WO2009104647A1 - 繊維状物の集積方法及び集積装置 - Google Patents

繊維状物の集積方法及び集積装置 Download PDF

Info

Publication number
WO2009104647A1
WO2009104647A1 PCT/JP2009/052805 JP2009052805W WO2009104647A1 WO 2009104647 A1 WO2009104647 A1 WO 2009104647A1 JP 2009052805 W JP2009052805 W JP 2009052805W WO 2009104647 A1 WO2009104647 A1 WO 2009104647A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinner
bucket
hollow bucket
fibrous material
elliptical opening
Prior art date
Application number
PCT/JP2009/052805
Other languages
English (en)
French (fr)
Inventor
祐次 横尾
進 窪田
和広 北村
Original Assignee
旭ファイバーグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭ファイバーグラス株式会社 filed Critical 旭ファイバーグラス株式会社
Priority to EP09712502A priority Critical patent/EP2248777B1/en
Priority to KR1020107014007A priority patent/KR101516845B1/ko
Priority to US12/918,009 priority patent/US8387417B2/en
Priority to JP2009554348A priority patent/JP5368322B2/ja
Priority to ES09712502T priority patent/ES2398485T3/es
Priority to CN200980105749XA priority patent/CN101945830B/zh
Publication of WO2009104647A1 publication Critical patent/WO2009104647A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged

Definitions

  • the present invention relates to a method and an apparatus for accumulating fibrous materials when accumulating fibrous materials to produce a textile product for use such as a heat insulating material or a sound absorbing material.
  • the present invention relates to an accumulation method and an accumulation apparatus for adjusting distribution of short glass fibers (glass wool) to a uniform and constant thickness.
  • Inorganic fiber products are mainly made of continuous fibers (glass long fibers) and discontinuous fibers (glass short fibers).
  • the discontinuous fiber is generally used as a heat insulating material.
  • a resin is applied as a binder to the discontinuous fiber to form a mat-like, plate-like or roll-like product, Cover or paste facings on the entire surface.
  • These products are used as heat insulating materials for residential and general buildings.
  • a sound-absorbing material is mentioned as another use of a discontinuous fiber.
  • the discontinuous fibers that are made into fine fibers absorb sound efficiently in the fiber space, and exhibit excellent effects in suppressing noise by being used for sound insulation walls of various buildings and roads.
  • a short glass fiber (hereinafter also abbreviated as a fiber) fiberized by a spinner of a fiberizing apparatus is lowered into a hollow bucket disposed immediately below the spinner, where a bundle of short glass fibers is collected. (Hereinafter referred to as a bale) is discharged into a stacking zone (hereinafter referred to as a hood) from the circular opening of the hollow bucket, and is uniformly distributed and stacked on the stacking conveyor.
  • the following method is generally known as a method for uniformly distributing the veil discharged from the hollow bucket on the stacking conveyor.
  • Patent Document 1 discloses a method in which compressed air is sprayed alternately from the lateral direction on a bale to disperse the bale and uniformly distribute it on the conveyor for accumulation (hereinafter referred to as an air dispersion method). ).
  • Patent Document 2 and Patent Document 3 disclose a method in which a bale is mechanically shaken and dispersed in a direction perpendicular to the flow direction of the stacking conveyor to be uniformly distributed on the stacking conveyor (hereinafter referred to as the following). , Mechanical system).
  • the air dispersion method uses compressed air to uniformly distribute the short glass fibers in the width direction of the stacking conveyor. That is, as illustrated in FIG. 6, the fibers fiberized by the spinner 1 of the fiberizing device are sprayed with air after the binder is sprayed by the binder coating device 12 on the bale 5 discharged from the hollow bucket 2.
  • the air is lowered and dispersed in the hood 11 while being shaken and dispersed in the width direction of the stacking conveyor, and is uniformly stacked as mat-like fibers 7 on the stacking conveyor 8.
  • the blown compressed air is sucked through the accumulation conveyor 8 and taken out as exhaust gas 9 to be processed.
  • the fibers rise in the hood.
  • the fiber soaring is a phenomenon indicating that there is an aggregate of fibers floating in the space in the hood without being accumulated on the conveyor when being accumulated on the conveyor.
  • the binder applied to the fibers has tackiness and adhesiveness, in a situation where the fibers are soaring, the fibers gather together in the space in the hood to form a fiber lump, or a fiberizing device Or attach to equipment in the hood to form a lump of fibers.
  • the mass of these fibers becomes large, there is a problem in that they fall on the accumulated mat-like fibers and deteriorate the quality of the product.
  • a hollow bucket is disposed below the fiberizing apparatus, and the bucket is swung in a direction (width direction) perpendicular to the conveying direction of the stacking conveyor so that the glass short lowered in the bucket.
  • the fibers are distributed and accumulated on an accumulation conveyor.
  • this method has a problem that the bucket is swung to disperse the short glass fibers, so that the load on the mechanically movable part is large and the failure frequency increases. Further, since the short glass fibers are dispersed only by swinging the bucket, the dispersibility may be inferior.
  • the present invention relates to a stacking method capable of uniformly distributing a fiberized fibrous material on a stacking conveyor without using compressed air and without equipping a bucket with a swing mechanism.
  • the purpose is to provide the integrated device.
  • the present inventor has studied a method for accumulating fiberized fibrous materials, and as a result, by changing the shape of the blowout portion that discharges the fibers of the hollow bucket disposed below the spinner.
  • the present inventors have found that the fibrous materials can be uniformly dispersed and accumulated on the accumulation conveyor without blowing compressed air or swinging the hollow bucket.
  • the present invention is a method of dispersing a fibrous material fiberized by a spinner of a fiberizing apparatus with a hollow bucket installed immediately below the spinner and accumulating on a collecting conveyor disposed below.
  • the hollow bucket is formed by connecting a blowing portion having an elliptical opening at the lower end to a waist portion which is a lower end of a hopper portion having a circular cross section, and an inner surface of the blowing portion is formed by the elliptical opening.
  • a method hereinafter referred to as an integration method of the present invention
  • the fibrous material is preferably a short glass fiber.
  • the present invention is an apparatus for dispersing a fibrous material fiberized by a spinner of a fiberizing apparatus with a hollow bucket installed immediately below the spinner and accumulating it on an accumulation conveyor disposed below.
  • the hollow bucket has a hopper portion having a circular cross section, and a blowing portion having an elliptical opening at a lower end connected to a waist portion which is a lower end portion of the hopper portion, The inner surface is deformed from the circular shape toward the elliptical opening, and the fibrous material lowered into the hollow bucket is dispersed in the width direction of the stacking conveyor at the blowout section so as to be stacked on the stacking conveyor.
  • a fibrous material stacking device (hereinafter, referred to as a stacking device of the present invention) is provided.
  • the blowing portion has an inner surface in the major axis direction of the elliptical opening that is inclined outwardly toward the elliptical opening, and an inclination angle thereof with respect to the central axis of the hollow bucket. It is preferably 5 to 45 degrees.
  • the area of the waist part of the hopper is preferably equal to or larger than the area of the elliptical opening of the blowing part, and the area of the waist part of the hopper is a spinner. It is preferable that it is the same as or larger than the area of the cross section. Further, it is preferable that the blowing portion has an elliptical opening having a major axis / minor axis of 1.4 / 1 to 6/1.
  • the fiberized fibrous material is removed from the elliptical opening by the width of the stacking conveyor. It becomes possible to spread and discharge in the direction, and it can be uniformly distributed on the conveyor for accumulation.
  • compressed air is not used to adjust the distribution of fibrous materials as in the past, a facility device for compressed air is not required, and the amount of exhaust gas in the fibrous material collecting device can be reduced, so that exhaust gas treatment can be achieved.
  • the burden of equipment and cleaning can be reduced.
  • the equipment cost can be reduced.
  • FIG. 1 It is a schematic sectional drawing of the integration
  • (A) is a schematic front view of a hollow bucket
  • (B) is explanatory drawing of the cross-sectional shape of the trunk periphery, and the shape of a lower end opening part.
  • FIG. 4 is a right side view of the hollow bucket of FIG. It is explanatory drawing which shows arrangement
  • Fiberizer (spinner) 2 Hollow bucket
  • 3 Hopper part
  • 4 blowing part
  • 5 waist part
  • 6 trajectory of fiber flow
  • 7 mat-like fiber
  • 8 conveyor for accumulation
  • 9 exhaust gas
  • 10 exhaust gas collection box
  • 11 accumulation zone (hood)
  • 12 binder coating device
  • 13 Mounting member
  • 14 Bolt hole
  • 15 Girth part shape
  • 16 Opening shape
  • 17 Air nozzle
  • 18 Air blowing device
  • the fibrous material to be distributed is an inorganic fiber that is mainly useful as a heat insulating material or a sound absorbing material.
  • a short glass fiber glass wool
  • a mineral fiber rock wool, slag wool
  • inorganic fibers having excellent heat resistance and weather resistance examples thereof include inorganic fibers having excellent heat resistance and weather resistance.
  • short glass fibers that can be produced at low cost and have excellent heat insulation performance can be most preferably used.
  • various glass wool products such as mats, plates or rolls can be obtained by using known manufacturing methods.
  • the above fibrous material is fibrillated with a spinner of a fiberizing apparatus.
  • the shape of the blow-out portion of the hollow bucket is changed to an elliptical opening without substantially using compressed air to uniformly distribute the fibrous material thus fiberized on the stacking conveyor. By doing so, the fibrous material is uniformly dispersed.
  • FIG. 1 is a cross-sectional explanatory view schematically showing the entire apparatus from fiberizing to accumulation of short glass fibers.
  • the glass discharged from the spinner 1 of the fiberizer is stretched by the combustion gas (not shown) of the fiberizer and compressed air ejected from the air nozzle 17 to become short glass fibers. 1 is lowered into the hopper portion 3 of the hollow bucket 2 arranged immediately below.
  • the short glass fiber dispersed in the hollow bucket 2 is used as a binder from the binder coating device 12 provided below the hollow bucket 2 as a thermosetting resin precursor such as a phenol-formaldehyde resin.
  • a thermosetting resin precursor such as a phenol-formaldehyde resin.
  • An aqueous solution containing the body is sprayed and applied.
  • the stacking conveyor 8 is disposed below the spinner 1 and close to the lower end of the hood 11, and is driven at a constant speed in a direction perpendicular to the paper surface.
  • the stacking conveyor 8 has a ventilation structure, and an exhaust gas collection box 10 is provided in the lower part thereof, and a gas such as combustion exhaust gas or air in the hood 11 is sucked through the mat-like fiber 7 to exhaust gas.
  • 9 is a structure to be taken out. The extracted exhaust gas 9 is cleaned, but since the short glass fibers are not dispersed with compressed air as in the prior art, the amount of exhaust gas to be cleaned is small.
  • one or more spinners 1 can be installed along the traveling direction of the stacking conveyor 8. That is, when it is desired to increase the thickness of the mat-like fiber 7, when it is desired to make the quality uniform by laminating a plurality of short glass fibers, or when short glass fibers having different fiber diameters and physical properties are to be laminated.
  • 2 to 10 spinners are installed on the stacking conveyor 7 along the direction of travel, and fiberized by the upstream spinner on the stacking conveyor 8 that travels at a constant speed.
  • the mat-like fiber 7 can be formed by sequentially laminating short glass fibers.
  • the basic technique regarding fiberization by a spinner and accumulation of dispersed fibrous materials is substantially the same for other inorganic fibers.
  • FIG. 2 is a perspective view of the hollow bucket 2 of FIG. 1 as viewed from obliquely below in the direction of travel of the stacking conveyor.
  • a plurality of mounting brackets 13 (four in this example) having bolt holes 14 as shown in FIGS. 2 to 4 are provided around the waist portion 5 of the hollow bucket 2 to support the mounting bracket 13.
  • the hollow bucket 2 is installed immediately below the spinner by screwing to a structure (not shown).
  • FIG. 3A is a front view schematically showing the hollow bucket 2.
  • the hollow bucket 2 of the present example is a hollow body made of, for example, a steel plate having upper and lower portions opened as shown in the figure, and has a hopper portion 3 constituting the upper portion and a blowing portion 4 constituting the lower portion, The hopper portion 3 and the blowing portion 4 are connected to each other through a waistline portion 5.
  • the hopper 3 is a portion for receiving the short glass fibers formed by the spinner in the hollow bucket 2 and has a circular cross section.
  • the shape of the hopper 3 is wide open toward the upper end in order to easily receive the short glass fibers. It is preferably a funnel shape. However, the hopper 3 may be cylindrical.
  • the waistline portion 5 has a circular inner surface at the lower end portion of the hopper portion 3, and the diameter thereof is the same as the diameter of the lower end portion of the hopper portion 3. Therefore, in the case of the funnel-shaped hopper portion 3 as in this example, the waistline portion 5 corresponds to the minimum diameter portion of the hopper portion 3.
  • the waistline portion 5 is formed of a cylinder having a height of 1 to 5 cm, for example, but the blowing portion 4 is connected to the lower end portion of the hopper portion 3 without providing such a cylindrical waistline portion. Also good.
  • the waistline in this case is the lower end of the hopper 3.
  • the blowing portion 4 of the hollow bucket 2 has a specific shape. That is, the blowing part 4 has a circular upper end connected to the waist part 5, but a lower end from which the short glass fibers are discharged has an elliptical opening (hereinafter referred to as an elliptical opening). It has a specific shape that smoothly and continuously deforms from the circular upper end connected to the portion 5 toward the elliptical opening. Regardless of the distribution method, all of the conventional hollow buckets used in the short glass fiber collecting device are cylindrical hollow bodies, and the lower end opening for discharging the short glass fibers is also circular. Therefore, the hollow bucket of the present invention is completely different from the conventional one in the shape of the blowing portion 4, particularly the shape of its lower end opening.
  • the shape of the hollow bucket 2 means the inner surface shape unless otherwise specified.
  • the outer surface shape of the hollow bucket 2 is substantially the same as the inner surface shape, but is not limited thereto.
  • FIG. 3 (B) 15 shows the cross-sectional shape of the waist part 5 of the hollow bucket 2, ie, the shape of the upper end part of the blowing part 4, and 16 shows the shape of the lower end opening (elliptical opening) of the blowing part 4.
  • FIG. 4 is a side view of FIG.
  • the shape 15 of the waist portion of the hollow bucket 2 is circular, but the shape 16 of the lower end opening of the blowing portion 4 is an elliptical shape having a major axis X in the width direction of the stacking conveyor. I am doing. That is, as shown in FIG.
  • the blowout portion 4 of the hollow bucket 2 has the inner surface in the major axis direction of the elliptical opening that is pushed forward toward the elliptical opening (outward).
  • the inner surface in the minor axis direction of the elliptical opening is inclined from the circular waistline 5 toward the elliptical opening as shown in FIG. It is depressed.
  • the angle ⁇ is preferably 5 to 45 degrees, more preferably 10 to 30 degrees. If ⁇ is less than 5 degrees, the dispersion width of the short glass fibers cannot be sufficiently obtained, and the short glass fibers may not be uniformly accumulated on the accumulation conveyor. When ⁇ is larger than 45 degrees, the dispersion width of the short glass fibers discharged from the blowing section 4 becomes too large with respect to the width of the stacking conveyor, and the short glass fibers are unevenly stacked on the end of the stacking conveyor. This is not preferable because it may adhere to the inner wall of the hood.
  • is selected within the above range in consideration of the width of the stacking conveyor, the height from the lower end of the blowout portion 4 of the hollow bucket to the stacking conveyor, the height h of the blowout portion 4, and the like.
  • the height h effective for efficiently and uniformly dispersing the short glass fibers in the blowing section 4 is preferably about 100 to 1000 mm.
  • the blow-off portion whose height h is shorter than 100 mm abrupt deformation is forced from the circular shape, and it becomes difficult to form a preferable elliptical shape toward the lower end opening.
  • the dispersibility of the short glass fibers released from the blow-out portion of the hollow bucket is particularly easily influenced by the shape of the elliptical opening.
  • the shape of the elliptical opening is an ellipse close to a circle with a small ratio between the major axis X and the minor axis Y, or a horizontally long ellipse with a large ratio between the two.
  • the distribution width of fibers is greatly different.
  • the blowout portion 4 of the hollow bucket 2 has a ratio of the length (major axis) a of the major axis X to the length (minor axis) b of the minor axis Y within a certain range.
  • the major axis / minor axis (a / b) is preferably 1.4 / 1 to 6/1, and more preferably 1.5 / 1 to 3/1. If a / b is within this range, the short glass fibers can be discharged from the elliptical opening of the blowing portion 4 while being spread in the major axis direction, and can be distributed almost uniformly.
  • the blowout portion 4 of the hollow bucket is gently deformed from the circular shape of the connection portion with the hopper portion 3 toward the elliptical opening portion in the above range.
  • the sudden deformation in the height direction of the blowout part 4 inhibits the smooth flow of the short glass fibers in order to form a step part in the blowout part. For this reason, the dispersibility is deteriorated, which becomes a factor for forming a group in the short glass fiber.
  • the shape of the elliptical opening is intended to adjust the veil of short glass fibers, and therefore may be elliptical as a whole even if it is not strictly geometrical elliptical.
  • the diameter of the waist part 5 of the hollow bucket 2 is preferably 100% or more of the diameter of the spinner 1, more preferably 110% or more. If the diameter of the waist part 5 is smaller than the diameter of the spinner 1, a part of the short glass fiber that has been fiberized by the spinner 1 and dropped into the hopper part 3 of the hollow bucket 2 is the waist part 5 or lower end part of the hopper part 3. Therefore, it becomes difficult to smoothly feed the short glass fibers to the blowing unit 4 without a group. On the contrary, when the diameter of the waist part 5 becomes too large, it becomes a factor of reducing the dispersion effect of the short glass fibers.
  • the diameter of the waist part 5 of the hollow bucket 2 is preferably about 150% or less of the diameter of the spinner 1.
  • the area of the waist part of the hopper part 2 is the same as that of the cross section of the spinner 1, or larger than this.
  • the cross-sectional area of the waist part 5 of the hollow bucket 2 is preferably equal to or larger than the area of the elliptical opening of the blowing part 4. The reason is that when the cross-sectional area of the waistline portion 5 is smaller than the area of the elliptical opening of the blowing portion 4, it is difficult to discharge the short glass fibers uniformly without groups. If both areas are the same or the cross-sectional area of the waistline portion 5 is larger, the short glass fibers lowered in the hollow bucket are caused to flow from the waistline portion 5 in the blowing portion 4 with the density of the short glass fibers being substantially the same. Therefore, the short glass fibers can be uniformly dispersed without any group.
  • the area of the elliptical opening of the blowing part 4 relative to the area of the waist part 5 is easily adjusted by changing the height h of the blowing part 4, the angle ⁇ , the a / b of the elliptical opening, and the like. be able to.
  • the angle ⁇ of the blowing part is matched to the width of the stacking conveyor.
  • the length of the minor axis is determined based on the length of the major axis so that the area of the elliptical opening matches the area of the waistline Obtained by.
  • the area of the waist part 5 of the hopper 3 and the area of the elliptical opening of the blowing part 4 may be the same or different as long as the object of the present invention can be achieved.
  • a predetermined interval is preferably provided between the hollow bucket 2 and the spinner 1 for the following reason.
  • the fiberization of the molten glass by the spinner 1 is further performed by spraying the molten glass radiated from the orifice on the side of the spinner 1 from the air nozzle 17 by the centrifugal force generated by the high speed rotation of the spinner 1 as shown in FIG. It is obtained by blowing and thinly drawing with compressed air. Accordingly, if a distance (space) of a certain distance or more is not provided between the spinner 1 and the hollow bucket 2, the combustion necessary for uniformly stabilizing the flow of the veiled short glass fibers is performed.
  • the term “directly below the spinner 1” in the present invention refers to a range that assumes the space provided below the spinner 1.
  • a metal ring having heat resistance can be preferably used, and the diameter thereof is determined to be substantially the same as the diameter of the upper end of the hollow bucket 2.
  • positioning with respect to the conveyor 8 for a hollow bucket 2 can be suitably changed as shown in FIG.
  • the arrows indicate the moving direction of the stacking conveyor 8.
  • the major axis of the elliptical opening is usually arranged in the same direction as the width direction of the stacking conveyor 8 as in A 1 , but the direction of the longer axis is relative to the width direction of the stacking conveyor 8.
  • the tilt angle can be appropriately adjusted according to the dispersion state of the fibers and the product width of the obtained fibrous mat. For example, A 2 in FIG.
  • a 5 is a case where the direction of the long axis is inclined 45 degrees with respect to the width direction of the stacking conveyor 8
  • a 3 is a case where it is inclined 90 degrees.
  • a hollow bucket of the shape shown in FIG. 3 is placed immediately below the spinner of the conventional short glass fiber manufacturing apparatus so that the major axis of the elliptical opening of the blowout portion is in the same direction as the width direction of the stacking conveyor 8.
  • the glass short fibers that have been installed and spun into a spinner are lowered to the hopper of the hollow bucket, and the short glass fibers are spread from the hollow bucket to the width direction (long axis direction) at the elliptical opening of the blowout part.
  • the glass short fiber mat (glass wool mat) was manufactured by being discharged and distributed on a stacking conveyor (width: 200 cm) installed about 300 cm below the hollow bucket.
  • the specifications of the hollow bucket used are as follows.
  • the amount of air (exhaust gas amount) sucked and processed through the accumulation conveyor in the accumulation apparatus of the present example is installed directly below the spinner of the short glass fiber production apparatus by installing an air blowing device instead of a hollow bucket, Compared with the conventional air dispersion method in which compressed air is alternately blown from the lateral direction to spray the bale and accumulate on the accumulation conveyor, the amount of exhaust gas can be reduced by 500 m 3 / hr. The burden of processing equipment and cleaning treatment could be significantly reduced.
  • the present invention can be applied to collect fibrous materials and manufacture fiber products for applications such as heat insulating materials and sound absorbing materials, and in particular, short glass fibers (glass wool) are distributed uniformly and at a constant thickness. Useful for adjusting and accumulating.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-36540 filed on Feb. 18, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

 本発明は、繊維状物の分散に圧縮エアを使用しないで、ガラス短繊維のような繊維状物を均一に分散させて集積用コンベア上に分布させることを目的とする。  本発明は、繊維化装置のスピナーで繊維化された繊維状物を、該スピナーの直下部に設置した中空状バケツで分散させて下方に配置された集積用コンベア上に集積させる方法であって、前記中空状バケツを横断面が円形のホッパー部の下端部である胴回り部に、下端に楕円状開口部を有する吹き出し部を連接して形成し、該吹き出し部の内面を前記楕円状開口部に向かって変形させることにより、中空状バケツ内に降下させた繊維状物を吹き出し部で集積用コンベアの幅方向に分散させて集積用コンベア上に集積させる。

Description

繊維状物の集積方法及び集積装置
 本発明は、繊維状物を集積して、例えば断熱材や吸音材などの用途向け繊維製品を製造する際の、繊維状物の集積方法及び集積装置に関する。特に、ガラス短繊維(グラスウール)を均一で一定の厚さに分布調整する集積方法及び集積装置に関する。
 無機繊維製品、特にガラス繊維で作られた製品は、主に連続繊維(ガラス長繊維)、不連続繊維(ガラス短繊維)から作られる。このうち、不連続繊維は一般的に断熱材として使用される。この場合、繊維化された不連続繊維をある一定の形状に成形するため、不連続繊維に結合剤として樹脂を塗布しマット状、板状またはロール状の製品とし、さらに使用目的により部分的または全体にフェーシング等を被覆したり、貼り付けたりする。これらの製品は住宅用及び一般建築用などの断熱材として使用される。また、不連続繊維の別の用途として吸音材が挙げられる。細繊維化された不連続繊維は、繊維空間により効率よく吸音し、各種建築物や道路等の遮音壁に使用することにより騒音の抑制に優れた効果を発揮している。
 不連続繊維からこのような断熱材や吸音材を製造するには、繊維化された不連続繊維を集積用コンベア上に均一に分布させることが重要である。従来、繊維化装置のスピナーで繊維化されたガラス短繊維(以下、繊維と略称することもある)は、スピナーの直下に配置された中空状バケツ内に降下され、ここでガラス短繊維の束(以下、ベールという)となって中空状バケツの円形状の開口部から集積ゾーン(以下、フードとする)内に放出され、集積用コンベア上に均一に分布させて集積される。この中空状バケツから放出されるベールを集積用コンベア上に均一に分布させる方法として、次の方法が一般に知られている。
 (1)特許文献1には、ベールに圧縮エアを横方向から交互に吹き当ててベールを散布させて集積用コンベア上に均一に分布させる方法が開示されている(以下、エア分散方式とする)。
 (2)特許文献2及び特許文献3には、ベールを機械的に集積用コンベアの流れ方向と直交する方向に振って分散させ集積用コンベア上に均一に分布させる方法が開示されている(以下、メカニカル方式とする)。
 上記エア分散方式は、集積用コンベアの幅方向にガラス短繊維を均一に分布させるのに圧縮エアを用いるものである。すなわち、図6に例示するように繊維化装置のスピナー1で繊維化された繊維は、中空状バケツ2から放出されたベール5に結合剤塗布装置12で結合剤が吹き付けられた後、エア吹き出し装置18から圧縮エアを両側から交互に吹き付けることにより集積用コンベアの幅方向に振られて分散されながらフード11内を降下し、集積用コンベア8上にマット状繊維7として均一に集積される。そして、吹き付けられた圧縮エアは、集積用コンベア8を通して吸引され排気ガス9として取り出され処理される。
 上記方法では、繊維の分散に大量の圧縮エアを使用するために、フード内において繊維の舞い上がりが生じる。ここで繊維の舞い上がりとは、コンベア上に集積される際に、コンベア上に集積せずにフード内の空間を浮遊する繊維の集合体があることを示す現象である。繊維に塗布された前記結合剤が粘着性や接着性を持っているため、繊維の舞い上がりが多い状況では、フード内の空間で繊維同士が集合して繊維の塊を形成したり、繊維化装置やフード内の設備に付着して繊維の塊を形成したりする。これら繊維の塊が大きくなると、集積したマット状繊維に落下して製品の品質を低下させるという問題がある。
 従来から、繊維の塊を生じさせないようにするためには、定期的にフード内を清掃したり、舞い上がりそのものを抑制するために繊維集積装置をより大型化したりすることが求められている。しかしながら、装置の大型化は、その分排気ガス量が増加することを意味し、排気ガスを清浄化するために莫大なエネルギーが必要になる。また、繊維の舞い上がりを抑制するために集積用コンベアの吸引量を増加させることが考えられるが、これも吸引に使用するファンの電力量が増加し同様に膨大なエネルギーが必要となる。
 一方、メカニカル方式では繊維化装置の下方に中空状バケツを配置し、該バケツを集積用コンベアの搬送方向と直交する方向(幅方向)に揺動させることにより、バケツ内に降下されたガラス短繊維を集積用コンベア上に振り分け集積させる。しかし、この方法は、ガラス短繊維を分散させるのにバケツを揺動させるため、機械的可動部分への負荷が大きく、故障頻度が多くなる問題があった。また、バケツを揺動させるだけでガラス短繊維を分散させるため、分散性に劣る場合があった。
特公昭59-7652号公報 特開昭59-199855号公報 国際公開第2004/041736号パンフレット
 本発明は、繊維化された繊維状物を、圧縮エアを用いなくても、またバケツに揺動機構を装備しなくても、集積用コンベア上に均一に分布させることが可能な集積方法及びその集積装置の提供を目的とする。
 本発明者は、上記目的を達成するために、繊維化された繊維状物の集積方法について検討した結果、スピナーの下方に配置する中空状バケツの繊維を放出する吹き出し部の形状を変えることにより、圧縮エアの吹き付けや中空状バケツの揺動を行わなくても繊維状物を均一に分散させて集積用コンベア上に集積できることを見出し、本発明に至ったものである。
 本発明は、繊維化装置のスピナーで繊維化された繊維状物を、該スピナーの直下部に設置した中空状バケツで分散させて下方に配置された集積用コンベア上に集積させる方法であって、前記中空状バケツを横断面が円形のホッパー部の下端部である胴回り部に、下端に楕円状開口部を有する吹き出し部を連接して形成し、該吹き出し部の内面を前記楕円状開口部に向かって変形させることにより、中空状バケツ内に降下させた繊維状物を吹き出し部で集積用コンベアの幅方向に分散させて集積用コンベア上に集積させることを特徴とする繊維状物の集積方法(以下、本発明の集積方法とする)を提供する。
 本発明の集積方法において、上記繊維状物はガラス短繊維であることが好ましい。
 さらに、本発明は、繊維化装置のスピナーで繊維化された繊維状物を、該スピナーの直下部に設置した中空状バケツで分散させて下方に配置された集積用コンベア上に集積させる装置であって、前記中空状バケツは横断面が円形のホッパー部と、該ホッパー部の下端部である胴回り部に連接された下端に楕円状開口部を有する吹き出し部とを有し、該吹き出し部は内面が円形から楕円状開口部に向かって変形しており、該中空状バケツ内に降下させた繊維状物を吹き出し部で集積用コンベアの幅方向に分散させて集積用コンベア上に集積させるように構成されていることを特徴とする繊維状物の集積装置(以下、本発明の集積装置とする)を提供する。
 本発明の集積装置において、前記吹き出し部は、楕円状開口部の長軸方向の内面が楕円状開口部に向かって外方向に傾斜しており、その傾斜角度が中空状バケツの中心軸に対し5~45度であることが好ましい。
 また、本発明の集積装置において、前記ホッパー部の胴回り部の面積は吹き出し部の楕円状開口部の面積と同じか又はこれより大きいことが好ましく、また、前記ホッパー部の胴回り部の面積はスピナーの横断面の面積と同じか又はこれより大きいことが好ましい。更に、前記吹き出し部は、楕円状開口部の長径/短径が1.4/1~6/1であることが好ましい。
 本発明によれば、上記したように中空状バケツの吹き出し部を下端開口部が楕円状になるように形成することで、繊維化された繊維状物を楕円状開口部から集積用コンベアの幅方向に広げて放出することが可能になり、集積用コンベア上に均一に分布させて集積できる。また、従来のように繊維状物の分布調整に圧縮エアを使用しないので、圧縮エア用の設備装置が不要となるとともに、繊維状物の集積装置における排気ガス量が削減できることにより、排気ガス処理設備や清浄処理の負担を軽減できる。さらに、既存設備の一部分(中空状バケツ)を改造するだけで済むので設備費の軽減が図れる。
 また、フード内で圧縮エアによる繊維の舞い上がりを極力減少させることができるので、舞い上がりによる繊維の塊の発生やフードに付着する繊維の塊の発生を極力低減することができる。これにより、集積される繊維状物に上記繊維の塊が混入するのを防止できるため高品質の製品を得ることができるとともに、集積装置を長時間連続して安定運転することが可能となるので、生産性の向上を図ることができる。
本発明の好ましい実施形態であるガラス短繊維の集積装置の概略断面図である。 図1の中空状バケツを下方から見たときの斜視図である。 (A)は中空状バケツの模式的正面図、(B)はその胴回り部の断面形状と下端開口部の形状の説明図である。 図3(A)の中空状バケツの右側面図である。 集積用コンベアに対する中空状バケツの配置を示す説明図である。 従来のガラス短繊維の集積装置の概略断面図である。
符号の説明
1:繊維化装置(スピナー)  2:中空状バケツ、      3:ホッパー部、
4:吹き出し部、       5:胴回り部、        6:繊維流れの軌跡、
7:マット状繊維、      8:集積用コンベア、     9:排気ガス、
10:排気ガス収集ボックス、 11:集積ゾーン(フード)、 12:結合剤塗布装置、
13:取付け部材、      14:ボルト孔、       15:胴回り部形状
16:開口部形状、      17:エアノズル、      18:エア吹き出し装置
 本発明において、分布させる繊維状物は、主に断熱材や吸音材として有用な無機質繊維であり、具体的には、ガラス短繊維(グラスウール)、鉱物質繊維(ロックウール、スラグウール)などの耐熱性と耐候性に優れる無機質繊維が挙げられる。中でも低コストで製造できかつ断熱性能の優れるガラス短繊維は最も好ましく使用できる。このガラス短繊維を素材として、マット状、板状またはロール状などの種々のグラスウール製品を周知の製造加工方法を用いて得ることができる。
 上記繊維状物は、繊維化装置のスピナーで繊維化される。本発明は、このように繊維化された繊維状物を集積用コンベア上に均一に分布させるのに圧縮エアを実質的に使用しないで、中空状バケツの吹き出し部の形状を楕円状開口部にすることにより繊維状物を均一に分散させることを特徴とする。
 次に、本発明を図面に基づいて具体的に説明する。以下に示す図面は本発明の好ましい実施の態様であるガラス短繊維の集積装置を例示したものであるが、本発明はこれに限定されない。図1はガラス短繊維の繊維化から集積までの装置全体を概略的に示す断面説明図である。図1に示すように繊維化装置のスピナー1から放出されたガラスは、繊維化装置の燃焼ガス(図示せず)及びエアノズル17から噴出される圧縮エアによって引き伸ばされてガラス短繊維になり、スピナー1の直下部に配置された中空状バケツ2のホッパー部3内に降下される。そして、中空状バケツ2のホッパー部3内に降下されたガラス短繊維は、該中空状バケツ2の吹き出し部4からその楕円状開口部で集積用コンベアの幅方向に分散されて吹き出された後フード11内を降下し、フード11の下方に設置されている集積用コンベア8上に集積されてマット状繊維7に形成される。この時、ベールの軌跡は符号6のように幅方向に均一に広ながりながら降下し、集積用コンベア8上に達する時点では集積用コンベア8の幅と略同一になる。上記において、中空状バケツ2で分散されたガラス短繊維には、中空状バケツ2の下方に設けられた結合剤塗布装置12から結合剤として、例えばフェノール-ホルムアルデヒド系樹脂などの熱硬化性樹脂前駆体を含む水溶液が噴射されて塗布される。
 集積用コンベア8は、スピナー1の下方にフード11の下端に近接して配置されており、紙面に直角な方向に一定速度で駆動している。この集積用コンベア8は通気構造を有するとともに、その下部には排気ガス収集ボックス10が設けられていて、フード11内の燃焼排気ガスや空気などの気体をマット状繊維7を通して吸引し、排気ガス9として取り出す構造になっている。取り出された排気ガス9は清浄化処理されるが、従来のように圧縮エアでガラス短繊維を分散していないので、清浄化処理する排気ガス量は少なくて済む。
 上記において、中空状バケツ2でガラス短繊維を分散させる点以外は、一般に実施されているグラスウールもしくはグラスウールマットの製造技術と実質的に同一である。したがって、中空状バケツ2を除いて従来の技術及び装置が適宜使用できる。例えば、スピナー1は集積用コンベア8の進行方向に沿って、1乃至複数個を設置することができる。すなわち、マット状繊維7の厚さを厚くしたい場合、多層のガラス短繊維を積層することにより品質の均一化を図りたい場合、あるいは繊維径や物性の異なるガラス短繊維を積層したい場合などには、これらの目的に合わせて例えば2~10個のスピナーを集積用コンベア7上にその進行方向に沿って設置し、一定速度で進行する集積用コンベア8上に上流側のスピナーで繊維化されたガラス短繊維から順次積層させることによりマット状繊維7を形成することができる。なお、スピナーによる繊維化及び分散された繊維状物の集積に関する基本技術は、その他の無機質繊維においてもこれと実質的に同じである。
 次に、中空状バケツ2の一例について説明する。図2は図1の中空状バケツ2を集積用コンベアの進行方向の斜め下方から見たときの斜視図である。中空状バケツ2の胴回り部5の周囲には、図2~4に示すようにボルト孔14を有する取付け金具13が複数個(本例では4個)設けられており、該取付け金具13を支持構造体(不図示)にねじ留めすることによって中空状バケツ2はスピナーの直下部に設置される。
 図3(A)は、上記中空状バケツ2を模式的に示す正面図である。本例の中空状バケツ2は、図示のように上下部が開口している、例えば鋼板製の中空体で、上段部分を構成するホッパー部3と下段部分を構成する吹き出し部4を有し、これらのホッパー部3と吹き出し部4とは胴回り部5を介して連接している。ホッパー部3は、スピナーで繊維化されたガラス短繊維を中空状バケツ2内に受け入れる部分で横断面が円形をなし、その形状はガラス短繊維を受け入れやすくするため、上端部に向かって広く開口する漏斗状であることが好ましい。しかし、ホッパー部3は円筒状であってもよい。胴回り部5はホッパー部3の下端部で円形の内面を有し、その径はホッパー部3の下端部の径と同じである。したがって、本例のような漏斗状のホッパー部3の場合には、胴回り部5はホッパー部3の最小径部分に相当する。本例ではこの胴回り部5を、例えば高さが1~5cmの円筒で形成しているが、このような円筒の胴回り部を設けずにホッパー部3の下端部に吹き出し部4を連接してもよい。この場合の胴回り部はホッパー部3の下端部となる。
 本発明において、中空状バケツ2の吹き出し部4は特有の形状を有している。すなわち、吹き出し部4は、胴回り部5に連接する上端部は円形であるが、ガラス短繊維を放出する下端部は楕円状の開口部(以下、楕円状開口部とする)を有し、胴回り部5に連接する円形の上端部から楕円状開口部に向かって円滑にかつ連続的に変形する特有の形状を有している。ガラス短繊維の集積装置に用いられる従来の中空状バケツは、分布方法に関係なくいずれも円筒状中空体であり、ガラス短繊維を放出する下端開口部も円形である。したがって、本発明の中空状バケツは吹き出し部4の形状、とりわけその下端開口部の形状において、従来のものとまったく異なっている。
 次に、この中空状バケツ2の形状について図面を参照して詳細に説明する。なお、図面及び以下の説明において中空状バケツ2の形状は、特に断らない限りすべて内面形状を意味する。通常は中空状バケツ2の外面形状も内面形状と実質的に同じであるが、これに限定されない。
 図3(B)において、15は中空状バケツ2の胴回り部5の断面形状、すなわち吹き出し部4の上端部の形状を示し、16は吹き出し部4の下端開口部(楕円状開口部)の形状を示す。また、図4は図3(A)の側面図である。これらの図から分かるように、中空状バケツ2の胴回り部の形状15は円形状であるが、吹き出し部4の下端開口部の形状16は集積用コンベアの幅方向に長軸Xを有する楕円状をなしている。すなわち、中空状バケツ2の吹き出し部4は、図3(A)に示すように楕円状開口部の長軸方向の内面が楕円状開口部に向かって先広がり(外方向)に押し広げられて中空状バケツ2の中心軸Lに対し角度θ傾斜しており、一方楕円状開口部の短軸方向の内面は、図4に示すように円形状の胴回り部5から楕円状開口部に向かって押しすぼまっている。
 本発明の中空状バケツにおいて、上記角度θとしては5~45度であることが好ましく、より好ましくは10~30度である。θが5度より小さいとガラス短繊維の分散幅が十分に得られなくなり、集積用コンベア上にガラス短繊維を均一に集積させることができなくなるおそれがある。また、θが45度より大きくなると、吹き出し部4から放出されるガラス短繊維の分散幅が集積用コンベアの幅に対し広くなりすぎ、ガラス短繊維が集積用コンベアの端部に偏積したり、フードの内壁に付着したりするおそれがあるので好ましくない。実際には、集積用コンベアの幅、中空状バケツの吹き出し部4の下端部から集積用コンベアまでの高さ、及び吹き出し部4の高さhなどを考慮し、θは上記範囲内で選定される。この場合、吹き出し部4でガラス短繊維を効率よく均一に安定して分散させるのに有効な高さhとしては、100~1000mm程度が好ましい。高さhが100mmより短い吹き出し部では、円形から急激な変形が強いられ下端開口部に向かって好ましい楕円形状に形成することが困難になる。一方、高さhが1000mmより長くなっても、更なるベールの流れを安定化する効果が得られず、ガラス短繊維の分散効果はほとんど同じであり、中空状バケツの大型化を招くだけである。
 本発明において、中空状バケツの吹き出し部から放出されるガラス短繊維の分散性は、特にその楕円状開口部の形状の影響を強く受けやすい。典型的には楕円状開口部の形状が長軸Xと短軸Yとの比率が小さい円形に近い楕円であるか、あるいは両者の比率が大きい横長の楕円であるかによって、放出されるガラス短繊維の分布幅が大きく異なる。このような観点から中空状バケツ2の吹き出し部4は、楕円状開口部の長軸Xの長さ(長径)aと短軸Yの長さ(短径)bとの比率が一定の範囲であることが好ましい。具体的には長径/短径(a/b)が1.4/1~6/1であることが好ましく、1.5/1~3/1であればより好ましい。a/bがこの範囲であれば、吹き出し部4の楕円状開口部からガラス短繊維を長軸方向に押し広げながら放出しほぼ一様に分布させることができる。
 この場合、中空状バケツの吹き出し部4は、ホッパー部3との接続部の円形からa/bが上記範囲の楕円状開口部に向かって緩やかに変形することが好ましい。吹き出し部4の高さ方向における急激な変形は、吹き出し部に段部を形成するためにガラス短繊維の円滑な流れを阻害する。そのため、分散性が悪くなりガラス短繊維に群を生ぜしめる要因となる。また、楕円状開口部の形状は、ガラス短繊維のベールの調整が目的であるので、厳格に幾何学的な楕円形でなくても全体的に楕円状であればよい。
 本発明において、中空状バケツ2の胴回り部5の直径は、スピナー1の直径の100%以上であることが好ましく、110%以上であればより好ましい。胴回り部5の直径がスピナー1の直径より小さいと、スピナー1で繊維化され中空状バケツ2のホッパー部3内に降下されたガラス短繊維の一部がホッパー部3の胴回り部5もしくは下端部分に衝突しやすくなるため、前記ガラス短繊維を吹き出し部4に群なく円滑に送給させることが困難になる。逆に、胴回り部5の直径が大きくなりすぎると、ガラス短繊維の分散効果を低下させる要因となる。したがって、中空状バケツ2の胴回り部5の直径は、スピナー1の直径の約150%以下であることが好ましい。このように本発明においてホッパー部2の胴回り部の面積は、スピナー1の横断面の面積と同じか又はこれより大きいことが好ましい。
 さらに、上記中空状バケツ2の胴回り部5の横断面積は、吹き出し部4の楕円状開口部の面積と同じか又はこれより大きいことが好ましい。その理由は、胴回り部5の横断面積が、吹き出し部4の楕円状開口部の面積よりも小さいと、ガラス短繊維を群なく均一に放出させることが困難となるためである。両者の面積が同一又は胴回り部5の横断面積の方が大きいと、中空状バケツに降下されたガラス短繊維を胴回り部5からガラス短繊維の密度がほぼ同じ状態で吹き出し部4内を流動させて楕円状開口部に導き、該楕円状開口部の全体から一様に放出させることができるので、ガラス短繊維を群なく均一に分散させることができる。
 本発明において、胴回り部5の面積に対する吹き出し部4の楕円状開口部の面積は、吹き出し部4の高さh、角度θ及び楕円状開口部のa/bなどを変えることによって容易に調整することができる。例えば、ホッパー部3の胴回り部5の面積と吹き出し部4の楕円状開口部の面積とが実質的に同じである中空状バケツは、吹き出し部の角度θを集積用コンベアの幅に整合させて決めることによって楕円状開口部の長軸の長さを算定し、この長軸の長さに基づいて楕円状開口部の面積が胴回り部の面積に一致するように短軸の長さを決めることによって得られる。本発明において、ホッパー部3の胴回り部5の面積と吹き出し部4の楕円状開口部の面積とは、本発明の目的さえ達成できれば同一であっても異なっていてもよい。
 本発明において、上記中空状バケツ2とスピナー1との間には、次の理由から所定の間隔が設けられることが好ましい。すなわち、スピナー1による溶融ガラスの繊維化は、図1に示すようにスピナー1の高速回転で発生する遠心力によってスピナー1の側部のオリフィスから放射された溶融ガラスを、さらにエアノズル17から噴射される圧縮エアによって吹き飛ばし細く延伸することにより得られる。したがって、スピナー1と中空状バケツ2との間に一定以上の距離(空間)が設けられていないと、繊維化されたガラス短繊維のベールの流れを均一に安定化させるために必要な、燃焼ガス及びエアノズル17からの圧縮エア以外の外部空気の取り込みが困難となり、ガラス短繊維の品質の低下を招くおそれがある。したがって、本発明においてスピナー1の直下部というときは、スピナー1の下方に設けられる上記空間を想定する範域を指している。
 さらに、この中空状バケツ2とスピナー1との間には、図示はしないが繊維化装置及びその周辺の空気の流れを安定化し、さらに繊維化されたガラス短繊維の飛散を防止するために、リングを設けることが好ましい。このリングとしては、耐熱性を有する金属製リングが好ましく使用でき、その直径は中空状バケツ2の上端の直径とほぼ同じに決められる。
 また、中空状バケツ2は図5に示すように集積用コンベア8に対する配置の方向を適宜変更できる。図5において、矢印は集積用コンベア8の移動方向を示す。中空状バケツ2は、通常はAのように楕円状開口部の長軸を集積用コンベア8の幅方向と同方向に配置するが、長軸の向きは集積用コンベア8の幅方向に対して傾けることができ、繊維の分散状態と得られる繊維状マットの製品幅によって、傾ける角度を適宜調整することができる。例えば、図5のAは長軸の向きを集積用コンベア8の幅方向に対して45度傾けた場合であり、Aは90度傾けた場合である。中空状バケツの向きをこのように変えることで、繊維の分散幅を容易に変えることができる。更に、複数個の繊維化装置を設置する場合にも、個々の繊維化装置における中空状バケツの長軸の向きを繊維の分散状態と得られる繊維状マットの製品幅によって個別に調整し、中空状バケツを配置することができる。
 従来のガラス短繊維製造装置のスピナーの直下部に、図3に示す形状の中空状バケツをその吹き出し部の楕円状開口部の長軸が集積用コンベア8の幅方向と同方向になるように設置し、スピナーで繊維化されたガラス短繊維を中空状バケツのホッパー部に降下させ、このガラス短繊維を中空状バケツから吹き出し部の楕円状開口部で幅方向(長軸方向)に広げながら放出し、中空状バケツの約300cm下方に設置した集積用コンベア(幅:200cm)上に分布させて集積し、ガラス短繊維マット(グラスウールマット)を製造した。使用した中空状バケツの仕様は次のとおりである。
(中空状バケツ)
 中空状バケツの高さ:450mm
 胴回り部 :(内径)370mm、(面積)107,521mm
 吹き出し部:高さ(h):300mm
       角度θ  :20度
       長径(a):234mm、短径(b):146mm、a/b:1.6/1
       面積   :107,520mm
 製造されたガラス短繊維マットを観察したところ、ガラス短繊維は幅方向に均一に分布しており、また繊維の塊の混入もなく、圧縮エアで分布調整しなくても従来のエア分散方法のガラス短繊維マットと同等の品質のガラス短繊維マットが得られることが分かった。
 さらに、本例の集積装置において集積用コンベアを通して吸引し処理する空気量(排ガス量)は、上記ガラス短繊維製造装置のスピナーの直下部に中空状バケツの代わりにエア吹き出し装置を設置し、ベールに圧縮エアを横方向から交互に吹き当ててベールを散布させて集積用コンベア上に集積する従来のエア分散方式で集積する場合に比べ500m/hrの排ガス量を削減でき、それにより排ガスの処理設備や清浄処理の負担を著しく軽減できた。
 本発明は、繊維状物を集積して例えば断熱材や吸音材のような用途向けの繊維製品を製造するのに適用でき、特に、ガラス短繊維(グラスウール)を均一で一定の厚さに分布調整して集積するのに有用である。
 なお、2008年2月18日に出願された日本特許出願2008-36540号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (7)

  1.  繊維化装置のスピナーで繊維化された繊維状物を、該スピナーの直下部に設置した中空状バケツで分散させて下方に配置された集積用コンベア上に集積させる方法であって、前記中空状バケツを横断面が円形のホッパー部の下端部である胴回り部に、下端に楕円状開口部を有する吹き出し部を連接して形成し、該吹き出し部の内面を前記楕円状開口部に向かって変形させることにより、中空状バケツ内に降下させた繊維状物を吹き出し部で集積用コンベアの幅方向に分散させて集積用コンベア上に集積させることを特徴とする繊維状物の集積方法。
  2.  繊維状物がガラス短繊維である請求項1に記載の繊維状物の集積方法。
  3.  繊維化装置のスピナーで繊維化された繊維状物を、該スピナーの直下部に設置した中空状バケツで分散させて下方に配置された集積用コンベア上に集積させる装置であって、前記中空状バケツは横断面が円形のホッパー部と、該ホッパー部の下端部である胴回り部に連接された下端に楕円状開口部を有する吹き出し部とを有し、該吹き出し部は内面が円形から楕円状開口部に向かって変形しており、該中空状バケツ内に降下させた繊維状物を吹き出し部で集積用コンベアの幅方向に分散させて集積用コンベア上に集積させるように構成されていることを特徴とする繊維状物の集積装置。
  4.  前記吹き出し部は、楕円状開口部の長軸方向の内面が楕円状開口部に向かって外方向に傾斜しており、その傾斜角度が中空状バケツの中心軸に対し5~45度である請求項3に記載の繊維状物の集積装置。
  5.  前記ホッパー部の胴回り部の面積は、吹き出し部の楕円状開口部の面積と同じか又はこれより大きい請求項3または4に記載の繊維状物の集積装置。
  6.  前記ホッパー部の胴回り部の面積は、スピナーの横断面の面積と同じか又はこれより大きい請求項3、4または5に記載の繊維状物の集積装置。
  7.  前記吹き出し部は、楕円状開口部の長径/短径が1.4/1~6/1である請求項3~6のいずれかに記載の繊維状物の集積装置。
PCT/JP2009/052805 2008-02-18 2009-02-18 繊維状物の集積方法及び集積装置 WO2009104647A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09712502A EP2248777B1 (en) 2008-02-18 2009-02-18 Method of and device for collecting fibrous materials
KR1020107014007A KR101516845B1 (ko) 2008-02-18 2009-02-18 섬유 형상물의 집적 방법 및 집적 장치
US12/918,009 US8387417B2 (en) 2008-02-18 2009-02-18 Method and apparatus for collecting fibrous material
JP2009554348A JP5368322B2 (ja) 2008-02-18 2009-02-18 繊維状物の集積方法及び集積装置
ES09712502T ES2398485T3 (es) 2008-02-18 2009-02-18 Método y dispositivo para recoger materiales fibrosos
CN200980105749XA CN101945830B (zh) 2008-02-18 2009-02-18 纤维状物的集积方法及集积装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008036540 2008-02-18
JP2008-036540 2008-02-18

Publications (1)

Publication Number Publication Date
WO2009104647A1 true WO2009104647A1 (ja) 2009-08-27

Family

ID=40985525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052805 WO2009104647A1 (ja) 2008-02-18 2009-02-18 繊維状物の集積方法及び集積装置

Country Status (7)

Country Link
US (1) US8387417B2 (ja)
EP (1) EP2248777B1 (ja)
JP (1) JP5368322B2 (ja)
KR (1) KR101516845B1 (ja)
CN (1) CN101945830B (ja)
ES (1) ES2398485T3 (ja)
WO (1) WO2009104647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151773A (ja) * 2011-12-28 2013-08-08 Nippon Electric Glass Co Ltd ガラスチョップドストランドマットの製造方法、及び製造装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958755B (zh) 2011-09-30 2018-05-25 欧文斯科宁知识产权资产有限公司 从纤维材料形成幅材的方法
CA2862882C (en) * 2012-02-08 2021-04-13 Rockwool International A/S Building facade with lock element and lock element
CN103572505A (zh) * 2012-08-08 2014-02-12 苏州维艾普新材料有限公司 一种纤维均匀分布用摇摆筒装置
CN103726230A (zh) * 2013-04-22 2014-04-16 太仓派欧技术咨询服务有限公司 一种玻璃棉分散摇摆桶装置
CN112251829A (zh) * 2020-11-03 2021-01-22 成都瀚江新材科技股份有限公司 一种提高集棉板上玻璃棉产量及均匀性的集棉系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879836A (ja) * 1981-11-04 1983-05-13 Paramaunto Glass Kogyo Kk ガラスウ−ルの捕集方法および装置
JPS597652B2 (ja) 1975-05-09 1984-02-20 オ−エンス・コ−ニング フアイバ−グラス コ−ポレ−シヨン 収集表面上に繊維パックを形成するための方法及び装置
JPS59199855A (ja) 1983-03-10 1984-11-13 イゾヴエ−ル・サン・ゴ−バン 繊維のフエルトの形成方法及び装置
WO2004041736A1 (en) 2002-10-30 2004-05-21 Certainteed Corporation Aerodynamic forming bucket
JP2007332499A (ja) * 2006-06-15 2007-12-27 Asahi Fiber Glass Co Ltd 繊維状物の分布方法及び分布装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1065453A (en) * 1975-05-30 1979-10-30 Owens-Corning Fiberglas Corporation Method of and apparatus for controlling the distribution of fibers on a receiving surface
FR2510909A1 (fr) * 1981-08-06 1983-02-11 Saint Gobain Isover Procede et dispositifs pour l'amelioration de la distribution sur un organe de reception de fibres vehiculees par un courant gazeux
US4462528A (en) 1982-06-18 1984-07-31 Polaroid Corporation Electrostatic web clamp
DE3309989A1 (de) * 1983-03-19 1984-10-11 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zur reduktion der geschwindigkeit von stroemenden medien

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597652B2 (ja) 1975-05-09 1984-02-20 オ−エンス・コ−ニング フアイバ−グラス コ−ポレ−シヨン 収集表面上に繊維パックを形成するための方法及び装置
JPS5879836A (ja) * 1981-11-04 1983-05-13 Paramaunto Glass Kogyo Kk ガラスウ−ルの捕集方法および装置
JPS59199855A (ja) 1983-03-10 1984-11-13 イゾヴエ−ル・サン・ゴ−バン 繊維のフエルトの形成方法及び装置
WO2004041736A1 (en) 2002-10-30 2004-05-21 Certainteed Corporation Aerodynamic forming bucket
JP2007332499A (ja) * 2006-06-15 2007-12-27 Asahi Fiber Glass Co Ltd 繊維状物の分布方法及び分布装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2248777A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151773A (ja) * 2011-12-28 2013-08-08 Nippon Electric Glass Co Ltd ガラスチョップドストランドマットの製造方法、及び製造装置

Also Published As

Publication number Publication date
EP2248777A4 (en) 2011-06-08
US8387417B2 (en) 2013-03-05
KR101516845B1 (ko) 2015-05-04
ES2398485T3 (es) 2013-03-19
CN101945830B (zh) 2013-10-30
JPWO2009104647A1 (ja) 2011-06-23
KR20100126654A (ko) 2010-12-02
JP5368322B2 (ja) 2013-12-18
EP2248777B1 (en) 2013-01-09
EP2248777A1 (en) 2010-11-10
US20100307198A1 (en) 2010-12-09
CN101945830A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5368322B2 (ja) 繊維状物の集積方法及び集積装置
US5876529A (en) Method of forming a pack of organic and mineral fibers
KR20010032374A (ko) 섬유팩 제조 방법
JP4783218B2 (ja) 繊維状物の分布方法及び分布装置
CA2188307A1 (en) Wool pack forming process using high speed rotating drums and low frequency sound distribution
JP5021444B2 (ja) 繊維状物の集積方法及び集積装置
RU2469967C2 (ru) Композит из минеральной ваты и способ его изготовления
US20140076000A1 (en) Apparatus and method for air flow control during manufacture of glass fiber insulation
EP2258667B1 (en) Method in the manufacture of mineral wool
EP3676435B1 (en) Apparatus and method for manufacturing mineral wool as well as a mineral wool product
EP1888829B1 (en) Collecting chamber and method in the manufacture of mineral fibres
FI88018C (sv) Anordning vid framställning av fibrer
RU2116270C1 (ru) Способ формирования холста из минерального супертонкого волокна и устройство для его осуществления
EP1228012B1 (en) Processes and apparatus for the production of man-made vitreous fibre products
FI127025B (sv) Förfarande vid framställning av mineralull
FI119381B (fi) Menetelmä ja järjestelmä mineraalikuitumaton kuljettamiseksi mineraalikuitumaton valmistusprosessissa, sekä järjestelmän käyttö
EP1230179B1 (en) Manufacture of mineral wool products

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105749.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107014007

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009554348

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12918009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009712502

Country of ref document: EP