WO2009107616A1 - 透明薄膜電極 - Google Patents

透明薄膜電極 Download PDF

Info

Publication number
WO2009107616A1
WO2009107616A1 PCT/JP2009/053317 JP2009053317W WO2009107616A1 WO 2009107616 A1 WO2009107616 A1 WO 2009107616A1 JP 2009053317 W JP2009053317 W JP 2009053317W WO 2009107616 A1 WO2009107616 A1 WO 2009107616A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent thin
film electrode
thin film
light
electrode
Prior art date
Application number
PCT/JP2009/053317
Other languages
English (en)
French (fr)
Inventor
利彦 田中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2009801064296A priority Critical patent/CN101960535B/zh
Priority to GB1014288.3A priority patent/GB2470317B/en
Priority to DE112009000460T priority patent/DE112009000460T5/de
Priority to US12/919,143 priority patent/US20110001905A1/en
Publication of WO2009107616A1 publication Critical patent/WO2009107616A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a transparent thin film electrode used for a liquid crystal display device, a light emitting element, and the like.
  • transparent thin-film electrodes made of indium tin oxide are used.
  • Transparent thin film electrodes made of ITO have both high conductivity and high transparency, and are indispensable for the spread of liquid crystal display devices.
  • various types of light-emitting diodes that have been actively studied in recent years particularly organic light-emitting diodes using organic molecules as light-emitting materials (commonly referred to as OLEDs or organic EL), are electrodes that inject charges into the light-emitting materials and light from the light-emitting materials.
  • a transparent thin film electrode that can transmit light is indispensable for the spread, and a transparent thin film electrode made of ITO and having no polarizing property is widely used like a liquid crystal display device.
  • indium has a problem in terms of stable supply and cost because it has a small amount of resources and soars due to tight supply and demand.
  • many alternative materials have been studied centering on inorganic oxides.
  • conductive polymers for example, see Patent Document 1
  • carbon nanotubes are ideal materials in the sense that they do not substantially contain rare metals and have no problem of resource supply or cost.
  • the conductivity was lower than that of ITO.
  • the thin film electrode is made thick to compensate for this, the transparency is lowered and there is a problem that it is not suitable for use.
  • An object of the present invention is to provide a transparent thin film electrode that does not use indium as a material, and to provide a liquid crystal display device or a light emitting element having industrially sufficient performance using the transparent thin film electrode.
  • the present inventor surprisingly orients the conductive polymer, carbon nanotube, anisotropic metal fine particle, or metal fine wire used for the transparent thin film electrode and manifests it there.
  • the liquid crystal display device and the light emitting element are configured to find that a thin film that polarizes transmitted light can be used as the transparent thin film electrode, and the present invention has been completed. .
  • the present invention provides the following [1] to [25].
  • [1] A transparent thin film electrode, wherein light transmitted through the transparent thin film electrode is polarized.
  • the transparent thin-film electrode according to the above [1], comprising a conductive polymer.
  • the transparent thin-film electrode according to the above [1], comprising carbon nanotubes.
  • the transparent thin-film electrode according to the above [1], comprising anisotropic metal fine particles.
  • the transparent thin-film electrode according to the above [1] comprising a metal wire grid structure.
  • a transparent thin film electrode according to the above [5] comprising a film comprising a conductive polymer or carbon nanotube.
  • the polarization direction of the metal wire grid structure substantially matches the polarization direction of the transparent thin film electrode according to any one of [2] to [4].
  • the transparent thin-film electrode in any one.
  • the maximum value A1 of the absorbance with respect to polarized light in all directions within the film surface of the thin film is 0.1 or more. 13].
  • An electrode composite comprising the transparent thin-film electrode according to any one of the above [1] to [14] and at least one auxiliary electrode in contact therewith.
  • [17] A path from an arbitrary point X on the surface of the transparent thin film electrode not in contact with the auxiliary electrode to the auxiliary electrode, the length of the shortest path being perpendicular to the polarization direction of the transmitted light of the transparent thin film electrode
  • a liquid crystal display device comprising the transparent thin film electrode according to any one of [1] to [14] or the electrode composite according to any one of [15] to [17] .
  • the liquid crystal display device according to the above [18], further comprising at least one polarizing element, wherein the polarizing direction of the at least one polarizing element and the polarizing direction of the transparent thin film electrode substantially coincide.
  • the light emitting device is characterized in that the light emission in the light emitting layer is polarized, and the polarization direction of the transparent thin film electrode substantially coincides with the polarization direction.
  • the light emitting device according to the above [20], wherein the light emitting device is a light emitting diode.
  • the transparent thin film electrode of the present invention can be suitably used for a liquid crystal display device, a light emitting element, etc. at low cost without using indium which is a rare metal resource. Further, the conductivity in a specific direction in the plane is high, and the transmittance of polarized light in the specific direction in the plane is high. Therefore, in the liquid crystal display device and light emitting element of the present invention, it can be used as a transparent thin film electrode without reducing the light utilization efficiency. Further, the effect of the electrode composite of the present invention obtained by appropriate combination with the auxiliary electrode can be remarkably enhanced.
  • the transparent thin film electrode of the present invention is characterized in that light that is transmitted through the transparent thin film electrode (usually unpolarized light) is polarized.
  • this polarized light means polarized light in the case where light enters and transmits perpendicularly to the film surface.
  • the polarization direction of the transparent thin film electrode means the vibration direction of the electric field in the transmitted light under such incident conditions.
  • the material of the transparent thin-film electrode that polarizes such transmitted light it can be used by appropriately selecting from materials having electrical conductivity and known properties of polarizing transmitted light.
  • the transparent thin film electrode of the present invention contains other materials (subcomponents) as long as it does not impair its function, in addition to the above-mentioned materials having electrical conductivity and the property of polarizing transmitted light. Also good. Examples of such subcomponents include dopants, binders, plasticizers, stabilizers, liquid crystal alignment agents, and the like. Of these, the content of such subcomponents excluding the dopant is usually preferably small in order to reduce the resistance of the transparent thin film electrode.
  • the optimum dopant content of the conductive polymer to be used can be appropriately selected and determined according to the combination of the conductive polymer to be used and the dopant. Specifically, it is determined in consideration of stability, light absorption, conductivity, mass of dopant, and the like, but usually it is preferably 1% to 98% by weight fraction, more preferably 3% to 90%. 5% to 85% is more preferable, 5% to 50% is even more preferable, and 5% to 30% is particularly preferable. In the case of a wire grid polarizer, these subcomponents can usually be formed on the surface of the fine metal wires or the gap between the fine metal wires constituting them.
  • the conductive polymer used in the present invention will be described.
  • the conductive polymer can be appropriately selected from polymers known as conductive polymers. Examples thereof include polyacetylene, polyparaphenylene vinylene, polypyrrole, polyaniline, polythiophene, and derivatives thereof. Among these, polypyrrole, polyaniline, polythiophene, and derivatives thereof are preferable in terms of stability in a doped state.
  • a derivative soluble in the solution can be used when producing the transparent thin film electrode via a conductive polymer solution.
  • Such derivatives include those in which various alkyl chains or alkoxy chains are introduced into the side chain of the conductive polymer, and organic acids such as benzene sulfonic acid, camphor sulfonic acid, polystyrene sulfonic acid, etc. as the conductive polymer dopant.
  • organic acids such as benzene sulfonic acid, camphor sulfonic acid, polystyrene sulfonic acid, etc.
  • Specific examples include poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid.
  • some solvents can be dissolved without using a derivative.
  • dimethyl methacrylate or polyaniline dissolved in concentrated sulfuric acid can be used. If the intermediate of the conductive polymer is soluble, the intermediate is cast, coated, LB film accumulated, etc., converted into a conductive polymer by heat treatment, etc., and further doped. A method can also be used. Specific examples include polyparaphenylene vinylene obtained from a soluble polymer sulfonium salt and derivatives thereof.
  • the conductive polymer can be used by appropriately selecting from known methods for preparing a thin film having an oriented conductive polymer.
  • Specific examples of the method for forming a thin film include coating, printing, friction, transfer, vapor deposition, LB film accumulation, and the like.
  • examples of the orientation treatment include a mechanical method (stretching, rolling, rubbing, etc.), a method of applying a magnetic field or an electric field, a method of utilizing the surface orientation action, and the like.
  • an oriented thin film of polyparaphenylene vinylene can be prepared by heating and stretching a polymer film coated with a polymer sulfonium salt.
  • a clean surface such as glass or silicon oxide, a surface modified with a surface treatment agent, a surface of a deformed material such as stretching or rolling, friction transfer, etc.
  • an alignment action such as the surface of the polymer thin film obtained on the substrate and the surface of the rubbed material.
  • the transparent thin film electrode is formed on some smooth substrate.
  • the substrate is not particularly limited as long as it is stable as long as the purpose is not hindered. In many cases, it is required to use a transparent material for the purpose of the transparent thin film electrode. Examples of such a transparent base material include a base material made of quartz, glass, transparent resin, and the like. .
  • a transparent thin film electrode can be further formed on the element already formed partway.
  • One of the methods for producing the transparent thin film electrode of the present invention is a method in which a solution of a doped conductive polymer is applied and oriented.
  • One of the methods for producing the transparent thin film electrode of the present invention is a method in which a solution of an undoped conductive polymer is applied, oriented, and further doped.
  • One of the other preferable fabrication methods includes a method of accumulating an undoped or doped conductive polymer Langmuir Blodgett film.
  • the orientation method of the present invention can also be used. That is, an orientation method in which a force is applied to a film containing a solvent and a conductive polymer can also be used. In this case, after applying a force in one direction to the film containing the solvent and the conductive polymer, A transparent thin film electrode can be produced by removing the solvent. Examples of the method for applying force include stretching, friction, and compression. In this case, it is preferable to use a doped conductive polymer. Specific examples include poly (3,4-ethylenedioxythiophene) doped with an organic acid such as polystyrene sulfonic acid.
  • the conductive polymer constituting the transparent thin film electrode is preferably oxidized or reduced, that is, doped in terms of the conductivity of the transparent thin film electrode.
  • doping will be described.
  • a doping method a known doping method can be used, and specific examples include electrochemical doping and chemical doping.
  • Known dopants can be selected as appropriate. For example, iodine, bromine, chlorine, oxygen, arsenic pentafluoride, various anions (various sulfonic acids, chlorine ions, nitrate ions, etc.), sodium, potassium, various cations (Sodium ions, etc.).
  • doping can be performed before the formation of the thin film, can be performed during the formation of the thin film, or can be performed after the formation of the thin film, depending on the method of forming the transparent thin film electrode.
  • the carbon nanotube used in the present invention will be described.
  • the carbon nanotube known ones can be used, but those having a high purity are usually preferred.
  • Carbon nanotubes themselves are known to have semiconducting components and metallic components, but it is preferable that the ratio of metallic components is high in terms of electrical conductivity.
  • an oriented thin film of carbon nanotubes is formed.
  • an orientation method a mechanical method (stretching, rolling, rubbing, etc.), a method of applying a magnetic field or an electric field, and a surface orientation action are utilized. And the like. Specifically, for example, there is a method of forming a monomolecular film on the water surface and accumulating the LB film.
  • the wire grid structure used in the present invention will be described.
  • a known wire grid polarizer can be used.
  • the type of metal is not particularly limited as long as it can be processed into a thin line on a stable and smooth substrate, and it can be used alone or as an alloy.
  • gold, silver, aluminum, chromium, copper, etc., and alloys thereof can be mentioned.
  • another metal can be thinly attached to the surface of the base material in advance, and then the metal can be appropriately attached.
  • a method for producing a wire grid structure a known method for producing a wire grid polarizer for visible light can be used.
  • a method of obtaining a fine line and space of a metal film using a submicron fine line and space resist pattern obtained by interference exposure and electron beam lithography is widely known.
  • a method of forming a metal film on a transparent flexible substrate and stretching the substrate and the metal film is also known.
  • the wire grid structure used in the present invention can be combined with a conductive polymer or carbon nanotube to form the transparent thin film electrode of the present invention.
  • a film made of a conductive polymer or carbon nanotube is formed in the gap between the fine metal wires forming the wire grid structure or laminated with the entire wire grid structure.
  • the wire grid structure used in the present invention can be combined with another type of second transparent thin film electrode of the present invention to form one composite transparent thin film electrode.
  • other types of transparent thin-film electrodes of the present invention those comprising conductive polymers, carbon nanotubes, or anisotropic metal fine particles can be used.
  • the polarization direction inherently possessed by the wire grid structure substantially coincides with the polarization direction inherently possessed by the second transparent thin film electrode.
  • the unique polarization direction means a polarization direction of light vertically transmitted through each transparent thin film electrode in the state of the wire grid structure or each transparent thin film electrode of the film alone.
  • the degree of orientation (order parameter of orientation) S of the transparent thin film electrode of the present invention is preferably higher.
  • the degree of orientation substantially means an index obtained by evaluating the polarization of light transmitted through each transparent thin film electrode.
  • the transparent thin film electrode is a conductive polymer, it is generally known as an index that correlates with the molecular orientation state.
  • the index similarly correlates with some orientation state.
  • S is preferably 0.1 or more, more preferably 0.2 or more, further preferably 0.5 or more, still more preferably 0.6 or more, and particularly preferably 0.7 or more.
  • S can be measured by a known method such as polarization absorption spectrum, X-ray diffraction, etc., but usually a transmission polarization spectrum is measured, and the absorbance A1 with respect to incident light polarized in the direction in which the absorbance is maximized, is orthogonal to the direction.
  • the incident light is incident perpendicularly to the surface of the flat transparent thin film electrode.
  • the wavelength at which A1 is maximized is used as the measurement wavelength, but if the maximum is not clear, a wavelength having a relatively large A1 within the visible wavelength range can be appropriately selected and used.
  • the polarization direction means a direction in which the projection of the electric field vector of the light is maximum in a plane perpendicular to the light traveling direction.
  • S is preferably large. More specifically, S is preferably 0.1 or more, more preferably 0.3 or more, still more preferably 0.5 or more, even more preferably 0.7 or more, and 0 .8 or more is particularly preferable. Further, a smaller A2 can be used as a transparent thin film electrode with higher transparency. Specifically, A2 is preferably 0.5 or less, more preferably 0.3 or less, even more preferably 0.1 or less, and particularly preferably 0.05 or less. Moreover, the case where S is 0.5 or more and A2 is 0.3 or less is preferable, the case where S is 0.7 or more and A2 is 0.3 or less is more preferable, and S is 0.8 or more. And the case where A2 is 0.2 or less is particularly preferable.
  • the electrode composite of the present invention includes the transparent thin film electrode and at least one auxiliary electrode in contact therewith.
  • the transparent thin film electrode is formed on a smooth substrate, it is usually preferable to form an auxiliary electrode by laminating an auxiliary electrode on a part of the surface of the transparent thin film electrode or in contact with the transparent thin film electrode.
  • auxiliary electrodes A path from an arbitrary point X on the surface of the transparent thin film electrode that is not in contact with the auxiliary electrode in terms of lowering electrical resistance, to the auxiliary electrode, perpendicular to the polarization direction of the transmitted light of the transparent thin film electrode and shortest
  • the maximum value Lmax of the path length L is preferably smaller than half the square root of the area J of the surface of the transparent thin film electrode not in contact with the auxiliary electrode, more preferably 45% or less of the square root of J, It is more preferably 40% or less of the square root, and particularly preferably 30% or less of the square root of J.
  • the auxiliary electrode satisfying such a condition is arranged in such a way that the shape of the transparent thin film electrode not in contact with the auxiliary electrode is short in the polarization direction of the transmitted light of the transparent thin film electrode as shown in FIG.
  • Examples of such a shape include a rectangle, a parallelogram, and a rhombus.
  • the value Lmax is preferably smaller than 5 cm, more preferably smaller than 1 cm, further preferably smaller than 1 mm, particularly preferably smaller than 0.5 mm in terms of lowering the electric resistance.
  • the auxiliary electrode may or may not be transparent, but any material with high electrical conductivity can be used.
  • various carbons carbon black, carbon nanotube, graphite, etc.
  • metal copper, aluminum, chromium, gold, silver, platinum, iridium, osmium, tin, lead, titanium, molybdenum, tungsten, tantalum, niobium, vanadium Nickel, iron, manganese, cobalt, rhenium, etc.
  • a method for producing the auxiliary electrode those known methods can be used according to the selected material. For example, methods such as vapor deposition, sputtering, plating, coating, printing, and the like can be given.
  • the auxiliary electrode When an auxiliary electrode is laminated on a part of the transparent thin film electrode surface, the auxiliary electrode can be laminated by these methods.
  • the auxiliary electrode may be formed on a substrate on which a transparent thin film electrode is formed in advance, or may be formed on a part of the auxiliary electrode after the transparent thin film electrode is formed.
  • the liquid crystal display device of the present invention can be obtained by using the transparent thin film electrode of the present invention as at least a part of the transparent thin film electrode.
  • the liquid crystal display mode to be used among the known liquid crystal display modes, a display mode using at least one polarizing element can be preferably used. Examples of such display modes include twisted nematic (TN), super twisted nematic (STN), optically compensated (OCB), surface-stabilized ferroelectric liquid crystal (FLC), and in-plane switching. (IPS) type.
  • the transparent thin film electrode or electrode composite of the present invention is used as at least one of the electrodes for applying a voltage to the liquid crystal in these display mode devices.
  • the polarized light transmitted through the transparent thin film electrode is partially absorbed by the transparent thin film electrode.
  • substantially matching means minimizing the absorption, and the arrangement can be determined based on this. More specifically, a direction within 5 degrees from the direction in which absorption is minimized is preferable, and a direction within 3 degrees is more preferable.
  • a liquid crystal alignment inducing layer usually used is omitted and a transparent thin film electrode is used as the alignment inducing layer. Sometimes you can.
  • the light emitting device of the present invention is a light-emitting device having the transparent thin-film electrode of the present invention or the electrode composite of the present invention and a light-emitting layer, wherein light emitted from the light-emitting layer is polarized. It is a light emitting device in which the polarization directions of the electrodes substantially coincide.
  • a method of the light emitting element a method in which some polarized light is radiated from a light emitting portion among known light emitting elements can be used.
  • the light emitting diode in particular, the light emitting layer is an organic molecule and the polarized light is used.
  • the organic molecules used in the light-emitting layer can be appropriately selected from those known to be able to form polarized OLEDs.
  • conjugated polymers polyfluorene, polyphenylene, polyphenylene vinylene, polythiophene, etc.
  • fluorescent dyes Etc.
  • the transparent thin film electrode of the present invention is used as at least one of the electrodes. That is, a polarized OLED has at least a cathode, an anode, and a light emitting layer, and the transparent thin film electrode of the present invention is used as the cathode or anode or a part thereof. In terms of light emitting performance of the light emitting element, it is usually preferable to use it as an anode or a part thereof.
  • the light emitting layer is composed of oriented organic molecules.
  • Orientation can be performed by a known method, and specific examples include a dynamic method (stretching, rolling, rubbing, etc.), a method of applying a magnetic field or an electric field, a method of utilizing the surface orientation action, and the like. be able to.
  • a polarized OLED made of oriented organic molecules by the methods described in JP-T-10-50314, JP-A-8-30654, JP-A-10-508979, and JP-A-11-503178 Can be produced.
  • the degree of polarization of light emitted from the light emitting layer is preferably high.
  • the degree of polarization is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more.
  • Such a high degree of polarization can be realized by increasing the degree of orientation of the organic molecules.
  • the polarized light emitted from the light emitting layer is partially absorbed by the transparent thin film electrode, and the polarization direction of the transmitted light in the transparent thin film electrode is substantially matched with the polarized light so that this absorption is minimized.
  • substantially matching means that absorption is minimized, and the arrangement can be determined based on this. More specifically, a direction within 5 degrees from the direction in which absorption is minimized is preferable, and a direction within 3 degrees is more preferable. The details depend on the type of organic molecule, but in order to obtain such a match, the transparent thin film electrode and the light emitting layer should not be in direct contact so that the orientation of the transparent thin film electrode and the light emitting layer do not affect each other. Is usually preferred.
  • One suitable alignment method for this purpose is to use an alignment inducing layer in contact with the light emitting layer.
  • the surface in contact with the light emitting layer of the orientation inducing layer is aligned by a method such as friction, and the light emitting layer is aligned so as to have a desired polarization direction.
  • Such an orientation inducing layer preferably has a hole transporting property.
  • Example 1 (Creation of transparent thin film electrode 1)
  • chromium and then gold are vapor-deposited in advance on a portion 2 on the glass substrate 8 using a mask to form the auxiliary electrode 7.
  • An ultrathin film oriented with polytetrafluoroethylene was formed on this substrate by the method described in Nature, Vol. 352, pages 414 to 417 (1991). At this time, polytetrafluoroethylene is not formed in the portion 2.
  • Polyaniline is precipitated from concentrated sulfuric acid in which polyaniline is dissolved. Precipitation could be carried out by absorbing moisture from the atmosphere little by little.
  • the deposited polyaniline film is oriented, and the concentrated sulfuric acid solution can be removed to form a transparent thin film electrode. Good electrical contact is obtained between the transparent thin film electrode and the auxiliary electrode.
  • Example 2 (Creation of liquid crystal display elements)
  • the transparent thin film electrode prepared in Example 1 can be used as a TN type liquid crystal electrode in the configuration of FIG.
  • the polarization direction of the polarizing film 9 constituting the TN type liquid crystal is matched with the polarization direction of the transparent thin film electrode 6.
  • the polarization direction of the polarizing film 9 and the polarization direction of the transparent thin film electrode 6 ′ are matched.
  • the orientation of the director of the TN type liquid crystal can be controlled by applying polyimide as the liquid crystal orientation inducing layers 10 and 12 on the transparent thin film electrode and rubbing it.
  • the polarization direction is rotated by 90 degrees in the TN-aligned liquid crystal 11, so that the polarized light incident from above and passed through 9 Is not significantly absorbed at 6 and not significantly absorbed at 6 'and 15.
  • Example 3 (Creation of light emitting element)
  • the oriented poly [3- (4-octylthiophene)] is transferred onto the transparent thin film electrode prepared in Example 1 by the method described in Example 1 of JP-A-8-30654, Then, calcium and then aluminum are vapor-deposited as a cathode to produce a polarized OLED element.
  • the polarization direction of the light emitted from poly [3- (4-octylthiophene)] coincide with the polarization direction of the transmitted light of the transparent thin film electrode, brighter light emission can be obtained than in the case where they are not matched. .
  • Example 4 (Creation of transparent thin film electrode 1)
  • chromium and then gold are vapor-deposited in advance on a portion 2 on the glass substrate 8 using a mask to form the auxiliary electrode 7.
  • 20 layers of LB films of carbon nanotubes are accumulated on this substrate by the vertical dipping method (vertical dipping) described in Technical Document 2.
  • the resulting transparent thin film electrode has a D of about 1.8 near 750 nm and can be used as a transparent thin film electrode. (See Japanese Journal of Applied Physics, Vol. 42, pages 7629 to 7634 (2003).)
  • Example 5 (Creation of transparent thin film electrode 2) An aqueous solution of poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (BaytronP® A14083) was applied on a glass substrate. The aqueous solution was immersed in a watercolor brush and applied while reciprocating in a certain direction. The brush was moved intermittently while drying, and when the viscosity increased, it was left to dry. It was confirmed that the light transmitted through the film was polarized.
  • polystyrene sulfonic acid BaytronP® A14083
  • Example 6 (Creation of transparent thin film electrode 3) A wire grid polarizer for visible light composed of fine metal wires of aluminum or silver (width 100 nm, pitch 200 nm, wire thickness 50-100 nm) was formed on a glass substrate. A polyamic acid solution for liquid crystal was applied on the wire grid polarizer and heated to form a polyimide film (film thickness: 0.1 ⁇ m). A transparent thin film electrode was produced by rubbing this polyimide film with a cloth in parallel with the fine metal wires of the wire grid polarizer.
  • Example 7 (Production of TN liquid crystal display element) A liquid crystal cell was produced by bonding two transparent thin-film electrodes produced in Example 6 with the wire grid polarizer and the surface with polyimide facing each other. At this time, an epoxy resin mixed with 5 micron spacer beads was sandwiched around the periphery of the cell to obtain a liquid crystal cell having a cell gap of about 5 microns. At this time, the polarization direction of one transparent thin film electrode and the polarization direction of the other transparent thin film electrode were perpendicular. A TN liquid crystal composition was injected into the gap of the cell. When voltage was applied to the cell, changes in the light transmitted through the cell could be confirmed with the naked eye.
  • Example 8 (Creation of transparent thin film electrode 4) An aqueous solution (BaytronP® A14083) of poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid was applied on the wire grid polarizer prepared in Example 6 to a thickness of about 50 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明では、透明薄膜電極を透過する光が偏光することを特徴とする透明薄膜電極を提供する。また、導電性高分子を含んでなる前記透明薄膜電極またはカーボンナノチューブを含んでなる前記透明薄膜電極を提供する。これにより、資源量が少なく、需給の逼迫から急騰するなど安定的な供給とコストの面で問題のあるインジウムを用いることなく、透明薄膜電極、およびそれを用いた工業的に十分な性能を有する液晶表示装置または発光素子が提供できる。

Description

透明薄膜電極
 本発明は、液晶表示装置、発光素子、等に使用される透明薄膜電極に関する。
 近年、液晶表示装置の利用は飛躍的に伸長したが、ほとんど全ての液晶表示装置において、インジウムスズ酸化物(通称ITO)からなる透明薄膜電極が使用されている。ITOからなる透明薄膜電極は高い導電性と高い透明性を併せ持ち、液晶表示装置の普及に欠かせないものとなっている。また、近年研究が盛んな各種の発光ダイオード、特に有機分子を発光材料とする有機発光ダイオード(通称OLEDまたは有機EL)においても、発光材料に電荷を注入する電極であってかつ発光材料からの光が透過できる透明薄膜電極が普及に欠かせず、液晶表示装置同様にITOからなる偏光性は持たない透明薄膜電極が広く使用されている。
 ところがインジウムは、資源量が少なく需給の逼迫から急騰するなどの理由により、安定的な供給とコストの面で問題があった。そのため無機酸化物を中心として多くの代替材料が研究されてきた。これらの研究の中でも導電性高分子(例えば、特許文献1参照。)やカーボンナノチューブは、希少な金属を実質的に含まず資源供給やコストの問題が全く無いという意味では理想的な材料であると思われるが、ITOに比べて伝導性が低いという問題があった。またそれを補うために薄膜電極を厚くすると、透明性が落ちてしまい、使用に適さないという問題があった。
特開2006-282942号公報
 本発明の目的は、材料としてインジウムを用いない透明薄膜電極を提供すること、および該透明薄膜電極を用いて工業的に十分な性能を有する液晶表示装置または発光素子を提供することにある。
 そこで本発明者は、透明薄膜電極について鋭意検討を重ねた結果、驚くべきことに、透明薄膜電極に用いる導電性高分子、カーボンナノチューブ、異方性金属微粒子、又は金属細線を配向させ、そこで発現する透明薄膜電極の偏光方向を考慮して液晶表示装置や発光素子を構成することにより、透過した光を偏光させる薄膜が透明薄膜電極として十分に使用できることを見出し、本発明を完成させるに至った。
 即ち、本発明は下記[1]~[25]を提供する。
[1] 透明薄膜電極を透過する光が偏光することを特徴とする、透明薄膜電極。
[2] 導電性高分子を含んでなる、上記[1]記載の透明薄膜電極。
[3] カーボンナノチューブを含んでなる、上記[1]記載の透明薄膜電極。
[4] 異方性金属微粒子を含んでなる、上記[1]記載の透明薄膜電極。
[5] 金属のワイアグリッド構造を含んでなる、上記[1]記載の透明薄膜電極。
[6] 上記[5]記載の透明薄膜電極であって、かつ導電性高分子またはカーボンナノチューブを含んでなる膜を含む、透明薄膜電極。
[7] 上記[6]記載の透明薄膜電極であって、ワイアグリッド構造を形成する隣接する金属細線の間隙に、導電性高分子又はカーボンナノチューブを含んでなる膜が配置されている、透明薄膜電極。
[8][6]又は[7]に記載の透明薄膜電極であって、かつ導電性高分子又はカーボンナノチューブを含んでなる膜がワイアグリッド構造に積層されている、透明薄膜電極。
[9][5]記載の透明薄膜電極と、[2]~[4]のいずれか一項に記載の透明薄膜電極を含む複合した、透明薄膜電極。
[10][2]~[4]のいずれかに記載の透明薄膜電極が金属のワイアグリッド構造に積層されている、[9]記載の透明薄膜電極。
[11] 金属のワイアグリッド構造を形成する金属細線の間隙に、[2]~[4]のいずれかに記載の透明薄膜電極が配置されている、[9]記載の透明薄膜電極。
[12] 金属のワイアグリッド構造の偏光方向と、[2]~[4]のいずれかに記載の透明薄膜電極の偏光方向とが実質的に一致している、[9]~[11]のいずれかに記載の透明薄膜電極。
[13]透明薄膜電極における配向度Sが0.1以上である、上記[1]~[12]のいずれかに記載の透明薄膜電極。
[14] 透明薄膜電極の波長300~700nmの光の透過偏光吸収スペクトルにおいて、薄膜の膜面内のあらゆる方向の偏光に対する吸光度の最大値A1が0.1以上である、上記[1]~[13]のいずれかに記載の透明薄膜電極。
[15] 上記[1]~[14]のいずれかに記載の透明薄膜電極とこれに接する少なくとも1つ以上の補助電極を含むことを特徴とする、電極複合体。
[16] 補助電極と接していない透明薄膜電極の表面における任意の点Xから補助電極への経路であって、該透明薄膜電極の透過光の偏光方向に垂直であってかつ最短の経路の長さLの最大値Lmaxが補助電極と接していない該透明薄膜電極の表面の面積Jの平方根の半分よりも小さい、上記[15]記載の電極複合体。
[17] 補助電極と接していない透明薄膜電極の表面における任意の点Xから補助電極への経路であって、該透明薄膜電極の透過光の偏光方向に垂直であってかつ最短の経路の長さLの最大値Lmaxが5cmよりも小さい、上記[15]又は[16]記載の電極複合体。
[18] 上記[1]~[14]のいずれかに記載の透明薄膜電極、または上記[15]~[17]のいずれかに記載の電極複合体を有することを特徴とする、液晶表示装置。
[19] さらに少なくとも1つの偏光素子を有し、少なくとも1つの偏光素子の偏光方向と該透明薄膜電極の偏光方向が実質的に一致している、上記[18]記載の液晶表示装置。
[20] 上記[1]~[14]のいずれかに記載の透明薄膜電極、または上記[15]~[17]のいずれかに記載の電極複合体、さらに発光層を有する発光素子であって、該発光層における発光が偏光してなり、該偏光方向と該透明薄膜電極の前記偏光方向とが実質的に一致していることを特徴とする、発光素子。
[21] 発光素子が発光ダイオードである、上記[20]記載の発光素子。
[22] 発光ダイオードの発光層が配向した有機分子からなる、上記[21]記載の発光素子。
[23] 有機分子が高分子である、上記[22]記載の発光素子。
[24] 発光層といずれかの透明薄膜電極の間に少なくとも1層の配向誘起層を有する、上記[20]~[23]のいずれかに記載の発光素子。
[25] 溶媒と導電性高分子を含んでなる膜に力を加えることを特徴とする、上記[1]又は[2]記載の透明薄膜電極の製造方法。
 本発明の透明薄膜電極は、希少な金属資源であるインジウムを使用することなく、安価で液晶表示装置や発光素子等に好適に用いることができる。また、面内の特定方向の伝導度が高く、かつ面内の特定の方向の偏光の透過度が高い。そのため本発明の液晶表示装置や発光素子において、光の利用効率を落とすことなく透明薄膜電極として使用することが出来る。また、補助電極との適切な併用によって得られる本発明の電極複合体ではさらにその効果を著しく高めることが出来る。
実施例1の電極複合体の構造 実施例2の液晶表示素子の構造 実施例3の発光素子の構造 実施例8の透明薄膜電極の構造
符号の説明
 1 透明薄膜電極
 2 透明薄膜電極が補助電極と接する部分
 3 透明薄膜電極1の透過光の偏光方向
 4 補助電極と接していない該透明薄膜電極表面における任意の点X
 5 補助電極と接していない該透明薄膜電極表面における任意の点Xから補助電極への経路であって前記透明薄膜電極の透過光の偏光方向に垂直でかつ最短の経路の長さL
 6 透明薄膜電極(断面)
 6’ 透明薄膜電極(断面)
 7 補助電極(断面)
 8 基板(断面)
 9 偏光フィルム(透過光が13の方向に偏光する)
 10 液晶配向誘起層(表面の液晶のダイレクタは13の方向に配向する)
 11 TN配向した液晶
 12 液晶配向誘起層(表面の液晶のダイレクタは14の方向に配向する)
 13 透明薄膜電極6の透過光の偏光方向
 14 透明薄膜電極6‘の透過光の偏光方向
 15 偏光フィルム(透過光が14の方向に偏光する)
 16 基板
 17 基板
 18 正孔輸送層
 19 発光層(発光は21の方向に偏光する)
 20 陰極
 21 透明薄膜電極1の透過光の偏光方向
 22 透明薄膜電極
 23 基板
 24 導電性高分子の層
 25 金属電極
 以下、本発明について詳細に説明する。
 本発明の透明薄膜電極は、透明薄膜電極を透過する光(通常は無偏光の光)が偏光することを特徴とする。ここでこの偏光とは光が膜面に対して垂直に入射し透過した場合の偏光を意味する。又、本発明において透明薄膜電極の偏光方向とはこのような入射条件の透過光における電場の振動方向を意味する。このような透過する光が偏光する透明薄膜電極の材料としては、電気伝導性があり透過する光が偏光する性質が知られている材料から適宜選択して使用することが出来、このような材料としては導電性高分子、カーボンナノチューブ、金属ナノロッド等の異方性金属微粒子、金属細線、等が知られているが、電気伝導性や偏光の点で導電性高分子、カーボンナノチューブ、金属細線が好ましい。金属細線としてはワイアグリッド偏光子と呼ばれる金属のワイアグリッド構造を用いる。
 本発明の透明薄膜電極は、前記の電気伝導性があり透過した光が偏光する性質が知られている材料以外に、その機能を損なわない範囲で、他の材料(副成分)を含んでいてもよい。このような副成分としてはたとえば、ドーパント、バインダー、可塑剤、安定材、液晶配向剤、等が挙げられる。このうちドーパントを除くこのような副成分の含有量は透明薄膜電極の抵抗を下げるためには、通常少ないことが好ましく、具体的には重量分率で50%以下が好ましく、30%以下がさらに好ましく、20%以下がさらにより好ましく、10%以下が特に好ましい。一方、ドーパントについては用いる導電性高分子の最適なドーパント含有量を、用いる導電性高分子とドーパントの組み合わせにしたがって、適宜選択して定めることが出来る。具体的には、安定性、光吸収、伝導度、ドーパントの質量、等を考慮して定めるが、通常は重量分率で1%以上98%以下が好ましく、3%以上90%以下がより好ましく、5%以上85%以下がさらに好ましく、5%以上50%以下がさらにより好ましく、5%以上30%以下が特に好ましい。ワイアグリッド偏光子の場合、これらの副成分は通常金属細線の表面またはこれらを構成する金属細線の間隙に形成できる。
 本発明で使用する導電性高分子について説明する。導電性高分子には通常、導電性高分子として公知である高分子から適宜選択して用いることができる。このようなものとして、ポリアセチレン、ポリパラフェニレンビニレン、ポリピロール、ポリアニリン、ポリチオフェン、およびこれらの誘導体を挙げることが出来る。これらの中では、ドーピング状態での安定性の点ではポリピロール、ポリアニリン、ポリチオフェン、およびこれらの誘導体が好ましい。
 透明薄膜電極の作製方法にもよるが、導電性高分子の溶液を経由して透明薄膜電極を作製する場合には溶液に可溶な誘導体等を使用することができる。このような誘導体としては、導電性高分子の側鎖に各種のアルキル鎖やアルコキシ鎖を導入したもの、導電性高分子のドーパントにベンゼンスルホン酸、カンファースルホン酸、ポリスチレンスルホン酸、等の有機酸を使用したものを挙げることが出来る。具体的にはたとえば、ポリ(3,4-エチレンジオキシチオフェン)にポリスチレンスルホン酸をドーピングしたものを挙げることが出来る。又、溶媒によっては誘導体を用いずに溶解できる場合もある。たとえば、ジメチチルホルムアミドや濃硫酸に溶解したポリアニリンを挙げることができる。また、導電性高分子の中間体に溶解性が有る場合には、中間体のキャスト、塗布、LB膜累積、等を行い、熱処理等によってこれを導電性高分子に変換し、さらにドーピングを行う方法も用いることが出来る。具体的には可溶性の高分子スルホニウム塩から得られるポリパラフェニレンビニレンとその誘導体が挙げられる。
 次に導電性高分子からなる透明薄膜電極の作製方法について述べる。導電性高分子の配向した薄膜の公知の作成方法から適宜選択して使用することができる。具体的に薄膜の形成方法としては、塗布、印刷、摩擦、転写、蒸着、LB膜累積、等を挙げることが出来る。この際配向処理としてたとえば、力学的な方法(延伸、圧延、ラビング、等)、磁場または電場を印加する方法、表面の配向作用を利用する方法、等を挙げることができる。例えば具体的には、高分子スルホニウム塩を塗布した高分子フィルムを加熱延伸してポリパラフェニレンビニレンの配向薄膜を作製することが出来る。表面の配向作用を利用する方法では、より具体的には、ガラスや酸化シリコン等の清浄な表面、表面処理剤によって修飾された表面、延伸や圧延等の変形加工された材料の表面、摩擦転写によって基材上に得られた高分子薄膜の表面、ラビングした材料の表面、等の配向作用を用いることが出来る。
 透明薄膜電極はなんらかの平滑な基材上に形成される。基材としてはその目的に支障のない範囲で、安定なものであれば特に限定されない。透明薄膜電極の目的から透明な材料を用いることが要求される場合が多いが、そのような透明な基材としては例えば、石英、ガラス、透明な樹脂、等からなる基材を挙げることができる。発光素子に用いる場合には、既に途中まで形成された素子を基材として、そこにさらに透明薄膜電極を形成することが出来る。本発明の透明薄膜電極の作成方法の一つは、ドーピングされた導電性高分子の溶液を塗布し、配向させる方法である。また本発明の透明薄膜電極の作成方法の一つは、ドーピングされていない導電性高分子の溶液を塗布し、配向させ、さらにドーピングする方法である。その他の好ましい作製方法の一つはドーピングされていない又はドーピングされた導電性高分子のラングミュアブロジェット膜を累積する方法が挙げられる。
 導電性高分子が溶媒に可溶の場合あるいは導電性高分子が溶媒で膨潤する場合には、本発明の配向方法を使用することも出来る。すなわち溶媒と導電性高分子を含んでなる膜に力を加える配向方法を使用することもでき、この場合、溶媒と導電性高分子を含んでなる膜に、一方向に力を加えた後、溶媒を除去することにより透明薄膜電極を製造することができる。力を加える方法としては、延伸、摩擦、圧縮、等を挙げることができる。この場合、ドーピングされた導電性高分子を用いることが好ましい。具体的にはたとえば、ポリ(3,4-エチレンジオキシチオフェン)に有機酸、例えばポリスチレンスルホン酸をドーピングしたものを挙げることが出来る。
 本発明の透明薄膜電極では、透明薄膜電極の導電性の点で該透明薄膜電極を構成する導電性高分子は酸化または還元を受けている、すなわちドーピングされていることが好ましい。次にドーピングについて説明する。ドーピング方法としては公知のドーピングの方法を用いることが出来、具体的には電気化学的ドーピング、化学的ドーピングを挙げることが出来る。ドーパントとしても公知のものを適宜選択でき、たとえば、沃素、臭素、塩素、酸素、五フッ化砒素、各種陰イオン(各種スルホン酸、塩素イオン、硝酸イオン、等)、ナトリウム、カリウム、各種陽イオン(ナトリウムイオン、等)を挙げることが出来る。又、ドーピングは透明薄膜電極の作成方法に応じて、薄膜の形成前に行うことも出来るし、薄膜の形成中に行うことも出来るし、また薄膜の形成後に行うことも出来る。
 本発明で使用するカーボンナノチューブについて説明する。カーボンナノチューブとしては公知のものを使用することが出来るが、通常純度が高いものが好ましい。又カーボンナノチューブ自身にも半導体的な成分と金属的な成分の存在が知られるが、電気伝導度の点で金属的な成分の比率が高いことが好ましい。本発明ではこのようなカーボンナノチューブの配向した薄膜を形成するが、配向の方法としては力学的な方法(延伸、圧延、ラビング、等)、磁場または電場を印加する方法、表面の配向作用を利用する方法、等を挙げることができる。具体的には例えば水面上に単分子膜を形成し、LB膜を累積する方法が挙げられる。
 本発明で使用するワイアグリッド構造について説明する。具体的には金属のワイアグリッド偏光子としては公知のものを使用することが出来る。金属の種類としては安定で平滑な基材上に細線状に加工できるものであれば特に限定されず、単体でも合金でも使用することが出来る。たとえば、金、銀、アルミニウム、クロム、銅、等およびこれらの合金を挙げることが出来る。基材との密着性を上げるために基材表面にあらかじめ別の材料を薄く付着させてから、上記金属を付着させることも適宜行うことが出来る。ワイアグリッド構造の作製方法としては可視光線用のワイアグリッド偏光子の製造方法として公知のものを使用することが出来る。たとえば干渉露光、電子線リソグラフィー、によって得られるサブミクロンの微細なライン・アンド・スペースのレジストパターンを利用して金属膜の微細なライン・アンド・スペースを得る方法が広く知られている。また、透明な柔軟基板上に金属膜を形成し、基板と金属膜とを延伸する方法も知られている。
 本発明で使用するワイアグリッド構造は、導電性高分子またはカーボンナノチューブと組み合わせて本発明の透明薄膜電極とすることも出来る。この場合、導電性高分子またはカーボンナノチューブからなる膜を、ワイアグリッド構造を形成する金属細線の間隙に形成するあるいは、ワイアグリッド構造全体と積層して形成することが好ましい。
 本発明で使用するワイアグリッド構造は、さらに本発明の他の種類の第二の透明薄膜電極と組み合わせてひとつの複合した透明薄膜電極とすることも出来る。このような本発明他の種類の透明薄膜電極としては、導電性高分子、カーボンナノチューブ、または異方性金属微粒子を含んでなるものを用いることが出来る。この場合、第二の透明薄膜電極を、ワイアグリッド構造を形成する金属細線の間隙に形成するあるいは、ワイアグリッド構造に積層して形成することが好ましい。また、この場合ワイアグリッド構造が固有に有する偏光方向と第二の透明薄膜電極が固有に有する偏光方向が実質的に一致することが好ましい。ここで固有の偏光方向とは前記ワイアグリッド構造または前記膜のそれぞれの透明薄膜電極単独の状態で、それぞれの透明薄膜電極を垂直に透過してくる光が有する偏光方向を意味する。
 本発明の透明薄膜電極の配向度(配向のオーダパラメータ)Sは一般に高い方が好ましい。ここで配向度とは実質的には、それぞれの透明薄膜電極を透過してくる光が有する偏光を評価してえられる指数を意味する。たとえば透明薄膜電極が導電性高分子であれば分子の配向状態に相関する指数として通常知られている。また、同様にカーボンナノチューブ、異方性金属微粒子、金属細線の場合も同様になんらかの配向状態に相関する指数となる。具体的には、Sは0.1以上が好ましく、0.2以上がより好ましく、0.5以上がさらに好ましく、0.6以上がよりさらに好ましく、0.7以上が特に好ましい。Sは偏光吸収スペクトル、X線回折、等の公知の方法で測定できるが、通常は透過偏光スペクトルを測定し、その吸光度が最大になる方向に偏光した入射光に対する吸光度A1と、該方向と直交する方向に偏光した入射光に対する吸光度A2から二色性比D=A1/A2を求め、S=(D-1)/(D+2)により算出する方法で規定したものを用いることが出来る。ここで、入射光は平坦な透明薄膜電極の面に対して垂直に入射させる。また、一般に測定波長はA1が極大となる波長を用いるが、極大が明確でない場合は可視領域の波長領域内で比較的A1の大きい波長を適宜選択して使用できる。また本発明において偏光方向とは光の進行方向に対して垂直の面内において、該光の電場ベクトルの射影が最大となる方向を表す。
 偏光の点ではSが大きいことが好ましく、より具体的には、0.1以上が好ましく、0.3以上がより好ましく、0.5以上がさらに好ましく、0.7以上がさらにより好ましく、0.8以上が特に好ましい。また、A2が小さいほうが透明度の高い透明薄膜電極として使用できる。具体的にはA2は0.5以下が好ましく、0.3以下がさらに好ましく、0.1以下がさらにより好ましく、0.05以下が特に好ましい。また、Sが0.5以上でかつA2が0.3以下である場合が好ましく、Sが0.7以上でかつA2が0.3以下である場合がより好ましく、Sが0.8以上でかつA2が0.2以下である場合が特に好ましい。
 次に本発明の電極複合体について説明する。本発明の電極複合体は、該透明薄膜電極とこれに接する少なくとも1つ以上の補助電極を含む。平滑な基材上に該透明薄膜電極が形成される場合には、通常、該透明薄膜電極面内の一部分に補助電極を積層するまたは該透明薄膜電極に接して補助電極形成することが好ましい。
 補助電極の配置を説明する。電気抵抗を下げる点で補助電極と接していない該透明薄膜電極の表面における任意の点Xから補助電極への経路であって、該透明薄膜電極の透過光の偏光方向に垂直であってかつ最短の経路の長さLの最大値Lmaxが補助電極と接していない該透明薄膜電極の表面の面積Jの平方根の半分よりも小さいことが好ましく、Jの平方根の45%以下がより好ましく、Jの平方根の40%以下がさらに好ましく、Jの平方根の30%以下が特に好ましい。具体的にこのような条件を満たす補助電極の配置としては、図1に示すように補助電極と接していない該透明薄膜電極の形状を該透明薄膜電極の透過光の偏光方向に短く、同方向に垂直に長くする方法が挙げられる。このような形状としてはたとえば長方形、平行四辺形、ひし形、等を挙げることが出来る。また電気抵抗を下げる点で値Lmaxが5cmよりも小さいことが好ましく、1cmよりも小さいことがさらに好ましく、1mmよりも小さいことがさらにより好ましく、0.5mmよりも小さいことが特に好ましい。
 補助電極の材料を説明する。補助電極としては透明であってもなくてもよいが、電気伝導度が高い材料であれば使用することができる。通常、各種炭素類〔カーボンブラック、カーボンナノチューブ、グラファイト、等〕、金属〔銅、アルミニウム、クロム、金、銀、白金、イリジウム、オスミニウム、スズ、鉛、チタン、モリブデン、タングステン、タンタル、ニオブ、バナジウム、ニッケル、鉄、マンガン、コバルト、レニウム、等〕とそれらの合金を挙げることが出来る。補助電極の作成方法は、選択した材料に応じてそれらの公知の方法を使用できる。たとえば、蒸着、スパッタ、メッキ、塗布、印刷、等の方法が挙げられる。該透明薄膜電極面内の一部分に補助電極を積層する場合には、これらの方法で積層できる。補助電極はあらかじめ透明薄膜電極を形成する基板上に作製してもよいし、また透明薄膜電極を形成した後にこの一部に作製してもよい。
 次に本発明の液晶表示装置を説明する。公知の液晶表示装置として知られるものの、透明薄膜電極の少なくとも一部に本発明の透明薄膜電極を使用することによって本発明の液晶表示装置を得ることが出来る。用いる液晶の表示モードとしては、公知の液晶の表示モードのうちで、少なくとも一個以上の偏光素子を使用する表示モードを好適に使用することが出来る。このような表示モードとしてはたとえば、ツイストネマティック(TN)型、スーパーツイストネマティック(STN)型、オプティカリ・コンペンセイテッド(OCB)型、表面安定化強誘電性液晶(FLC)型、インプレーンスイッチング(IPS)型、等が挙げられる。
 これらの表示モードの装置において液晶に電圧を印加する電極の少なくとも一つに、本発明の透明薄膜電極または電極複合体を使用する。この際、各々の表示モードにおけるオン状態、すなわち液晶表示装置を透過又は反射する光を目視させようとする状態において、透明薄膜電極を透過する偏光が透明薄膜電極によって一部吸収されるが、この吸収が最小になるように透明薄膜電極中の偏光方向と前記偏光を実質的に一致させることが特に好ましい。ここで、実質的に一致させるとは、該吸収を最小にすることであり、これを目安に配置を決めることが出来る。さらに詳しくは、吸収が最小になる方向から5度以内の方向が好ましく、3度以内の方向がさらに好ましい。各液晶表示モードにおける実際の部材の構成、配置、についても公知のものを用いることができるが、この際場合により通常使用される液晶配向誘起層を省略し、透明薄膜電極を配向誘起層として用いることが出来る場合もある。
 本発明の発光素子を説明する。本発明の発光素子は、本発明の透明薄膜電極または本発明の電極複合体と、さらに発光層を有する発光素子であって、該発光層における発光が偏光してなり、該偏光と該透明薄膜電極の前記偏光方向が実質的に一致している発光素子である。発光素子の方式としては、公知の発光素子の中で、発光部位から何らかの偏光が放射される方式を用いることが出来るが、構造が簡単な点で発光ダイオード、とりわけ発光層を有機分子としかつ偏光が放射される方式(偏光OLED)を用いることが好ましい。発光層に使用する有機分子としては、偏光OLEDを形成できると知られるものから適宜選択できるが、例えば共役系高分子〔ポリフルオレン、ポリフェニレン、ポリフェニレンビニレン、ポリチオフェン、等〕とその誘導体、蛍光色素、等を挙げることができる。
 偏光OLEDとしては公知のものを適宜選択して使用することが出来るが、これらの方式において電極の少なくとも一つに、本発明の透明薄膜電極を使用する。すなわち偏光OLEDにおいては、少なくとも陰極、陽極、発光層を有するが、陰極または陽極あるいはそれらの一部として本発明の透明薄膜電極を使用する。発光素子の発光性能の点では通常、陽極またはその一部として使用することが好ましい。
 ここで発光層は配向した有機分子からなる。配向は公知の方法で行うことが出来るが、具体的には力学的な方法(延伸、圧延、ラビング、等)、磁場または電場を印加する方法、表面の配向作用を利用する方法、等を挙げることができる。例えば、特表平10-50314号公報、特開平8-30654号公報、特表平10-508979号公報、特表平11-503178号公報に記載の方法で、配向した有機分子からなる偏光OLEDを作製することが出来る。通常発光層での発光の偏光度は高いことが好ましく、具体的には偏光度が60%以上が好ましく、70%以上がより好ましく、80%以上がさらにより好ましく、90%以上が特に好ましい。このような高い偏光度は前記有機分子の配向度を高くすることによって実現できる。
 この時、発光層から放射される偏光が透明薄膜電極によって一部吸収されるが、この吸収が最小になるように透明薄膜電極中の透過光の偏光方向と前記偏光を実質的に一致させる。ここで、実質的には一致させるとは、吸収が最小になることであり、これを目安に配置を決めることが出来る。さらに詳しくは、吸収が最小になる方向から5度以内の方向が好ましく、3度以内の方向がさらに好ましい。詳細は有機分子の種類に依存するが、このような一致を得るためには、透明薄膜電極と発光層のそれぞれの配向が影響し合わないように、透明薄膜電極と発光層は直接接しないことが通常好ましい。そのための好適な配向方法の一つは、発光層に接する配向誘起層を用いることである。配向誘起層の発光層に接する表面を摩擦等の方法で配向させ、発光層を所望の偏光方向を有するように配向させる。このような配向誘起層としては正孔輸送性を有することが好ましい。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
実施例1
(透明薄膜電極の作成1)
 図1においてガラス基板8上の2の部分にあらかじめマスクを用いてクロム、次いで金を蒸着して補助電極7とする。この基板上にネイチャー、第352巻、第414~417頁(1991)記載の方法でポリテトラフルオロエチレンの配向した超薄膜を形成した。この時、ポリテトラフルオロエチレンを2の部分には形成しない。ポリアニリンを溶かした濃硫酸から、ポリアニリンを析出させる。析出は雰囲気から僅かずつ溶液に吸湿させることよって行うことが出来た。析出したポリアニリン膜は配向しており、濃硫酸溶液を除去して透明薄膜電極とすることができる。透明薄膜電極と補助電極の間には良好な電気的接触が得られる。
実施例2
(液晶表示素子の作成)
 前記実施例1で作成した透明薄膜電極をTN型液晶の電極として、図2の構成で使用することが出来る。この際TN型液晶を構成する偏光フィルム9の偏光方向と透明薄膜電極6の偏光方向を一致させる。また偏光フィルム9の偏光方向と透明薄膜電極6’の偏光方向を一致させる。この際TN型液晶のダイレクタの配向は、透明薄膜電極上に液晶配向誘起層10および12としてポリイミドを塗布して摩擦することで制御出来る。この時、透明薄膜電極6と透明薄膜電極6’の間に電圧を印加しない状態において、TN配向した液晶11内で、偏光方向が90度回転するため、上から入射して9を通過した偏光は、6で顕著に吸収されず、さらに6’および15においても顕著に吸収されない。
実施例3
(発光素子の作成)
 前記実施例1で作成した透明薄膜電極上に、特開平8-30654号公報の実施例1に記載の方法で、配向したポリ〔3-(4-オクチルチオフェン)〕を転写し、さらにその上に陰極としてカルシウム次いでアルミニウムを蒸着して、偏光OLED素子を作製する。この時、ポリ〔3-(4-オクチルチオフェン)〕からの発光の偏光方向と透明薄膜電極の透過光の偏光方向を一致させることによって、一致させなかった場合よりも明るい発光を得ることが出来る。
実施例4
(透明薄膜電極の作成1)
 図1においてガラス基板8上の2の部分にあらかじめマスクを用いてクロム、次いで金を蒸着して補助電極7とする。この基板上に技術文献2記載の垂直浸漬法(ヴァーティカル・ディッピング)で、カーボンナノチューブのLB膜を20層累積する。得られる透明薄膜電極は、750nm付近で約1.8のDを有し、透明薄膜電極として使用できる。(ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス、第42巻、第7629頁~第7634頁(2003年)参照。)
実施例5
(透明薄膜電極の作成2)
 ガラス基板上にポリスチレンスルホン酸をドーピングしたポリ(3,4-エチレンジオキシチオフェン)の水溶液(BaytronP(登録商標)A14083)を塗布した。水溶液を水彩用筆に浸漬し、一定方向に往復させながら塗りつけた。乾燥させながら断続的に引きつづき筆を動かし、粘度が高くなったところ放置して乾燥した。膜を透過した光が偏光していることを確認できた。
実施例6
(透明薄膜電極の作成3)
 ガラス基板上にアルミニウム又は銀の金属細線(幅100nm、ピッチ200nm、細線厚み50~100nm)からなる可視光線用のワイアグリッド偏光子を形成した。このワイアグリッド偏光子上に液晶用のポリアミック酸溶液を塗布し加熱することによって、ポリイミド膜(膜厚0.1ミクロン)を形成した。このポリイミド膜をワイアグリッド偏光子の金属細線と平行に布でラビングすることによって透明薄膜電極を作製した。
実施例7
(TN型液晶表示素子の作成)
 実施例6で作製した透明薄膜電極2枚を、ワイアグリッド偏光子とポリイミドのついた面を向かい合わせにして貼り合わせ液晶セルを作製した。この際セルの周辺部に5ミクロンのスペーサ用ビーズを混入したエポキシ樹脂を挟むことによって、セルギャップ約5ミクロンの液晶セルとした。この時、一方の透明薄膜電極の偏光方向ともう一方の透明薄膜電極の偏光方向を垂直とした。セルの間隙にTN液晶組成物を注入した。このセルに電圧を印加したらところ、セルを透過する光の変化を肉眼で確認することが出来た。
実施例8
(透明薄膜電極の作成4)
 実施例6で作製したワイアグリッド偏光子上にポリスチレンスルホン酸をドーピングしたポリ(3,4-エチレンジオキシチオフェン)の水溶液(BaytronP(登録商標)A14083)を膜厚約50nm塗布した。

Claims (25)

  1.  透明薄膜電極を透過する光が偏光することを特徴とする、透明薄膜電極。
  2.  導電性高分子を含んでなる、請求項1記載の透明薄膜電極。
  3.  カーボンナノチューブを含んでなる、請求項1記載の透明薄膜電極。
  4.  異方性金属微粒子を含んでなる、請求項1記載の透明薄膜電極。
  5.  金属のワイアグリッド構造を含んでなる、請求項1記載の透明薄膜電極。
  6.  請求項5記載の透明薄膜電極であって、かつ導電性高分子またはカーボンナノチューブを含んでなる膜を含む、透明薄膜電極。
  7.  請求項6記載の透明薄膜電極であって、金属のワイアグリッド構造を形成する隣接する金属細線の間隙に、導電性高分子又はカーボンナノチューブを含んでなる膜が配置されている、透明薄膜電極。
  8.  請求項6又は7に記載の透明薄膜電極であって、かつ導電性高分子又はカーボンナノチューブを含んでなる膜が金属のワイアグリッド構造に積層されている、透明薄膜電極。
  9.  請求項5記載の透明薄膜電極と、請求項2~4のいずれか一項に記載の透明薄膜電極を含む複合した、透明薄膜電極。
  10.  請求項2~4のいずれか一項に記載の透明薄膜電極が金属のワイアグリッド構造に積層されている、請求項9記載の透明薄膜電極。
  11.  金属のワイアグリッド構造を形成する金属細線の間隙に、請求項2~4のいずれか一項に記載の透明薄膜電極が配置されている、請求項9記載の透明薄膜電極。
  12.  金属のワイアグリッド構造の偏光方向と、請求項2~4のいずれか一項記載の透明薄膜電極の偏光方向とが実質的に一致している、請求項9~11のいずれか一項記載の透明薄膜電極。
  13.  透明薄膜電極における配向度Sが0.1以上である、請求項1~12のいずれか一項に記載の透明薄膜電極。
  14.  透明薄膜電極の波長300~700nmの光の透過偏光吸収スペクトルにおいて、薄膜の膜面内のあらゆる方向の偏光に対する吸光度の最大値A1が0.1以上である、請求項1~13のいずれか一項に記載の透明薄膜電極。
  15.  請求項1~14のいずれか一項に記載の透明薄膜電極とこれに接する少なくとも1つ以上の補助電極を含むことを特徴とする、電極複合体。
  16.  補助電極と接していない透明薄膜電極の表面における任意の点Xから補助電極への経路であって、該透明薄膜電極の透過光の偏光方向に垂直であってかつ最短の経路の長さLの最大値Lmaxが補助電極と接していない該透明薄膜電極の表面の面積Jの平方根の半分よりも小さい、請求項15記載の電極複合体。
  17.  補助電極と接していない透明薄膜電極の表面における任意の点Xから補助電極への経路であって、該透明薄膜電極の透過光の偏光方向に垂直であってかつ最短の経路の長さLの最大値Lmaxが5cmよりも小さい、請求項15又は16記載の電極複合体。
  18.  請求項1~14のいずれか一項に記載の透明薄膜電極、または請求項15~17のいずれか一項に記載の電極複合体を有することを特徴とする、液晶表示装置。
  19.  さらに少なくとも1つの偏光素子を有し、少なくとも1つの偏光素子の偏光方向と該透明薄膜電極の偏光方向が実質的に一致している、請求項18記載の液晶表示装置。
  20.  請求項1~14のいずれか一項に記載の透明薄膜電極、または請求項15~17のいずれか一項に記載の電極複合体、さらに発光層を有する発光素子であって、該発光層における発光が偏光してなり、該偏光方向と該透明薄膜電極の前記偏光方向とが実質的に一致していることを特徴とする、発光素子。
  21.  発光素子が発光ダイオードである、請求項20記載の発光素子。
  22.  発光ダイオードの発光層が配向した有機分子からなる、請求項21記載の発光素子。
  23.  有機分子が高分子である、請求項22記載の発光素子。
  24.  発光層といずれかの透明薄膜電極の間に少なくとも1層の配向誘起層を有する、請求項20~23のいずれか一項に記載の発光素子。
  25.  溶媒と導電性高分子を含んでなる膜に力を加えることを特徴とする、請求項1又は2記載の透明薄膜電極の製造方法。
PCT/JP2009/053317 2008-02-28 2009-02-25 透明薄膜電極 WO2009107616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801064296A CN101960535B (zh) 2008-02-28 2009-02-25 透明薄膜电极
GB1014288.3A GB2470317B (en) 2008-02-28 2009-02-25 Transparent thin-film electrode
DE112009000460T DE112009000460T5 (de) 2008-02-28 2009-02-25 Transparente Dünnschichtelektrode
US12/919,143 US20110001905A1 (en) 2008-02-28 2009-02-25 Transparent thin-film electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-047539 2008-02-28
JP2008047539 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107616A1 true WO2009107616A1 (ja) 2009-09-03

Family

ID=41016008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053317 WO2009107616A1 (ja) 2008-02-28 2009-02-25 透明薄膜電極

Country Status (8)

Country Link
US (1) US20110001905A1 (ja)
JP (1) JP5453842B2 (ja)
KR (1) KR101573094B1 (ja)
CN (2) CN102929047B (ja)
DE (1) DE112009000460T5 (ja)
GB (4) GB2485305B (ja)
TW (1) TWI488196B (ja)
WO (1) WO2009107616A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087377A (zh) * 2009-12-02 2011-06-08 鸿富锦精密工业(深圳)有限公司 偏振元件及其制作方法
US20120057106A1 (en) * 2010-09-07 2012-03-08 Electronics And Telecommunications Research Institute Polarizer and liquid crystal display

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219493B2 (ja) * 2007-11-14 2013-06-26 キヤノン株式会社 発光素子及びそれを用いた発光装置
CN101566758B (zh) * 2008-04-25 2011-05-04 清华大学 液晶显示屏
US8253536B2 (en) * 2009-04-22 2012-08-28 Simon Fraser University Security document with electroactive polymer power source and nano-optical display
JP2012247910A (ja) 2011-05-26 2012-12-13 Sony Corp 3次元インタラクティブディスプレイ
TW201319681A (zh) * 2011-11-09 2013-05-16 Wintek Corp 邊緣電場切換型液晶顯示面板
US10041748B2 (en) 2011-12-22 2018-08-07 3M Innovative Properties Company Carbon coated articles and methods for making the same
JP6212050B2 (ja) 2011-12-22 2017-10-11 スリーエム イノベイティブ プロパティズ カンパニー 高い光透過を備えた導電性物品
CN102916133B (zh) * 2012-09-20 2016-04-13 广州新视界光电科技有限公司 一种产生白光的有机电致发光器件
CN103968949B (zh) * 2013-02-04 2016-04-27 清华大学 偏振光检测系统
CN103091898B (zh) * 2013-02-06 2015-12-02 京东方科技集团股份有限公司 液晶显示屏及其制备方法、显示装置
US20140262443A1 (en) * 2013-03-14 2014-09-18 Cambrios Technologies Corporation Hybrid patterned nanostructure transparent conductors
FI20135510L (fi) 2013-05-14 2014-11-15 Canatu Oy Taipuisa valoa emittoiva kalvo
KR102060543B1 (ko) * 2013-08-09 2019-12-31 삼성디스플레이 주식회사 표시 장치
JP6326238B2 (ja) * 2014-02-06 2018-05-16 株式会社ジャパンディスプレイ 表示装置
US9804471B2 (en) 2014-07-31 2017-10-31 Samsung Display Co., Ltd Passive matrix display device and method of making the same
CN104330915B (zh) 2014-11-07 2017-06-06 京东方科技集团股份有限公司 一种阵列基板、液晶显示面板及显示装置
DE102018115418A1 (de) * 2018-06-27 2020-01-02 HELLA GmbH & Co. KGaA Verfahren zur Herstellung eines Flüssigkristalldisplays
FR3118302B1 (fr) * 2020-12-22 2023-11-10 Commissariat Energie Atomique Dispositif électroluminescent
CN113621387B (zh) * 2021-08-11 2022-10-25 清华大学 液晶复合偏光薄膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239107A (ja) * 1986-04-11 1987-10-20 Mitsui Toatsu Chem Inc 導電性偏光フイルム及びその製造方法
JPH02281237A (ja) * 1989-04-21 1990-11-16 Fujitsu Ltd 表示装置の電極構造
WO1997007654A1 (en) * 1995-08-21 1997-02-27 Philips Electronics N.V. Electroluminescent device
WO2006038575A1 (ja) * 2004-10-07 2006-04-13 Sharp Kabushiki Kaisha 透明電極およびこれを備えた液晶表示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543343B2 (ja) * 1986-05-23 1996-10-16 住友化学工業株式会社 偏光フイルム
US6200320B1 (en) 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
JPH0530654A (ja) 1991-07-16 1993-02-05 Toshiba Corp 交直変換装置の保護装置
JP2981805B2 (ja) * 1992-07-30 1999-11-22 キヤノン株式会社 液晶表示素子
JPH0830654A (ja) 1994-07-19 1996-02-02 Matsushita Electron Corp 半導体集積回路装置の配置,配線方法
DE19509450A1 (de) 1995-03-20 1996-09-26 Hoechst Ag Elektrolumineszenzvorrichtung mit Emission polarisierten Lichtes
JPH11340104A (ja) * 1998-05-28 1999-12-10 Sanyo Electric Co Ltd 電気化学キャパシタ
JP3279294B2 (ja) * 1998-08-31 2002-04-30 三菱電機株式会社 半導体装置のテスト方法、半導体装置のテスト用プローブ針とその製造方法およびそのプローブ針を備えたプローブカード
US6489044B1 (en) 1999-09-01 2002-12-03 Lucent Technologies Inc. Process for fabricating polarized organic photonics devices, and resultant articles
JP2002040403A (ja) * 2000-07-31 2002-02-06 Canon Inc 光学素子およびその製造方法
JP3755030B2 (ja) 2002-03-26 2006-03-15 独立行政法人産業技術総合研究所 偏光有機電界発光素子及びその製造方法
WO2005008800A1 (en) * 2003-07-16 2005-01-27 Philips Intellectual Property & Standards Gmbh Electroluminescent device with homogeneous brightness
CN1697582B (zh) * 2004-05-13 2010-05-12 财团法人工业技术研究院 有机电致发光显示组件
US7480017B2 (en) * 2004-09-17 2009-01-20 Radiant Images, Inc. Microdisplay
JP4922570B2 (ja) 2005-04-04 2012-04-25 帝人デュポンフィルム株式会社 透明導電性コーティング用組成物、これを塗布してなる透明導電性フィルムおよびその製造方法
JP2007148046A (ja) 2005-11-28 2007-06-14 Nippon Zeon Co Ltd グリッド偏光フィルムの製造方法、グリッド偏光フィルム、および液晶表示装置
US7630041B2 (en) 2006-06-23 2009-12-08 Tsinghua University Liquid crystal cell assembly for liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239107A (ja) * 1986-04-11 1987-10-20 Mitsui Toatsu Chem Inc 導電性偏光フイルム及びその製造方法
JPH02281237A (ja) * 1989-04-21 1990-11-16 Fujitsu Ltd 表示装置の電極構造
WO1997007654A1 (en) * 1995-08-21 1997-02-27 Philips Electronics N.V. Electroluminescent device
WO2006038575A1 (ja) * 2004-10-07 2006-04-13 Sharp Kabushiki Kaisha 透明電極およびこれを備えた液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087377A (zh) * 2009-12-02 2011-06-08 鸿富锦精密工业(深圳)有限公司 偏振元件及其制作方法
US20120057106A1 (en) * 2010-09-07 2012-03-08 Electronics And Telecommunications Research Institute Polarizer and liquid crystal display

Also Published As

Publication number Publication date
JP2009230130A (ja) 2009-10-08
GB201014288D0 (en) 2010-10-13
CN101960535A (zh) 2011-01-26
KR20100121630A (ko) 2010-11-18
DE112009000460T5 (de) 2010-12-30
CN102929047A (zh) 2013-02-13
CN101960535B (zh) 2012-12-19
GB2470317A (en) 2010-11-17
JP5453842B2 (ja) 2014-03-26
GB201201627D0 (en) 2012-03-14
TW200951996A (en) 2009-12-16
GB201201624D0 (en) 2012-03-14
TWI488196B (zh) 2015-06-11
US20110001905A1 (en) 2011-01-06
GB201201625D0 (en) 2012-03-14
GB2485307A (en) 2012-05-09
GB2485305A (en) 2012-05-09
GB2485306A (en) 2012-05-09
GB2485307B (en) 2012-09-19
CN102929047B (zh) 2015-05-20
GB2485305B (en) 2012-09-19
KR101573094B1 (ko) 2015-11-30
GB2485306B (en) 2012-09-19
GB2470317B (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5453842B2 (ja) 透明薄膜電極
Yu et al. Recent development of carbon nanotube transparent conductive films
Ou et al. Surface-modified nanotube anodes for high performance organic light-emitting diode
Matyba et al. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices
Wang et al. Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT: PSS nanocomposites as flexible transparent electrodes for OLEDs
Ho et al. Molecular-scale interface engineering for polymer light-emitting diodes
Kemerink et al. Three-dimensional inhomogeneities in PEDOT: PSS films
US9645454B2 (en) Transparent conductive film and electric device
US7560731B2 (en) Organic electronic device and method for manufacturing the same
Gu et al. Highly conductive sandwich-structured CNT/PEDOT: PSS/CNT transparent conductive films for OLED electrodes
US20120141666A1 (en) Transparent carbon nanotube electrode using conductive dispersant and production method thereof
Rani et al. Non‐volatile ReRAM devices based on self‐assembled multilayers of modified graphene oxide 2D nanosheets
Gao et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes
WO2008057615A2 (en) Highly transparent and conductive carbon nanotube coatings
Zhao et al. Highly stable and conductive PEDOT: PSS/GO-SWCNT bilayer transparent conductive films
JP5628768B2 (ja) 紐状フィラー含有塗布物の製造方法
An et al. High-performance green light-emitting diodes based on MAPbBr3 with π-conjugated ligand
Nguyen et al. Exploring conducting polymers as a promising alternative for electrochromic devices
Liu et al. Photopatternable and highly conductive PEDOT: PSS electrodes for flexible perovskite light-emitting diodes
Le Truong et al. Surface smoothness and conductivity control of vapor-phase polymerized poly (3, 4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications
JP4286507B2 (ja) 配向した発光性ポリマーブレンド、フィルム及びデバイス
JP4393125B2 (ja) 高分子型有機エレクトロルミネッセンス表示装置
JP2006222383A (ja) 機能性薄膜素子、その製造方法及びそれを用いた物品
Ryu et al. Transparent, conductive and flexible carbon nanotube films and their application in organic light emitting diodes
CN111244301A (zh) 量子点发光二极管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106429.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12919143

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107018840

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1014288

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20090225

WWE Wipo information: entry into national phase

Ref document number: 1014288.3

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120090004601

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112009000460

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09714974

Country of ref document: EP

Kind code of ref document: A1