溶剂残留低的在 233°C熔融的 II型结 曰
曰曰
本发明人为了解决上述结晶课题,进行了广泛而深入的研究。发明者 对常用的溶剂如乙醇、 甲醇、异丙醇、丙酮以及它们分别与水的混合物, 按不同的设计方案,用作他米巴罗汀的结晶溶剂,进行了一系列的结晶 研究工作; 通过测熔点、差示扫描热分析(DSC)、 以及 X—衍射图谱测 定, 对得到的他米巴罗汀结晶体进行了晶型研究。发明者发现, 以上的 溶剂, 不论是纯的溶剂, 还是和适量比例的水组成的水溶液, 用于他米 巴罗汀的精制时, 都很难得到纯的 Π型他米巴罗汀结晶; 这些溶剂中, 用甲醇与水的混合物选择性地得到了已知的较纯的在 193°C熔融的 I型 结晶。而其它的溶剂, 或者它们的水溶液, 用作他米巴罗汀的结晶溶剂 时却得不到较纯的 I 型结晶或 II 型结晶。 尽管发明者也注意到专利 CN1449376A中所公开的用乙醇与水的混合物进行重结晶选择性地制备 在 233°C熔融的 II型结晶的方法, 但实验结果表明, 以上的这些溶剂, 或者它们的水溶液, 用作他米巴罗汀的结晶溶剂时很难得到纯度高的 II型结晶,差示扫描热分析 (DSC)图谱中,仍然或多或少地看到在 193°C 附近的吸收峰, 这意味着这些所得到的晶型仍然是混合晶型。
综上所说,从某种意义上讲,按照专利 CN1449376A中公开的方法, 仅用乙醇水溶液做溶剂用作他米巴罗汀的结晶, 很难得到单一的纯的 II型结晶。专利 CN1449376A中同时也公开了用作制备他米巴罗汀的纯 的 Π型结晶的一种辅助方法,即可以在 200 °C左右的温度进行加热,使得 在差示扫描热分析中在 193°C附近和在 233°C附近有吸热峰的他米巴罗 汀的结晶能经过加热的方法, 晶型发生转变, 得到纯的 Π型结晶。这一 方法是可行的, 但是本发明者在研究中也发现了该方法存在的明显缺 陷, 这就是高温导致的降解问题; 本发明者以高纯度 (HPLC99.85%,单 杂小于 0.1% ) 的他米巴罗汀混合晶型样品做晶型转化试验,在 200〜 205 °C的温度条件下加热 2小时后,样品的纯度降到了 99.50%,—个前杂 达到 0.1%以上,另一前杂达到 0.2%以上。
为了寻找更好的制备他米巴罗汀 Π型结晶的方法,本发明者对适用 于他米巴罗汀 II型结晶的各类溶剂进行了更加广泛而深入的研究。发明 者惊喜地发现, 用作结晶溶剂的低级有机酸类溶剂, 用于他米巴罗汀的 结晶时, 有着令人满意的结果。 所得到的他米巴罗汀结晶, 在差示扫 描热分析时, 在 233°C附近有着单一吸热峰; 进而, 本发明提供在差示 扫描热分析中在 233°C附近有单一吸热峰的他米巴罗汀结晶,在减压下, 在 120〜140°C,优选 120°C,进行干燥后,残留甲酸和乙酸均在 500ppm 以下,更满意的情况是,干燥时间如果足够长时,残留甲酸和乙酸不能检 出。 而且, 该方法不需经容易引起降解的 180°C以上的高温转化过程, 即可得到高纯度的 Π型结晶体。 本发明提供在差示扫描热分析中在 233°C附近有单一吸热峰的他米 巴罗汀 II型结晶的结晶体, 以不含有己垸和 /或乙酸乙酯或乙醇作为残 留溶剂为特征, 可用于医药制备。 作为医药可以用于急性前骨髓球性白 血病等症的治疗。
本发明方法中可作为原料使用的他米巴罗汀结晶的种类没有特别 限定, 可以使用任意晶型的结晶或无定型固体。
结晶形的确认, 除差示扫描热分析外,还可以通过进行粉末 X射线 衍射测定确实地进行,毛细管法测定的熔点数据也可作为重要的参考。上 述 I型结晶和 II型结晶的热分析结果分别记载于上述专利文献中。这里 要说明的是, 熔点测定或差示扫描热分析等中的实验误差是数 °C左右, 通常在 2°C以内, 较好在 1 °C以内。
本发明方法的特征在于用低级有机酸, 优选含碳原子数小于 6的、 同时能够挥发并可用作结晶溶剂的有机羧酸, 或它们的混合物; 更优选 为乙酸或甲酸或它们的混合物,或它们与水的混合物作为他米巴罗汀结 晶的重结晶溶剂。 析晶时可以用纯乙酸或甲酸, 也可以用酸和水的混合 溶剂, 酸与水两者的比例比例也没有限制, 可以是任意的, 一般限定在 20: 80至 98: 2, 但酸的比例如果过低, 则会较大幅度地增加结晶溶剂 的体积, 所以更优选 50: 50至 90: 10。 当然, 也可以使用纯的有机酸。
重结晶的方法没有特别限定, 可以用通常的重结晶操作方法进行。 例如,可以用原料他米巴罗汀结晶在纯乙酸或乙酸和水的混合物中完全 溶解后慢慢冷却析晶,然后滤取所析出的结晶;为了使目的物高效率地结 晶, 也可以添加晶种,晶种数量没有特别限定;所滤取的结晶体通常在减 压下, 在 100〜140°C左右, 优选 120 °C的加热下进行干燥, 就能达到去 除重结晶溶剂的效果。
按照本发明的方法制备的他米巴罗汀结晶不含有或仅含有较低含量 的乙酸或甲酸。 乙酸和甲酸是国家药典规定的医药产品残留溶剂中的第 三类低毒溶剂, 因而本发明的结晶可以较好地作为医药有效成分使用。
附图说明:
图 1-1 : 他米巴罗汀 I晶型的 DSC谱 (甲醇一水精制) 图 1-2: 他米巴罗汀 I晶型的 X-射线粉末衍射谱 (甲醇一水精制) 图 2-1 : 他米巴罗汀 III晶型的 DSC谱 (乙醇一水精制)
图 2-2: 他米巴罗汀 III晶型的 X-射线粉末衍射谱 (乙醇一水精制) 图 3-1 : 他米巴罗汀 II晶型的 DSC谱 (乙醇一水精制加热转晶) 图 3-2: 他米巴罗汀 II晶型的 X-射线粉末衍射谱 (乙醇一水精制加热 转晶)
图 4-1 : 他米巴罗汀 II晶型的 DSC谱 (乙酸精制)
图 4-2: 他米巴罗汀 II晶型的 X-射线粉末衍射谱 (乙酸精制) 图 5-1 : 他米巴罗汀 II晶型的 DSC谱 (甲酸精制)
图 5-2: 他米巴罗汀 II晶型的 X-射线粉末衍射谱 (甲酸精制) 实施例
以下将结合实施例更详细地解释本发明, 本发明的实施例仅用于 说明本发明的技术方案, 并非限定本发明的实质。 实验所用的测试仪器
1. DSC谱
仪器型号: Perkin-Elmer Pyris 7 Series Thermal Analysis System 吹扫气: 氮气
升温速率: 10.0 °C/min
温度范围: 50-250°C
2. X-射线衍射谱
仪器型号: D/Max-RA 日本 RigakuX-射线粉末衍射仪
射线: 单色 Cu-Κα射线 (λ=1.5418 Α)
扫描方式: Θ/2Θ, 扫描范围: 3— 40Q
电压: 30KV 电流: 50mA 对比实施例 1
将他米巴罗汀 2.0g加入甲醇 20ml和水 20ml的混合液中, 加温溶 解后冷却到室温。滤取所析出的结晶, 在减压下于 110〜120°C干燥, 得 到结晶 1.52g。对这种结晶进行差示扫描热分析时,在 193 °C附近给出单 一的吸热峰 (见附图 1-1)。 进而, 这种结晶的粉末 X射线衍射图 (见附图 1-2)与日本专利 JP3001632的图 5所示粉末 X射线衍射图一致, 可以确 认是 I型结晶。 对比实施例 2
将他米巴罗汀 2.0g加入 1乙醇 20m和水 20ml的混合液中, 加温溶 解后冷却到室温。 滤取所析出的结晶, 在减压下于 110〜120°C干燥, 得到结晶 1.6g。 对这种结晶进行差示扫描热分析时, 在 193°C和 233°C 附近给出吸热峰 (见附图 2-1)。 毛细管法测定熔点 204.5-208.5 °C。 可以 确认是混合型结晶。 从差示扫描热分析图谱中还可看出在 204 °C附近还 有一较小的吸热峰,该吸热峰所代表的晶型无法得到,目前也未见文献报 到。
上述得到的混合型结晶 (HPLC99.85%,单杂小于 0.1% ) 在减压下于 200〜205°C加热 2 小时。 对所得到的结晶进行差示扫描热分析时, 在 233°C附近给出单一的吸热峰 (见附图 3-1)。可以确认是 II型结晶。 HPLC 检测样品的纯度降到了 99.50%,—个前杂达到 0.1%以上,另一前杂达到 0.2%以上。 实施例 1
将他米巴罗汀 lO.Og加入乙酸 (130ml) 中, 加温溶解后缓慢冷却, 滤取析出的结晶。所得到的结晶在减压下于 120〜130°C干燥 4小时,得 到结晶 7.5g。 对这种结晶进行差示扫描热分析时, 在 233°C附近给出单 一的吸热峰。 毛细管法测定熔点 231-3°C, 乙酸溶剂残留 420ppm,然后 将样品继续在 140 °C减压干燥 20小时, 乙酸溶剂残留未检出。该结晶的 粉末 X射线衍射图 (见附图 4-2)与比较例 2中高温转化后所得到的粉末 X射线衍射图 (见附图 3-2)—致, 可以确认是 II型结晶。 实施例 2
将他米巴罗汀 lO.Og加入乙酸 400ml和水 200ml的混合液中, 加温 溶解后缓慢冷却, 滤取析出的结晶。 所得到的结晶在减压下于 120〜 130°C干燥 2小时, 得到结晶 8g。 对这种结晶进行差示扫描热分析, 在 233 °C附近给出单一的吸热峰。 毛细管法测定熔点 231.3 °C, 该结晶的粉 末 X射线衍射图与实施例 1中所得到的粉末 X射线衍射图一致, 可以 确认是 II型结晶。 实施例 3
将他米巴罗汀 lO.Og加入甲酸 120ml中, 加温溶解后缓慢冷却, 滤 取析出的结晶。所得到的结晶在减压下于 120〜130°C干燥 4小时,得到 结晶 7g。对这种结晶进行差示扫描热分析时, 在 233 °C附近给出单一的 吸热峰 (见附图 5-2)。毛细管法测定熔点 231-3 °C,甲酸溶剂残留 470ppm。 该结晶的粉末 X射线衍射图 (见附图 5-2)与实施例 1中所得到的粉末 X 射线衍射图 (见附图 4-2)—致, 可以确认是 II型结晶。 实施例 4
将他米巴罗汀 lO.Og加入甲酸 300ml和水 200ml的混合液中, 加温 溶解后徐徐冷却, 滤取析出的结晶。 所得到的湿结晶在减压下于 120〜 130°C干燥 3小时, 得到结晶 7.2g。 对这种结晶进行差示扫描热分析时, 在 233 °C附近给出单一的吸热峰。 毛细管法测定熔点 231-4°C, 该结晶 的粉末 X射线衍射图谱与实施例 3中所得到的粉末 X射线衍射图一致, 可以确认是 II型结晶。 附表 1.他米巴罗汀不同晶型的制备和相应的谱图结果
实验例 结晶 精制溶剂 DSC谱 X-射线 晶型
制备方法 吸 热 峰 值 粉末衍射
( °C )
参考例 1 JP3001632 甲醇一水 194.061 见附图 1-2 I型
204.607
见附图 1-1
参考例 2 JP3001632 乙醇一水 193.374, 见附图 2-2 III型
CN1449376A 204.070, 混合型
232.767
见附图 2-1
参考例 2 CN1449376A 加热转晶 233.144 见附图 3-2 II型
型 见附图 3-1 实施例 1 乙酸 234.023 见附图 4-2 II型 见附图 4-1
实施例 3 甲酸 233.546 见附图 5-2 II型 见附图 5-1

Claims

权利要求
1. 一种在差示扫描热分析中在 233°C附近有单一吸热峰的他米巴罗汀 II型结晶的制备方法,该方法包括将任意晶型或无定型的他米巴罗汀固 体用低级有机酸类或低级有机酸的水溶液结晶得到纯的他米巴罗汀 II 型结晶的步骤。
2. 根据权利要求 1所述的他米巴罗汀 II型结晶的制备方法, 其中所述 的低级酸指的是含碳原子数小于 6同时能够挥发并可用作结晶溶剂的低 级有机酸类, 当选用的结晶溶剂为有机酸的水溶液时, 酸与水两者的比 例, 可以是任意的。
3. 根据权利要求 1所述的他米巴罗汀 II型结晶的制备方法, 当选用的 结晶溶剂为有机酸的水溶液时, 酸与水两者的比例一般限定在 20: 80 至 98: 2。
4. 根据权利要求 1所述的他米巴罗汀 II型结晶的制备方法, 当选用的 结晶溶剂为有机酸的水溶液时,酸与水两者的比例限定在更优选 50: 50 至 90: 10。
5. 根据权利要求 2所述的他米巴罗汀 II型结晶的制备方法, 其中所述 的低级有机酸指的是乙酸或甲酸, 或它们的组合。
6. 根据权利要求 1所述的他米巴罗汀 II型结晶的制备方法, 该方法进一 步包括在减压下在 100-140 °C进行干燥以除去残留的低级有机酸。
7. 根据权利要求 5所述的他米巴罗汀 II型结晶体的制备方法, 其中在减 压下在 120°C进行干燥以除去残留的低级有机酸。
8. 在差示扫描热分析中在 233°C附近有单一吸热峰的他米巴罗汀 II型 结晶的制备方法, 其特征在于不需经容易引起降解的 180°C以上的高温 转化过程, 即可得到高纯度的 Π型结晶。
PCT/CN2008/070537 2008-03-19 2008-03-19 他米巴罗汀ii型结晶的制备方法 WO2009114966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070537 WO2009114966A1 (zh) 2008-03-19 2008-03-19 他米巴罗汀ii型结晶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070537 WO2009114966A1 (zh) 2008-03-19 2008-03-19 他米巴罗汀ii型结晶的制备方法

Publications (1)

Publication Number Publication Date
WO2009114966A1 true WO2009114966A1 (zh) 2009-09-24

Family

ID=41090469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070537 WO2009114966A1 (zh) 2008-03-19 2008-03-19 他米巴罗汀ii型结晶的制备方法

Country Status (1)

Country Link
WO (1) WO2009114966A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214202A (en) * 1990-03-20 1993-05-25 Shionogi & Co., Ltd. Method for preparing benzoic acid derivatives
CN1449376A (zh) * 2000-09-01 2003-10-15 东光药品工业株式会社 苯甲酸衍生物结晶的制造方法
CN101200435A (zh) * 2006-12-12 2008-06-18 江苏恒瑞医药股份有限公司 他米巴罗汀ⅱ型结晶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214202A (en) * 1990-03-20 1993-05-25 Shionogi & Co., Ltd. Method for preparing benzoic acid derivatives
CN1449376A (zh) * 2000-09-01 2003-10-15 东光药品工业株式会社 苯甲酸衍生物结晶的制造方法
CN101200435A (zh) * 2006-12-12 2008-06-18 江苏恒瑞医药股份有限公司 他米巴罗汀ⅱ型结晶的制备方法

Similar Documents

Publication Publication Date Title
EP3248983B1 (en) Crystal form a of obeticholic acid and preparation method therefor
JP6594917B2 (ja) 所定の粒子径を有する純粋な非多形結晶性胆汁酸の最適合成
JP2012508719A (ja) スニチニブマレートの新たな結晶形
KR20150036336A (ko) 타이로신 키나제 억제제 다이말리에이트의 결정형 아이 및 그의 제조 방법
US11028069B2 (en) Salt of substituted piperidine compound
WO2012077138A1 (en) Methods of crystallizing (r) -1- (3 -hydroxypropyl) -5- [2- [2- [2- ( 2, 2, 2 - trifluoroethoxy) phenoxy] ethylamino] propyl] indoline-7 -carboxamide
JP2015508090A (ja) 固体形態のダビガトランエテキシレートメシレート及びその調製方法
WO2012022240A1 (zh) 一种厄洛替尼碱的新晶型及其制备方法
JP6535748B2 (ja) ベンズイミダゾール誘導体の新規結晶形及びその製造方法
JP5640017B2 (ja) イバブラジン硫酸塩及びそのi型結晶の製造方法
US6706710B2 (en) Form of (R)-N-[5-methyl-8-(4-methylpiperazin-1-yl)-1,2,3,4-tetrahydro-2-naphthyl]-4-morpholinobenzamide
AU2001272872A1 (en) Novel form of (R)-N-(5-methyl-8-(4-methylpiperazin-1-YL)-1,2,3,4-tetrahydro -2-naphthyl)-4-morpholinobenzamide
CN102070625A (zh) 一种伊潘立酮的结晶方法
TW200940485A (en) Preparing method of tamibarotene crystal form II
JP2702519B2 (ja) 多形結晶形態の転換法
JP2010132561A (ja) コハク酸シベンゾリンの新規a型結晶及びその製造方法
WO2009114966A1 (zh) 他米巴罗汀ii型结晶的制备方法
KR20090044694A (ko) 모사프리드의 신규한 동질이상체 및 유사동질이상체
WO2006026927A1 (fr) Nouveau polymorphe de monohydrate de mesylate de dolasetron et sa preparation
WO2013013594A1 (zh) 一种17α-乙酰氧基-11β-(4-N,N-二甲氨基苯基)-19-去甲孕甾-4,9-二烯-3,20-二酮的无定形物及其制备方法
JP3644998B2 (ja) ベンジリデン誘導体の結晶の選択的取得方法
TW201238965A (en) Process for the production of a pemetrexed salt
CN102079770A (zh) 糠酸莫米松一水合物的制备方法
TWI825076B (zh) 用於製備曲前列尼爾二乙醇胺鹽之多晶型b的方法
US20230286898A1 (en) Method for the purification of vilanterol trifenatate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08715273

Country of ref document: EP

Kind code of ref document: A1