WO2009113581A1 - Al2Ca含有マグネシウム基複合材料 - Google Patents

Al2Ca含有マグネシウム基複合材料 Download PDF

Info

Publication number
WO2009113581A1
WO2009113581A1 PCT/JP2009/054677 JP2009054677W WO2009113581A1 WO 2009113581 A1 WO2009113581 A1 WO 2009113581A1 JP 2009054677 W JP2009054677 W JP 2009054677W WO 2009113581 A1 WO2009113581 A1 WO 2009113581A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
additive
based composite
containing magnesium
magnesium
Prior art date
Application number
PCT/JP2009/054677
Other languages
English (en)
French (fr)
Inventor
啓太郎 榎並
昌二 小野
大原 正樹
貴教 五十嵐
Original Assignee
トピー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トピー工業株式会社 filed Critical トピー工業株式会社
Priority to EP09718607.6A priority Critical patent/EP2270243A4/en
Priority to CN2009801084745A priority patent/CN101970703B/zh
Priority to JP2009530047A priority patent/JP4467641B2/ja
Priority to US12/921,608 priority patent/US8506733B2/en
Publication of WO2009113581A1 publication Critical patent/WO2009113581A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to a magnesium-based composite material in which fine Al 2 Ca dispersed by a solid-phase reaction is dispersed, and in particular, a magnesium-based composite material that can exhibit excellent performance such as having high tensile strength not only at room temperature but also at high temperature. About.
  • Magnesium is very light with a specific gravity of 1.74, and its specific strength and specific rigidity are superior to those of aluminum and steel. Therefore, its use is expanding as structural parts for automobiles, home appliances, and the like. However, it cannot be said that the strength characteristics and heat resistance are sufficient, and an improvement has been desired when a magnesium alloy is used for a structural member subjected to heating such as an engine component.
  • Patent Document 1 discloses a high toughness magnesium-based alloy containing 1 to 8% rare earth element and 1 to 6% calcium on a weight basis and having a maximum crystal grain size of magnesium constituting the substrate of 30 ⁇ m or less.
  • This magnesium-based alloy is manufactured as follows.
  • a magnesium-based alloy ingot containing 1 to 8% rare earth element and 1 to 6% calcium on a weight basis is produced by a casting method, and a raw material powder is obtained by cutting or the like.
  • Repetitive plastic working is performed on the raw material powder at 100 to 300 ° C. (for example, compression and indentation are alternately repeated while the powder is filled in the mold) to impart strong working strain. Then, the raw material powder is mechanically pulverized and the magnesium crystal grains constituting the substrate are refined. At the same time, the acicular intermetallic compound formed in the ingot by casting is also finely pulverized and dispersed inside the magnesium crystal grains.
  • compression molding is performed to produce a powder solidified body.
  • the powder solidified body is heated to 300 to 520 ° C. and then immediately extruded to obtain a target magnesium-based alloy rod-shaped material.
  • Patent Document 1 forms Al 2 Ca, which is an intermetallic compound that is excellent in thermal stability with Ca during casting, and is refined and dispersed in the substrate as described above. It is described that the heat resistance of the magnesium alloy is improved.
  • Patent Document 1 describes the tensile strength at 150 ° C.
  • the tensile strength at 150 ° C. is less than 150 MPa, and the tensile strength at a higher temperature is not satisfactory.
  • Patent Document 1 describes that when the rare earth element or calcium exceeds the above suitable range, the toughness and tensile strength are reduced, and there is a limit to the improvement of the effect by increasing the rare earth element or calcium.
  • Patent Document 1 in which a magnesium alloy containing an intermetallic compound formed by a melting method such as casting is refined and then extruded is not sufficiently satisfactory.
  • Patent Document 2 describes that SiO 2 is used as an additive and mechanically solid-phase reacted to form an intermetallic compound Mg 2 Si to improve heat resistance.
  • a magnesium alloy chip is mixed with SiO 2 powder as an additive, finely dispersed in a solid state, and further extruded to form metal on the grain boundaries of the refined magnesium alloy.
  • a magnesium-based composite material in which Mg 2 Si as an intercalation compound is finely dispersed is obtained.
  • the dispersed compound does not exist in the grain boundary of the magnesium alloy, but exists in the crystal grain boundary.
  • the use of SiO 2 powder has not yet been fully satisfactory with respect to high temperature strength.
  • the present invention has been made in view of the problems of the background art, and an object thereof is to provide a magnesium-based composite material capable of exhibiting excellent performance such as having high tensile strength not only at room temperature but also at high temperature. is there.
  • Mg 2 Si can be formed by solid phase reaction using SiO 2 as an additive as in Patent Document 2
  • the SiO 2 diagram is above the MgO diagram in a wide temperature range from room temperature to 2500 ° C.
  • the standard free energy of generation 2 is larger than the standard free energy of MgO (see Japan Metall Society, revised 2nd edition metal data book, p. 90, 1984). Therefore, reduction of SiO 2 by Mg is an exothermic reaction, which proceeds spontaneously to form Mg 2 Si which is an intermetallic compound.
  • Patent Document 2 uses calcium oxide as an additive and produces Al 2 Ca in a magnesium alloy by a solid phase method. It is not described that a magnesium-based composite material having high strength can be obtained not only at room temperature but also at a high temperature of 250 ° C. This is a novel finding first found by the present inventors, and the present invention has been completed based on such a novel finding.
  • the present invention is a magnesium-based composite material obtained by a solid-phase reaction between a magnesium alloy containing aluminum and an additive,
  • the additive is calcium oxide;
  • An Al 2 Ca-containing magnesium-based composite material comprising Al 2 Ca generated by the solid phase reaction is provided.
  • the magnesium alloy containing aluminum can be a magnesium alloy containing alloyed and / or mixed aluminum.
  • the present invention also provides the composite material, to provide Al 2 Ca-containing magnesium-based composite material characterized in that CaO is dispersed together with Al 2 Ca to magnesium-based composite material. Further, the present invention provides the composite material according to any one of the above, A mixture of a magnesium alloy containing aluminum and an additive is mechanically refined in a solid state, Provided is an Al 2 Ca-containing magnesium-based composite material obtained by thermochemical reaction of this refined mixture or its green compact at a temperature lower than the melting point.
  • the present invention also provides the composite material, characterized in that said generating the Al 2 Ca by miniaturization mixture or its green compact was heated to 350 ⁇ 550 ° C. to thermochemical reaction Al 2 Ca
  • a magnesium-based composite material is provided.
  • the present invention provides an Al 2 Ca-containing magnesium-based composite material characterized in that, in any of the composite materials described above, the thermochemical reaction is sintering.
  • the present invention also provides an Al 2 Ca-containing magnesium-based composite material characterized in that the composite material according to any one of the above is subjected to plastic working after a thermochemical reaction and / or during a thermochemical reaction.
  • the present invention provides the composite material according to any one of the above, A mixture of a magnesium alloy containing aluminum and an additive is mechanically refined in a solid state, Provided is an Al 2 Ca-containing magnesium-based composite material obtained by plastic processing the refined mixture or its green compact at a temperature lower than the melting point.
  • the present invention provides an Al 2 Ca-containing magnesium-based composite material characterized in that in any of the composite materials described above, the plastic working is extrusion.
  • the present invention also provides an Al 2 Ca-containing magnesium-based composite material, wherein the composite material has an extrusion temperature of 350 to 550 ° C.
  • the present invention is characterized in that, in the composite material according to any one of the above, the additive is used in an amount of 1 to 20 vol% in the mixture of the aluminum-containing magnesium alloy and the additive that are subjected to solid phase reaction.
  • An Al 2 Ca-containing magnesium-based composite material is provided.
  • the present invention provides the composite material according to any one of the above, wherein the Ca / Al molar ratio is 0.5 or more in the mixture of the aluminum-containing magnesium alloy and the additive that undergo solid phase reaction.
  • An Al 2 Ca-containing magnesium-based composite material characterized by using a material is provided.
  • the present invention provides an Al 2 Ca-containing magnesium-based composite material, wherein the maximum particle size of the Al 2 Ca dispersed particles is 5 ⁇ m or less in any of the composite materials described above.
  • the present invention also provides an Al 2 Ca-containing magnesium-based composite material characterized in that, in any of the composite materials described above, the maximum particle size of the CaO dispersed particles is 5 ⁇ m or less.
  • the present invention provides an Al 2 Ca-containing magnesium-based composite material characterized in that, in any of the composite materials described above, the maximum crystal grain of the magnesium alloy is 20 ⁇ m or less.
  • the present invention provides an Al 2 Ca-containing magnesium-based composite material characterized by not containing Al 12 Mg 17 in any of the composite materials described above.
  • the Al 2 Ca-containing magnesium group is characterized in that the tensile strength at 20 ° C. is 400 MPa or more and the tensile strength at 250 ° C. is 100 MPa or more.
  • the composite material is characterized in that the tensile strength at 20 ° C. is 400 MPa or more and the tensile strength at 250 ° C. is 100 MPa or more.
  • the present invention is a refined mixture obtained by mechanically refining a mixture of an aluminum-containing magnesium alloy and an additive in a solid state or a green compact thereof,
  • the additive is calcium oxide;
  • a material for thermochemical reaction or plastic working characterized in that Al 2 Ca is produced by heating at a temperature lower than the melting point.
  • the present invention also provides a material for thermochemical reaction or plastic working, wherein the heating temperature is 350 to 550 ° C. in the material. Further, the present invention is characterized in that, in any of the materials described above, the additive is used in an amount of 1 to 20 vol% in the mixture of the aluminum-containing magnesium alloy to be refined and the additive. A material for thermochemical reaction or plastic working is provided.
  • the additive in any of the materials described above, may be used so that the molar ratio of Ca / Al is 0.5 or more in the mixture of the aluminum-containing magnesium alloy to be refined and the additive.
  • a material for thermochemical reaction or plastic working characterized in that is used.
  • the present invention also provides a thermochemical reaction material that is used for sintering in any of the materials described above.
  • the present invention also provides a plastic working material that is used for extrusion in any of the materials described above.
  • magnesium-based composite material In the magnesium-based composite material according to the present invention, fine Al 2 Ca particles generated by a solid-phase reaction are dispersed in the structure of a magnesium alloy in which crystal grains are refined. The strength characteristics are remarkably improved even at high temperatures. And strength characteristics are further improved by dispersing fine CaO particles together with Al 2 Ca particles. The presence of CaO particles also contributes to wear resistance. Since the magnesium-based composite material according to the present invention can be produced by a solid phase reaction without melting from a relatively inexpensive raw material, it is simpler and more economical than a magnesium-based composite material obtained by a melting method such as casting. In addition, the degree of freedom of composition is high.
  • a refined mixture obtained by refining a mixture of an Al-containing magnesium alloy and an additive or a green compact thereof is, for example, a material for thermochemical reaction such as sintering, or a material for plastic processing such as extrusion. It can be used for the production of a high-strength Al 2 Ca-containing magnesium-based composite material.
  • An example of a micronization step in the production of such Al 2 Ca-containing magnesium-based composite material in the present invention is an explanatory diagram showing.
  • An example of a micronization step in the production of such Al 2 Ca-containing magnesium-based composite material in the present invention is an explanatory diagram showing.
  • An example of a manufacturing process of such Al 2 Ca-containing magnesium-based composite material in the present invention is an explanatory diagram showing. It is a SEM photograph (5000 times) of the extrusion material obtained from 10 vol% CaO addition AM60B alloy. It is an AES image (10000 time) of the extrusion material obtained from 15 vol% CaO addition AM60B alloy.
  • FIG. 4 is an X-ray diffraction pattern after treating a billet obtained from a mixture containing AZ61 + 10 vol% CaO (the number of times of refinement treatment is 200 times) at 400 ° C. to 625 ° C. for 4 hours in an Ar atmosphere.
  • the billet obtained by adding AZ61 + CaO (the number of times of refining treatment 200 times) was treated with Al 2 Ca (38.55 °) / CaO (53.9 °) obtained from the X-ray diffraction pattern after being treated for 4 hours in an Ar atmosphere.
  • It is a diagram showing the relationship between the peak intensity ratio and the heating temperature.
  • (b) Tensile strength at room temperature and 250 ° C. with respect to the CaO addition amount
  • (c) Al 2 Ca production amount of the extruded material obtained from the CaO-added AM60B alloy It is a figure which shows the relationship between room temperature and 250 degreeC tensile strength with respect to each
  • the magnesium-based composite material according to the present invention is a magnesium-based composite material in which fine Al 2 Ca particles are dispersed in the structure of a magnesium alloy having fine crystal grains, and this is an Al-containing magnesium alloy and an additive. It is obtained by a solid phase reaction with calcium oxide. Typically, a solid phase reaction method in which a mixture of an Al-containing magnesium alloy and an additive is mechanically refined in a solid state and then thermochemically reacted at a temperature below the melting point, preferably 350 to 550 ° C. Can be obtained. From the viewpoint of strength and the like, it is preferable to perform plastic working during and / or after the thermochemical reaction. Examples of the plastic processing include one or more types of known processing such as extrusion, forging, rolling, drawing, and pressing. A preferable example is extrusion.
  • Al-containing magnesium alloy As the Al-containing magnesium alloy used as a starting material in the present invention, a magnesium alloy (Mg—Al alloy) in which Al is alloyed with magnesium as a main component can be used. Commonly known materials include Mg—Al—Mn alloys (AM alloys), Mg—Al—Zn alloys (AZ alloys), and the like. Further, Al may be simply mixed without being alloyed in the magnesium alloy. For example, a simple mixture of at least one selected from a magnesium alloy in which Al is not alloyed (may be pure magnesium) and a magnesium alloy in which Al is alloyed with Al may be used as the Al-containing magnesium alloy of the present invention. it can. When Al is mixed and used, an alloy containing aluminum as a main component (aluminum alloy) or the like may be used as the Al source in addition to pure aluminum, as long as there is no problem.
  • aluminum alloy aluminum as a main component
  • the content of Al is appropriately adjusted according to the purpose, but is usually 1 to 20% by mass, preferably 2 to 15% by mass, and more preferably 3 to 10% by mass in the Al-containing magnesium alloy.
  • the Al-containing magnesium alloy may contain elements other than Mg and Al, such as Zn, Mn, Zr, Li, Ag, and RE (RE: rare earth element).
  • the total sum of elements other than Mg and Al in the Al-containing magnesium alloy is usually 10% by mass or less, typically 0.1 to 10% by mass, preferably 0.5 to 5% by mass.
  • the shape and size of the Al-containing magnesium alloy are not particularly limited, and examples thereof include powders, granules, lumps, and chips.
  • chips or granules having an average particle diameter of about 0.5 mm to 5 mm are easily used. .
  • additive used in the present invention calcium oxide is used.
  • the shape and size of the additive are not particularly limited, and for example, a powder having an average particle diameter of 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m is used conveniently.
  • the amount of additive is not limited as long as the effects of the present invention can be obtained. Usually, the effect is exhibited when the proportion of the additive in the total components of the mixture to be refined is 1 vol% or more, preferably 5 vol% or more, more preferably 7 vol% or more. If the amount of the additive is too small, the effect becomes low. On the other hand, an increase in effect commensurate with the increase cannot be expected even if blended in excess, and other properties may be adversely affected. Therefore, it is preferably 20 vol% or less, more preferably 15 vol% or less.
  • the amount of additive means the ratio (vol%) of the additive in the mixture when the mixture to be refined is regarded as a solid with no voids composed of all the components, and contains Al. It is calculated by the following formula from the true density of the magnesium alloy and additive and the blending mass thereof.
  • the Ca / Al molar ratio in the mixture of the Al-containing magnesium alloy and the additive is 0.5 or more, more preferably 0.8 or more, particularly 1 or more. It is preferable to use a material.
  • auxiliary additives include one or more selected from rare earth metals, oxides of Sr or Ba, carbides, silicides and carbonates, and Ca carbides, silicides and carbonates.
  • the rare earth metal include Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, Lu, and misch metal containing these elements.
  • the additive of the present invention is used in combination with the auxiliary additive as described above, and at least a part of the auxiliary additive is subjected to solid phase reaction with the metal component of the magnesium alloy containing Al, and the intermetallic compound is excellent in thermal stability. If (for example, a La—Mg compound, an Al—Y compound, etc.) is generated, the strength characteristics and heat resistance of the magnesium-based composite material containing Al can be further improved.
  • the formation of intermetallic compounds can be confirmed, for example, by the appearance of a peak other than Al 2 Ca, which is different from any of the Al-containing magnesium alloy, additive, and auxiliary additive that are starting materials in the X-ray diffraction diagram. If the peak pattern of the intermetallic compound is known, it can be identified by collating it.
  • auxiliary additive may be set according to the material characteristics required for the mixture to be refined, but even if it is added in an excessive amount, the effect corresponding to the increase is achieved. An increase cannot be expected, and other characteristics may be adversely affected. Therefore, it is preferably 20 vol% or less, more preferably 15 vol% or less.
  • a known reinforcing material for the magnesium alloy can be added.
  • (A) Refinement process In the refinement step of the mixture of the Al-containing magnesium alloy and the additive, the mixture is mechanically pulverized and the Mg alloy crystal grains are refined.
  • a refinement method is not particularly limited as long as it is a method capable of refining Mg alloy crystal grains and additive particles by subjecting the mixture component to strong strain processing, and a known method can be adopted.
  • the Mg alloy crystal grains and additives are refined sufficiently and uniformly.
  • a method by pressing and crushing particularly a method by pressing and crushing with a shearing force and / or a frictional force can be adopted. Further, in the miniaturization step, it is preferable to perform compression molding at the end to obtain a green compact from the viewpoint of handleability and reactivity.
  • an Al-containing magnesium alloy chip or a mixture of a granular material and an additive powder is inserted into the molding hole in a state where the mixture is contained in a mold having a plurality of linear molding holes that intersect and cross each other.
  • the above mixed raw material is pressed and solidified in one molding hole, and then the mixed raw material that has been pressed and solidified is sent to another forming hole while being crushed.
  • a method of producing a green compact by finally pressing and hardening is preferable. Such a miniaturization step is sufficiently possible even at ambient temperature without heating.
  • the mixture of the Al-containing magnesium alloy chip and the additive powder is refined using an apparatus as shown in FIG. 1, and finally compressed to obtain a green compact.
  • the apparatus of FIG. 1 when the mixture passes through the intersection, it receives a large shearing force and frictional force in almost the entire surface area, so that the refinement and dispersion of Mg alloy crystal grains and additives are uniformly and efficiently performed. Done.
  • the apparatus 10 shown in FIG. 1 includes a rectangular parallelepiped mold 12, and the mold 12 is formed with four straight molding holes 14a, 14b, 14c, and 14d.
  • the molding holes 14a to 14d have the same cross-sectional shape (preferably a circular cross-section with the same diameter), and are connected radially at the intersection 15 at the center of the mold 12.
  • the molding holes 14a to 14d are arranged on the same plane (vertical plane or horizontal plane) at an angular interval of 90 ° in the circumferential direction in this order.
  • pressing members 16a to 16d (first to fourth pressing members) having substantially the same cross-sectional shape as the molding holes 14a to 14d are slidably inserted. To move forward and backward. These pressing members 16a to 16d are moved forward and backward by driving means 18a to 18d.
  • the drive means is composed of a hydraulic cylinder or the like.
  • the control means 20 controls each driving means based on the pressure information of each of the driving means 18a to 18d, information from the position sensor, and the like.
  • the mixture is loaded into the molding hole 14a with the pressing member 16a removed.
  • the end portions of the pressing members 16b, 16c, and 16d on the forward direction side are in positions that coincide with the inner ends of the molding holes 14b, 14c, and 14d adjacent to the intersecting portion 15. (Hereinafter, this position is referred to as a forward position).
  • Each pressing member 16b, 16c, 16d is restrained by the driving means 18b, 18c, 18d in a state where it cannot be retracted (direction toward the outside of the mold) and is in a substantially fixed state. Then, after the pressing member 16a is inserted into the molding hole 14a, the following sequence control is started.
  • a pressing process is performed on the pressing member 16a.
  • the pressing member 16a is pushed into the forming hole 14a by the driving means 18a.
  • the other pressing members 16b to 16d are fixed, the mixture is pressed in the molding hole 14a without being directed to the molding holes 14b to 14d, and becomes a cylindrical lump.
  • This mass has a predetermined strength but is relatively brittle.
  • This compacted state is maintained for a short time, for example, about 2 seconds, in a predetermined pressure state.
  • a crushing process is performed on the pressing member 16a.
  • the pressing member 16a is pushed in with a higher pressure by the driving means 18a, the pressing member 16b can be retracted by the driving means 18b.
  • the pressing member 16a is pushed to the advanced position, and the mixture flows from the forming hole 14a to the forming hole 14b through the intersection 15 and is crushed in this process. It is. Also, the pressing member 16b is pushed back by the flowed mixture.
  • the crushing process is completed when the front end of the pressing member 16a reaches the inner end of the molding hole 14a.
  • the same pressing process as described above is performed on the pressing member 16b. That is, as shown in FIG. 2 (d), the pressing members 16a, 16c, and 16d are fixed at the advanced position, and the pressing member 16b is pushed into the inside by the driving means 18b, whereby the mixture is pressed and hardened.
  • the same crushing process is performed on the pressing member 16b. That is, the pressing member 16c is brought into a retractable state (free state), and the pressing member 16b is pushed in. Then, as shown in FIGS. 2 (e) and 2 (f), the pressing member 16b is pushed to the advanced position, and the mixture flows from the forming hole 14b to the forming hole 14c through the intersection 15 and is crushed in this process. It is. Further, the pressing member 16c is pushed back by the flowed mixture.
  • a pressing process is performed on the pressing member 16c. That is, as shown in FIG. 2G, the pressing members 16a, 16b, and 16d are fixed at the advanced position, and the pressing member 16c is pushed into the mold 12 by the driving means 18c, thereby pressing the mixture.
  • the same crushing process is performed on the pressing member 16c. That is, the pressing member 16d is brought into a retractable state (free state), and the pressing member 16c is pushed in. Then, as shown in FIGS. 2 (h) and (i), the pressing member 16c is pushed to the advanced position, and the mixture flows from the forming hole 14c to the forming hole 14d through the intersection 15 and is crushed in this process. It is. Further, the pressing member 16d is pushed back by the flowed mixture.
  • a pressing process is performed on the pressing member 16d. That is, as shown in FIG. 2 (j), the pressing members 16a, 16b, and 16c are fixed at the advanced position, and the pressing member 16d is pushed into the mold 12 by the driving means 18d, thereby pressing the mixture.
  • the same crushing process is performed on the pressing member 16d. That is, the pressing member 16a is brought into a retractable state (free state), and the pressing member 16d is pushed in. Then, as shown in FIGS. 2 (k) and 2 (l), the pressing member 16d is pushed to the advanced position, and the mixture flows from the forming hole 14d to the forming hole 14a through the intersection 15 and is crushed in this process. It is. Further, the pressing member 16a is pushed back by the flowed mixture.
  • the steps shown in FIGS. 2 (a) to (l) are repeated an arbitrary number of times, and after uniform and sufficient miniaturization / dispersion, a compacting step is finally performed to obtain a green compact.
  • the pressure applied for forming the green compact is not particularly limited, but can be, for example, 250 kg / cm 2 to 400 kg / cm 2 .
  • the mixture that is the starting material is pressed once by the compaction process and then subjected to a large shearing force and frictional force in almost the entire cross-sectional area when passing through the intersection in the pressing process. Therefore, the Mg alloy crystal grains and the additive are finely and dispersed uniformly and efficiently.
  • the stirring process as shown in FIG. 3 between the said compacting and crushing process it is suitable to perform the stirring process as shown in FIG. 3 between the said compacting and crushing process.
  • the pressing member 16c is fixed at the forward movement position, and the pressing members 16b and 16d are in a free state where the backward movement is possible.
  • the pressing member 16a is pushed in this state, as shown in FIGS. 3B and 3C, the mixture flows from the molding hole 14a through the intersection 15 into the molding holes 14b and 14d. Then, the pressing members 16b and 16d are pushed back by the mixture.
  • thermochemical reaction process After the Al-containing magnesium alloy and the additive are refined as described above, a thermochemical reaction is caused by heating at an appropriate temperature lower than the melting point to produce Al 2 Ca.
  • the heating temperature causing such a thermochemical reaction is usually 350 ° C. to 550 ° C., preferably 400 to 500 ° C., although it depends on the type of raw material. Therefore, it is preferable to produce Al 2 Ca by heating the refined mixture or its green compact to the above temperature range and causing a thermochemical reaction.
  • Al 2 Ca fine particles are dispersed in the structure of the magnesium alloy whose crystal grains are refined.
  • Al 2 Ca is not generated in the miniaturization process but in the subsequent thermochemical reaction process.
  • the miniaturization process is not performed, Al 2 Ca cannot be formed even if the thermochemical reaction process is performed. Therefore, it is considered that a solid phase reaction is generated by the combined action of the miniaturization process and the thermochemical reaction process, and formation of Al 2 Ca that is theoretically difficult proceeds.
  • (C) Plastic working process Next, in order to make the magnesium-based composite material obtained above higher in strength, plastic working is performed using a known apparatus. Al 2 Ca particles are generated by the heating in the thermochemical reaction process described above, and the particles are firmly adhered and solidified by plastic processing, and the fine Al 2 Ca particles are dispersed in the fine magnesium alloy structure. A high strength magnesium-based composite material is obtained. Further, in the plastic working process, the above-described thermochemical reaction process and the plastic working process can be performed simultaneously by performing the plastic working while applying temperature.
  • the extrusion conditions can be appropriately set so that the particles are sufficiently adhered and bonded and solidified.
  • the extrusion ratio is usually 2 or more, further 5 or more, preferably 10 or more.
  • the extrusion temperature can be set below the melting point, but the point of Al 2 Ca generation and further the extrudability In view of the above, it is preferable to set the temperature in the range of 350 to 550 ° C, more preferably 400 to 500 ° C.
  • the refined mixture or the green compact thereof is subjected to plastic processing such as extrusion at a temperature at which Al 2 Ca can be generated, whereby fine Al 2 Ca particles are dispersed in the magnesium alloy whose crystal grains are refined. Therefore, it can be suitably used as a material for plastic working.
  • the refined mixture or the green compact thereof is heated at a temperature at which Al 2 Ca can be generated, and at least a part of the additive is thermochemically reacted in the solid phase to generate Al 2 Ca, and then plastic working You can also
  • the refined mixture or its green compact can also be used as a thermochemical reaction material for producing an Al 2 Ca-containing magnesium-based composite material by thermochemical reaction in a solid phase.
  • sintering is effective when the final product with a complicated shape is directly manufactured, or when the green compact of the refined mixture has insufficient plastic workability such as extrudability or secondary workability.
  • the refined mixture of the present invention or the green compact thereof can also be used as a sintering material.
  • the sintering method include an atmospheric sintering method, hot press, HIP (hot isostatic pressing method), PCS (pulse current sintering method), SPS (discharge plasma sintering method) and the like. . Sintering can be performed under pressure or under no pressure.
  • the powder for sintering can be used by pulverizing the refined mixture or its green compact to 100 ⁇ m or less by a known pulverizer or method such as a ball mill, and further sieving if necessary.
  • the crystal grains of the magnesium alloy are refined from the viewpoint of room temperature strength.
  • the maximum crystal grain size of the magnesium alloy obtained from the micrograph of the metal structure is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the maximum particle size of Al 2 Ca particles obtained from a micrograph of the metal structure is usually 5 ⁇ m or less, typically 2 ⁇ m or less, and further 1 ⁇ m or less.
  • the wear properties can be improved by the CaO fine particles.
  • a metal oxide has higher heat resistance than the metal. Therefore, when the CaO fine particles are dispersed in the magnesium-based composite material, it becomes resistance against grain boundary sliding, and the strength is improved, and the heat resistance, for example, the tensile strength at high temperature is improved. It also contributes to the improvement of Young's modulus, 0.2% proof stress, and hardness. On the other hand, there is a lowering effect on the average linear expansion coefficient.
  • the presence of the oxide particles suppresses deterioration of mechanical properties due to coarsening of magnesium alloy crystal grains due to heating.
  • the maximum particle size of CaO particles determined from a micrograph of the metal structure is usually 5 ⁇ m or less, typically 2 ⁇ m or less, and further 1 ⁇ m or less.
  • a high-strength magnesium-based composite material having a specific gravity of 1.9 to 2.0 and a tensile strength of 400 MPa or more at 20 ° C., 280 Mpa or more at 150 ° C., and 100 MPa or more at 250 ° C. is obtained.
  • the Young's modulus at 20 ° C. is usually about 45 GPa, but according to the present invention, a performance of 48 GPa or more, further 50 GPa or more, particularly 55 GPa or more can be obtained.
  • at 0.2% proof stress at 20 ° C. a performance of 350 MPa or more, and further 400 MPa or more can be obtained.
  • the Vickers hardness at 20 ° C. can be 85 or more, more preferably 100 or more, and particularly 120 or more.
  • the linear expansion coefficient of 20 ° C. ⁇ 200 ° C. is about 2 ⁇ 10 -5 /K ⁇ 2.6 ⁇ 10 -5 / K , it can be reduced compared with the conventional magnesium alloys.
  • the magnesium-based composite material of the present invention can be manufactured by using a commercially available Mg—Al alloy and CaO by a solid phase method rather than a melting method such as casting. Is not required, and the amount of additive is limited. Further, since CaO is inexpensive and lightweight, the availability of this has great industrial merits such as cost and lightness.
  • the magnesium-based composite material of the present invention is excellent in strength characteristics, particularly high-temperature strength, it can be suitably used for various applications that require these characteristics. For example, but not limited to this, it can be applied to parts around an engine of a vehicle (piston, valve retainer, valve lifter, etc.). Since the magnesium-based composite material of the present invention has high heat resistance, even when it is further plastically processed into a target part shape, the characteristics can be sufficiently exhibited.
  • test methods, materials and reagents used in the present invention are as follows.
  • test piece based on JIS Z 2201 “Metallic material tensile test piece”, one cut into a shape having a parallel part diameter of 5 mm and a distance between gauge points of 25 mm (based on the shape of a JIS 14A test piece) was used.
  • Tensile tests were performed at room temperature (about 20 ° C.) and at 250 ° C. based on JIS Z 2241 “Metal Material Tensile Test Method”.
  • the tensile tester was an autograph universal tester with a heating furnace (manufactured by Shimadzu Corporation, maximum tensile load 100 kN), and the tester stroke speed was 8.4 mm / min (displacement control).
  • the tensile test at 250 ° C. is performed by chucking the test piece with an autograph universal testing machine, wrapping the test piece in a heating furnace, attaching a thermocouple with heat-resistant tape in the vicinity of the parallel part of the test piece, After the temperature reached 250 ° C.
  • the 0.2% proof stress was measured by the offset method specified in the tensile test method.
  • X-ray diffraction diagram X-ray diffraction pattern is RAD-3B system (Rigaku Corporation), angle 30 ° -80 °, sampling width 0.020 °, scan speed 1 ° / min, radiation source CuK ⁇ , voltage 40 KV, current value 30 mA. Collected at
  • SEM photo The SEM photograph was observed and photographed with a scanning electron microscope ABT-60 (manufactured by Topcon Corporation).
  • AES image The AES image was observed and photographed with a scanning Auger spectrometer PHI700 (manufactured by ULVAC-PHI Co., Ltd.).
  • Hardness Using a micro Vickers hardness tester (manufactured by Shimadzu Corporation, HMV-2000), press-fit with a press-fit load of 100 g for 6 seconds, measure the size of the indentation, and measure the hardness at room temperature (about 20 ° C). It was measured.
  • Production Example 1 Production of Magnesium-Based Composite Material Al-containing magnesium alloy chips and additive powder were mixed to obtain a mixture. The mixture was refined by the apparatus shown in FIG. 1 to obtain a green compact (billet). The number of times of the miniaturization treatment was counted as four times including the miniaturization process shown in FIGS. 2 (a) to (l) and the stirring process of FIGS. 3 (a) to (i). The obtained green compact is preheated at 400 to 470 ° C., extruded at a container and die heating temperature of 400 to 470 ° C., an extrusion diameter of 7 mm, and an extrusion ratio of 28, and is an extruded material made of a magnesium-based composite material (round bar). Got. Various magnesium-based composite materials were manufactured according to the above Production Example 1 and tested.
  • Test Example 1 Effect of Additive Material In Production Example 1, ASTM standard AM60B was used as an Al-containing magnesium alloy, and an extruded material (round bar) of a magnesium-based composite material was produced.
  • the tensile strength was improved by using CaO as an additive, and the tensile strength was improved as the amount of the additive was increased.
  • the tensile strength at a high temperature (250 ° C.) was remarkably improved, and reached 10 times or more of the additive 10 vol% when no additive was added.
  • Table 2 shows the results of the extruded material obtained using ASTM standard AZ31B or AZ61B as the Al-containing magnesium alloy.
  • Table 2 shows the results of the extruded material obtained using ASTM standard AZ31B or AZ61B as the Al-containing magnesium alloy.
  • the effect of the additive was recognized on various Al-containing magnesium alloys.
  • the results were almost the same as when AZ61B was used (Test Example 2-6).
  • a comparison of Test Example 2-8 and Test Examples 2-5 to 2-7 with the addition of the auxiliary additive La 2 O 3 shows that the 250 ° C. tensile strength is higher than that of the additive CaO and has a specific effect. I understand.
  • the amount of the additive the effect of addition is recognized from about 1 vol% in the mixture, but from the viewpoint of strength, it is preferably 5 vol% or more, and more preferably 7 vol% or more. On the other hand, even if the additive is added excessively, the effect corresponding to the addition amount may not be obtained. Further, since the specific gravity of the magnesium-based composite material increases as the amount of the additive increases, excessive addition is not desirable from the viewpoint of the light weight of the magnesium alloy. Therefore, the amount of the additive is preferably 20 vol% or less, more preferably 15 vol% or less in the mixture.
  • FIG. 5 shows an SEM photograph of the metal structure of the extruded material obtained in Test Example 1-4.
  • FIG. 5 shows that the crystal grains of the Mg alloy are refined to 5 ⁇ m or less, and fine particles of 2 ⁇ m or less are dispersed at the grain boundaries.
  • AES Auger Electron Spectroscopy
  • FIG. 6 shows the AES analysis result (10,000 times) of the extruded material obtained in Test Example 1-5.
  • FIG. 7 shows X-ray diffraction results of (a) green compact (billet) and (b) extruded material (round bar) in Test Example 1-4 using CaO as an additive. is there.
  • the peak of CaO was recognized in both the billet and the extruded material, the peak of Al 2 Ca was not confirmed in the billet but only in the extruded material.
  • FIG. 8 is an X-ray diffraction result in Test Example 1-4 when the number of times of miniaturization processing is 0 (only simple compression).
  • the peak of CaO was recognized in any of (a) billet and (b) extruded material, the peak of Al 2 Ca was not confirmed at all. 7 to 8, (a) no MgO peak was observed in the billet state, and (b) an MgO peak was observed only in the extruded material.
  • Al 2 Ca generated tensile strength of, and in particular contribute to the tensile strength at elevated temperatures, for Al 2 Ca generated, the additive material and the Al-containing magnesium alloy by pulverizing treatment It was important to sufficiently activate the material and to activate it, and it was speculated that such a mixture would react thermochemically during plastic working to produce Al 2 Ca.
  • the heating temperature is preferably 350 ° C. or higher, more preferably 400 ° C. or higher, although it depends on the type of raw material. If the heating temperature is too low, sufficient Al 2 Ca may not be generated within a realistic heating time.
  • FIG. 10 shows a case where a billet obtained by adding AZ61 + 10 vol% CaO (the number of times of refinement treatment is 200 times) is subjected to a thermochemical reaction treatment by holding at 400 ° C. to 625 ° C. for 4 hours in an Ar atmosphere. An X-ray diffraction diagram is shown. From FIG. 10, it can be seen that the production of Al 2 Ca is slightly observed at 400 ° C., and the Al 2 Ca peak tends to increase with increasing temperature.
  • the heating temperature is preferably 550 ° C. or lower, more preferably 500 ° C. or lower.
  • FIG. 11 was obtained from an X-ray diffraction pattern after a thermochemical reaction treatment was performed by holding a billet obtained by adding AZ61 + CaO (number of times of refinement treatment 200 times) at 420 to 500 ° C. for 4 hours in an Ar atmosphere.
  • the relationship between the Al 2 Ca (38.55 °) / CaO (53.9 °) peak intensity ratio and the heating temperature is shown.
  • the Al 2 Ca / CaO peak ratio can be evaluated as the conversion rate from CaO to Al 2 Ca.
  • FIG. 11 it is recognized that the overall conversion rate from CaO to Al 2 Ca increases as the heating temperature increases.
  • the conversion rate to Al 2 Ca was very small even at high temperatures.
  • the theoretical amount of Ca necessary for converting all of the Al in AZ61 to Al 2 Ca is about 3.1 vol% when converted to the amount of CaO, which is considered to be because the amount of CaO is small.
  • it the amount of CaO is often observed a tendency that Al 2 Ca is easily generated even at low temperatures. Therefore, from the point of conversion (reactivity) to Al 2 Ca, it is preferable to use 0.5 times the molar equivalent or more of CaO in terms of Ca with respect to Al, more preferably 0.8 times the molar equivalent or more, particularly 1 It is preferably at least a double molar equivalent.
  • FIG. 12 is an extruded material obtained using AM60B + CaO as a starting material.
  • A is the amount of Al 2 Ca produced relative to the amount of CaO added
  • B is the tensile strength at normal temperature and 250 ° C. with respect to the added amount of CaO
  • C shows room temperature and 250 ° C. tensile strength of the relationship with respect to Al 2 Ca generation amount.
  • Al 2 Ca formation amount was used peak intensity ratio of Al 2 Ca (31.3 °) / Mg (36.6 °) in XRD. From FIGS. 12 (a) to 12 (c), the amount of Al 2 Ca produced in the extruded material increases as the amount of additive increases, and the normal temperature and 250 ° C. tensile strength tend to improve accordingly. I understand.
  • Table 5 below shows extruded materials obtained using AZ91 + CaO as a starting material.
  • the Al 2 Ca generation amount [Al 2 Ca (31.3 °) / Mg (36.6 °) peak intensity ratio] is almost the same, but the test example The residual amount of CaO of 3-3 [CaO (37.3 °) / Mg (36.6 °) peak intensity ratio] is about twice that of Test Example 3-2.
  • the presence of CaO particles is considered to contribute to the tensile strength.
  • Test Example 4 A green compact (billet) obtained by sintering and refining the green compact (200 treatments) was subjected to SPS (discharge plasma sintering) treatment at a sintering temperature of 480 to 550 ° C. The obtained SPS material was subjected to X-ray diffraction.
  • SPS discharge plasma sintering
  • SPS condition Equipment: DR. Manufactured by Sumitomo Coal Mining Co., Ltd.
  • SINTER SPS-1030S (1) Packing a green compact billet (diameter 35 mm ⁇ 80 mm) in a carbon container (inner diameter 36 mm ⁇ height 100 mm) and closing the lid from above and below. (2) After placing the container in the SPS apparatus and pulling the vacuum, the container is heated to reach a predetermined temperature while maintaining the pressure at 10 MPa. (3) Heat and hold for 1 hour while maintaining pressure at 30 MPa. (4) When the container cools to 150 ° C. or lower by furnace cooling, the vacuum is broken, the container is taken out of the SPS apparatus, air-cooled, and the SPS material is taken out from the container.
  • Table 6 shows the X-ray diffraction results of SPS materials obtained using AZ61B + CaO as a starting material.
  • Al 2 Ca was not produced in the green compact before the SPS treatment, but Al 2 Ca was produced by sintering the green compact as shown in Table 6.
  • fine dispersion particles of Al 2 Ca were confirmed by SEM observation of the SPS material, and fine dispersion particles of CaO were also confirmed in Test Example 4-2.
  • tensile strength was measured about the extrusion material (extrusion temperature 450 degreeC, extrusion diameter 7mm, extrusion ratio 28) obtained by further extrusion-molding SPS material, it was high tensile strength in both 20 degreeC and 250 degreeC. Was obtained.
  • Al 2 Ca generated by solid-phase reaction and CaO as an additive are very finely added to the Al-containing magnesium alloy with crystal grains refined. Dispersed, and these dispersed particles significantly improve strength characteristics and heat resistance.
  • Such a magnesium-based composite material typically refines a mixture of an Al-containing magnesium alloy and calcium oxide in a solid phase, and thermochemically reacts the refined mixture at a temperature below the melting point. More preferably, it can be obtained by plastic working during or after the thermochemical reaction.
  • the magnesium group composite material which does not contain (beta) phase can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

 本発明は、常温のみならず高温でも強度特性に優れるなどの優れた性能を有するマグネシウム基複合材料を提供する。本発明にかかるマグネシウム基複合材料は、アルミニウムを含有するマグネシウム合金と添加材である酸化カルシウムとの固相反応により得られたマグネシウム基複合材料であって、前記固相反応により生成したAlCaを含むことを特徴とするAlCa含有マグネシウム基複合材料である。該マグネシウム基複合材料中には、AlCaとともにCaOが分散していることができる。

Description

Al2Ca含有マグネシウム基複合材料 関連出願
 本出願は、2008年3月11日付け出願の日本国特許出願2008-61343号、及び2008年7月18日付け出願の日本国特許出願2008-186964号の優先権を主張しており、ここに折り込まれるものである。
 本発明は固相反応により生成された微細なAlCaが分散したマグネシウム基複合材料に関し、特に常温のみならず高温でも高い引張強さを有するなどの優れた性能を発揮し得るマグネシウム基複合材料に関する。
 マグネシウムは、比重が1.74と非常に軽く、また、比強度や比剛性がアルミや鋼よりも優れていることから、自動車、家電製品等の構造用部品として利用が拡大している。しかしながら、強度特性や耐熱性などにおいて十分とは言えず、マグネシウム合金をエンジン部品などの加熱を受ける構造部材に用いようとする場合には改善が望まれていた。
 例えば、特許文献1には、重量基準で1~8%の希土類元素及び1~6%のカルシウムを含み、素地を構成するマグネシウムの最大結晶粒径が30μm以下である高強靭性マグネシウム基合金が記載されている。このマグネシウム基合金は、次のようにして製造される。
(1)重量基準で1~8%の希土類元素及び1~6%のカルシウムを含むマグネシウム基合金インゴットを鋳造法で作製し、これを切削加工などにより原料粉体を得る。
(2)原料粉体に対して100~300℃で塑性加工を繰返し行う(例えば、金型に粉体を充填した状態で圧縮と押し込みとを交互に繰返し行う)ことにより強加工歪を付与して、原料粉体を機械的に粉砕し、かつ素地を構成するマグネシウム結晶粒を微細化する。同時に、鋳造によりインゴット中に形成されていた針状の金属間化合物も微細に粉砕され、マグネシウム結晶粒内部に分散される。
(3)上記のように塑性加工を施して微細化処理した後、圧縮成形して粉末固化体を作製する。
(4)粉末固化体を300~520℃に加熱後、直ちに押出し加工して目的とするマグネシウム基合金の棒状素材を得る。
 しかしながら、このような方法では、目的とする合金組成のインゴットを鋳造し、これを粉末化して原料粉体とするため、手間やコストがかかる。また、合金組成が均一で良好なインゴットを作製するための鋳造方法が難しく、且つ合金組成を均一にできる元素組成範囲が制限されるという問題があった。
 また、特許文献1には、鋳造中にCaがAlとの間で熱安定性に優れる金属間化合物であるAlCaを形成し、これが上記のように微細化されて素地中に分散されることでマグネシウム合金の耐熱性が向上することが記載されている。例えば、特許文献1には150℃における引張強さが記載されている。
 しかしながら、特許文献1において、150℃における引張強さは150MPaに満たず、また、より高温での引張強さも満足できるものではない。さらに、特許文献1には、希土類元素やカルシウムが上記適性範囲を超えると靭性や引張強さが低下することが記載されており、希土類元素やカルシウムの増量による効果の向上には限界がある。
 このように、鋳造などの溶融法により形成された金属間化合物を含むマグネシウム合金を微細化した後に押出しする特許文献1においても、十分満足のいくものは得られていない。
 一方、特許文献2には、SiOを添加材として用い、機械的に固相反応させて金属間化合物MgSiを形成し、耐熱性を向上させることが記載されている。具体的には、マグネシウム合金チップに添加材としてSiO粉末を混合し、これを固相状態で微細分散化後、さらに押出し加工することにより、微細化されたマグネシウム合金の結晶粒界上に金属間化合物であるMgSiが微細に分散されたマグネシウム基複合材料が得られる。本方法では、溶融法で製造したものとは異なり、マグネシウム合金の粒界内に分散化合物は存在せず、結晶粒界に存在している。
 しかしながら、SiO粉末を用いても、高温強度に関してまだ十分満足のいくものではなかった。
特開2006-2184号公報 特開2007-51305号公報
 本発明は、前記背景技術の課題に鑑みなされたものであり、その目的は、常温のみならず高温でも高い引張強さを有するなど優れた性能を発揮し得るマグネシウム基複合材料を提供することにある。
 上記目的を達成するため、本発明者等が鋭意検討を行った結果、アルミニウムを含有するマグネシウム合金に酸化カルシウムを添加材として混合し、この混合体を固相状態で機械的に微細化処理した後に、所定の温度範囲に加熱すると、固相反応を生じ、その結果、結晶粒が微細化されたマグネシウム合金の組織中に反応生成物であるAlCaの粒子が微細に分散されたマグネシウム基複合材料が得られ、このマグネシウム基複合材料は常温強度のみならず高温強度においても非常に優れることを見出した。さらに所定の温度範囲に加熱中又は加熱後に押出しなどの塑性加工を行うことにより、より品質的に安定して常温強度及び高温強度が得られることも見出した。
 特許文献2のように、SiOを添加材として用いる固相反応によりMgSiを形成できるのは、Siに対するMgの還元作用による。すなわち、酸化物の標準生成自由エネルギー△Gと温度との関係を示すエリンガム線図では、常温~2500℃の広い温度領域において、SiOの線図がMgOの線図よりも上側にあり、SiOの標準生成自由エネルギーはMgOの標準生成自由エネルギーよりも大きい(日本金属学会編、改訂2版金属データブック、p.90、1984年参照)。よって、MgによるSiOの還元は発熱反応であり、これは自発的に進行して金属間化合物であるMgSiが形成される。
 一方、MgOよりも標準生成自由エネルギーの小さな酸化物(例えばCaO)を添加材として用いた場合には、Mgによる該酸化物の還元は吸熱反応であるため、金属間化合物の形成は理論上は困難である。
 しかしながら、驚くべきことに、本発明者らが検討を行った結果、Al含有マグネシウム合金にCaOを添加材とした場合には、CaOが還元されて金属間化合物AlCaが形成されることが判明したのである。
 AlCaが熱安定性に優れることは知られているが、前記特許文献2には、酸化カルシウムを添加材として用い、固相法によりマグネシウム合金中にAlCaを生成すること、これにより常温のみならず250℃という高温においても高い強度を有するマグネシウム基複合材料が得られることは記載されていない。これは、本発明者らにより初めて見出された新規な知見であり、このような新規な知見に基づいて、本発明を完成するに至った。
 すなわち、本発明は、アルミニウムを含有するマグネシウム合金と添加材との固相反応により得られたマグネシウム基複合材料であって、
 前記添加材は酸化カルシウムであり、
 前記固相反応により生成したAlCaを含むことを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 なお、本発明においては、アルミニウムを含有するマグネシウム合金が、合金化された及び/又は混合されたアルミニウムを含有するマグネシウム合金であることができる。
 また、本発明は、前記複合材料において、マグネシウム基複合材料中にAlCaとともにCaOが分散していることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、
 アルミニウムを含有するマグネシウム合金と添加材との混合体を固相状態で機械的に微細化し、
 この微細化混合体又はその圧粉体を融点未満の温度で熱化学反応させることにより得られたことを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記複合材料において、前記微細化混合体又はその圧粉体を350~550℃に加熱して熱化学反応させることによりAlCaを生成したことを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、熱化学反応が焼結であることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、熱化学反応後及び/又は熱化学反応中に塑性加工することを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、
 アルミニウムを含有するマグネシウム合金と添加材との混合体を固相状態で機械的に微細化し、
 この微細化混合体又はその圧粉体を融点未満の温度で塑性加工することにより得られたことを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、塑性加工が押出しであることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記複合材料において、押出し温度が350~550℃であることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、固相反応されるアルミニウム含有マグネシウム合金と添加材との混合体中、添加材が1~20vol%となるように用いることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、固相反応されるアルミニウム含有マグネシウム合金と添加材との混合体中、Ca/Alのモル比が0.5以上となるように添加材を用いることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、AlCa分散粒子の最大粒径が5μm以下であることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、CaO分散粒子の最大粒径が5μm以下であることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、マグネシウム合金の最大結晶粒が20μm以下であることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、Al12Mg17を含まないことを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、前記何れかに記載の複合材料において、20℃における引張強さが400MPa以上で、且つ250℃における引張強さが100MPa以上であることを特徴とするAlCa含有マグネシウム基複合材料を提供する。
 また、本発明は、アルミニウムを含有するマグネシウム合金と添加材との混合体を固相状態で機械的に微細化した微細化混合体又はその圧粉体であって、
 前記添加材は酸化カルシウムであり、
 融点未満での加熱によりAlCaを生成することを特徴とする熱化学反応用又は塑性加工用材料を提供する。
 また、本発明は、前記材料において、加熱温度が350~550℃であることを特徴とする熱化学反応用又は塑性加工用材料を提供する。
 また、本発明は、前記何れかに記載の材料において、微細化処理されるアルミニウム含有マグネシウム合金と添加材との混合体中、添加材が1~20vol%となるように用いたことを特徴とする熱化学反応用又は塑性加工用材料を提供する。
 また、本発明は、前記何れかに記載の材料において、微細化処理されるアルミニウム含有マグネシウム合金と添加材との混合体中、Ca/Alのモル比が0.5以上となるように添加材を用いたことを特徴とする熱化学反応用又は塑性加工用材料を提供する。
 また、本発明は、前記何れかに記載の材料において、焼結用である熱化学反応用材料を提供する。
 また、本発明は、前記何れかに記載の材料において、押出し用である塑性加工用材料を提供する。
 本発明にかかるマグネシウム基複合材料は、結晶粒が微細化されたマグネシウム合金の組織中に、固相反応により生成した微細なAlCa粒子が分散し、このような分散粒子によって、常温のみならず高温でも強度特性が顕著に改善される。そして、AlCa粒子とともに微細なCaO粒子が分散することによりさらに強度特性が向上する。また、CaO粒子の存在は耐磨耗性にも寄与する。
 本発明にかかるマグネシウム基複合材料は、比較的安価な原料から溶融せずに固相反応により製造できるので、鋳造などの溶融法で得られるマグネシウム基複合材料に比して簡便で経済的であり、また組成の自由度が高い。
 また、Al含有マグネシウム合金と添加材との混合体を微細化処理した微細化混合体又はその圧粉体は、例えば、焼結などの熱化学反応用材料、押出しなどの塑性加工用材料として、高強度AlCa含有マグネシウム基複合材料の製造に利用できる。
本発明にかかるAlCa含有マグネシウム基複合材料の製造において用いられる微細化装置の一例を示す概略構成図である。 本発明にかかるAlCa含有マグネシウム基複合材料の製造における微細化工程の一例を示す説明図である。 本発明にかかるAlCa含有マグネシウム基複合材料の製造における微細化工程の一例を示す説明図である。
本発明にかかるAlCa含有マグネシウム基複合材料の製造工程の一例を示す説明図である。 10vol%CaO添加AM60B合金から得られた押出し材のSEM写真(5000倍)である。 15vol%CaO添加AM60B合金から得られた押出し材のAESイメージ(10000倍)である。
10vol%CaO添加AM60B合金から得られた(a)圧粉体(ビレット、微細化処理回数200回)、及び(b)押出し材のX線回折図である。 CaO無添加AM60B合金から得られた(a)圧粉体(ビレット、微細化処理回数0回)、及び(b)押出し材のX線回折図である。 AZ61+10vol%CaO添加の混合体から、微細化処理回数(a)400回、(b)200回、(c)28回、又は(d)0回で得られたビレットを、Ar雰囲気中500℃1時間処理した後のX線回折図である。
AZ61+10vol%CaO添加の混合体から得られたビレット(微細化処理回数200回)を、Ar雰囲気下、400℃~625℃で4時間処理した後のX線回折図である。 AZ61+CaO添加で得られたビレット(微細化処理回数200回)を、Ar雰囲気下で4時間処理した後のX線回折図から求めたAlCa(38.55°)/CaO(53.9°)ピーク強度比と加熱温度との関係を示す図である。 CaO添加AM60B合金から得られた押出し材の、(a)CaO添加量に対するAlCa生成量、(b)CaO添加量に対する常温及び250℃での引張強さ、(c)AlCa生成量に対する常温及び250℃引張強さの関係をそれぞれ示す図である。
 本発明にかかるマグネシウム基複合材料は、結晶粒が微細なマグネシウム合金の組織中に微細なAlCa粒子が分散されたマグネシウム基複合材料であり、これはAl含有マグネシウム合金と、添加材である酸化カルシウムとの固相反応により得られるものである。
 代表的には、Al含有マグネシウム合金と添加材との混合体を固相状態で機械的に微細化し、その後、融点未満、好ましくは350~550℃の温度で熱化学反応させるという固相反応法により得ることができる。また、強度などの点から、熱化学反応中及び/又は熱化学反応後に塑性加工を行うことが好ましい。塑性加工としては、押出し、鍛造、圧延、引抜き、プレスなど公知の加工の1種以上が挙げられるが、好適な例としては押出しが挙げられる。
<Al含有マグネシウム合金>
 本発明において出発原料として用いるAl含有マグネシウム合金としては、主成分であるマグネシウムにAlが合金化されたマグネシウム合金(Mg-Al系合金)を用いることができる。一般によく知られているものとしては、Mg-Al-Mn系合金(AM系)、Mg-Al-Zn系合金(AZ系)などがある。
 また、Alはマグネシウム合金中に合金化されずに単に混合されていてもよい。例えば、Alが合金化されていないマグネシウム合金(純マグネシウムでもよい)及びAlが合金化されたマグネシウム合金から選ばれる一種以上と、Alとの単純混合物を本発明のAl含有マグネシウム合金として用いることもできる。また、Alを混合して用いる場合、純アルミニウムの他、特に問題のない限り、アルミニウムを主成分とする合金(アルミニウム合金)などをAl源として用いてもよい。
 Alの含有量は、目的に応じて適宜調節されるが、通常、Al含有マグネシウム合金中1~20質量%、好ましくは2~15質量%、より好ましくは3~10質量%である。
 Al含有マグネシウム合金には、Zn、Mn、Zr、Li、Ag、RE(RE:希土類元素)などMgやAl以外の元素が含まれていてよい。Al含有マグネシウム合金中におけるMgやAl以外の元素の総和は、通常10質量%以下であり、典型的には0.1~10質量%、好ましくは0.5~5質量%である。
 Al含有マグネシウム合金の形状、サイズは特に限定されず、粉末状、粒状、塊状、チップ状などが挙げられるが、例えば、平均粒子径0.5mm~5mm程度のチップまたは粒状体が簡便に用いられる。
<添加材>
 本発明で用いる添加材としては、酸化カルシウムを用いる。
 添加材の形状、サイズは特に限定されず、例えば、平均粒子径5μm~100μm、さらには10μm~50μmの粉末が簡便に用いられる。
 添加材量は、本発明の効果が得られる限りにおいて制限されるものではない。通常は、微細化処理される混合体全成分中に占める添加材の割合として1vol%以上で効果が発揮されるが、好ましくは5vol%以上、さらに好ましくは7vol%以上である。添加材量が少なすぎるとその効果が低くなる。一方、過剰に配合しても増量に見合った効果の増大は期待できず、また、その他の特性に悪影響を及ぼすことがあるので、20vol%以下、さらには15vol%以下とすることが好ましい。
 なお、添加材量は、微細化される混合体をその全成分からなる空隙のない一固体であると見なしたときの混合体中の添加材の割合(vol%)を意味し、Al含有マグネシウム合金及び添加材の真密度とその配合質量とから、下記式により算出されるものである。
Figure JPOXMLDOC01-appb-I000001
 例えば、AM60B合金(真密度1.79g/cm)90質量部、及びCaO(真密度3.35g/cm)10質量部(Caとして約7.1質量部)の混合体において、この混合体中のCaOは約5.6vol%である。
 また、反応性などの点から、Al含有マグネシウム合金と添加材との混合体中におけるCa/Alのモル比が0.5以上、さらには0.8以上、特に1以上となるように、添加材を用いることが好ましい。
 なお、本発明においては、本発明の効果を損なわない限り、必要に応じて、その他の化合物を補助的に添加することもできる。このような補助的添加材として、例えば希土類金属、Sr又はBaの酸化物、炭化物、珪化物及び炭酸塩、ならびにCaの炭化物、珪化物及び炭酸塩から選択される1種以上が挙げられる。希土類金属としては、例えばSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Yb、Lu、あるいはこれら元素を含むミッシュメタルが挙げられる。
 本発明の添加材に上記のような補助的添加材を併用し、補助的添加材の少なくとも一部をAlを含有するマグネシウム合金の金属成分と固相反応させ、熱安定性に優れる金属間化合物(例えば、La-Mg化合物、Al-Y化合物など)を生成させれば、Alを含有するマグネシウム基複合材料の強度特性や耐熱性をさらに改善することが可能である。金属間化合物の生成は、例えば、X線回折図において、出発原料であるAl含有マグネシウム合金、添加材、及び補助的添加材の何れとも異なる、AlCa以外のピークの出現によって確認することができ、金属間化合物のピークパターンが既知であれば、それと照合することにより同定できる。
 このような補助的添加材の種類と添加量としては、微細化処理される混合体に必要とされる材料特性に応じて設定すればよいが、過剰に配合しても増量に見合った効果の増大は期待できず、また、その他の特性に悪影響を及ぼすことがあるので、20vol%以下、さらには15vol%以下とすることが好ましい。
 その他にも、マグネシウム合金に対する公知の強化材を添加することもできる。
<製造方法>
 本発明にかかるマグネシウム基複合材料の好適な製造方法について、以下に代表例を挙げてさらに説明するが、本発明はこれらに限定されるものではない。
 本発明にかかるマグネシウム基複合材料は、図4の概略図に示されるように、
(a)微細化工程と、
(b)熱化学反応工程と、
(c)塑性加工工程と、
を備えた製造方法で製造することが好適である。
(a)微細化工程:
 Al含有マグネシウム合金と添加材との混合体の微細化工程では、混合体が機械的に粉砕されるとともに、Mg合金結晶粒が微細化される。このような微細化方法としては、混合体成分に強歪み加工を与えてMg合金結晶粒ならびに添加材粒子を微細化できる方法であれば特に制限されず、公知の方法を採用することができるが、後のAlCaの形成を促進し、結晶粒の粗大化を抑制し、室温~高温の広い範囲において高強度とするためには、Mg合金結晶粒及び添加材が十分且つ均一に微細化されることが望ましい。
 好適な微細化方法としては、押し固め及び押し崩しによる方法、特に剪断力及び/又は摩擦力を伴う押し固め及び押し崩しによる方法が採用できる。
 また、微細化工程においては、取り扱い性や反応性の点などから、最後に圧縮成形を行って圧粉体とすることが好ましい。
 例えば、Al含有マグネシウム合金チップまたは粒状体と添加材粉末との混合体を、互いに交差して連なる複数の直線状の成形穴を有する型内に収容した状態で、上記成形穴内に挿入された押圧部材の前進、後退に伴い、上記混合原料を一の成形穴で押し固め、更にこの押し固めた混合原料を押し崩しながら他の成形穴へと送り込み、この押し固め、押し崩しを繰り返して微細化し、最後に押し固めることにより、圧粉体を作製する、という方法が好適である。
 このような微細化工程は、特に加熱せずに環境温度下でも十分可能である。
 以下、好適な実施形態についてさらに説明する。
 本実施形態にかかる微細化工程では、図1に示したような装置を用いてAl含有マグネシウム合金チップと添加材粉末との混合体を微細化し、最後に圧縮成形して圧粉体を得ることが好適である。図1の装置によれば、混合体が交差部を通過する際にほぼ全面領域で大きな剪断力、摩擦力を受けるので、Mg合金結晶粒及び添加材の微細化・分散化が均一に効率よく行われる。
 図1に示した装置10は、直方体形状の型12を備えており、型12には直線状の4つの成形穴14a,14b,14c,14dが形成されている。各成形穴14a~14dは同一の断面形状(好ましくは同一径の断面円形)をなしており、型12の中心の交差部15にて放射状に連結されている。また、各成形穴14a~14dは、この順序で周方向に90°の角度間隔をなして同一平面上(垂直面または水平面上)に配置されている。
 成形穴14a~14dには、それぞれ各成形穴14a~14dとほぼ等しい断面形状の押圧部材16a~16d(第1~第4の押圧部材)がスライド可能に挿入されており、各成形穴に沿って前進、後退するようになっている。これらの押圧部材16a~16dの前進、後退は駆動手段18a~18dによって行われる。駆動手段は油圧シリンダ等で構成される。また、制御手段20では各該駆動手段18a~18dの圧力情報、位置センサからの情報等を基に、各駆動手段の制御を行う。
 まず、図2(a)に示すように、押圧部材16aを抜いた状態で混合体を成形穴14aに装填する。この際、押圧部材16b、16c、16dの前進方向側(型の内部へ向う方向)側の端部は、交差部15に隣接する成形穴14b、14c、14dの奥端と一致する位置にある(以下、この位置を前進位置と呼ぶ)。各押圧部材16b、16c、16dは、駆動手段18b、18c、18dによって後退(型の外部へ向う方向)不能な状態で拘束され、実質的に固定された状態にある。そして、押圧部材16aを成形穴14aに挿入した後、以下のシーケンス制御を開始する。
 最初に押圧部材16aについて押し固め工程を実行する。押圧部材16aを駆動手段18aにより成形穴14a内部へ押し込む。すると他の押圧部材16b~16dは固定されているので混合体は成形穴14b~14dに向わずに成形穴14aにおいて押し固められ、円柱形状の塊になる。この塊は所定の強度を持っているが、比較的脆いものである。この押し固め状態は所定の加圧状態で短時間、例えば2秒程度維持される。
 次に押圧部材16aについて押し崩し工程を実行する。駆動手段18aにより押圧部材16aを更に高い圧力で押し込むと同時に、駆動手段18bにより押圧部材16bを後退可能にする。すると、図2(b)、(c)に示すように押圧部材16aは前進位置まで押し込まれ、混合体は成形穴14aから交差部15を経て成形穴14bへと流動し、この過程で押し崩される。また、押圧部材16bは流れ込んだ混合体に押されて後退する。そして、押圧部材16aの前端が成形穴14a奥端に達したときに押し崩し工程が完了する。
 次に押圧部材16bについて上記同様の押し固め工程を実行する。つまり、図2(d)に示すように、押圧部材16a、16c、16dを前進位置で固定し、押圧部材16bを駆動手段18bにより内部へ押し込むことで、混合体を押し固める。
 次に押圧部材16bについて上記同様の押し崩し工程を実行する。つまり、押圧部材16cを後退可能な状態(フリーな状態)にし、押圧部材16bを押し込む。すると、図2(e)、(f)に示すように押圧部材16bは前進位置まで押し込まれ、混合体は成形穴14bから交差部15を経て成形穴14cへと流動し、この過程で押し崩される。また、押圧部材16cは流れ込んだ混合体に押されて後退する。
 同様に押圧部材16cについて押し固め工程を実行する。つまり、図2(g)に示すように押圧部材16a、16b、16dを前進位置で固定し、押圧部材16cを駆動手段18cにより型12内部へ押し込むことで、混合体を押し固める。
 次に押圧部材16cについて上記同様の押し崩し工程を実行する。つまり、押圧部材16dを後退可能な状態(自由な状態)にし、押圧部材16cを押し込む。すると、図2(h)、(i)に示すように押圧部材16cは前進位置まで押し込まれ、混合体は成形穴14cから交差部15を経て成形穴14dへと流動し、この過程で押し崩される。また、押圧部材16dは流れ込んだ混合体に押されて後退する。
 同様に押圧部材16dについて押し固め工程を実行する。つまり、図2(j)に示すように押圧部材16a、16b、16cを前進位置で固定し、押圧部材16dを駆動手段18dにより型12内部へ押し込むことで、混合体を押し固める。
 次に押圧部材16dについて上記同様の押し崩し工程を実行する。つまり、押圧部材16aを後退可能な状態(自由な状態)にし、押圧部材16dを押し込む。すると、図2(k)、(l)に示すように押圧部材16dは前進位置まで押し込まれ、混合体は成形穴14dから交差部15を経て成形穴14aへと流動し、この過程で押し崩される。また、押圧部材16aは流れ込んだ混合体に押されて後退する。
 図2(a)~(l)に示された工程を任意回数繰り返し行って、均一且つ十分に微細化・分散化した後、最後に押し固め工程を行うことで圧粉体を得る。
 圧粉体形成のために加える圧力は、特に制限されるものではないが、例えば、250kg/cm~400kg/cmとすることができる。
 このように、出発原料である混合体は、押し固め工程により一旦押し固められた後で、押し崩し工程で交差部を通過する際にほぼ全断面領域で大きなせん断力、摩擦力を受けて押し崩されるため、Mg合金結晶粒及び添加材の微細化・分散化が均一に効率よく行われる。
 また、より均一な微細化、分散化を行うために、上記押し固め及び押し崩し工程の間に図3に示すような攪拌工程を行うことが好適である。
 まず、図3(a)に示すように、押圧部材16cを前進位置で固定状態にし、押圧部材16b、dは後進可能なフリーの状態にする。この状態で押圧部材16aを押し込むと、図3(b)、(c)に示すように、混合体は成形穴14aから交差部15を経て成形穴14b、14dへ流れ込む。すると、押圧部材16bと16dは混合体に押されて後退する。
 押圧部材16aを前進位置にまで押し込んだ後、図3(d)に示すように押圧部材16aを固定状態、押圧部材16cをフリーな状態にし、押圧部材16bと16dを押し込む。すると、図3(e)、(f)に示すように成形穴14b、14dに存在した混合体は、成形穴14cに流れ込む。ここで、押圧部材14cは混合体に押されて後退する。
 押圧部材14b、14dを図3(f)に示すようにその前進位置にまで押し込んだのち、図3(g)に示すように押圧部材16b、16dを固定状態、押圧部材16aをフリーの状態にする。そして、図3(h)、(i)に示すように押圧部材16cをその前進位置にまで押し込むと、混合体は成形穴14cから交差部15を経て成形穴14aに至り、押圧部材14aは混合体に押されて後退する。
 このような攪拌工程を上記押し固め及び押し崩し工程の間に設けることで、より効率よく微細化、分散化することができる。
 上記実施形態では、型に成形穴を4つ設けた構成の装置における例を示したが、これに限定されず、成形穴を複数、例えば2~6つ設けた構成の装置を用いてもよい。また、型を固定して押圧部材毎に駆動手段を設ける装置構成の場合を説明したが、駆動手段を一つにして型を回転させる構成の装置を用いてもよい。
 このような微細化工程の例として、例えば特開2005-248325号公報や前記特許文献2などを参照することができる。
(b)熱化学反応工程:
 Al含有マグネシウム合金と添加材とを上記のように微細化処理した後に、融点未満の適当な温度で加熱することで熱化学反応を生じさせて、AlCaを生成することができる。このような熱化学反応を生じる加熱温度としては、原料の種類などにもよるが、通常350℃~550℃、好ましくは400~500℃であった。
 従って、微細化混合体又はその圧粉体を、上記温度範囲に加熱して熱化学反応させることによりAlCaを生成することが好適である。
 以上のように微細化工程及び熱化学反応工程を経て得られたマグネシウム基複合材料では、結晶粒が微細化されたマグネシウム合金の組織中に、AlCaの微粒子が分散されている。後述の実施例でも示すように、AlCaは微細化工程ではなく、その後の熱化学反応工程で生成される。しかし、微細化工程を行わなかった場合には、熱化学反応工程を行ってもAlCaを形成することはできない。
 よって、微細化工程と熱化学反応工程との複合作用によって固相反応を生じ、理論的には困難なAlCa形成が進行するものと考えられる。
(c)塑性加工工程:
 次に、上記で得られたマグネシウム基複合材料をより高強度にするため、公知の装置を用いて塑性加工を行う。前述した熱化学反応工程における加熱によってAlCa粒子が生成され、さらに塑性加工を行うことで粒子同士が強固に密着・接合固化し、微細なマグネシウム合金組織中に微細なAlCa粒子が分散した高強度のマグネシウム基複合材料が得られる。
 また、塑性加工工程においては、温度を加えながら塑性加工を行うことで、上記した熱化学反応工程と塑性加工工程を同時に行うことができる。
 塑性加工としては、例えば、押出し加工が好適である。この場合、押出し条件は、粒子同士の密着・接合固化が充分行われるように、適宜設定可能である。
 例えば、押出し比は、通常2以上、さらには5以上、好ましくは10以上である。
 また、上記したように、塑性加工としての押出し加工と熱化学反応工程とを同時に行う場合には、押出し温度は、融点未満で設定可能であるが、AlCa生成の点、さらには押出し性などの点から、350~550℃、さらには400~500℃の範囲とすることが好ましい。
 また、微細化混合体又はその圧粉体は、AlCaが生成可能な温度で押出しなどの塑性加工することにより、結晶粒が微細化されたマグネシウム合金中に微細なAlCa粒子が分散した高強度マグネシウム基複合材料とすることができるので、塑性加工用材料として好適に利用可能である。
 また、微細化混合体又はその圧粉体をAlCaが生成可能な温度で加熱して少なくとも一部の添加材を固相で熱化学反応させてAlCaを生成させた後、塑性加工することもできる。
 また、微細化混合体又はその圧粉体は、固相で熱化学反応させてAlCa含有マグネシウム基複合材料を製造するための熱化学反応用材料として利用することもできる。例えば、複雑な形状の最終製品を直接製造する場合や、微細化混合体の圧粉体が押出し性などの塑性加工性、あるいは二次加工性が不十分であるような場合、焼結は有効な手段の一つであるが、本発明の微細化混合体又はその圧粉体は、焼結用材料としても利用可能である。焼結法としては、例えば、雰囲気焼結法、ホットプレス、HIP(熱間等方加圧式焼結法)、PCS(パルス通電焼結法)、SPS(放電プラズマ焼結法)などが挙げられる。焼結は、加圧下又は非加圧下で行うことができる。
 焼結用材料として圧粉体を使用するか粉末を粉末冶金用に用いるかは用途に応じて設計できる。焼結用粉体は微細化混合体又はその圧粉体をボールミルなど公知の粉砕器、方法により100μm以下に粉砕し、更に必要であれば篩分けして利用することができる。
<AlCa含有マグネシウム基複合材料>
 本発明のAlCa含有マグネシウム基複合材料において、常温強度の点からは、マグネシウム合金の結晶粒は微細化されていることが好ましい。具体的には、例えば、金属組織の顕微鏡写真から求めたマグネシウム合金の最大結晶粒径が20μm以下、さらには10μm以下であることが好適である。
 マグネシウム合金の結晶粒が微細化していると高温では粒界すべりを生じやすくなり強度が低下するが、本発明においては、微細なAlCa粒子が結晶粒界に分散しているので、高温においても高い強度を発揮することができる。
 マグネシウム基複合材料中において、金属組織の顕微鏡写真から求めたAlCa粒子の最大粒径は通常5μm以下、典型的には2μm以下、さらには1μm以下である。
 本発明のマグネシウム基複合材料では、強度などの点から、未反応のCaOの微粒子も分散していることが好ましい。また、この場合には、CaO微粒子により磨耗性を向上することができる。
 一般的に、金属酸化物は当該金属に比して耐熱性が高い。よって、CaOの微粒子がマグネシウム基複合材料中に分散することにより、粒界すべりに対する抵抗となって強度が向上するとともに、耐熱性、例えば高温における引張強さが向上する。また、ヤング率や0.2%耐力、硬度の向上にも寄与する。一方、平均線膨張係数に対しては低下効果がある。
 また、酸化物粒子が存在することにより、加熱によるマグネシウム合金結晶粒の粗大化による機械的性質の低下も抑制される。
 マグネシウム基複合材料中において、金属組織の顕微鏡写真から求めたCaO粒子の最大粒径は通常5μm以下、典型的には2μm以下、さらには1μm以下である。
 本発明においては、例えば、比重が1.9~2.0で、しかも引張強さが20℃で400MPa以上、150℃で280Mpa以上、250℃で100MPa以上という高強度マグネシウム基複合材料を得ることができる。
 また、従来のマグネシウム合金では、20℃でのヤング率が通常約45GPaであるのに対し、本発明によれば、48GPa以上、さらには50GPa以上、特に55GPa以上の性能を得ることができる。
 また、20℃での0.2%耐力では、350MPa以上、さらには400MPa以上の性能を得ることができる。
 また、20℃におけるビッカーズ硬さも85以上とすることができ、さらには100以上、特に120以上とすることもできる。
 一方、20℃~200℃の線膨張係数は約2×10-5/K~2.6×10-5/Kと、従来のマグネシウム合金に比して低下させることができる。
 本発明のマグネシウム基複合材料は、市販されているMg-Al系合金とCaOとを用いて鋳造などの溶融法ではなく固相法で製造でき、目的とする合金組成のインゴット化やその粉末化が不要で、添加材量の制限が少ない。また、CaOは安価且つ軽量であることから、これを利用できることは、コストや軽量性など、工業的メリットが非常に大きい。
 本発明のマグネシウム基複合材料は強度特性、特に高温強度に優れているので、これらの特性が要求される各種用途に好適に利用できる。例えば、これに限定されるものではないが、自動車のエンジン周り部品(ピストン、バルブリテーナー、バルブリフターなど)などに適用できる。
 本発明のマグネシウム基複合材料は、耐熱性が高いので、目的とする部品形状にさらに塑性加工された場合などにおいても、その特性を十分発揮できる。
 以下、具体例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。また、本発明で用いた試験方法及び材料と試薬は次の通りである。
(0.2%耐力、引張強さ)
 JIS Z 2201「金属材料引張試験片」に基づき試験片として、平行部直径5mm、標点間距離25mmの形状(JIS 14A号試験片形状に準拠)に切り出したものを用いた。JIS Z 2241「金属材料引張試験方法」に基づき室温(約20℃)ならびに250℃で引張試験を行った。引張試験機は加熱炉付きオートグラフ万能試験機((株)島津製作所製、引張最大荷重100kN)を用い、試験機ストローク速度8.4mm/min(変位制御)で行った。なお、250℃での引張試験は、試験片をオートグラフ万能試験機にチャッキングしてから加熱炉で試験片を包み込み、試験片平行部近傍に、耐熱テープで熱電対を貼り、試験片が250℃になった後行った。
 なお、0.2%耐力は上記引張試験方法に規定するオフセット法によって測定した。
(X線回折図)
 X線回析図は、RAD-3Bシステム(理学電機(株))で角度 30°~80°、サンプリング幅 0.020°、スキャン速度1°/min、線源CuKα、電圧40KV、電流値30mA で採取した。
(SEM写真)
 SEM写真は、走査型電子顕微鏡 ABT-60(株式会社トプコン製)により観察、撮影した。
(AESイメージ)
 AESイメージは、走査型オージェ分光分析装置PHI700(アルバック・ファイ 株式会社製)により観察、撮影した。
(硬さ)
 マイクロビッカース硬さ試験機((株)島津製作所製、HMV-2000)を用いて、圧入荷重100gにて6秒間圧入し、圧痕の大きさを測定し、室温(約20℃)で硬さを測定した。
(線膨張係数)
 圧縮加重法による。試験片形状φ5×15mmに切り出したものを用い、熱機械分析装置((株)リガク製 TMA8310)により、昇温速度5℃/min、室温(約20℃)~355℃の温度範囲で圧縮荷重98mNをかけて、温度変化による伸びを測定し、25℃での線膨張係数を計算した。
(ヤング率)
 JIS Z2280「金属材料の高温ヤング率試験方法」に準じて、超音波パルス法により20℃のヤング率を測定した。試験機は、バースト波音速測定装置(RITEC社製、RAM-5000型)を用いた。
(材料及び試薬)
 Al含有マグネシウム合金チップはいずれの種類も、日鉱商事株式会社製 粒度<2.5mm、アルミ粉末は、純度99.5% 粒度<0.15mm 株式会社高純度化学研究所製を使用した。
 添加材の酸化カルシウムは、和光純薬株式会社製、型番:036-19655、CaO純度98%、酸化ランタンは、高純度化学研究所製 コード番号LAO02PB、純度99.99%を使用した。
製造例1 マグネシウム基複合材料の製造
 Al含有マグネシウム合金チップと添加材粉末とを混合し、混合体を得た。該混合体を上記図1に示した装置によって微細化処理し圧粉体(ビレット)とした。微細化処理回数は、図2(a)~(l)で示した微細化工程および図3(a)~(i)の攪拌工程を合わせたものを4回と数えた。
 得られた圧粉体を400~470℃で予備加熱し、コンテナ及びダイス加熱温度400~470℃、押出し径7mm、押出し比28で押出し成形し、マグネシウム基複合材料からなる押出し材(丸棒)を得た。
 上記製造例1に準じて各種マグネシウム基複合材料を製造し、試験を行った。
試験例1 添加材の効果
 製造例1において、Al含有マグネシウム合金として、ASTM規格のAM60Bを使用し、マグネシウム基複合材料の押出し材(丸棒)を製造した。
Figure JPOXMLDOC01-appb-T000002
 
 表1からわかるように、CaOを添加材として用いることによって、引張強さが改善され、添加材量の増大に伴って引張強さが向上した。特に、高温(250℃)での引張強さは顕著に向上し、添加材10vol%で無添加の場合の3倍以上にも達した。
Figure JPOXMLDOC01-appb-T000003
 表2は、Al含有マグネシウム合金としてASTM規格のAZ31B又はAZ61Bを用いて得られた押出し材の結果である。表2からわかるように、種々のAl含有マグネシウム合金に対して添加材の効果が認められた。
 また、出発原料であるAl含有マグネシウム合金として、AZ31B:Al=97:3(質量比)となるようAZ31B合金チップとAl粉末とを混合したものを用いた場合(試験例2-7)には、AZ61Bを用いた場合(試験例2-6)と、ほぼ同等の結果が得られた。なお、試験例2-6の押出し材では、X線回折図においてAl粉末のピークは消失していた。
 補助的添加剤Laを加えた試験例2-8と試験例2-5~2-7を比較すると250℃引張強さが添加剤CaOより向上しており、特有の効果があることがわかる。
 また、下記表3のように、その他の機械的特性においても添加材を用いることによる改良が可能であった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 以上のことから、添加材量としては、混合体中1vol%程度から添加効果が認められるが、強度の点から、5vol%以上、さらには7vol%以上とすることが好ましい。
 一方、添加材を過剰に添加しても添加量に見合った効果が得られないことがある。また、添加材量が多いほどマグネシウム基複合材料の比重も高くなるので、マグネシウム合金の軽量性という観点からも過剰な添加は望ましくない。従って、添加材量は混合体中20vol%以下、さらには15vol%以下とすることが好ましい。
 また、添加材を用いて得られた押出し材では、何れもAlCaの生成が確認され、電子顕微鏡観察において微細化されたMg合金の結晶粒界に分散微粒子の存在が認められた。
 代表例として、図5に試験例1-4で得られた押出し材の金属組織のSEM写真を示す。図5から、Mg合金の結晶粒は5μm以下に微細化されており、その粒界には2μm以下の微粒子が分散していることがわかる。
 さらに、オージェ電子分光分析法(AES:Auger Electron Spectroscopy)で調べた結果、AlCa粒子、ならびにCaO粒子が分散していることが確認された。代表例として、図6に試験例1-5で得られた押出し材のAES分析結果(10000倍)を示す。
試験例2 Al Caの生成
 図7はCaOを添加材として用いた試験例1-4における(a)圧粉体(ビレット)、及び(b)押出し材(丸棒)のX線回折結果である。図7では、CaOのピークはビレット、押出し材の何れにおいても認められたものの、AlCaのピークはビレットでは確認されず、押出し材でのみ確認された。
 図8は、試験例1-4において微細化処理回数を0回(単純圧縮のみ)とした場合のX線回折結果である。図8では、(a)ビレット、(b)押出し材の何れにおいてもCaOのピークは認められたものの、AlCaのピークは全く確認されなかった。
 また、図7~8の何れにおいても(a)ビレットの状態ではMgOのピークが認められず、(b)押出し材でのみMgOのピークが認められた。
 このようなことから、AlCaの生成が引張強さ、特に高温での引張強さに寄与しており、AlCa生成のためには、微細化処理によりAl含有マグネシウム合金と添加材とを十分に微細化して活性化しておくことが重要であり、このような混合体が塑性加工で熱化学的に反応してAlCaが生成するのではないかと推察された。
 また、図7~8のように、(a)ビレットではβ相(Al12Mg17)のピークが認められたが、(b)押出し材ではこのピークは消失した。β相は高温強度特性の向上を阻害することが報告されており(特開2007-197796号公報)、このようなβ相の消失も本発明のマグネシウム基複合材料の高温強度特性に寄与していることが考えられる。
 AlCaの生成についてさらに検討するために、微細化処理を行って得られたCaO含有ビレット及び微細化処理せずに単純圧縮のみで得られたCaO含有ビレットに、Ar雰囲気下で加熱処理のみを行って、AlCa生成を調べた。加熱処理は、ビレットを、マッフル炉中、Ar雰囲気下で所定温度となるまで昇温した後、所定時間保持することにより行った。
 代表例として、AZ61+10vol%CaO添加の混合体から、微細化処理回数が(a)400回、(b)200回、(c)28回、又は(d)0回で得られたビレットを、Ar雰囲気下、500℃で1時間保持することにより加熱処理した後のX線回折結果を図9に示す。
 図9からわかるように、微細化処理を行わずに単純圧縮のみを行って得られたCaO含有ビレットでは、加熱処理してもAlCaの生成は認められなかったが、微細化処理して得られたCaO含有ビレットでは、加熱処理のみでもAlCaの生成が認められた。
 よって、固相反応でのAlCa生成には、Al含有マグネシウム合金と添加材とを微細化処理し、これを融点未満で加熱すること(即ち、熱化学反応させること)が必要であると考えられる。
 本発明者らの検討によれば、加熱温度は、原料の種類などにもよるが、350℃以上、さらには400℃以上が好適である。加熱温度が低すぎると現実的な加熱時間内にAlCaが十分生成されないことがある。
 代表例として、図10に、AZ61+10vol%CaO添加で得られたビレット(微細化処理回数200回)を、Ar雰囲気下、400℃~625℃で4時間保持することにより熱化学反応処理した後のX線回折図を示す。図10から、400℃でAlCaの生成がわずかに認められ、温度の上昇とともにAlCaピークが大きくなる傾向があることがわかる。
 一方、加熱温度が高すぎてもAlCaピークがかえって小さくなってしまうことがある。図10においても、550℃でのAlCaのピークはわずかであった。その理由は明らかではないが、他の反応が生じている可能性が考えられる。また、過剰な加熱はMg合金結晶粒の粗大化による常温強度の低下を引き起こしやすい。従って、原料の種類などにもよるが、加熱温度は550℃以下、さらには500℃以下が好適である。
 図11は、AZ61+CaO添加で得られたビレット(微細化処理回数200回)を、Ar雰囲気下、420~500℃で4時間保持することにより熱化学反応処理した後のX線回折図から求めたAlCa(38.55°)/CaO(53.9°)ピーク強度比と加熱温度との関係を示している。AlCa/CaOピーク比は、CaOからAlCaへの変換率として評価できる。
 図11からわかるように、全体的には加熱温度が高くなるとCaOからAlCaへの変換率も高くなる傾向が認められる。
 また、CaO添加量が2.5vol%と少ない場合にはAlCaへの変換率は高温でも極わずかであった。AZ61中のAlを全てAlCaに変換するために必要な理論的Ca量は、CaO量に換算すると約3.1vol%であることから、これは、CaO量が少ないためと考えられる。また、CaO量が多い方が低温でもAlCaが生成しやすくなる傾向が認められる。
 よって、AlCaへの変換(反応性)の点から、Alに対してCa換算で0.5倍モル当量以上のCaOを用いることが好ましく、さらには0.8倍モル当量以上、特に1倍モル当量以上が好ましい。
試験例3 分散粒子と引張強さ
 図12は、AM60B+CaOを出発原料として得られた押出し材であり、
(a)はCaO添加量に対するAlCa生成量、
(b)はCaO添加量に対する常温及び250℃での引張強さ、
(c)はAlCa生成量に対する常温及び250℃引張強さ
の関係をそれぞれ示している。
 なお、AlCa生成量としては、XRDにおけるAlCa(31.3°)/Mg(36.6°)のピーク強度比を用いた。
 図12(a)~(c)から、添加材量の増大に伴って押出し材中のAlCaの生成量が増大し、それに伴って常温ならびに250℃引張強さが向上する傾向があることがわかる。
 また、下記表5は、AZ91+CaOを出発原料として得られた押出し材である。試験例3-2と試験例3-3は何れもAlCa生成量[AlCa(31.3°)/Mg(36.6°)ピーク強度比]はほぼ同等であるが、試験例3-3のCaO残存量[CaO(37.3°)/Mg(36.6°)ピーク強度比]は試験例3-2に比して約2倍である。そして、試験例3-3では、引張強さが試験例3-2に比して高くなっていることから、CaO粒子の存在も引張強さに寄与するものと考えられる。
Figure JPOXMLDOC01-appb-T000006
試験例4 圧粉体の焼結
 微細化処理(処理回数200回)して得られた圧粉体(ビレット)を、焼結温度480~550℃でSPS(放電プラズマ焼結)処理し、得られたSPS材についてX線回折を行った。SPS条件は次の通り。
(SPS条件)
装置:住友石炭鉱業株式会社製DR.SINTER SPS-1030S
(1)圧粉体ビレット(直径35mm×80mm)をカーボン製コンテナ(内径36mm×高さ100mm)に詰め、上下より蓋をする。
(2)SPS装置にコンテナを配置し、真空に引いた後、10MPaに加圧保持しながら、所定温度に達するまで加熱する。
(3)30MPaで加圧保持しながら、1時間加熱保持する。
(4)炉冷してコンテナが150℃以下になったら真空を破り、コンテナをSPS装置から取出して空冷後、コンテナからSPS材を取り出す。
 表6に、AZ61B+CaOを出発原料として得られたSPS材のX線回折結果を示す。SPS処理前の圧粉体ではAlCaの生成は認められなかったのに対し、表6のように、圧粉体を焼結することによりAlCaが生成した。また、SPS材のSEM観察ではAlCaの微細な分散粒子が確認され、試験例4-2ではCaOの微細分散粒子も確認された。
 また、SPS材をさらに押出し成形して得られた押出し材(押出し温度450℃、押出し径7mm、押出し比28)について引張強さを測定したところ、20℃、250℃の何れにおいても高い引張強さが得られた。
Figure JPOXMLDOC01-appb-T000007
 以上のように、本発明のマグネシウム基複合材料においては、結晶粒が微細化されたAl含有マグネシウム合金に、固相反応で生じたAlCa、さらには添加材であるCaOが非常に微細に分散され、これらの分散粒子により強度特性や耐熱性などが顕著に改善される。このようなマグネシウム基複合材料は、典型的には、Al含有マグネシウム合金と酸化カルシウムとの混合体を固相状態において微細化し、この微細化された混合体を融点未満の温度で熱化学反応すること、更に望ましくは熱化学反応中又は熱化学反応後に塑性加工させることにより得ることができる。また、本発明によればβ相を含まないマグネシウム基複合材料を得ることができる。

Claims (24)

  1.  アルミニウムを含有するマグネシウム合金と添加材との固相反応により得られたマグネシウム基複合材料であって、
     前記添加材は酸化カルシウムであり、
     前記固相反応により生成したAlCaを含むことを特徴とするAlCa含有マグネシウム基複合材料。
  2.  請求項1記載の複合材料において、アルミニウムを含有するマグネシウム合金が、合金化された及び/又は混合されたアルミニウムを含有するマグネシウム合金であることを特徴とするAlCa含有マグネシウム基複合材料。
  3.  請求項1又は2記載の複合材料において、マグネシウム基複合材料中にAlCaとともにCaOが分散していることを特徴とするAlCa含有マグネシウム基複合材料。
  4.  請求項1~3の何れかに記載の複合材料において、
     アルミニウムを含有するマグネシウム合金と添加材との混合体を固相状態で機械的に微細化し、
     この微細化混合体又はその圧粉体を融点未満の温度で熱化学反応させることにより得られたことを特徴とするAlCa含有マグネシウム基複合材料。
  5.  請求項4記載の複合材料において、前記微細化混合体又はその圧粉体を350~550℃に加熱して熱化学反応させることによりAlCaが生成したことを特徴とするAlCa含有マグネシウム基複合材料。
  6.  請求項4又は5記載の複合材料において、熱化学反応が焼結であることを特徴とするAlCa含有マグネシウム基複合材料。
  7.  請求項4~6の何れかに記載の複合材料において、熱化学反応後に塑性加工することを特徴とするAlCa含有マグネシウム基複合材料。
  8.  請求項4~6の何れかに記載の複合材料において、熱化学反応中に塑性加工することを特徴とするAlCa含有マグネシウム基複合材料。
  9.  請求項8記載の複合材料において、
     アルミニウムを含有するマグネシウム合金と添加材との混合体を固相状態で機械的に微細化し、
     この微細化混合体又はその圧粉体を融点未満の温度で塑性加工することにより得られたことを特徴とするAlCa含有マグネシウム基複合材料。
  10.  請求項9記載の複合材料において、塑性加工が押出しであることを特徴とするAlCa含有マグネシウム基複合材料。
  11.  請求項10記載の複合材料において、押出し温度が350~550℃であることを特徴とするAlCa含有マグネシウム基複合材料。
  12.  請求項4~11の何れかに記載の複合材料において、微細化処理されるアルミニウム含有マグネシウム合金と添加材との混合体中、添加材が1~20vol%となるように用いることを特徴とするAlCa含有マグネシウム基複合材料。
  13.  請求項4~12の何れかに記載の複合材料において、微細化処理されるアルミニウム含有マグネシウム合金と添加材との混合体中、Ca/Alのモル比が0.5以上となるように添加材を用いることを特徴とするAlCa含有マグネシウム基複合材料。
  14.  請求項1~13の何れかに記載の複合材料において、AlCa分散粒子の最大粒径が5μm以下であり、CaO分散粒子が存在する場合にはCaO分散粒子の最大粒径が5μm以下であることを特徴とするAlCa含有マグネシウム基複合材料。
  15.  請求項1~14の何れかに記載の複合材料において、マグネシウム合金の最大結晶粒が20μm以下であることを特徴とするAlCa含有マグネシウム基複合材料。
  16.  請求項1~15の何れかに記載の複合材料において、Al12Mg17を含まないことを特徴とするAlCa含有マグネシウム基複合材料。
  17.  請求項1~16の何れかに記載の複合材料において、20℃における引張強さが400MPa以上で、且つ250℃における引張強さが100MPa以上であることを特徴とするAlCa含有マグネシウム基複合材料。
  18.  アルミニウムを含有するマグネシウム合金と添加材との混合体を固相状態で機械的に微細化した微細化混合体又はその圧粉体であって、
     前記添加材は酸化カルシウムであり、
     融点未満での加熱によりAlCaを生成することを特徴とする熱化学反応用又は塑性加工用材料。
  19.  請求項18記載の材料において、アルミニウムを含有するマグネシウム合金が、合金化された及び/又は混合されたアルミニウムを含有するマグネシウム合金であることを特徴とする熱化学反応用又は塑性加工用材料。
  20.  請求項18又は19記載の材料において、加熱温度が350~550℃であることを特徴とする熱化学反応用又は塑性加工用材料。
  21.  請求項18~20の何れかに記載の材料において、微細化処理されるアルミニウム含有マグネシウム合金と添加材との混合体中、添加材が1~20vol%となるように用いたことを特徴とする熱化学反応用又は塑性加工用材料。
  22.  請求項18~21の何れかに記載の材料において、微細化処理されるアルミニウム含有マグネシウム合金と添加材との混合体中、Ca/Alのモル比が0.5以上となるように添加材を用いたことを特徴とする熱化学反応用又は塑性加工用材料。
  23.  請求項18~22の何れかに記載の材料において、焼結用である熱化学反応用材料。
  24.  請求項18~22の何れかに記載の材料において、押出し用である塑性加工用材料。
PCT/JP2009/054677 2008-03-11 2009-03-11 Al2Ca含有マグネシウム基複合材料 WO2009113581A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09718607.6A EP2270243A4 (en) 2008-03-11 2009-03-11 AL2CA CONTAINING MAGNESIUM BASED COMPOSITE MATERIAL
CN2009801084745A CN101970703B (zh) 2008-03-11 2009-03-11 含Al2Ca的镁基复合材料
JP2009530047A JP4467641B2 (ja) 2008-03-11 2009-03-11 Al2Ca含有マグネシウム基複合材料
US12/921,608 US8506733B2 (en) 2008-03-11 2009-03-11 Al2Ca-containing magnesium-based composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008061343 2008-03-11
JP2008-061343 2008-03-11
JP2008186964 2008-07-18
JP2008-186964 2008-07-18

Publications (1)

Publication Number Publication Date
WO2009113581A1 true WO2009113581A1 (ja) 2009-09-17

Family

ID=41065242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054677 WO2009113581A1 (ja) 2008-03-11 2009-03-11 Al2Ca含有マグネシウム基複合材料

Country Status (7)

Country Link
US (1) US8506733B2 (ja)
EP (1) EP2270243A4 (ja)
JP (1) JP4467641B2 (ja)
KR (1) KR20100124758A (ja)
CN (1) CN101970703B (ja)
TW (1) TW200948983A (ja)
WO (1) WO2009113581A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208279A (ja) * 2010-03-29 2011-10-20 Korea Inst Of Industrial Technology 溶湯流動性及び耐熱間亀裂性に優れたマグネシウム系合金及びその製造方法
JP2012122090A (ja) * 2010-12-07 2012-06-28 Toyota Central R&D Labs Inc 展伸材、展伸材用原料およびそれらの製造方法
CN105695780A (zh) * 2016-01-28 2016-06-22 大连理工大学 一种原位Al2X颗粒增强镁基复合材料的制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367894B1 (ko) 2011-01-06 2014-02-26 한국생산기술연구원 상온용 마그네슘 합금
RU2549040C2 (ru) * 2010-03-29 2015-04-20 Корейский Институт Промышленных Технологий Сплав на магниевой основе, подходящий для применения при высокой температуре, и способ его получения
KR101367892B1 (ko) 2010-12-27 2014-02-26 한국생산기술연구원 고온용 마그네슘 합금 및 그 제조 방법
KR101145124B1 (ko) * 2010-03-29 2012-05-14 한국생산기술연구원 마그네슘계 금속의 용해 방법
KR101402897B1 (ko) 2011-05-20 2014-06-02 한국생산기술연구원 합금제조방법 및 이에 의해 제조된 합금
US11066730B2 (en) * 2011-06-23 2021-07-20 Industry-Academic Cooperation Foundation, Yonsei University Alloy material in which are dispersed oxygen atoms and a metal element of oxide-particles, and production method for same
JP6432344B2 (ja) * 2012-04-19 2018-12-05 国立大学法人 熊本大学 マグネシウム合金及びその製造方法
KR101434263B1 (ko) * 2012-04-20 2014-08-28 한국생산기술연구원 알루미늄 합금 및 이의 제조 방법
CN103451459B (zh) * 2013-09-14 2016-01-06 天津六合镁制品有限公司 一种镁合金的制备方法
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
CN106460133B (zh) 2014-04-18 2019-06-18 特维斯股份有限公司 用于受控速率溶解工具的电化活性的原位形成的颗粒
CN104498754B (zh) * 2014-12-18 2016-08-24 太原理工大学 一种镁合金基中子屏蔽复合材料的制备方法
CN104532099A (zh) * 2015-01-09 2015-04-22 北京航空航天大学 一种轻质金属间化合物颗粒增强金属基复合材料
US20180087133A1 (en) * 2015-04-08 2018-03-29 Baoshan Iron & Steel Co., Ltd. Formable magnesium based wrought alloys
CN105622663A (zh) * 2016-02-29 2016-06-01 山东东岳有机硅材料有限公司 甲基苯基环硅氧烷的制备方法
CN112620371B (zh) * 2020-12-23 2022-05-24 太原理工大学 一种往复扭转挤压变形制备细晶镁合金的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199655A (ja) * 1984-10-18 1986-05-17 Toyota Motor Corp 鉱物繊維強化金属複合材料
JP2005248325A (ja) 2004-02-05 2005-09-15 Topy Ind Ltd マグネシウム複合材料の製造方法
JP2006002184A (ja) 2004-06-15 2006-01-05 Toudai Tlo Ltd 高強靭性マグネシウム基合金およびそれを用いた駆動系部品並びに高強靭性マグネシウム基合金素材の製造方法
JP2007051305A (ja) 2005-08-12 2007-03-01 Topy Ind Ltd マグネシウム基複合材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2213550A1 (en) * 1995-02-17 1996-08-22 Institute De La Technologie Du Magnesium, Inc. Creep resistant magnesium alloys for die casting
JP2007291447A (ja) * 2006-04-25 2007-11-08 Toyota Motor Corp マグネシウム合金製摺動部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199655A (ja) * 1984-10-18 1986-05-17 Toyota Motor Corp 鉱物繊維強化金属複合材料
JP2005248325A (ja) 2004-02-05 2005-09-15 Topy Ind Ltd マグネシウム複合材料の製造方法
JP2006002184A (ja) 2004-06-15 2006-01-05 Toudai Tlo Ltd 高強靭性マグネシウム基合金およびそれを用いた駆動系部品並びに高強靭性マグネシウム基合金素材の製造方法
JP2007051305A (ja) 2005-08-12 2007-03-01 Topy Ind Ltd マグネシウム基複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270243A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208279A (ja) * 2010-03-29 2011-10-20 Korea Inst Of Industrial Technology 溶湯流動性及び耐熱間亀裂性に優れたマグネシウム系合金及びその製造方法
JP2012122090A (ja) * 2010-12-07 2012-06-28 Toyota Central R&D Labs Inc 展伸材、展伸材用原料およびそれらの製造方法
CN105695780A (zh) * 2016-01-28 2016-06-22 大连理工大学 一种原位Al2X颗粒增强镁基复合材料的制备方法

Also Published As

Publication number Publication date
US20110033333A1 (en) 2011-02-10
KR20100124758A (ko) 2010-11-29
TW200948983A (en) 2009-12-01
JPWO2009113581A1 (ja) 2011-07-21
EP2270243A4 (en) 2013-09-11
EP2270243A1 (en) 2011-01-05
CN101970703B (zh) 2012-11-28
JP4467641B2 (ja) 2010-05-26
CN101970703A (zh) 2011-02-09
US8506733B2 (en) 2013-08-13

Similar Documents

Publication Publication Date Title
JP4467641B2 (ja) Al2Ca含有マグネシウム基複合材料
JP3905115B2 (ja) 高強度高靭性マグネシウム合金及びその製造方法
CN101027420B (zh) 高强度高韧性金属及其制造方法
Mohammadnejad et al. Microstructure and mechanical properties of spark plasma sintered nanocrystalline Ni3Al-xB (0.0< x< 1.5 at%) alloy
Lu et al. Structure and properties of Mg–Al–Ti–B alloys synthesized via mechanical alloying
EP3104995A1 (en) Method of making a metal matrix composite material
Chen et al. In-situ dispersed La oxides of Al6061 composites by mechanical alloying
XIAO et al. Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering
CN100432267C (zh) 一种高强镁基复合材料及其制备方法
JP2009242943A (ja) マグネシウム基複合材料
JP4451913B2 (ja) Ti粒子分散マグネシウム基複合材料の製造方法
CN1886528B (zh) 高强度高韧性镁合金及其制造方法
JP4686690B2 (ja) マグネシウム基複合粉末、マグネシウム基合金素材およびそれらの製造方法
JP2008195978A (ja) マグネシウム基複合材料
XU et al. Microstructure and mechanical properties of Ti–43Al–9V alloy fabricated by spark plasma sintering
Morsi et al. Simultaneous combustion synthesis (thermal explosion mode) and extrusion of nickel aluminides
JP2013001987A (ja) マグネシウム基複合材料
Neves et al. Mechanically activated reactive forging synthesis (MARFOS) of NiTi
JPWO2008123258A1 (ja) 二元系アルミニウム合金粉末焼結材とその製造方法
Enami et al. Al 2 Ca-containing magnesium-based composite material
JP5201570B2 (ja) 高強度難燃性マグネシウム合金
Maziarz et al. Structure and mechanical properties of ball milled TIAL-Cr intermetallics consolidated by hot pressing and pulse plasma sintering
JP2004225080A (ja) マグネシウムシリサイドを含むマグネシウム合金およびその製造方法ならびにマグネシウムシリサイドの生成方法
Sugamata et al. Properties of mechanically alloyed P/M composites of Al–Mg2Si–oxide systems
JP2006176802A (ja) 水素化及び脱水素化による固相反応を利用した高強度マグネシウム合金の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108474.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009530047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921608

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107020280

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009718607

Country of ref document: EP