WO2009113183A1 - マルチチッププロ-バ - Google Patents

マルチチッププロ-バ Download PDF

Info

Publication number
WO2009113183A1
WO2009113183A1 PCT/JP2008/054840 JP2008054840W WO2009113183A1 WO 2009113183 A1 WO2009113183 A1 WO 2009113183A1 JP 2008054840 W JP2008054840 W JP 2008054840W WO 2009113183 A1 WO2009113183 A1 WO 2009113183A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
chip
chips
contact
electrodes
Prior art date
Application number
PCT/JP2008/054840
Other languages
English (en)
French (fr)
Inventor
八木慎一郎
田子一弘
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to PCT/JP2008/054840 priority Critical patent/WO2009113183A1/ja
Publication of WO2009113183A1 publication Critical patent/WO2009113183A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature

Definitions

  • the present invention relates to a plurality of devices that need to be inspected after being formed on a wafer and separated by a dicer scriber or the like.
  • the present invention relates to a multi-chip prober that performs inspection of a very large number of chips formed on a single wafer with a small chip such as a transistor or a diode. To do.
  • various processes are performed on a thin disc-shaped wafer to form multiple devices (chips) on the wafer, and then the electrical characteristics of each device are inspected, and then separated by a dicer. After that, it is fixed to the lead frame and assembled.
  • the above electrical characteristics are inspected by a wafer test system consisting of a prober and a tester.
  • the prober holds the wafer on the wafer mounting table and brings the probe into contact with the electrode of each device.
  • supply power and various test signals from the terminals connected to the probe and analyze the signals output to the electrode of the device to check whether it operates normally.
  • Devices include not only highly integrated devices such as MPUs and large-capacity memories, but also simple devices such as transistors and diodes.
  • a device with such a simple configuration is a small device of, for example, 0.2 to 0.5 mm square, but it has a high breakdown voltage and high output power device. It is often a chair, and accurate inspection cannot be performed in the state of being formed on the wafer, and inspection is performed in a state where the wafer is cut into individual chips by a dicer scriber or the like.
  • the multi-chip prober of the present invention is not limited to an LED, and can be used to inspect a chip that needs to be inspected separately on individual chips. is there.
  • the LED chips are, for example, small chips of 0.3 mm square, and tens of thousands are formed on a wafer having a diameter of about 50 mm.
  • FIG. 2 is a diagram showing an example of how the chips 14 are arranged after the separation. Each chip 14 is displaced in position and direction. Reference number 15 indicates the electrode of the chip. When inspecting, the tip 14 is operated by energizing the needle 15 in contact with the electrode 15.
  • the chip selector has a problem that it takes a long time to inspect one chip because each chip is held on the inspection stage one by one and the dollar is brought into contact with the electrode of the chip.
  • the time required for inspection the time required to operate the tip and detect its electrical and optical properties is relatively short, and the time required to set the tip and bring the needle into contact with the tip electrode Accounts for a large percentage.
  • An object of the present invention is to solve such a problem and to realize a multi-chip prober capable of efficiently inspecting chips that need to be inspected separately.
  • the multi-chip provider of the present invention makes it possible to adjust the positions of a plurality of needles that are simultaneously in contact with the electrodes of a plurality of chips, so that the positions of the tips and electrodes are separated. Even if the position is shifted, each needle position adjustment mechanism adjusts the position of the By adjusting the position of the needle, the dollar is accurately in contact with the electrodes of multiple tips.
  • the multi-chip prober of the present invention includes a stage that holds a plurality of separated chips, a needle head that has a plurality of needles that simultaneously contact two or more predetermined numbers of electrodes of the chip, and the stage.
  • An electrode position detecting mechanism for detecting the positions of the held electrodes of the plurality of chips, and a plurality of needle position adjusting mechanisms for adjusting the positions of the needles, and the detection by the plurality of needle position adjusting mechanisms.
  • the positions of the plurality of needles are adjusted so as to correspond to the positions of the electrodes of the plurality of chips, and the plurality of needles are simultaneously brought into contact with the electrodes of the plurality of chips. .
  • the hardware of the alignment mechanism provided in the conventional prober can be used as it is.
  • the chip and electrode are recognized by the image processing board, the position of the electrode, and if necessary, two electrodes (Virtual)
  • the software that detects the slope of line 0 is provided.
  • Each needle position adjustment mechanism moves the corresponding needle in at least two axes in a plane parallel to the stage surface.
  • the displacement of the electrode position of the tip perpendicular to the stage surface is small and the needle is elastic.If the displacement of the electrode position in this direction is small, the needle can be brought into contact correctly.
  • each needle position adjustment mechanism is configured to move the corresponding needle in a direction perpendicular to the stage surface when an accurate contact pressure is required. This makes it possible to match the positional relationship of all the needles with the positional relationship of the electrodes of the separated tips.
  • each chip A plurality of tip-by-chip position adjustment mechanisms that move together a plurality of needle pairs that are in contact with a plurality of electrodes together.
  • a rotation mechanism that rotates in a plane parallel to the axis, and a parallel movement mechanism that moves a corresponding pair of needles. This makes it possible to match the positions of all the needles to the positions of the electrodes of the separated chips, and to move compared to the above-mentioned configuration in which a needle position adjusting mechanism is provided for each needle.
  • One axis can be reduced.
  • the electrode moves to the position where it contacts the needle, and each needle is moved to the position of the corresponding electrode. It is possible to move them together, but the three-dimensional moving mechanism moves so that the position of one reference electrode and the corresponding reference needle match, and the reference electrode and the other electrodes other than the reference needle need to be moved.
  • the position of the dollar should be adjusted by each needle position adjustment mechanism. This eliminates the need for a needle position adjusting mechanism for the reference needle.
  • a three-dimensional moving mechanism is provided in the above-described configuration in which the position adjustment mechanism for each chip is provided. It is also possible to move each needle according to the positional deviation of the corresponding electrode, but the three-dimensional moving mechanism moves so that the position of one reference electrode and the corresponding reference needle matches.
  • the positional relationship between the electrode of the other chip other than the chip having the reference electrode and the needle is adjusted by the position adjusting mechanism for each chip.
  • a chip having a reference electrode Since the positions of the electrodes other than the reference electrode of the tip and the corresponding needle match if the rotational components are combined by the rotation mechanism, the tip-by-tip position adjustment mechanism of the tip having the reference electrode is provided with a parallel movement mechanism. There is no need.
  • the plurality of chips may be held on the stage while being affixed to an adhesive tape affixed to the frame.
  • the stage is held so that the surface of the adhesive tape is in contact. Since the position of the held adhesive tape and chip does not change, the electrode position detection mechanism detects the positions of the electrodes of all the chips attached to the adhesive tape.
  • the needle head has a plurality of needles that simultaneously contact electrodes of a predetermined number, for example, four chips, of a plurality of chips attached to the adhesive tape. The larger the predetermined number, the better. However, it is necessary to increase the number of needles and the number of double dollar position adjusting mechanisms, and the size of the provider increases and the cost increases.
  • the predetermined number of chips with which a plurality of 21 dollars contact at the same time may be chips arranged adjacent to each other, or may be chips selected at predetermined chip intervals among the arranged chips. This makes it possible to widen the space for installing the $ 21 position adjustment mechanism. In this case, when the inspection of the tip contacted with the needle is completed, the inspection is performed by sequentially moving so that the needle contacts the tip in between.
  • the stage may hold a plurality of chips independently without using the frame and adhesive tape shown in FIGS. 1A to 1C.
  • the chip When the chip is a light-emitting element such as an LED, it is equipped with a photodetector that detects the light characteristics output by the light-emitting element. Output Are sequentially detected in a time-sharing manner.
  • a photodetector position adjustment memory for adjusting the position of the photodetector in accordance with the position of the chip to be operated may be provided.
  • the needle can be brought into contact with the electrodes of a plurality of tips at the same time, so that the inspection time can be shortened and the cost can be reduced.
  • FIG. 1A to FIG. 1C are examples of a supply form of chips to be inspected by the multichip prober of the present invention, and show a state in which separated chips are attached to an adhesive tape to which a frame is attached. is there.
  • FIG. 2 is a diagram for explaining an example of the arrangement state of separated chips.
  • FIG. 3 is a diagram showing a schematic configuration of the multichip prober according to the first embodiment of the present invention.
  • FIG. 4A and FIG. 4B are diagrams showing the configurations of the needle head and the light detection unit of the first embodiment.
  • FIG. 5A and FIG. 5B are diagrams showing examples of chip arrangements in which needles are simultaneously brought into contact with each other.
  • FIG. 6 is a flowchart showing the inspection operation in the first embodiment.
  • FIG. 7A and FIG. 7B are diagrams showing modified examples of the arrangement of the tips that simultaneously contact the needles.
  • FIG. 8A and FIG. 8B are diagrams showing modifications of the number of needles in contact with electrodes.
  • FIG. 9 is a diagram for explaining the principle of alignment in the second embodiment of the present invention.
  • FIG. 10 shows a schematic configuration of the probe moving mechanism in the second embodiment. It is a figure.
  • FIG. 11 is a view showing a modified example of the holding form on the stage of the separated chip.
  • FIG. 3 is a diagram showing an overall configuration of the multichip prober according to the first embodiment of the present invention.
  • the multi-chip prober according to the first embodiment includes a base 2 1, a moving base 2 2 provided on the base 2 1, and the moving base 2 2 on the X-axis direction (shown in the figure).
  • X moving table 2 3 that moves in the vertical direction
  • Y moving table 2 4 that moves in the Y-axis direction (horizontal direction in the figure) on the X moving table 2 3 and Z provided on the Y moving table 2 4
  • a 21 dollar head 3 1 and a light detection unit 40 Although not shown in the figure, it is configured by a computer and has a control unit that performs overall control.
  • the stage 26 can be rotated in the three axis directions of X, ⁇ , and ⁇ axis and in a plane perpendicular to the ⁇ axis.
  • an object to be inspected 20 composed of frame 1 1, adhesive tape 1 2, and wafer 1 3 separated chips 14 shown in FIGS. 1A to 1C is mounted. Placed and fixed.
  • the stage 26 is moved under the alignment microscope 29, the entire chip is scanned, and the electrode position is detected and stored by image processing.
  • the configuration excluding the needle head 3 1 and the light detection unit 40 is the same as that of a conventional wafer prober, and further description is omitted.
  • Figs. 4 and 4 are diagrams showing the configuration of the needle head 3 1 and the light detection unit 40
  • Fig. 4 is a side view
  • Fig. 4 is a diagram. It is a top view.
  • the light detection unit 40 is arranged immediately above the chip to be inspected, and detects the amount of light output from the chip (in this case, the LED) 41 and the support 4 2 of the optical power meter 4 1.
  • an optical power meter moving mechanism 4 3 that moves the support part 4 2, an optical fiber 4 4 that extends in the vicinity of the tip to be inspected, and an optical fiber 4 4 that holds the optical fiber 4 4 and enters the optical fiber 4 4.
  • the light detection unit 40 has a shape in which a portion that accommodates the fiber moving mechanism 47 protrudes from a circular portion.
  • the optical power meter moving mechanism 4 3 and the fiber moving mechanism 47 are preferably moving mechanisms using elements that can be operated at high speed, such as piezo elements, that can be realized by known moving mechanisms. However, it is possible to use a moving mechanism that combines a drive screw and a module. As will be described later, the optical power meter moving mechanism 4 3 and the fiber moving mechanism 4 7 need not be provided when they do not need to move when detecting different chips.
  • the needle head 31 has a shape that is arranged around the light detection unit 40, and includes one needle unit 36 A and seven needle position adjusting mechanisms 36 B to 36 H.
  • Needle unit 3 6 A is a unit that fixes reference needle 3 3 A to needle head 3 1.
  • Needle adjustment mechanism 3 6 E consists of needle 3 3 E, needle holding unit 3 4 E that holds needle 3 3 E, and moving unit 3 5 E to which needle holding unit 3 4 E is attached.
  • the moving mechanism 3 6 E can move 21 dollars 3 3 E in two axial directions parallel to the mounting surface of the stage 26, for example, in the X-axis direction and the Y-axis direction. is there.
  • the needle position adjustment mechanism can also be realized by a known movement mechanism, and is preferably a movement mechanism that uses an element capable of high-speed operation such as a piezo element. However, a movement mechanism that combines a drive screw and a motor. May be used.
  • the other 21 dollar position adjusting mechanisms 3 6 B to 3 6 D and 3 6 F to 3 6 H have the same configuration. As shown in the figure, such seven needle position adjusting mechanisms 36B to 36P are arranged radially around the light detection unit 40. Since the needle unit 36 A does not have a position adjustment mechanism, the space for the arrangement may be small. For example, the needle unit 36 A is disposed between the protrusion of the light detection unit 40 and the needle position adjustment mechanism 36 B. The The displacement of the electrode position of the tip in the direction perpendicular to the stage 26 mounting surface is small, and the needle is elastic, and if the displacement of the electrode position in this direction is small, it can be contacted correctly. The adjustment mechanism does not move the needle in the direction perpendicular to the stage surface, but when precise contact pressure is required, each needle position adjustment mechanism moves the corresponding needle in the direction perpendicular to the stage surface. May be configured.
  • FIG. 5A and 5B show the arrangement of chips 14 that are in contact with each other at the same time.
  • Figure 5A shows the electrodes of four chips 1 4 arranged adjacent to one row 1 5
  • Fig. 5B shows an example in which the needle is simultaneously in contact with the electrodes 15 of four chips 14 arranged adjacent to each other in two rows and two columns.
  • the reference symbol R indicates the reference electrode with which the reference needle 33 A shown in FIG. 4B contacts.
  • the set of tips 14 that simultaneously contact the needle is referred to as a unit of measurement.
  • FIG. 6 is a flowchart showing the inspection operation of the first embodiment.
  • step 101 a frame in which the divided chips as shown in FIGS. 1A to 1C are affixed to the tape is transported onto stage 26 and held. It is assumed that the tip position does not change in this state.
  • step 102 the electrode positions of all the chips are detected and stored by the alignment mechanism including the alignment microscope 29 and the like.
  • step 100 the positional relationship between the reference electrode and the other electrodes is calculated for each measurement unit. This positional relationship is calculated as the deviation from the time when there is no electrode deviation. This process is performed by a control unit (not shown).
  • Step 104 the needle position adjusting mechanisms 3 6 B to 3 6 H move the positions of needles other than the reference needle of the measurement unit based on the positional relationship calculated in Step 10 3, respectively.
  • the eight needles have a positional relationship corresponding to the positions of the eight electrodes of the four tips.
  • step 105 stage 26 is moved so that the reference electrode contacts the reference needle.
  • the stage is raised (moved in the Z-axis direction) and moved so that the electrode comes into contact with the dollar.
  • Step 10 06 the positions of the optical power meter 4 1 and the fiber 4 4 are moved according to the position of the chip to be inspected among the four chips in the measurement unit. If the difference in the chip position within the measurement unit is small and does not affect the detection values of the optical power meter 41 and fiber 44, this step 106 is not necessary. There is no need to provide moving mechanism 4 3 and fiber moving mechanism 4 7.
  • Step 10 07 an electrical signal is applied from the needle to Inspection to detect property and light characteristics.
  • step 10 8 it is determined whether inspection of all chips in the measurement unit has been completed. If not completed, the process returns to step 1 0 6. Step 1 0 until inspection of all chips in the measurement unit is completed. Repeat steps 6 through 1 0 8. Therefore, when it is not necessary to perform step 10 6, all chips in the measurement unit are operated sequentially in a time-sharing manner. In step 1 0 9, whether all chips on the stage have been inspected. If not completed, return to step 1 0 4 and repeat steps 1 0 4 to 1 0 9 until all chips on the stage have been inspected.
  • the stage is moved so that the reference electrode contacts the reference probe without providing the probe moving mechanism of the reference probe corresponding to the reference electrode.
  • the reference electrode is brought into contact with the reference probe by moving the stage with a 3D moving mechanism consisting of 2 3 and Y moving table 2 4 and Z axis movement and ⁇ rotation mechanism 25.
  • the reference probe is also provided with a probe moving mechanism so that it can move, and the stage movement by the three-dimensional moving mechanism moves to the standard position when there is no position displacement of the tip, and the position displacement of each electrode from the standard position
  • the movement amount of each probe moving mechanism may be controlled according to the above.
  • FIGS. 7A and 7B Selected chips 1 to 4 at a predetermined chip interval
  • the needle may be brought into contact with the electrodes of the selected tip 14 S at the same time.
  • FIG. 7A corresponds to FIG. 5A and shows an example in which the tip 14 S that contacts the needles at a pitch of one of four tips 14 arranged in one row is selected.
  • Fig. 7B corresponds to Fig. 5B, and chips that contact 21 dollars with one pitch in two in each direction from chips 14 arranged in 4 rows and 4 columns 1 4 S An example of selecting is shown. As shown in FIGS.
  • Fig. 8A there is a case where one dollar 3 3 that contacts the electrode of chip 1 4 is one, but when a large current needs to flow, as shown in Fig. 8B A plurality of 21 dollars 33 may be in contact with the electrode 15.
  • a needle moving mechanism is provided for each needle other than the reference needle so that the position of each 21 dollars can be moved independently.
  • the positional relationship (interval) between the two electrodes of each chip is fixed because it is determined based on the highly accurate pattern exposed by the exposure device.
  • this characteristic is used to simplify the configuration of the needle moving mechanism.
  • FIG. 9 is a diagram for explaining the principle of alignment of the multichip prober according to the second embodiment of the present invention. It is assumed that the tip 14 is not displaced from the position of the tip 14 ′ with a rotation 0 as shown in the figure. Correspondingly, it is assumed that the position of the electrode 1.5 is also displaced, and that one electrode is displaced by the vector P from the center position C0 when there is no displacement to the center position C1. Tip 1 4 ′ with no misalignment is rotated 0 times and When the heart position is shifted by vector P, it overlaps with chip 14. In other words, while maintaining the mutual position of the two needles that are in contact with the two electrodes 15, if they rotate 0 times and translate by the vector P, the two needles are brought into contact with the displaced electrodes. be able to.
  • the needle can be brought into contact with the two electrodes that are displaced by a total of three axes of rotation ⁇ and two axes of translation.
  • two axes must be moved for each of the two electrodes, and a total of four axes must be moved.
  • the movement of Fig. 9 can reduce the movement of one axis.
  • FIG. 10 is a diagram illustrating a schematic configuration of the position adjustment mechanism for each chip that realizes the movement of FIG.
  • the tip-by-tip position adjustment mechanism is designed so that the two needles 3 3 A and 3 3 B have a rotary table so that the distance between the tips corresponds to the distance between the two electrodes in one tip.
  • the turntable 5 1 is supported so as to be rotatable with respect to the X-axis moving table 5 2.
  • the X-axis moving table 52 is supported so as to be movable in the X-axis direction with respect to the Y-axis moving table 53.
  • the Y-axis moving table 53 is supported so as to be movable in the Y-axis direction with respect to the base table 54.
  • the position adjustment mechanism for each chip shown in FIG. 10 can be realized by a known movement mechanism, and is preferably a movement mechanism using an element capable of high-speed operation such as a piezo element.
  • the separated chip was held on the stage with the adhesive tape attached to the frame, but as shown in Fig. 11.
  • Multiple air inlets may be provided so that multiple chips 14 can be fixed simultaneously.
  • a needle position moving mechanism is provided to move the position of the needle that contacts the electrodes of the multiple tips 14. 1 After adjusting the position of the electrode of 4, contact the needle with the electrode.
  • Fig. 11 When holding chips as shown in Fig. 1, a transfer mechanism that holds multiple chips to be held on the stage at the same time by vacuum suction, etc., and multiple chips that have been inspected are simultaneously transferred to the outside of the stage. Be provided. This allows efficient inspection of the chip.
  • the embodiments of the present invention have been described above, it is needless to say that the present invention is not limited to the described embodiments, and various modifications are possible.
  • the inspection of the LED has been described as an example.
  • the present invention can be applied to the inspection of other devices such as a resistor, a transistor, and an IC.
  • the eight chips of four chips are used.
  • the example in which the probe is simultaneously brought into contact with the electrode has been described, the number is not particularly limited as long as it is two or more chips.
  • the present invention can be applied to inspection of any device as long as it is necessary to inspect it in a state separated from a wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

分離した状態で検査を行うチップを高効率で検査できるマルチチッププローバが開示されており、分離された複数チップ14を保持するステージ26と、2個以上の所定数のチップの電極15に同時に接触する複数のニードル33,33A,33Eを有するニードルヘッド31と、ステージに保持された複数チップの電極の位置を検出する電極位置検出機構29と、各ニードルの位置を調整する複数のニードル位置調整機構36B-36Hと、を備え、複数のニードル位置調整機構により、検出した複数チップの電極の位置に対応するように、複数のニードルの位置を調整して、複数のニードルを複数チップの電極に同時に接触する。

Description

マルチチッププロ一バ
技術分野
本発明は、 ウェハ上に形成された後ダイサーゃスクライバーなど によって分離された状態で検査を行う必要のある複数のデバイス ( 明
チップ) の電気的な検查を行うマルチチッププローバに関し、 特に トランジスタやダイオー ドなどの小型のチップで 1枚のウェハに非 常に多数形成されるチップの検査を行書うマルチチッププロ一バに関 する。
背景技術
半導体製造工程などでは、 薄い円板状のウェハに各種の処理を施 してウェハに複数のデバイス (チップ) を形成した後、 各デバイス の電気的特性が検査され、 その後ダイサ一で切り離なされた後、 リ — ドフレームなどに固定されて組み立てられる。 上記の電気的特性 の検査は、 プローバとテス夕で構成されるウェハテス トシステムに より行われる。 プローバは、 ウェハをウェハ載置台に保持し、 各デ バイスの電極にプローブを接触させる。 テス夕は、 プローブに接続 される端子から、 電源および各種の試験信号を供給し、 デバイスの 電極に出力される信号をテス夕で解析して正常に動作するかを確認 する。
デバイスには M P Uゃ大容量メモリなどの高集積度のデバイスだ けでなく、 トランジスタやダイオー ドなどの簡単な構成のデバイス もある。 このような簡単な構成のデバイスは、 例えば 0 . 2〜 0 . 5 m m角の小型のデバイスであるが、 高耐圧 · 高出力のパワーデバ イスであることが多く、 ウェハに形成された状態では正確な検査を 行うことができず、 ダイサーゃスクライバーなどによってウェハを 切断して、 個別のチップに分離した状態で検査が行われる。
L E Dも正確な検査を行うには、 個別のチップに分離した状態で 検査を行う必要があり、 チップの電極にニードルを接触させて動作 させ、 その時の電気特性と共に出力光の特性を検査する必要がある 。 以下、 L E Dを例として説明を行うが、 本発明のマルチチッププ ローバは、 L E Dに限定されるものではなく、 個別のチップに分離 した状態で検査を行う必要があるチップの検査に使用可能である。 上記のように L E Dチップは、 例えば 0 . 3 m m角の微小なチッ プであり、 直径が約 5 0 m mのウェハに数万個が形成される。 チッ プは非常に高精度のピッチでウェハに形成されているので、 分離す る前であれば、 通常のウェハプローバを使用して多数のチップの電 極に多数組のニードルを接触させ、 時分割で順次動作させることに より、 多数のチップを効率よく検査することが可能である。
ウェハからのチップの分離は、 図 1 Aから図 1 Cに示すように、 穴を有する平板状のフレーム 1 1の裏面に貼り付けた粘着テープ 1 2にウェハ 1 3 を貼り付け、 ダイサ一によりウェハ 1 3に溝を形成 した後、 スクライバーなどによってウェハを切断して個別のチップ 1 4に分離することにより行われる。 各チップ 1 4は分離しても粘 着テープ 1 2 に貼り付けられているが、 その位置は変化して規則正 しく配列された状態でなくなる。
図 2は、 この分離後のチップ 1 4の配列具合の例を示す図である 。 各チップ 1 4は位置や方向がずれる。 参照番号 1 5は、 チップの 電極を示す。 検査を行う場合には、 ニードルを電極 1 5に接触させ て通電することによりチップ 1 4を動作させる。
図 2に示すように、 分離後のチップ 1 4は配列位置がずれ、 電極 1 5の位置もずれるため、 所定の位置に配置された多数のニードル を有する従来のプローバを使用したのでは、 ニードルを正確に電極 に接触させることができず、 多数のチップを時分割で順次動作させ て検査することができない。 そこで、 従来は、 抵抗、 トランジスタ 、 ダイオードなどを 1個ずつ検査して特性ごとに分離するチップセ レク夕と呼ばれる装置に、 光検出器を設けて検査を行っていた。 特許文献 1 : 特開平 1 1 一 1 8 3 5 2 3号公報
発明の開示
しかし、 チップセレクタはチップを 1個ずつ検査ステージに保持 して二一ドルをチップの電極に接触させるため、 チップ 1個の検査 に要する時間が長いという問題があった。 検査に要する時間のうち 、 チップを動作させてその電気特性及び光特性を検出するのに要す る時間は比較的短く、 チップをセッ 卜してニードルをチップの電極 に接触させるのに要する時間が大きな割合を占めている。
検査時間が長くなると、 その分生産性が低下してコス ト増の要因 となる。
検査時間を短縮するため、 抜き取り検査を行うことが考えられる が、 高品質の L E Dについては全数検査が必須であり、 検査に要す る時間に起因するコス トの低減が望まれている。
本発明は、 このような問題を解決することを目的とし、 分離して 検査を行う必要のあるチップを効率よく検査できるマルチチッププ ローバの実現を目的とする。
上記目的を実現するため、 本発明のマルチチッププロ一バは、 複 数のチップの電極に同時に接触する複数のニードルの位置をそれぞ れ調整可能にして、 たとえ分離されてチップ及び電極の位置がずれ ても、 ニードル位置調整機構によりずれた電極の位置に合わせて各 ニードルの位置を調整することにより、 複数のチップの電極に正確 に二一ドルが接触するようにする。
すなわち、 本発明のマルチチッププローバは、 分離された複数チ ップを保持するステージと、 2個以上の所定数の前記チップの電極 に同時に接触する複数のニードルを有するニードルヘッ ドと、 前記 ステージに保持された前記複数チップの電極の位置を検出する電極 位置検出機構と、 各ニードルの位置を調整する複数のニードル位置 調整機構と、 を備え、 前記複数のニードル位置調整機構により、 検 出した前記複数チップの電極の位置に対応するように、 前記複数の ニードルの位置を調整して、 前記複数のニードルを前記複数チップ の電極に同時に接触することを特徴とする。 .
電極位置検出機構は、 従来のプローバに設けられたァライメント 機構のハードウェアがそのまま使用可能であり、 画像処理ボードで チップ及び電極を認識して、 電極の位置、 更に必要に応じて 2個の 電極を結ぶ (仮想) 線の傾き 0を検出するソフ トウェアを備える。
各ニードル位置調整機構は、 対応するニードルを少なく ともステ ージ表面に平行な平面内の 2軸方向に移動する。 ステージ表面に垂 直な方向のチップの電極位置のずれは小さい上、 ニードルは弾性が あり、 この方向の電極位置のずれが小さければ正しく接触させるこ とができるので、 一般にはニードルをステージ表面に垂直な方向に 移動させる必要はないが、 正確な接触圧が必要である場合などは、 各ニードル位置調整機構は対応するニードルをステージ表面に垂直 な方向に移動するように構成する。 これにより、 すべてのニードル の位置関係を、 分離したチップの電極の位置関係に合致させること が可能である。
また、 各チップは分離されることにより位置及び方向がずれるが 、 各チップ内の電極の位置関係は変化しない。 そこで、 各チップご との複数の電極に接触する複数のニー ドルの組を一緒に移動するチ ップ別位置調整機構を複数備え、 チップ別位置調整機構は、 対応す る二一ドルの組を少なく ともステージ表面に平行な平面内で回転す る回転機構と、 対応するニードルの組を移動する平行移動機構と、 を有するように構成する。 これにより、 すべてのニー ドルの位置関 係を、 分離したチップの電極の位置関係に合致させることが可能で あると共に、 上記のニー ドルごとにニー ドル位置調整機構を設ける 構成に比べて、 移動軸を 1軸低減できる。
複数チップのステージ上への搬送などのために、 従来とプローバ と同様に、 ステージとニー ドルヘッ ドの相対的な位置を変化させる
3次元移動機構を備えることが望ましい。
この 3次元移動機構を使用する場合、 3次元移動機構により複数 チップの位置がずれないとした場合に電極がニー ドルに接触する位 置に移動し、 各ニー ドルを対応する電極の位置ずれに合わせて移動 させることも可能であるが、 3次元移動機構により 1個の基準電極 と対応する基準ニー ドルの位置が合うように移動を行い、 基準電極 と基準ニー ドル以外の他の電極とニー ドルの位置関係は、 各ニー ド ル位置調整機構で合わせるようにする。 これにより、 基準ニー ドル にはニー ドル位置調整機構を設ける必要がなくなる。
また、 上記のチップ別位置調整機構を設ける構成に 3次元移動機 構を設ける場合も同様であり、 3次元移動機構により複数チップの 位置がずれないとした場合に電極がニー ドルに接触する位置に移動 し、 各ニー ドルを対応する電極の位置ずれに合わせて移動させるこ とも可能であるが、 3次元移動機構により 1個の基準電極と対応す る基準ニー ドルの位置が合うように移動を行い、 基準電極を有する チップ以外の他のチップの電極とニー ドルの位置関係は、 各チップ 別位置調整機構で合わせるようにする。 また、 基準電極を有するチ ップの基準電極以外の電極と対応するニードルとの位置は、 回転機 構により回転成分を合わせれば一致するので、 基準電極を有するチ ップのチップ別位置調整機構は、 平行移動機構を設ける必要がなく なる。
複数チップは、 図 1 Aから図 1 Cに示したように、 フレームに貼 り付けられた粘着テープに貼り付けられた状態でステージに保持す るようにしてもよい。 この場合、 ステージは、 粘着テープの面が接 触するように保持する。 保持された粘着テープ及びチップは位置が 変化しないので、 電極位置検出機構は、 粘着テープに貼り付けられ たすベての複数のチップの電極の位置を検出する。 ニードルヘッ ド は、 粘着テープに貼り付けられた複数のチップのうちの所定数、 例 えば 4個のチップの電極に同時に接触する複数のニードルを有する 。 この所定数は多いほど望ましいが、 その分ニードルの本数及び二 一ドル位置調整機構の個数を増加させる必要があり、 プロ一バが大 型化してコス 卜が増加する。
複数の二一ドルが同時に接触する所定数のチップは、 隣接して配 列されたチップでもよいが、 配列されたチップのうち所定のチップ 間隔で選択されたチップであってもよい。 これにより、 二一ドル位 置調整機構を設ける空間を広くすることが可能である。 この場合、 ニードルが接触したチップの検査が終了すると、 間のチップにニー ドルが接触するように順次移動して検査を行う。
また、 図 1 Aから図 1 Cに示したフレーム及び粘着テープを使用 せずに、 ステージが複数チップを独立して保持するようにしてもよ い。
チップが L E Dなどの発光素子である場合、 発光素子の出力する 光特性を検出する光検出器を備え、 複数のニードルが同時に接触す る複数チップを時分割で順次動作させて発光させ、 光検出器の出力 を時分割で順次検出する。
この場合、 動作させるチップの位置に合わせて、 光検出器の位置 を調整する光検出器位置調整記憶を備え.るようにしてもよい。
本発明によれば、 複数のチップの電極に同時にニードルを接触さ せることが可能になるので、 検査時間を短縮してコス トを低減する ことができる。 図面の簡単な説明
図 1 Aから図 1 Cは、 本発明のマルチチッププローバで検査され るチップの供給形態の一例であり、 フレームの貼り付けた粘着テー プに分離したチップが貼り付けられた状態を示す図である。
図 2は、 分離したチップの配列状態の例を説明する図である。 図 3は、 本発明の第 1実施例のマルチチッププローバの概略構成 を示す図である。
図 4 Aおよび図 4 Bは、 第 1実施例のニードルへッ ドと光検出ュ ニッ 卜の部分の構成を示す図である。
図 5 Aおよび図 5 Bは、 同時にニードルを接触させるチップの配 列例を示す図である。
図 6は、 第 1実施例における検査動作を示すフローチャートであ る。
図 7 Aおよび図 7 Bは、 同時にニードルを接触させるチップの配 列の変形例を示す図である。
図 8 Aおよび図 8 Bは、 電極の接触するニードルの本数の変形例 を示す図である。
図 9は、 本発明の第 2実施例における位置合わせの原理を説明す る図である。
図 1 0は、 第 2実施例におけるプローブ移動機構の概略構成を示 す図である。
図 1 1は、 分離したチップのステージ上の保持形態の変形例を示 す図である。 発明を実施するための最良の形態
図 3は、 本発明の第 1実施例のマルチチッププローバの全体構成 を示す図である。 図 3に示すように、 第 1実施例のマルチチッププ ローバは、 基台 2 1 と、 基台 2 1 に設けられた移動ベース 2 2 と、 移動ベース 2 2上を X軸方向 (図に垂直な方向) に移動する X移動 台 2 3 と、 X移動台 2 3上を Y軸方向 (図の水平方向) に移動する Y移動台 2 4と、 Y移動台 2 4に設けられた Z軸移動 (図の上下方 向) · θ回転機構 2 5 と、 Ζ軸移動 · 0回転機構 2 5に支持された ステージ 2 6 と、 支柱 2 7 と、 上板 2 8 と、 ァライメント顕微鏡 2 9 と、 二一ドルヘッ ド 3 1 と、 光検出ユニッ ト 4 0 と、 を備える。 なお、 図示していないが、 コンピュータで構成され、 全体の制御を 行う制御部を有する。 上記の機構により、 ステージ 2 6は、 X、 Υ 、 Ζ軸の 3軸方向と、 Ζ軸に垂直な面内で回転可能である。 ステ一 ジ 2 6上には、 図 1 Aから図 1 Cに示したフレーム 1 1 と粘着テー プ 1 2 とウェハ 1 3の分離されたチップ 1 4で構成される被検査物 2 0が載置されて固定される。 分離されたチップ 1 4の電極の位置 を検出する時には、 ステージ 2 6をァライメント顕微鏡 2 9の下に 移動し、 全チップを走査して画像処理により電極の位置を検出して 記憶される。 ニードルヘッ ド 3 1 と光検出ュニ.ッ ト 4 0を除く構成 は、 従来のウェハプローバと同じ構成であり、 これ以上の説明は省 略する。
図 4 Αおよび図 4 Βは、 ニードルへッ ド 3 1 と光検出ュニッ ト 4 0の部分の構成を示す図であり、 図 4 Αは側面図であり、 図 4 Βは 上面図である。 光検出ユニッ ト 4 0は、 検査するチップの直上に配 置され、 チヅプ (ここでは L E D ) が出力する光量を検出する光パ ヮーメ一夕 4 1 と、 光パワーメータ 4 1の支持部 4 2 と、 支持部 4 2を移動する光パワーメータ移動機構 4 3 と、 先端が検査するチッ プの近傍に伸びた光ファイバ 4 4と、 光ファイバ 4 4を保持して光 ファイバ 4 4に入射した光の波長を検出するためのモノクロメータ (図示せず) に中継する中継ユニッ ト 4 5 と、 中継ユニッ ト 4 5を 支持する支持部 4 6 と、 支持部 4 6 を移動するファイバ移動機構 4 7 と、 を有する。 図 4 Bに示すように、 光検出ユニッ ト 4 0は円形 部から、 ファイバ移動機構 4 7 を収容する部分が突出した形状を有 する。 光パワーメータ移動機構 4 3 とファイバ移動機構 4 7は、 公 知の移動機構で実現でき、 ピエゾ素子のような高速の動作が可能な 素子を用いた移動機構であることが望ましい。 しかし、 駆動ネジと モ一夕を組み合わせたような移動機構を使用してもよい。 光パワー メータ移動機構 4 3 とファイバ移動機構 4 7は、 後述するように、 異なるチップを検查する時に移動する必要のない場合には、 設ける 必要はない。
ニードルヘッ ド 3 1は、 光検出ユニッ ト 4 0の周囲に配置される 形状を有し、 1個のニードルユニッ ト 3 6 Aと、 7個のニードル位 置調整機構 3 6 B〜 3 6 Hと、 を有する。 ニードルユニッ ト 3 6 A は、 基準ニードル 3 3 Aをニードルへッ ド 3 1 に固定するュニッ ト である。 ニードル位置調整機構 3 6 Eは、 ニードル 3 3 Eと、 ニー ドル 3 3 Eを保持するニードル保持ュニッ 卜 3 4 Eと、 ニードル保 持ュニッ ト 3 4 Eが取り付けられる移動ュニッ ト 3 5 Eと、 移動ュ ニッ ト 3 5 Eを移動させる移動機構 3 6 Eと、 を有する。 移動機構 3 6 Eは、 二一ドル 3 3 Eをステージ 2 6の載置面に平行な面内の 2軸方向、 例えば、 X軸方向と Y軸方向に移動させることが可能で ある。 ニードル位置調整機構も、 公知の移動機構で実現でき、 ピエ ゾ素子のような高速の動作が可能な素子を用いた移動機構であるこ とが望ましいが、 駆動ネジとモータを組み合わせたような移動機構 を使用してもよい。
他の二一ドル位置調整機構 3 6 B〜 3 6 D、 3 6 F〜 3 6 Hも同 様の構成を有する。 図示のように、 このような 7個のニードル位置 調整機構 3 6 B〜 3 6 Pが光検出ュニッ ト 4 0の周囲に放射状に配 置される。 ニードルユニッ ト 3 6 Aは位置調整機構を有さないので 、 配置のためのスペースは小さくてよく、 例えば、 光検出ユニッ ト 4 0の突出部とニードル位置調整機構 3 6 Bの間に配置される。 ステージ 2 6の載置面に垂直な方向のチップの電極位置のずれは 小さい上、 ニードルは弾性があり、 この方向の電極位置のずれが小 さければ正しく接触させることができるので、 ニードル位置調整機 構はニードルをステージ表面に垂直な方向に移動させないが、 正確 な接触圧が必要である場合などは、 各ニードル位置調整機構は対応 するニードルをステージ表面に垂直な方向に移動するように構成し てもよい。
以上の構成により、 すべての二一ドルの位置関係を、 分離したチ ップの電極の位置関係に合致させることが可能である。
図 5 Aおよび図 5 Bは、 同時に二一ドルを接触させるチップ 1 4 の配置を示す図であり、 図 5 Aは 1列に隣接して配置された 4個の チップ 1 4の電極 1 5にニードルが同時に接触する例を、 図 5 Bは 2行 2列に隣接して配置された 4個のチップ 1 4の電極 1 5にニー ドルが同時に接触する例を示す。 図 5 Aおよび図 5 Bにおいて、 参 照符号 Rは、 図 4 Bに示した基準ニードル 3 3 Aが接触する基準電 極を示す。 同時にニードルを接触させるチップ 1 4の組を、 ここで は測定単位と称することとする。 図 6は、 第 1実施例の検査動作を示すフローチャートである。 ステップ 1 0 1では、 図 1 Aから図 1 Cに示したような分割され たチップがテープに貼り付けられたフレームをステージ 2 6上に搬 送して保持する。 この状態でチップの位置が変化することはないと する。
ステップ 1 0 2では、 ァライメント顕微鏡 2 9などを含むァライ メント機構で全チップの電極位置を検出して記憶する。
ステップ 1 0 3では、 測定単位ごとに、 基準電極とそれ以外の電 極の位置関係を算出する。 この位置関係は、 電極のずれがない時を 基準にして、 それからのずれとして算出される。 この処理は図示し ていない制御部が行う。
ステップ 1 0 4では、 ニードル位置調整機構 3 6 B〜 3 6 Hが、 測定単位の基準ニードル以外のニードルの位置を、 それぞれステツ プ 1 0 3で算出した位置関係に基づいて移動する。 これにより 8本 のニードルは、 4個のチップの 8個の電極の位置に対応した位置関 係になる。
ステップ 1 0 5では、 基準電極が基準ニードルに接触するように 、 ステージ 2 6 を移動する。 この時、 基準電極が基準ニードルの直 下に位置するように移動した後、 ステージを上昇させて ( Z軸方向 に移動して) 電極が二一ドルに接触するように移動させる。
ステップ 1 0 6では、 測定単位内の 4個のチップのうち、 検査す るチップの位置に合わせて、 光パワーメータ 4 1 とファイバ 4 4の 位置を移動する。 なお、 測定単位内におけるチップの位置の差が小 さく、 光パワーメ一夕 4 1 とファイバ 4 4の検出値に影響しない場 合には、 このステップ 1 0 6を行う必要はなく、 光パワーメータ移 動機構 4 3 とフアイバ移動機構 4 7 を設ける必要もない。
ステップ 1 0 7では、 ニードルから電気信号を印加して、 電気特 性及び光特性を検出する検査を行う。
ステップ 1 0 8では、 測定単位内の全チップの検査が終了したか を判定し、 終了していなければステップ 1 0 6.に戻り、 測定単位内 の全チップの検査が終了するまでステップ 1 0 6から 1 0 8までを 繰り返す。 従って、 ステップ 1 0 6 を行う必要がない時には、 測定 単位内の全チップを時分割で順次動作させて検査を行う ことになる ステップ 1 0 9では、 ステージ上の全チップの検査が終了したか を判定し、 終了していなければステップ 1 0 4に戻り、 ステージ上 の全チップの検査が終了するまでステップ 1 0 4から 1 0 9までを 繰り返す。
いずれにしろ、 上記の動作においては、 プローブを電極に接触さ せる 1 回の動作で、 4個のチップの検査が行えるので、 測定効率を 向上させることができる。
第 1実施例では、 基準電極に対応する基準プローブのプローブ移 動機構は設けずに、 基準電極が基準プローブに接触するようにステ ージを移動したが、 すなわち移動ベース 2 2 と X移動台 2 3 と Y移 動台 2 4と、 Z軸移動 · Θ回転機構 2 5で構成される 3次元移動機 構によりステージを移動することで基準電極が基準プローブの接触 を実現したが、 例えば、 基準プローブにもプローブ移動機構を設け て移動可能にし、 3次元移動機構によるステージの移動はチップの 位置ずれがないとした場合の標準位置に移動するようにし、 各電極 の標準位置からの位置ずれに応じて各プローブ移動機構の移動量を 制御するようにしてもよい。
また、 第 1実施例では、 図 5 Αおよび図 5 Βに示すように隣接し て配置された 4個のチップの検査を行ったが、 図 7 Aおよび図 7 B に示すように、 配列されたチップ 1 4のうち所定のチップ間隔で選 択したチップ 1 4 Sの電極に同時にニードルを接触させるようにし てもよい。 図 7 Aは図 5 Aに対応し、 1列に配置されたチップ 1 4 のうちから 4個に 1個のピッチでニードルを接触させるチップ 1 4 Sを選択した例を示す。 図 7 Bは、 図 5 Bに対応し、 4行 4列に配 置されたチップ 1 4のうちからそれぞれの方向で 2個に 1個のピッ チで二一ドルを接触させるチップ 1 4 Sを選択した例を示す。 図 7 Aおよび図 7 Bに示すようにニードルを接触させるチップを選択す ることにより、 ニードル位置調整機構を設ける空間を広くすること が可能である。 なお、 図 7 Aおよび図 7 Bの場合、 ニードルが接触 したチップの検査が終了すると、 検査済みチップの間のチップに二 一ドルが接触するように順次移動して検査を行う。
チップ 1 4の電極に接触する二一ドル 3 3は、 図 8 Aに示すよう に、 1本の場合もあるが、 大電流を流す必要がある場合などには、 図 8 Bに示すように、 複数本の二一ドル 3 3が電極 1 5に接触する ようにしてもよい。
第 1実施例では、 基準ニードル以外の各ニードルごとにニードル 移動機構を設け、 各二一ドルの位置を独立して移動できるようにし た。 しかし、 各チップの 2個の電極の位置関係 (間隔) は、 露光装 置により露光された高精度のパターンに基づいて決定されるので、 一定である。 第 2実施例では、 この特性を利用してニードル移動機 構の構成を簡単にする。
図 9は、 本発明の第 2実施例のマルチチッププローバの位置合わ せの原理を説明する図である。 チップ 1 4が、 位置ずれしていない チップ 1 4 ' の位置から図示のように回転 0を伴ってずれたとする 。 これに応じて、 電極 1 .5の位置もずれ、 一方の電極はずれのない 時の中心位置 C〇から中心位置 C 1 にべク トル Pだけずれたとする 。 ずれのない状態のチップ 1 4 ' を、 0回転して、 一方の電極の中 心位置をベク トル Pだけずらすと、 チップ 1 4に重なり合う。 すな わち、 2個の電極 1 5に接触する 2本のニードルの相互位置を維持 したまま、 0回転してベク トル Pだけ平行移動すると、 2本のニー ドルをずれた電極に接触させることができる。
図 9では、 回転 Θ と 2軸の平行移動の合計 3軸の移動で、 ずれた 2個の電極にニードルを接触させることができる。 これに対して、 第 1実施例では、 2個の電極に対してそれぞれ 2軸の移動が必要で あり、 合計 4軸の移動が必要である。 言い換えれば、 図 9の移動で は 1軸分の移動を低減することが可能である。
図 1 0は、 図 9の移動を実現するチップ別位置調整機構の概略構 成を説明する図である。 チップ別位置調整機構は、 図 1 0に示すよ うに、 2本のニードル 3 3 Aと 3 3 Bは、 先端間の距離が 1チップ の 2個の電極間の距離に対応するように回転台 5 1 に固定されてい る。 回転台 5 1 は、 X軸移動台 5 2 に対して回転可能に支持されて いる。 X軸移動台 5 2は、 Y軸移動台 5 3に対して X軸方向に移動 可能に支持されている。 Y軸移動台 5 3は、 ベース台 5 4に対して Y軸方向に移動可能に支持されている。 図 1 0のチップ別位置調整 機構は、 公知の移動機構で実現でき、 ピエゾ素子のような高速の動 作が可能な素子を用いた移動機構であることが望ましい。
また、 第 2実施例においてもステージ 2 6 を移動する 3次元移動 機構を利用して、 1個のチップについては図 9のベク トル Pに対応 する平行移動を行うことが可能であるので、 1個のチップ別位置調 整機構は回転のみ可能であればよい。
第 1実施例では、 フレームの貼り付けた粘着テープに分離したチ ップが貼り付けられた形でステージに保持されたが、 図 1 1 に示す ように、.ステージ 2 6に真空吸着機構の吸気口を複数個設けて、 複 数のチップ 1 4を同時に固定できるようにしてもよい。 この場合も 、 複数のチップ 1 4の位置や回転を精密に設定することは難しいの で、 複数のチップ 1 4の電極に接触するニードルの位置を移動する ニードル位置移動機構を設けて、 ニードルの位置をチップ 1 4の電 極の位置に合わせた後、 ニードルを電極に接触させる。
図 1 1のようにチップを保持する場合、 保持する複数のチップを 真空吸着などで保持してステージ上まで同時に搬送し、 検査の終了 した複数のチップは同時にステージ外に搬送するような搬送機構を 設けるようにする。 これにより、 チップの効率的な検査が可能であ る。
以上本発明の実施例を説明したが、 本発明は、 説明した実施例に 限定されず、 各種の変形例が可能であるのはいうまでもない。 例え ば、 実施例では、 L E Dの検査を例として説明したが、 本発明は、 抵抗、 トランジスタ、 I Cなど他のデバイスの検査にも適用できる また、 実施例では、 4個のチップの 8個の電極に同時にプローブ を接触させる例を説明したが、 2個以上のチップであれば、 特に個 数は限定されない。 産業上の利用可能性
本発明は、 ウェハから分離した状態で検査する必要のあるデバィ スであれば、 どのようなデバイスの検査にも適用できる。

Claims

請 求 の 範 囲
1 . 分離された複数チップを保持するステージと、
2個以上の所定数の前記チップの電極に同時に接触する複数の二 一ドルを有するニー ドルヘッ ドと、
前記ステージに保持された前記複数チップの電極の位置を検出す る電極位置検出機構と、
各ニー ドルの位置を調整する複数の二一 ドル位置調整機構と、 を 備え、
前記複数のニー ドル位置調整機構により、 検出した前記複数チッ プの電極の位置に対応するように、 前記複数の二一 ドルの位置を調 整して、 前記複数のニードルを前記複数チップの電極に同時に接触 することを特徴とするマルチチッププローバ。
2 . 各ニー ドル位置調整機構は、 対応するニー ドルを少なく とも 前記ステージ表面に平行な平面内の 2軸方向に移動する請求項 1 に 記載のマルチチッププローバ。
3 . 前記複数のニー ドル位置調整機構は、 各チップごとの複数の 電極に接触する複数のニー ドルの組を一緒に移動するチップ別位置 調整機構を複数備え、
前記チップ別位置調整機構は、 対応する前記ニー ドルの組を少な く とも前記ステージ表面に平行な平面内で回転する回転機構と、 対 応する前記ニー ドルの組を移動する平行移動機構と、 を有する請求 項 1 に記載のマルチチッププロ一バ。
4 . 前記ステージと前記ニー ドルヘッ ドの相対的な位置を変化さ せる 3次元移動機構を備える請求項 1 に記載のマルチチッププロ一 バ。
5 . 前記ステージと前記ニー ドルヘッ ドの相対的な位置を変化さ せる 3次元移動機構を備え、
前記複数のニー ドル位置調整機構は、 1本の基準ニー ドル以外の ニー ドルごとに設けられ、 他のニー ドルの前記基準ニー ドルに対す る相対的な位置が調整可能であり、
前記 3次元移動機構により前記基準ニー ドルが対応する電極に接 触するように移動し、 前記複数のニードル位置調整機構により他の ニードルを対応する電極に接触するように移動する請求項 2 に記載 のマルチチッププロ一バ。
6 . 前記ステージと前記ニードルへッ ドの相対的な位置を変化さ せる 3次元移動機構を備え、
基準チップに対応する前記チップ別位置調整機構は、 前記回転機 構のみを備え、
前記 3次元移動機構及び前記基準チップの前記チップ別位置調整 機構により、 前記基準チップの電極が対応する二一ドルに接触する ように移動し、 前記複数のチップ別位置調整機構により他のチップ の電極に対応するニー ドルが接触するように移動する請求項 3 に記 載のマルチチッププローバ。
7 . 前記複数チップはフレームに貼り付けられた粘着テープに貼 り付けられ、
前記ステージは、 前記粘着テープの面が接触するように保持し、 前記電極位置検出機構は、 前記粘着テープに貼り付けられた複数 のチップの電極の位置を検出し、
前記ニー ドルヘッ ドは、 前記粘着テープに貼り付けられた複数の チップのうちの所定数の前記チップの電極に同時に接触する複数の ニードルを有する請求項 1 に記載のマルチチッププローバ。
8 . 複数のニー ドルが同時に接触する前記所定数のチップは、 隣 接して配列されたチップである請求項 1 に記載のマルチチッププロ ーバ。
9 . 複数の二一ドルが同時に接触する前記所定数のチップは、 配 列されたチップのうち所定のチップ間隔で選択されたチップである 請求項 1 に記載のマルチチッププローバ。
1 0 . 前記ステージは、 前記複数チップを独立して保持し、 前記電極位置検出機構は、 前記複数のチップの電極の位置を検出 し、
前記ニードルヘッ ドは、 前記複数のチップの電極に同時に接触す る複数のニードルを有する請求項 1 に記載のマルチチッププロ一バ
1 1 . 前記チップは、 発光素子であり、
前記発光素子の出力する光特性を検出する光検出器を備え、 前記複数のニードルが同時に接触する前記複数チップを時分割で 順次動作させて発光させ、 前記光検出器の出力を時分割で順次検出 する請求項 1 に記載のマルチチッププローバ。
1 2 . 動作させるチップの位置に合わせて、 前記光検出器の位置 を調整する光検出器位置調整機構を備える請求項 1 1 に記載のマル チチッププロ一バ。
PCT/JP2008/054840 2008-03-11 2008-03-11 マルチチッププロ-バ WO2009113183A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054840 WO2009113183A1 (ja) 2008-03-11 2008-03-11 マルチチッププロ-バ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054840 WO2009113183A1 (ja) 2008-03-11 2008-03-11 マルチチッププロ-バ

Publications (1)

Publication Number Publication Date
WO2009113183A1 true WO2009113183A1 (ja) 2009-09-17

Family

ID=41064863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054840 WO2009113183A1 (ja) 2008-03-11 2008-03-11 マルチチッププロ-バ

Country Status (1)

Country Link
WO (1) WO2009113183A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731116A (zh) * 2021-01-06 2021-04-30 上海华岭集成电路技术股份有限公司 一种控制针卡在线复用增减针的方法
CN113447792A (zh) * 2021-06-21 2021-09-28 武汉光迅科技股份有限公司 一种芯片性能测试系统与测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147247A (en) * 1981-03-06 1982-09-11 Hitachi Ltd Automatic inspecting device for semiconductor chip
JPS6236139Y2 (ja) * 1986-08-06 1987-09-14
JPH1140634A (ja) * 1997-07-16 1999-02-12 Nec Yamaguchi Ltd 半導体チップ検出装置及び半導体チップ検出方法
JP2005294449A (ja) * 2004-03-31 2005-10-20 Sharp Corp 半導体装置の検査方法および検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147247A (en) * 1981-03-06 1982-09-11 Hitachi Ltd Automatic inspecting device for semiconductor chip
JPS6236139Y2 (ja) * 1986-08-06 1987-09-14
JPH1140634A (ja) * 1997-07-16 1999-02-12 Nec Yamaguchi Ltd 半導体チップ検出装置及び半導体チップ検出方法
JP2005294449A (ja) * 2004-03-31 2005-10-20 Sharp Corp 半導体装置の検査方法および検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731116A (zh) * 2021-01-06 2021-04-30 上海华岭集成电路技术股份有限公司 一种控制针卡在线复用增减针的方法
CN112731116B (zh) * 2021-01-06 2024-04-05 上海华岭集成电路技术股份有限公司 一种控制针卡在线复用增减针的方法
CN113447792A (zh) * 2021-06-21 2021-09-28 武汉光迅科技股份有限公司 一种芯片性能测试系统与测试方法

Similar Documents

Publication Publication Date Title
JP2008070308A (ja) マルチチッププローバ
US20130169300A1 (en) Multi-chip prober, contact position correction method thereof, and readable recording medium
JPH0883825A (ja) プローブ装置
JP4931617B2 (ja) プローバ
JP2007040926A (ja) プローバ
JPH0883824A (ja) プローブ装置
JP2008053624A (ja) アライメント装置
JPH09321102A (ja) 検査装置
JP6281972B2 (ja) 透明プローブ基板を用いた基板検査装置
US8643393B2 (en) Electrical connecting apparatus
US7701232B2 (en) Rotational positioner and methods for semiconductor wafer test systems
JP2014110381A (ja) プローバ
TWI481830B (zh) Optical test device
TW201307863A (zh) 半導體檢查裝置
WO2009113183A1 (ja) マルチチッププロ-バ
KR20210058641A (ko) 프로브 어레이 및 그를 이용한 프로브 카드의 프로브 헤드 제조 방법
JP2014238371A (ja) プローバシステム
JP2995134B2 (ja) プローブ装置
KR101199016B1 (ko) 엘이디 검사용 프로브 카드
JP4817830B2 (ja) プローバ、プローブ接触方法及びそのためのプログラム
KR101559984B1 (ko) 프로브 카드, 검사 장치 및 검사 방법
TW202227786A (zh) 試驗裝置、試驗方法及電腦可讀取記憶媒體
JP5004454B2 (ja) プローバ及びプローバにおける回転・移動制御方法
JP2010219253A (ja) プローブ検査方法およびプローバ
TWI399560B (zh) 積體電路之測試用測試晶片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722236

Country of ref document: EP

Kind code of ref document: A1