WO2009107780A1 - 磁気抵抗記憶装置及びその動作方法 - Google Patents

磁気抵抗記憶装置及びその動作方法 Download PDF

Info

Publication number
WO2009107780A1
WO2009107780A1 PCT/JP2009/053688 JP2009053688W WO2009107780A1 WO 2009107780 A1 WO2009107780 A1 WO 2009107780A1 JP 2009053688 W JP2009053688 W JP 2009053688W WO 2009107780 A1 WO2009107780 A1 WO 2009107780A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
semiconductor
conductor
potential
magnetic body
Prior art date
Application number
PCT/JP2009/053688
Other languages
English (en)
French (fr)
Inventor
有光 加藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2009107780A1 publication Critical patent/WO2009107780A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetoresistive memory device constituting a magnetic random access memory (MRAM) and an operation method thereof, and more particularly to an MRAM based on a spin injection method.
  • MRAM magnetic random access memory
  • MRAM is a promising nonvolatile memory from the viewpoint of high integration and high-speed operation.
  • a magnetoresistive element exhibiting a “magnetoresistance effect” such as a TMR (Tunnel MagnetoResistance) effect is used.
  • a magnetic tunnel junction MTJ: Magnetoresistive Tunnel Junction
  • the two ferromagnetic layers are composed of a pinned layer (magnetization pinned layer) whose magnetization direction is fixed and a free layer (magnetization free layer) whose magnetization direction can be reversed (see Non-Patent Document 1). ).
  • the resistance value (R + ⁇ R) of the MTJ when the magnetization directions of the pinned layer and the free layer are “anti-parallel” is larger than the resistance value (R) when they are “parallel” due to the magnetoresistance effect. It is known.
  • the MRAM uses the magnetoresistive element having the MTJ as a memory cell, and stores data in a nonvolatile manner by utilizing the change in the resistance value. Data is written to the memory cell by reversing the magnetization direction of the free layer.
  • an asteroid method is known as a method for writing data to the MRAM (see Non-Patent Document 2).
  • the reversal magnetic field necessary for reversing the magnetization of the free layer increases in inverse proportion to the memory cell size. That is, the write current tends to increase as the memory cell is miniaturized.
  • spin injection method (see, for example, Non-Patent Document 3)” has been proposed as a writing method capable of suppressing an increase in write current accompanying miniaturization.
  • spin transfer method a spin-polarized current is injected into a ferromagnetic conductor, and the direct interaction between the spin of the conduction electron carrying the current and the magnetic moment of the conductor Magnetization is reversed (hereinafter referred to as “spin injection magnetization reversal: Spin Transfer Magnetization Switching”).
  • spin injection magnetization reversal Spin Transfer Magnetization Switching
  • the magnetoresistive element includes a free layer 101, a pinned layer 103, and a tunnel barrier layer 102 which is a nonmagnetic layer sandwiched between the free layer 101 and the pinned layer 103.
  • the pinned layer 103 whose magnetization direction is fixed is formed so as to be thicker than the free layer 101, and plays a role as a mechanism (spin filter) for creating a spin-polarized current.
  • the state where the magnetization directions of the free layer 101 and the pinned layer 103 are parallel is associated with data “0”, and the state where they are antiparallel is associated with data “1”.
  • the spin injection magnetization reversal shown in FIG. 9 is realized by a CPP (Current Perpendicular to Plane) method, and a write current is injected perpendicularly to the film surface. Specifically, current flows from the pinned layer 103 to the free layer 101 at the time of transition from data “0” to data “1”. In this case, electrons having the same spin state as the pinned layer 103 as a spin filter move from the free layer 101 to the pinned layer 103. Then, the magnetization of the free layer 101 is reversed by a spin transfer (spin angular momentum transfer) effect.
  • CPP Current Perpendicular to Plane
  • spin injection magnetization reversal data is written by the movement of spin electrons.
  • the direction of magnetization of the free layer 101 can be defined by the direction of the spin-polarized current injected perpendicular to the film surface.
  • the threshold for writing depends on the current density. Therefore, as the memory cell size is reduced, the write current required for magnetization reversal decreases. Since the write current decreases with the miniaturization of the memory cell, the spin injection magnetization reversal is important for realizing a large capacity of the MRAM.
  • the magnetoresistive element described in Patent Document 1 has a ferromagnetic tunnel junction including a three-layer structure of a first ferromagnetic layer / tunnel barrier layer / second ferromagnetic layer.
  • the coercive force of the first ferromagnetic layer is greater than the coercivity of the second ferromagnetic layer.
  • the magnetization of the end portion of the second ferromagnetic layer is fixed in a direction having a component orthogonal to the easy axis direction of the second ferromagnetic layer.
  • the current density is the same for writing. Therefore, if the resistance per unit area of the magnetoresistive element is not changed during miniaturization, the same write voltage is used. Can write. At this time, since the size is reduced, the element resistance increases. In reading, if it is considered that a certain amount of current is required for the read current difference due to data, it is necessary to increase the read voltage in proportion to the increasing element resistance. Normally, the read voltage is smaller than the write voltage. However, if the read voltage is approximately the same as the write voltage, the write voltage is naturally written and the data is destroyed. That is, a voltage margin is required between the write voltage and the read voltage.
  • the magnetoresistive element using the spin injection method has a problem in that miniaturization is difficult because erroneous writing occurs during reading. That is, in the magnetoresistive element writing method by spin injection, there is a problem that the probability of erroneous writing occurring at the time of data reading increases with miniaturization.
  • An object of the present invention is to provide a magnetoresistive memory device that can suppress the occurrence of erroneous writing at the time of data reading, can increase the margin of data writing voltage and reading voltage, and can be miniaturized.
  • a magnetoresistive memory device has a plurality of magnetoresistive memory elements capable of writing and reading data by a magnetoresistive effect, and the plurality of magnetoresistive memory elements have a magnetization direction.
  • a laminated body formed by laminating a first magnetic body, a non-magnetic body, and a second magnetic body whose magnetization state changes according to the data, and a part of the laminated body A structure in which a semiconductor is formed; an insulator formed in contact with the semiconductor; and a conductor formed in contact with the insulator and having a potential that can be controlled; The potential of the region facing the body can be controlled by the potential of the conductor.
  • a magnetoresistive memory device that can suppress the occurrence of erroneous writing at the time of data reading, can increase the margin between the write voltage and the read voltage, and can be miniaturized.
  • FIG. 1 is a schematic diagram showing a magnetoresistive memory device according to a first embodiment of the present invention. It is a schematic diagram which shows the magnetoresistive memory device based on the 2nd Embodiment of this invention. It is a top view which shows the magnetoresistive memory device based on the 1st and 2nd embodiment of this invention. It is a top view which shows the magnetoresistive memory device based on the 1st and 2nd embodiment of this invention. 1 is a circuit block diagram of a main part of a magnetoresistive memory device according to a first example of the present invention. FIG. 1 is a cross-sectional view in the vicinity of an MTJ of a magnetoresistive memory device according to a first example of the present invention.
  • FIG. 1 is a plan view of the vicinity of an MTJ of a magnetoresistive storage device according to a first example of the present invention. It is principal part sectional drawing of the magnetoresistive memory device based on the 2nd Example of this invention. It is a structural diagram showing a related art magnetoresistive memory element.
  • FIG. 1 the main part of a magnetoresistive memory device is shown as a first embodiment of the present invention.
  • the magnetoresistive memory device of this embodiment has a plurality of magnetoresistive memory elements that write and read data by the magnetoresistive effect.
  • Each magnetoresistive memory element is a laminated body formed by laminating a first magnetic body 1 with a fixed magnetization direction, a non-magnetic body 2 and a second magnetic body 3 whose magnetization state changes according to data.
  • the structure 10 includes a structure 10 in which a semiconductor is formed in a part of the stacked body, an insulator 4, and a conductor 5.
  • the first magnetic body 1, the second magnetic body 3, and the conductor 5 are connected to the first electrode 6, the second electrode 7, and the third electrode 8, respectively.
  • the semiconductor formed in a part of the stacked body is a magnetic semiconductor formed in a part or all of the second magnetic body 3.
  • the first magnetic body 1, the nonmagnetic body 2, and the second magnetic body 3 are in contact with each other in this order.
  • the insulator 4 is disposed in contact with a surface adjacent to the surface of the second magnetic body 3 that is in contact with the nonmagnetic body 2.
  • the conductor 5 is disposed in contact with the surface of the insulator 4 opposite to the second magnetic body 3. As shown in FIG. 3 and FIG.
  • the conductor 5 and the insulator 4 may be arranged either partially or on all four surfaces.
  • the thickness of the insulator 4 is set so that the potential of the surface of the second magnetic body 3 facing the conductor 5 can be changed by the potential of the conductor 5.
  • the potential of the conductor 5 is set to the first potential by the third electrode 8.
  • the first potential is set so that the potential of the surface of the second magnetic body 3 facing the conductor 5 is approximately the same as the potential at a position away from the conductor 5.
  • spin electrons are exchanged between the first magnetic body 1 and the second magnetic body 3, and the second The magnetization direction of the magnetic body 3 is set.
  • the magnetization direction of the second magnetic body 3 is the same as that of the first magnetic body 1.
  • the magnetization direction of the second magnetic body 3 is opposite to that of the first magnetic body 1. In this way, data is written by setting the magnetization direction of the second magnetic body 3.
  • the potential of the conductor 5 is set to the second potential by the third electrode 8.
  • the second potential is set so that the potential of the surface of the second magnetic body 3 facing the conductor 5 is different from the potential at a position away from the conductor 5.
  • the resistance of the magnetoresistive memory element is evaluated by passing a current between the first electrode 6 and the second electrode 7, and the written data is judged.
  • the resistance state of the magnetoresistive memory element can be determined.
  • the direction of magnetization of the second magnetic body 3, that is, the written data is determined.
  • the first electrode 6 and the second electrode 7 are in the data writing state because the potential of the second magnetic body is substantially the same as that inside the portion facing the conductor 5.
  • the current that flows when a voltage is applied flows uniformly throughout the second magnetic body 3.
  • the potential of the second magnetic body 3 is different from the portion facing the conductor 5 inside, so that a portion with a small amount of current flowing in the second magnetic body 3 is generated. To do. For this reason, compared with the setting at the time of data writing operation, the current at which the magnetization reversal occurs in the setting at the time of data reading operation, thereby making it difficult to cause erroneous writing at the time of data reading operation.
  • each magnetic body may be a single layer, and a configuration in which a plurality of magnetic materials are stacked, or a configuration in which a plurality of magnetic materials are magnetically coupled via a non-magnetic material is also possible.
  • the material and thickness are set so that the resistance in the planar direction of the magnetic material is sufficiently larger than the resistance of the nonmagnetic material. For this reason, it is desirable that the magnetic semiconductor and the nonmagnetic material are in contact with each other.
  • the structure in which the magnetization state of the first magnetic body is changed by data and the magnetization direction of the second magnetic body is fixed has the same effect.
  • the conductivity of the second magnetic body differs depending on the position at the time of data writing and at the time of data reading, so that erroneous writing may occur at the time of data reading. Therefore, the margin between the data write voltage and the data read voltage can be increased. For this reason, miniaturization can be achieved.
  • FIG. 2 the main part of a magnetoresistive memory device is shown as a second embodiment of the present invention.
  • the magnetoresistive storage device of the present embodiment has a plurality of magnetoresistive storage elements that write and read data by the magnetoresistive effect, and each magnetoresistive storage element has a first magnetic body 1 with a fixed magnetization direction. And a non-magnetic member 2 and a second magnetic member 3 whose magnetization state changes according to data, and a structure 10 in which a semiconductor is formed in a part of the stacked member. And an insulator 4 and a conductor 5.
  • the first magnetic body 1, the second magnetic body 3, and the conductor 5 are connected to the first electrode 6, the second electrode 7, and the third electrode 8, respectively. It can be controlled.
  • the semiconductor formed in a part of the stacked body is a semiconductor formed in part or all of the non-magnetic body 2.
  • the first magnetic body 1, the nonmagnetic body 2, and the second magnetic body 3 are in contact with each other in this order.
  • the insulator 4 is disposed in contact with a surface adjacent to the surface in contact with the second magnetic body 3 of the nonmagnetic material 2.
  • the conductor 5 is disposed in contact with the surface of the insulator 4 opposite to the nonmagnetic body 2. As shown in FIG. 3 and FIG.
  • the conductor 5 and the insulator 4 may be arranged either partially or on all four surfaces.
  • the thickness of the insulator 4 is set so that the potential of the surface of the nonmagnetic material 2 facing the conductor 5 can be changed by the potential of the conductor 5.
  • the potential of the conductor 5 is set to the first potential by the third electrode 8.
  • the first potential is set so that the potential of the surface of the nonmagnetic body 2 facing the conductor 5 is approximately the same as the potential at a position away from the conductor 5.
  • spin electrons are exchanged between the first magnetic body 1 and the second magnetic body 3, and the second The magnetization direction of the magnetic body 3 is set.
  • the magnetization direction of the second magnetic body 3 is the same as that of the first magnetic body 1.
  • the magnetization direction of the second magnetic body 3 is opposite to that of the first magnetic body 1. In this way, data is written by setting the magnetization direction of the second magnetic body 3.
  • the potential of the conductor 5 is set to the second potential by the third electrode 8.
  • the second potential is set so that the potential of the surface of the nonmagnetic material 2 facing the conductor 5 is different from the potential at a position away from the conductor 5.
  • the resistance of the magnetoresistive memory element is evaluated by passing a current between the first electrode 6 and the second electrode 7, and the written data is judged.
  • a voltage generated by applying a voltage or a current flowing between the two is obtained and compared with a preset standard value to determine the resistance state of the magnetoresistive memory element.
  • the magnetization direction of the second magnetic body 3, that is, the written data is determined.
  • the potential of the non-magnetic material 2 in the written state, is approximately the same as that inside the portion facing the conductor 5, so that a voltage is applied to the first electrode 6 and the second electrode 7.
  • the current that flows through the second magnetic body 3 flows uniformly throughout the second magnetic body 3.
  • the potential of the non-magnetic material 2 in the data read state, is different from the portion facing the conductor 5 inside, so that a portion with a small current flowing in the second magnetic material 3 is generated. For this reason, compared with the setting at the time of data writing operation, the current at which the magnetization reversal occurs in the setting at the time of data reading operation, thereby making it difficult to cause erroneous writing at the time of data reading operation.
  • the conductivity of the second magnetic body is made different depending on the position at the time of data writing and at the time of data reading, so that the possibility of erroneous writing at the time of data reading is suppressed. Therefore, the margin between the data write voltage and the data read voltage can be increased. For this reason, miniaturization can be achieved.
  • the semiconductor formed in a part of the laminated body constituting the structure (first magnetic body, non-magnetic body, second magnetic body) of the magnetoresistive memory element is the first 2 is a case where the magnetic semiconductor is formed on all or part of the magnetic layer, and in the second embodiment, the case where the non-magnetic body is formed on all or part of the layer is a semiconductor.
  • the semiconductor is a magnetic semiconductor formed in a part of a layer of the second magnetic body, and when the magnetic semiconductor is in contact with a non-magnetic body, or all or part of the layer of the first magnetic body.
  • a part of the first magnetic body may be a magnetic semiconductor, and the magnetic semiconductor may be in contact with a non-magnetic body. Even in these cases, the same effect as described above can be obtained.
  • the potential of the conductor is changed to the first potential and the second potential, respectively, so that the potential of the conductor is different between data writing and data reading.
  • the present invention is not limited to this.
  • the potential of the conductor may be controlled so that the potential distribution in the semiconductor is more uniform at the time of data writing than at the time of reading.
  • the potential of the conductor may be controlled so that the resistance of the region facing the semiconductor conductor is lower when reading data than when writing data.
  • the potential of the conductor may be controlled so that the resistance of the region facing the semiconductor conductor becomes higher when reading data than when writing data. Even in these cases, the same effect as described above can be obtained.
  • FIG. 5 shows a circuit block diagram of the main part of the magnetoresistive memory device according to the present embodiment
  • FIG. 6 shows a cross-sectional view of the main part
  • FIG. 7 shows a plan view of the main part.
  • the cross-sectional view of FIG. 6 is taken along the line A-A ′ in FIG.
  • the circuit of the magnetoresistive memory device of this embodiment includes a plurality of read control lines 50 extending in one direction, a plurality of bit lines 51 extending in one direction, and a read control line 50.
  • MTJ elements 52 which are magnetoresistive storage elements arranged in an array at the intersection of bit lines 51, word control lines 53 extending along with read control lines 50, and extending along with bit lines 51. It has a bit termination line 54, a selection transistor 55 arranged for each MTJ element 52, a word control circuit 56, a read control circuit 57, a bit control circuit 58, a bit termination circuit 59, and a sense amplifier 60.
  • the MTJ element 52 has two terminals that are electrically connected to the free layer (second magnetic body) and the pinned layer (first magnetic body), respectively, and one of the two terminals. Are connected to the bit line 51, and the other terminal is connected to the drain of the selection transistor 55.
  • the source of the selection transistor 55 is connected to the bit termination circuit 59 via the bit termination line 54.
  • the gate of the selection transistor 55 is connected to the word control circuit 56 via the word control line 53.
  • the read control line 50 is connected to the read control circuit 57.
  • the bit line 51 is connected to the bit control circuit 58.
  • the output potential of the bit control circuit 58 is connected to one input of the sense amplifier 60.
  • a reference potential Vref is supplied to the other input of the sense amplifier 60.
  • Ta72 is 10 nm
  • seed NiFe73 is 1 nm
  • antiferromagnetic material PtMn74 is 20 nm
  • pins are formed on an interlayer insulating film 71 on which a plug 70 for connection with a lower layer wiring is formed.
  • CoFe (pinned layer magnetic body 1) 75 serving as a layer (first magnetic body) 75 nm is 2 nm
  • Ru76 is 0.8 nm
  • CoFe (pinned layer magnetic body 2) 77 serving as a pinned layer (first magnetic body) is 2 nm.
  • nm of MgO78 as a tunnel insulating film (nonmagnetic material), 2 nm of GaAsMn79 as a magnetic semiconductor (free layer magnetic semiconductor) as a free layer (second magnetic material), and 50 nm of Ta80 are formed.
  • annealing is performed in a magnetic field of about 1T at 275 ° C. for 2 hours to set the magnetization direction of the pinned layer.
  • Ta80 is processed into an MTJ shape by RIE (Reactive Ion Etching), and the resist is removed by ashing and organic cleaning.
  • GaAsMn79 is processed into an MTJ shape by a milling method using Ta as a mask, and then SiN81, which is an insulator for preventing oxidation, is formed on the entire surface of 20 nm.
  • a resist pattern is formed by photolithography technology
  • Ta72 is processed from MgO 78 by milling and RIE, and after removal of the resist, SiO 2 82 as an insulator is formed to a thickness of 20 nm.
  • the shape of the free layer (second magnetic body) and the readout control line (conductor) in this example is an ellipse having a major axis of 0.2 ⁇ m and a minor axis of 0.1 ⁇ m as shown in FIG. It is a shape.
  • a Ta 83 layer serving as a readout control line is formed on the entire surface by 200 nm, and the readout control line shape is processed using RIE by a photolithography technique.
  • the MTJ element 52 is larger than the width of Ta 83 that is a read control line, but the Ta 83 on the side wall of the MTJ element 52 is difficult to be etched, so that it remains to surround the MTJ element 52.
  • SiO 2 84 as an interlayer insulating film is formed to a thickness of 200 nm by the CVD method.
  • the SiO 2 84 on the MTJ element 52 is removed by CMP to expose Ta80, and SiO 2 85 serving as an interlayer insulating film is formed to a thickness of 200 nm by a CVD method.
  • Vias are formed on Ta 80 to form bit lines 86. Thereby, the MTJ element 52 can be formed.
  • the read control circuit 57 sets the read control line 50 to 0V. Further, the word control circuit 56 controls the potential of the word control line 53 to turn on all the select transistors 55 of the word address to be written. The other selection transistors 55 are turned off. Furthermore, a potential difference is applied between the bit line 51 and the bit termination line 54 by the bit control circuit 58 and the bit termination circuit 59 only for the bit address to which data is written, and the MTJ element 52 has a free layer and a pinned layer. A write current, for example, 500 ⁇ A is passed. By flowing electrons from the pinned layer, the magnetization direction of the free layer can be made the same as that of the pinned layer.
  • the magnetization direction of the free layer can be reversed.
  • the current of the bit line 51 is stopped, and the select transistor 55 is turned off by the word control line 53. In this way, desired data can be written depending on the direction of the current flowing through the MTJ.
  • the word address selection transistor 55 to be read by the word control circuit 56 is turned on by the word control line 53.
  • the read control circuit 57 sets the read control line 50 to 1.5V.
  • the bit termination circuit 54 sets the bit termination line 54 to 0V.
  • a read current of 20 ⁇ A is applied to the bit line 51.
  • a positive potential is applied to the outer periphery of the GaAsMn 79 from the read control line 83 via SiN 81 and SiO 2 82. Thereby, resistance becomes high in the outer peripheral part of p-type GaAsMn79. For this reason, the read current flows mainly in the central portion of the MTJ element 52, and magnetization reversal due to spin electron injection does not occur in the outer peripheral portion.
  • the output potential of the bit control circuit 58 indicates 0.21V and 0.41V.
  • Data can be discriminated by applying the output potential of the bit control circuit 58 to the differential sense amplifier 61 and setting the reference potential Vref to 0.3V.
  • the margin between erroneous writing at the time of reading data and normal data writing can be increased.
  • erroneous writing during data reading can be made difficult to occur, and the MTJ element 52 can be miniaturized.
  • a semiconductor free layer magnetic semiconductor; GaAsMn79
  • the potential of the semiconductor is controlled by the potential of a conductor (reading control line; Ta83) disposed in the vicinity thereof.
  • the resistance of the portion facing the conductor in the semiconductor (the outer peripheral portion of the GaAsMn 79) and the portion separated (the central portion) are made different so that spin injection into the magnetic material is made non-uniform.
  • the amount of spin electrons injected into the free layer at the time of data reading varies depending on the location. Thereby, magnetization reversal at the time of data reading can be made difficult to occur, and a margin between erroneous writing at the time of data reading and normal data writing is increased.
  • the MTJ element 52 can be miniaturized.
  • CoFe 75 and 77 are used as the pinned layers constituting the first magnetic body
  • GaAsMn (magnetic semiconductor) 79 is used as the free layer constituting the second magnetic body
  • the tunnel insulating film is used as the nonmagnetic substance.
  • MgO 78 is used
  • SiN81 and SiO 2 82 are used as insulators
  • the read control line 83 is used as a conductor.
  • the present invention is not limited to this.
  • the free layer a structure in which a plurality of layers of magnetic materials are ferromagnetically coupled or antiferromagnetically coupled may be used.
  • a magnetic material that is magnetized perpendicularly to the film surface may be used as the free layer or the pinned layer.
  • the same effect can be obtained by applying a low potential to the potential of GaAsMn 79 at the time of data reading and reducing the resistance at the outer peripheral portion of the MTJ element 52 to reduce the current at the central portion.
  • the potential applied to the read control line 50 is opposite to the above.
  • FIG. 8 shows a cross-sectional view of the main part of the magnetoresistive memory device according to this example.
  • the circuit configuration of the magnetoresistive memory device of this embodiment is the same as that of the first embodiment.
  • the free layer (second magnetic material) is changed from a magnetic semiconductor GaAsMn79 to a conductor NiFe91, and the tunnel insulating film (nonmagnetic material) is changed from MgO78 to an oxide.
  • the difference is that each is changed to ZnO90 which is a semiconductor, and the others are the same.
  • the write operation of the memory array composed of the MTJ elements 52 of this embodiment is the same as that of the first embodiment.
  • the word address selection transistor 55 to be read by the word control circuit 56 is turned on by the word control line 53.
  • the read control circuit 57 sets the read control line 50 to 1.5V.
  • the bit termination line 54 is set to 0V by the bit termination circuit 59.
  • a read current of 20 ⁇ A is applied to the bit line 51.
  • a positive potential is applied from the read control line 83 to the outer periphery of the ZnO 90 via SiN 81 and SiO 2 82.
  • the energy barrier with respect to an electron becomes low, a tunnel probability rises and resistance becomes low.
  • the energy barrier of ZnO90 does not change due to NiFe91 and CoFe77 which are conductors.
  • the read current mainly flows in the outer peripheral portion of the MTJ element 52, and magnetization reversal due to spin electron injection does not occur in the central portion.
  • the output potential of the bit control circuit shows 0.21V and 0.41V. Data can be discriminated by applying the output potential of the bit control circuit 59 to the differential sense amplifier 61 and setting the reference potential Vref to 0.3V.
  • the margin between erroneous writing at the time of reading data and normal data writing can be increased.
  • erroneous writing during data reading can be made difficult to occur, and the MTJ element 52 can be miniaturized.
  • a semiconductor oxide semiconductor; ZnO90
  • the potential of the semiconductor is controlled by the potential of a conductor (read control line; Ta83) disposed in the vicinity thereof.
  • the resistance of the part facing the conductor the outer peripheral part of ZnO 90
  • the part (center part) away from the conductor in the semiconductor are made different so that spin injection into the magnetic substance is made non-uniform. . That is, the amount of spin electrons injected into the free layer at the time of data reading varies depending on the location. As a result, magnetization reversal during data reading can be made difficult to occur, and a margin between erroneous writing during data reading and normal writing is increased.
  • the MTJ element 52 can be miniaturized.
  • two layers of CoFe 75 and 77 are used as the pinned layer (first magnetic material), NiFe 91 is used as the free layer (second magnetic material), and ZnO (oxide semiconductor) 90 is used as the nonmagnetic material.
  • SiN 81 and SiO 2 82 are used as the insulator and the read control line 83 is used as the conductor has been described, the present invention is not limited to this.
  • a semiconductor such as amorphous silicon can be used instead of the oxide semiconductor ZnO90, and a stacked body formed by stacking with an insulator film such as MgO or AlO is used. Also good.
  • the present invention can be used for a magnetic random access memory (MRAM).
  • MRAM magnetic random access memory
  • the present invention can be applied to an MRAM based on a spin injection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 読み出し時の誤書き込み発生を抑制でき、書き込み電圧と読み出し電圧のマージンを大きくできる磁気抵抗記憶装置を提供する。磁気抵抗記憶装置は、磁気抵抗効果によりデータの書き込み及び読み出しを行う複数の磁気抵抗記憶素子を有する。複数の磁気抵抗記憶素子は、磁化方向を固定した第1の磁性体と、非磁性体と、データにより磁化状態が変化する第2の磁性体とを積層して形成された積層体で構成され、その積層体の一部に半導体が形成された構造体と、半導体に接して形成された絶縁体と、絶縁体に接して形成され、電位が制御できる導電体と、を有する。半導体の導電体と面する領域のポテンシャルは、導電体の電位制御により制御できる。

Description

磁気抵抗記憶装置及びその動作方法
 本発明は、磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)を構成する磁気抵抗記憶装置及びその動作方法に係り、特にスピン注入方式に基づくMRAMに関する。
 MRAMは、高集積・高速動作の観点から有望な不揮発性メモリである。MRAMにおいては、TMR(Tunnel MagnetoResistance)効果などの「磁気抵抗効果」を示す磁気抵抗素子が利用される。その磁気抵抗素子には、例えばトンネルバリヤ層が2層の強磁性体層で挟まれた磁気トンネル接合(MTJ; Magnetoresistive Tunnel Junction)が形成される。その2層の強磁性体層は、磁化の向きが固定されたピン層(磁化固定層)と、磁化の向きが反転可能なフリー層(磁化自由層)から構成される(非特許文献1参照)。
 ピン層とフリー層の磁化の向きが“反平行”である場合のMTJの抵抗値(R+ΔR)は、磁気抵抗効果により、それらが“平行”である場合の抵抗値(R)よりも大きくなることが知られている。MRAMは、このMTJを有する磁気抵抗素子をメモリセルとして用い、その抵抗値の変化を利用することによってデータを不揮発的に記憶する。メモリセルに対するデータの書き込みは、フリー層の磁化の向きを反転させることによって行われる。
 MRAMに対するデータの書き込み方法として、従来、アステロイド方式が知られている(非特許文献2参照)。アステロイド方式によれば、メモリセルサイズにほぼ反比例して、フリー層の磁化を反転させるために必要な反転磁界が大きくなる。つまり、メモリセルが微細化されるにつれて、書き込み電流が増加する傾向にある。
 微細化に伴う書き込み電流の増加を抑制することができる書き込み方式として、「スピン注入方式(例えば、非特許文献3参照)」が提案されている。スピン注入(spin transfer)方式によれば、強磁性導体にスピン偏極電流(spin-polarized current)が注入され、その電流を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によって磁化が反転する(以下、「スピン注入磁化反転:Spin Transfer Magnetization Switching」と参照される)。スピン注入磁化反転の概略を、図9を参照することによって説明する。
 図9において、磁気抵抗素子は、フリー層101、ピン層103、及びフリー層101とピン層103に挟まれた非磁性層であるトンネルバリヤ層102を備えている。ここで、磁化の向きが固定されたピン層103は、フリー層101よりも厚くなるように形成されており、スピン偏極電流を作る機構(スピンフィルター)としての役割を果たす。フリー層101とピン層103の磁化の向きが平行である状態は、データ“0”に対応付けられ、それらが反平行である状態は、データ“1”に対応付けられている。
 図9に示されるスピン注入磁化反転は、CPP(Current Perpendicular to Plane)方式により実現され、書き込み電流は膜面に垂直に注入される。具体的には、データ“0”からデータ“1”への遷移時、電流はピン層103からフリー層101へ流れる。この場合、スピンフィルターとしてのピン層103と同じスピン状態を有する電子が、フリー層101からピン層103に移動する。そして、スピントランスファー(スピン角運動量の授受)効果により、フリー層101の磁化が反転する。一方、データ“1”からデータ“0”への遷移時、電流の方向は逆転し、電流はフリー層101からピン層103へ流れる。この場合、スピンフィルターとしてのピン層103と同じスピン状態を有する電子が、ピン層103からフリー層101に移動する。スピントランスファー効果により、フリー層101の磁化が反転する。
 このように、スピン注入磁化反転では、スピン電子の移動によりデータの書き込みが行われる。膜面に垂直に注入されるスピン偏極電流の方向により、フリー層101の磁化の向きを規定することが可能である。ここで、書き込み(磁化反転)の閾値は電流密度に依存することが知られている。従って、メモリセルサイズが縮小されるにつれ、磁化反転に必要な書き込み電流が減少する。メモリセルの微細化に伴って書き込み電流が減少するため、スピン注入磁化反転は、MRAMの大容量化の実現にとって重要である。
 特許文献1に記載された磁気抵抗素子は、第1の強磁性層/トンネル障壁層/第2の強磁性層の3層構造を含む強磁性トンネル接合を有する。第1の強磁性層の保持力は、第2の強磁性層の保磁力より大きい。第2の強磁性層の端部の磁化は、第2の強磁性層の磁化容易軸方向と直交する成分を持つ方向に固着されている。
特開2005-150303号公報 Roy Scheuerlein et al., "A 10ns Read and Write Non-Volatile Memory Array Using a Magnetic Tunnel Junction and FET Switch in each Cell", 2000 IEEE International Solid-State Circuits Conference, DIGEST OF TECHNICAL PAPERS, pp. 128-129. M. Durlam et al., "Nonvolatile RAM based on Magnetic Tunnel Junction Elements", 2000 IEEE International Solid-State Circuits Conference, DIGEST OF TECHNICAL PAPERS, pp. 130-131. Yagami and Suzuki, "Research Trends in Spin Transfer Magnetiz ation Switching (スピン注入磁化反転の研究動向)", 日本応用磁気学会誌, Vol. 28, No. 9, 2004.
 スピン注入方式を用いた磁気抵抗素子の微細化を行う場合、書き込みにおいては電流密度が同じであればよいので、微細化時に磁気抵抗素子の単位面積あたりの抵抗を変えなければ、同じ書き込み電圧で書き込むことができる。このとき、サイズが小さくなっているので、素子抵抗は上昇する。読み出しにおいて、データによる読み出し電流差にある程度の電流量が必要と考えると、上昇している素子抵抗に比例して読み出し電圧を上げる必要がある。通常読み出し電圧は書き込み電圧より小さいが、読み出し電圧が書き込み電圧と同程度になれば、当然読み出し電圧により書き込みが行われデータが破壊されることになる。つまり、書き込み電圧と読み出し電圧との間には、電圧マージンが必要である。
 しかし、微細化時には書き込み電圧が一定でも、読み出し電圧が上昇してしまうため、電圧マージンがなくなる。このように、スピン注入方式を用いた磁気抵抗素子では、読み出し時に誤書き込みが発生してしまうようになるため、微細化が困難という問題があった。すなわち、スピン注入による磁気抵抗素子の書き込み手法では、データの読み出し時に誤書き込みが発生する確率が微細化と共に増加するという問題があった。
 本発明の目的は、データの読み出し時の誤書き込み発生を抑制でき、データの書き込み電圧と読み出し電圧のマージンを大きくでき、微細化が可能な磁気抵抗記憶装置を提供することにある。
 上記目的を達成するため、本発明に係る磁気抵抗記憶装置は、磁気抵抗効果によりデータの書き込み及び読み出しが可能な複数の磁気抵抗記憶素子を有し、前記複数の磁気抵抗記憶素子は、磁化方向を固定した第1の磁性体と、非磁性体と、前記データにより磁化状態が変化する第2の磁性体とが積層して形成された積層体で構成され、かつ、その積層体の一部に半導体が形成された構造体と、前記半導体に接して形成された絶縁体と、前記絶縁体に接して形成され、かつ、電位が制御できる導電体と、を有し、前記半導体の前記導電体と面する領域のポテンシャルが、前記導電体の電位により制御できることを特徴とする。
 本発明によれば、データの読み出し時の誤書き込み発生を抑制でき、書き込み電圧と読み出し電圧のマージンを大きくでき、微細化が可能な磁気抵抗記憶装置を提供することができる。
本発明の第1の実施の形態に係る磁気抵抗記憶装置を示す概要図である。 本発明の第2の実施の形態に係る磁気抵抗記憶装置を示す概要図である。 本発明の第1と第2の実施の形態に係る磁気抵抗記憶装置を示す平面図である。 本発明の第1と第2の実施の形態に係る磁気抵抗記憶装置を示す平面図である。 本発明の第1の実施例に係る磁気抵抗記憶装置の主要部回路ブロック図である。 本発明の第1の実施例に係る磁気抵抗記憶装置のMTJ近傍の断面図である。 本発明の第1の実施例に係る磁気抵抗記憶装置のMTJ近傍の平面図である。 本発明の第2の実施例に係る磁気抵抗記憶装置の主要部断面図である。 関連技術の磁気抵抗記憶素子を示す構造図である。
符号の説明
1 第1の磁性体
2 非磁性体
3 第2の磁性体
4 絶縁体
5 導電体
 以下、本発明の実施の形態を図面を参照して説明する。
 [第一の実施の形態]
 図1を参照すると、本発明の第一の実施の形態として磁気抵抗記憶装置の主要部が示されている。
 本実施の形態の磁気抵抗記憶装置は、磁気抵抗効果によりデータの書き込み及び読み出しを行う複数の磁気抵抗記憶素子を有する。各磁気抵抗記憶素子は、磁化方向を固定した第1の磁性体1と、非磁性体2と、データにより磁化状態が変化する第2の磁性体3とを積層して形成された積層体で構成され、その積層体の一部に半導体が形成された構造体10と、絶縁体4と、導電体5とを有する。
 このうち、第1の磁性体1と第2の磁性体3と導電体5とには、それぞれ第1の電極6、第2の電極7、第3の電極8が接続され、それぞれの電位を制御できるようになっている本実施の形態では、積層体の一部に形成された半導体は、第2の磁性体3の一部もしくは全部に形成された磁性半導体である。第1の磁性体1と非磁性体2と第2の磁性体3とは、この順に接している。絶縁体4は、第2の磁性体3の非磁性体2と接した面と隣接する面に接して配置される。導電体5は、絶縁体4の第2の磁性体3とは反対の面に接して配置される。導電体5と絶縁体4の配置は、平面図である図3と図4に示すように、一部に形成する場合と、4つの面全部に形成する場合とのいずれでもよい。本実施の形態では、導電体5の電位により第2の磁性体3の導電体5と向かいあう表面のポテンシャルが変更できるよう、絶縁体4の厚さが設定される。
 次に、図1に示す磁気抵抗記憶装置によるデータの書き込み動作について説明する。
 まず、導電体5の電位を第3の電極8により、第1の電位に設定する。第1の電位は第2の磁性体3の導電体5に面した表面のポテンシャルが導電体5から離れた位置でのポテンシャルと同程度となるように設定される。次に、第1の電極6と第2の電極7との間に電流を流すことで、第1の磁性体1と第2の磁性体3との間でスピン電子の授受を行い、第2の磁性体3の磁化方向を設定する。第1の磁性体1から第2の磁性体3に電子を流す場合は、第2の磁性体3の磁化方向は第1の磁性体1と同じ向きとなる。逆向きに流す場合は、第2の磁性体3の磁化方向は第1の磁性体1と逆向きとなる。このようにして、第2の磁性体3の磁化方向を設定することでデータを書き込む。
 次に、図1に示す磁気抵抗記憶装置によるデータの読み出し動作について説明する。
 まず、導電体5の電位を第3の電極8により、第2の電位に設定する。第2の電位は第2の磁性体3の導電体5に面した表面のポテンシャルが導電体5から離れた位置でのポテンシャルと異なるように設定される。次に、第1の電極6と第2の電極7との間に電流を流すことで磁気抵抗記憶素子の抵抗を評価し、書き込まれていたデータを判断する。より具体的な例としては、電圧を印加して両者間に流れる電流や電流を流して発生する電圧を得、これを前もって設定した標準値と比較することで、磁気抵抗記憶素子の抵抗状態を判別し、第2の磁性体3の磁化方向、すなわち書き込まれていたデータを判定する。
 従って、本実施の形態によれば、データの書き込み状態においては第2の磁性体のポテンシャルが導電体5と面した部分と内部で同程度のため、第1の電極6と第2の電極7に電圧を印加して流れる電流は、第2の磁性体3の全体に一様に流れる。これに対し、データの読み出し状態においては、第2の磁性体3のポテンシャルが導電体5と面した部分と内部で異なるため、第2の磁性体3に部分的に流れる電流が少ない部分が発生する。このため、データの書き込み動作時の設定に比べ、データの読み出し動作時の設定では、磁化反転が発生する電流が大きくなり、これにより、データの読み出し動作時の誤書き込みが起こりにくくなる。
 なお、それぞれの磁性体は単層でも良く、また複数の磁性体を積層した構成、もしくは複数の磁性体を非磁性体を介して磁気的に結合させて積層した構成も可能である。また、磁性半導体と非磁性体との間に磁性体が形成された構造では、磁性体の平面方向の抵抗が非磁性体の抵抗より十分大きくなるように材料、厚さを設定する。このため、磁性半導体と非磁性体は接していることが望ましい。また、第1の磁性体がデータにより磁化状態が変化し、第2の磁性体が磁化方向を固定してある構造でも同様の効果を有する。
 以上のように本実施の形態の磁気抵抗記憶装置によれば、第2の磁性体の導電性をデータの書き込み時とデータの読み出し時に位置によって異ならせるため、データの読み出し時に誤書き込みが起こる可能性を抑制することが可能となり、データの書き込み電圧とデータの読み出し電圧のマージンを大きくすることができる。このため、微細化を図ることが可能となる。
 [第二の実施の形態]
 図2を参照すると、本発明の第二の実施の形態として磁気抵抗記憶装置の主要部が示されている。
 本実施の形態の磁気抵抗記憶装置は、磁気抵抗効果によりデータの書き込み及び読み出しを行う複数の磁気抵抗記憶素子を有し、各磁気抵抗記憶素子は、磁化方向を固定した第1の磁性体1と、非磁性体2と、データにより磁化状態が変化する第2の磁性体3とを積層して形成された積層体で構成され、その積層体の一部に半導体が形成された構造体10と、絶縁体4と、導電体5とを有する。
 このうち、第1の磁性体1と第2の磁性体3と導電体5とには、それぞれ第1の電極6、第2の電極7、第3の電極8が接続され、それぞれの電位を制御できるようになっている。本実施の形態では、積層体の一部に形成された半導体は、非磁性体2の一部もしくは全部に形成された半導体である。第1の磁性体1と非磁性体2と第2の磁性体3とは、この順に接している。絶縁体4は、非磁性体2の第2の磁性体3と接した面と隣接する面に接して配置される。導電体5は、絶縁体4の非磁性体2とは反対の面に接して配置される。導電体5と絶縁体4の配置は、平面図である図3と図4に示すように、一部に形成する場合と、4つの面全部に形成する場合とのいずれでもよい。本実施の形態では、導電体5の電位により非磁性体2の導電体5と向かいあう表面のポテンシャルが変更できるよう、絶縁体4の厚さが設定される。
 次に、図2に示す磁気抵抗記憶装置によるデータの書き込み動作について説明する。
 まず、導電体5の電位を第3の電極8により、第1の電位に設定する。第1の電位は非磁性体2の導電体5に面した表面のポテンシャルが導電体5から離れた位置でのポテンシャルと同程度となるように設定される。次に、第1の電極6と第2の電極7との間に電流を流すことで、第1の磁性体1と第2の磁性体3との間でスピン電子の授受を行い、第2の磁性体3の磁化方向を設定する。第1の磁性体1から第2の磁性体3に電子を流す場合は、第2の磁性体3の磁化方向は第1の磁性体1と同じ向きとなる。逆向きに流す場合は第2の磁性体3の磁化方向は第1の磁性体1と逆向きとなる。このようにして、第2の磁性体3の磁化方向を設定することでデータを書き込む。
 次に、図2に示す磁気抵抗記憶装置によるデータの読み出し動作について説明する。
 まず、導電体5の電位を第3の電極8により、第2の電位に設定する。第2の電位は、非磁性体2の導電体5に面した表面のポテンシャルが導電体5から離れた位置でのポテンシャルと異なるように設定される。次に、第1の電極6と第2の電極7との間に電流を流すことで磁気抵抗記憶素子の抵抗を評価し、書き込まれていたデータを判断する。より具体的な例としては、電圧を印加して両者間に流れる電流や電流を流して発生する電圧を得、これを前もって設定した標準値と比較する事で磁気抵抗記憶素子の抵抗状態を判別し、第2の磁性体3の磁化方向、すなわち書き込まれていたデータを判定する。
 本実施の形態によれば、書き込み状態においては非磁性体2のポテンシャルが導電体5と面した部分と内部で同程度のため、第1の電極6と第2の電極7に電圧を印加して流れる電流は、第2の磁性体3の全体に一様に流れる。これに対し、データの読み出し状態においては、非磁性体2のポテンシャルが導電体5と面した部分と内部で異なるため、第2の磁性体3に部分的に流れる電流が少ない部分が発生する。このため、データの書き込み動作時の設定に比べ、データの読み出し動作時の設定では、磁化反転が発生する電流が大きくなり、これにより、データの読み出し動作時の誤書き込みが起こりにくくなる。
 従って、本実施形態の磁気抵抗記憶装置によれば、第2の磁性体の導電性をデータの書き込み時とデータの読み出し時に位置によって異ならせるため、データの読み出し時に誤書き込みが起こる可能性を抑制することが可能となり、データの書き込み電圧とデータの読み出し電圧のマージンを大きくすることができる。このため、微細化を図ることが可能となる。
 なお、上記第一の実施形態では、磁気抵抗記憶素子の構造体(第1の磁性体、非磁性体、第2の磁性体)を構成する積層体の一部に形成された半導体が、第2の磁性体の全部もしくは一部の層に形成された磁性半導体である場合を、また第二の実施形態では、非磁性体の全部もしくは一部の層に形成された半導体である場合をそれぞれ説明しているが、本発明はこれに限定されない。例えば、半導体は、第2の磁性体の一部の層に形成された磁性半導体であり、その磁性半導体が非磁性体と接している場合や、第1の磁性体の全部もしくは一部の層が磁性半導体である場合、或いは、第1の磁性体の一部の層が磁性半導体であり、その磁性半導体が非磁性体と接している場合でもよい。これらの場合でも、上記と同様の効果が得られる。
 また、上記第一及び第二の実施形態では、導電体の電位がデータの書き込み時とデータの読み出し時とで異なるように、導電体の電位をそれぞれ第1の電位と第2の電位とに設定して制御しているが、本発明はこれに限らない。例えば、半導体内のポテンシャル分布がデータの書き込み時に読み出し時より一様であるように導電体の電位を制御してもよい。又は、半導体の導電体に面した領域の抵抗がデータの読み出し時にデータの書き込み時より低くなるように導電体の電位を制御してもよい。或いは、半導体の導電体に面した領域の抵抗がデータの読み出し時にデータの書き込み時より高くなるように導電体の電位を制御してもよい。これらの場合でも、上記と同様の効果が得られる。
 次に、本発明の第一の実施例について説明する。
 図5に本実施例に係る磁気抵抗記憶装置の主要部回路ブロック図が、図6に主要部断面図が、図7に主要部平面図が示されている。なお、図6の断面図は、図7中のA-A’線に沿ったものである。
 図5に示すように、本実施例の磁気抵抗記憶装置の回路は、一方向に延在する複数の読み出し制御線50と、一方向に延在する複数のビット線51と、読み出し制御線50とビット線51の交差部にアレイ状に配置された磁気抵抗記憶素子であるMTJ素子52と、読み出し制御線50と並んで延在するワード制御線53と、ビット線51と並んで延在するビット終端線54と、MTJ素子52毎に配置された選択トランジスタ55と、ワード制御回路56と、読み出し制御回路57と、ビット制御回路58と、ビット終端回路59と、センスアンプ60とを有する。
 MTJ素子52は、フリー層(第2の磁性体)とピン層(第1の磁性体)とにそれぞれ電気的に接続された端子を2つ有し、その2つの端子のうちの一つの端子はビット線51に、もう一つの端子は選択トランジスタ55のドレインにそれぞれ接続される。選択トランジスタ55のソースは、ビット終端線54を介して、ビット終端回路59に接続される。選択トランジスタ55のゲートは、ワード制御線53を介してワード制御回路56に接続される。読み出し制御線50は、読み出し制御回路57に接続される。ビット線51は、ビット制御回路58に接続される。ビット制御回路58の出力電位は、センスアンプ60の一方の入力に接続される。センスアンプ60のもう一つの入力には、参照電位Vrefが供給される。
 次に、図6を参照して、本実施例のMTJ素子52の製造方法について説明する。
 まず、トランジスタ、配線等が形成された半導体基板において、下層配線との接続用のプラグ70を形成した層間絶縁膜71に、Ta72を10nm、シードNiFe73を1nm、反強磁性体PtMn74を20nm、ピン層(第1の磁性体)となるCoFe(ピン層磁性体1)75を2nm、Ru76を0.8nm、ピン層(第1の磁性体)となるCoFe(ピン層磁性体2)77を2nm、トンネル絶縁膜(非磁性体)となるMgO78を1nm、フリー層(第2の磁性体)となる磁性半導体(フリー層磁性半導体)であるGaAsMn79を2nm、Ta80を50nm成膜する。次に、275℃、2時間、1T程度の磁場中でアニールし、ピン層の磁化方向を設定する。
 次に、フォトリソグラフィ技術によりパターニングしたレジストをマスクとして、Ta80をRIE(Reactive Ion Etching:反応性イオンエッチング)によりMTJ形状に加工し、レジストをアッシングと有機洗浄により除去する。その後Taをマスクとしてミリング法によりGaAsMn79をMTJ形状に加工し、その後、酸化防止のための絶縁体であるSiN81を20nm全面に成膜する。再度、フォトリソグラフィ技術によりレジストパターンを形成し、ミリング法とRIEによりMgO78からTa72を加工し、レジスト除去後、絶縁体であるSiO82を20nm成膜する。
 ここで、本実施例のフリー層(第2の磁性体)、及び読み出し制御線(導電体)の形状は、図7に示すように長軸が0.2μm、短軸が0.1μmの楕円形である。その後、全面に読み出し制御線となるTa83を200nm成膜し、フォトリソグラフィ技術により、読み出し制御線形状にRIEを用いて加工する。図7では、MTJ素子52が読み出し制御線であるTa83の幅より大きいが、MTJ素子52の側壁のTa83はエッチングされにくいため、MTJ素子52を囲むように残ることになる。
 次に、全体に層間絶縁膜となるSiO84をCVD法により200nm成膜する。MTJ素子52上のSiO84をCMPにより除去してTa80を露出させ、さらに層間絶縁膜となるSiO85をCVD法により200nm成膜する。Ta80上にビアを形成し、ビット線86を形成する。これにより、MTJ素子52が形成できる。
 次に、本実施例のMTJ素子52で構成されるメモリアレイのデータの書き込み動作について説明する。
 まず、読み出し制御回路57により読み出し制御線50を0Vに設定する。さらに、ワード制御回路56によりワード制御線53の電位を制御し、書き込みを行うワードアドレスのすべての選択トランジスタ55をオン状態にする。他の選択トランジスタ55は、オフ状態にする。さらに、データを書き込むビットアドレスのみに対し、ビット制御回路58とビット終端回路59によりビット線51とビット終端線54との間に電位差を与え、MTJ素子52のフリー層とピン層との間に書き込み電流、たとえば500μAを流す。ピン層から電子を流し込むことにより、フリー層の磁化方向をピン層と同じ向きにすることができる。逆方向に電流を流すことで、フリー層の磁化方向を逆向きにすることができる。書き込み後、ビット線51の電流を停止し、ワード制御線53により選択トランジスタ55をオフ状態にする。このように、MTJに流す電流方向により、所望のデータの書き込みができる。
 次に、本実施例のMTJ素子52で構成されるメモリアレイのデータの読み出しについて説明する。
 まず、ワード制御回路56により読み出しを行うワードアドレスの選択トランジスタ55をワード制御線53によりオン状態にする。また読み出し制御回路57により読み出し制御線50を1.5Vに設定する。さらにビット終端回路59によりビット終端線54を0Vにする。ビット線51に読み出し電流20μAを印加する。このとき、GaAsMn79の外周には、SiN81とSiO82を介して、読み出し制御線83からプラスの電位が印加される。これにより、p型であるGaAsMn79の外周部では、抵抗が高くなる。このため、読み出し電流は、主にMTJ素子52の中央部に流れるようになり、外周部ではスピン電子注入による磁化反転が起こらなくなる。
 これにより、データの読み出し時の誤書き込みを抑制することができる。データの読み出し状態でのMTJ素子52がデータにより10kΩと20kΩの抵抗値となり、各トランジスタのオン抵抗が1kΩとすると、ビット制御回路58の出力電位は、0.21Vと0.41Vを示す。ビット制御回路58の出力電位を差動センスアンプ61に与え、参照電位Vrefに0.3Vを設定することでデータを判別することができる。
 このように、本実施例の素子構成、回路構成とデータの書き込み・読み出し方法を用いることで、データの読み出し時の誤書き込みと通常のデータの書き込みとのマージンを大きくすることができる。この結果、データの読み出し時における誤書き込みを起こりにくくすることができ、MTJ素子52の微細化を図ることが可能となる。
 すなわち、本実施例によれば、MTJ素子52内に半導体(フリー層磁性半導体;GaAsMn79)を挿入し、その近傍に配置した導電体(読み出し制御線;Ta83)の電位により、半導体のポテンシャルを制御し、データの読み出し時には、半導体内の導電体に面した部分(GaAsMn79の外周部)と離れた部分(中央部)の抵抗を異ならせることで、磁性体へのスピン注入を不均一にさせている。つまり、データの読み出し時のフリー層へのスピン電子注入量を場所によって変えている。これにより、データの読み出し時の磁化反転を起こりにくくでき、データの読み出し時の誤書き込みと通常のデータの書き込みとのマージンを大きくしている。本方法を用いることにより、MTJ素子52の微細化が可能となる。
 なお、本実施例では、第1の磁性体を構成するピン層としてCoFe75、77を、第2の磁性体を構成するフリー層としてGaAsMn(磁性半導体)79を、非磁性体としてトンネル絶縁膜となるMgO78を、絶縁体としてSiN81、SiO82を、導電体として読み出し制御線83をそれぞれ用いた場合を説明しているが、本発明はこれに限定されない。
 例えば、フリー層として、複数層の磁性体が強磁性結合や反強磁性結合した構造を用いても良い。また、フリー層やピン層として膜面に垂直に磁化する磁性体材料を用いても良い。また、データの読み出し時にGaAsMn79の電位に対し低い電位を与え、MTJ素子52の外周部の抵抗を下げて中央部の電流を少なくする方法でも同様の効果が得られる。また、フリー層を構成する磁性半導体として、n型磁性半導体を用いる場合は、読み出し制御線50に与える電位が上記とは逆となる。
 次に、本発明の第二の実施例について説明する。
 図8に本実施例に係る磁気抵抗記憶装置の主要部断面図が示されている。本実施例の磁気抵抗記憶装置の回路構成は、第一の実施例と同様である。また、MTJ素子52の製造方法についても、フリー層(第2の磁性体)を、磁性半導体であるGaAsMn79から導電体であるNiFe91に、またトンネル絶縁膜(非磁性体)を、MgO78から酸化物半導体であるZnO90にそれぞれ変更した点が相違し、その他は同様である。さらに、本実施例のMTJ素子52で構成されるメモリアレイの書き込み動作も、第一の実施例と同様である。
 次に、本実施例のMTJ素子52で構成されるメモリアレイのデータの読み出し動作について説明する。
 まず、ワード制御回路56により読み出しを行うワードアドレスの選択トランジスタ55をワード制御線53によりオン状態にする。また、読み出し制御回路57により読み出し制御線50を1.5Vに設定する。さらに、ビット終端回路59によりビット終端線54を0Vにする。ビット線51に読み出し電流20μAを印加する。このとき、ZnO90の外周には、SiN81とSiO82を介して読み出し制御線83からプラスの電位が印加される。これにより、ZnO90の外周部では、電子に対するエネルギーバリアが低くなり、トンネル確率が上昇し抵抗が低くなる。中央部では、導電体であるNiFe91とCoFe77により、ZnO90のエネルギーバリアは変化しない。このため、読み出し電流は主にMTJ素子52の外周部に流れるようになり、中央部ではスピン電子注入による磁化反転が起こらなくなる。
 これにより、データの読み出し時の誤書き込みを抑制することができる。データの読み出し状態でのMTJ素子52がデータにより10kΩと20kΩの抵抗値となり、各トランジスタのオン抵抗が1kΩとすると、ビット制御回路の出力電位は、0.21Vと0.41Vを示す。ビット制御回路59の出力電位を差動センスアンプ61に与え、参照電位Vrefに0.3Vを設定することでデータを判別することができる。
 このように、本実施例の素子構成、回路構成とデータの書き込み・読み出し方法を用いることで、データの読み出し時の誤書き込みと通常のデータの書き込みとのマージンを大きくすることができる。この結果、データの読み出し時における誤書き込みを起こりにくくすることができ、MTJ素子52の微細化を図ることが可能となる。
 すなわち、本実施例によれば、MTJ素子52内に半導体(酸化物半導体;ZnO90)を挿入し、その近傍に配置した導電体(読み出し制御線;Ta83)の電位により、半導体のポテンシャルを制御し、データの読み出し時には、半導体内の導電体に面した部分(ZnO90の外周部)と離れた部分(中央部)の抵抗を異ならせることで、磁性体へのスピン注入を不均一にさせている。つまり、データの読み出し時のフリー層へのスピン電子注入量を場所によって変えている。これにより、データの読み出し時の磁化反転を起こりにくくでき、データの読み出し時の誤書き込みと通常の書き込みとのマージンを大きくしている。本方法を用いることにより、MTJ素子52の微細化が可能となる。
 なお、本実施例では、ピン層(第1の磁性体)として2層のCoFe75、77を、フリー層(第2の磁性体)としてNiFe91を、非磁性体としてZnO(酸化物半導体)90を、絶縁体としてSiN81とSiO82を、導電体として読み出し制御線83をそれぞれ用いた場合を説明しているが、本発明はこれに限定されない。
 例えば、非磁性体として、酸化物半導体であるZnO90の代わりにアモルファスシリコンなどの半導体を用いることも可能であり、またMgOやAlOなどの絶縁体膜と積層して形成された積層体を用いても良い。
 以上、実施の形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施の形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2008年2月28日に出願された日本出願特願2008-047656号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上説明したように、本発明は、磁気ランダムアクセスメモリ(MRAM)に利用可能である。特に、本発明は、スピン注入方式に基づくMRAMに利用可能できる。

Claims (14)

  1.  磁気抵抗効果によりデータの書き込み及び読み出しが可能な複数の磁気抵抗記憶素子を有し、
     前記複数の磁気抵抗記憶素子は、
     磁化方向を固定した第1の磁性体と、非磁性体と、前記データにより磁化状態が変化する第2の磁性体とを積層して形成された積層体で構成され、かつ、その積層体の一部に半導体が形成された構造体と、
     前記半導体に接して形成された絶縁体と、
     前記絶縁体に接して形成され、かつ、電位が制御できる導電体と、を有し、
     前記半導体の前記導電体と面する領域のポテンシャルが、前記導電体の電位により制御できることを特徴とする磁気抵抗記憶装置。
  2.  前記半導体は、前記第2の磁性体の全部もしくは一部の層に形成された磁性半導体であることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  3.  前記半導体は、前記第2の磁性体の一部の層に形成された磁性半導体であり、前記磁性半導体が前記非磁性体と接していることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  4.  前記半導体は、前記第1の磁性体の全部もしくは一部の層に形成された磁性半導体であることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  5.  前記半導体は、前記第1の磁性体の一部の層に形成された磁性半導体であり、前記磁性半導体が前記非磁性体と接していることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  6.  前記半導体は、前記非磁性体の全部もしくは一部の層に形成された半導体であることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  7.  前記導電体の電位が、前記データの読み出し時と前記データの書き込み時とで異なることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  8.  前記半導体内のポテンシャル分布が、前記データの書き込み時に前記データの読み出し時より一様であることを特徴とする請求項1に記載の磁気抵抗記憶装置。
  9.  前記半導体の前記導電体に面した領域の抵抗が、前記データの読み出し時に前記データの書き込み時より低いことを特徴とする請求項1に記載の磁気抵抗記憶装置。
  10.  前記半導体の前記導電体に面した領域の抵抗が、前記データの読み出し時に前記データの書き込み時より高いことを特徴とする請求項1に記載の磁気抵抗記憶装置。
  11.  請求項1に記載の磁気抵抗記憶装置の動作方法であって、
     前記導電体の電位が前記データの読み出し時と前記データの書き込み時とで異なるように前記導電体の電位を制御することを特徴とする磁気抵抗記憶装置の動作方法。
  12.  請求項1に記載の磁気抵抗記憶装置の動作方法であって、
     前記半導体内のポテンシャル分布が前記データの書き込み時に前記データの読み出し時より一様であるように前記導電体の電位を制御することを特徴とする磁気抵抗記憶装置の動作方法。
  13.  請求項1に記載の磁気抵抗記憶装置の動作方法であって、
     前記半導体の前記導電体に面した領域の抵抗が前記データの読み出し時に前記データの書き込み時より低くなるように前記導電体の電位を制御することを特徴とする磁気抵抗記憶装置の動作方法。
  14.  請求項1に記載の磁気抵抗記憶装置の動作方法であって、
     前記半導体の前記導電体に面した領域の抵抗が前記データの読み出し時に前記データの書き込み時より高くなるように前記導電体の電位を制御することを特徴とする磁気抵抗記憶装置の動作方法。
PCT/JP2009/053688 2008-02-28 2009-02-27 磁気抵抗記憶装置及びその動作方法 WO2009107780A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-047656 2008-02-28
JP2008047656 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107780A1 true WO2009107780A1 (ja) 2009-09-03

Family

ID=41016165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053688 WO2009107780A1 (ja) 2008-02-28 2009-02-27 磁気抵抗記憶装置及びその動作方法

Country Status (1)

Country Link
WO (1) WO2009107780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060239A1 (ja) * 2013-10-22 2015-04-30 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203332A (ja) * 1999-12-13 2001-07-27 Motorola Inc 集積された半導体デバイスを有するmram
JP2004128085A (ja) * 2002-09-30 2004-04-22 Toshiba Corp 磁気抵抗効果素子
WO2007036860A2 (en) * 2005-09-30 2007-04-05 Nxp B.V. Nanowire magnetic random access memory
JP2008004625A (ja) * 2006-06-20 2008-01-10 Sony Corp 記憶素子及びメモリ
JP2008226901A (ja) * 2007-03-08 2008-09-25 Toshiba Corp 縦型スピントランジスタ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203332A (ja) * 1999-12-13 2001-07-27 Motorola Inc 集積された半導体デバイスを有するmram
JP2004128085A (ja) * 2002-09-30 2004-04-22 Toshiba Corp 磁気抵抗効果素子
WO2007036860A2 (en) * 2005-09-30 2007-04-05 Nxp B.V. Nanowire magnetic random access memory
JP2008004625A (ja) * 2006-06-20 2008-01-10 Sony Corp 記憶素子及びメモリ
JP2008226901A (ja) * 2007-03-08 2008-09-25 Toshiba Corp 縦型スピントランジスタ及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060239A1 (ja) * 2013-10-22 2015-04-30 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
US9577182B2 (en) 2013-10-22 2017-02-21 Tohoku University Magnetoresistance effect element and magnetic memory
JPWO2015060239A1 (ja) * 2013-10-22 2017-03-09 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
TWI621120B (zh) * 2013-10-22 2018-04-11 Univ Tohoku Magnetoresistance effect element and magnetic memory

Similar Documents

Publication Publication Date Title
JP6200471B2 (ja) 磁気メモリ
JP4384196B2 (ja) スピンfet、磁気抵抗効果素子及びスピンメモリ
US7012832B1 (en) Magnetic memory cell with plural read transistors
TWI395356B (zh) 使用保護側壁鈍化之磁性元件
US8482968B2 (en) Non-volatile magnetic tunnel junction transistor
US20160133832A1 (en) Method of manufacturing magnetoresistive element(s)
US20140210025A1 (en) Spin transfer mram element having a voltage bias control
JP5201539B2 (ja) 磁気ランダムアクセスメモリ
JP2007273493A (ja) 磁気メモリ装置及びその製造方法
US20140217487A1 (en) Stt-mram and method of manufacturing the same
JP2007273495A (ja) 磁気メモリ装置及びその駆動方法
JP2008171882A (ja) 記憶素子及びメモリ
JP2008066606A (ja) スピンメモリ及びスピンfet
US11730001B2 (en) Tunnel magnetoresistive effect element, magnetic memory, and built-in memory
KR101958420B1 (ko) 자기 메모리소자 및 그 동작방법
JP2008187048A (ja) 磁気抵抗効果素子
WO2010113748A1 (ja) 強磁性ランダムアクセスメモリ
US8036024B2 (en) Magnetic storage element storing data by magnetoresistive effect
JP2012028489A (ja) 磁気記憶装置
JP2010003850A (ja) 磁気素子及び集積回路並びに磁気ランダムアクセスメモリ
JP2006196687A (ja) 磁気メモリ
US7683446B2 (en) Magnetic memory using spin injection flux reversal
WO2009107780A1 (ja) 磁気抵抗記憶装置及びその動作方法
JP2011253884A (ja) 磁気記憶装置
JP5625380B2 (ja) 磁気抵抗記憶素子及び磁気ランダムアクセスメモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP