WO2009101689A1 - 磁気記録ヘッドの製造方法 - Google Patents

磁気記録ヘッドの製造方法 Download PDF

Info

Publication number
WO2009101689A1
WO2009101689A1 PCT/JP2008/052416 JP2008052416W WO2009101689A1 WO 2009101689 A1 WO2009101689 A1 WO 2009101689A1 JP 2008052416 W JP2008052416 W JP 2008052416W WO 2009101689 A1 WO2009101689 A1 WO 2009101689A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
groove
magnetic pole
stopper
Prior art date
Application number
PCT/JP2008/052416
Other languages
English (en)
French (fr)
Inventor
Kazuaki Inukai
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2008/052416 priority Critical patent/WO2009101689A1/ja
Publication of WO2009101689A1 publication Critical patent/WO2009101689A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Definitions

  • the present invention relates to a method for manufacturing a magnetic recording head, and more particularly to a method for manufacturing a magnetic recording head capable of forming the end face shape of the magnetic pole of the magnetic recording head with high accuracy.
  • a magnetic pole having an inverted trapezoidal shape when viewed from the air bearing surface side.
  • the end face shape of the magnetic pole is an inverted trapezoidal shape when the magnetic head slider is located on the inner peripheral side and the outer peripheral side of the medium, and the skew angle (the magnetic head slider is in the tangential direction of the recording track). This is to avoid the problem of erasing information recorded on adjacent tracks (side erasure) because the angle formed is different.
  • the damascene method forms an insulating layer that comprises the magnetic head with alumina or the like, then forms a concave groove in the insulating layer, and magnetically forms the concave groove.
  • the method of filling the material it is possible to form the shape of the magnetic pole tip with high accuracy by forming the cross-sectional shape of the concave groove portion to be the magnetic pole tip in an inverted trapezoidal shape.
  • the present invention has been made to solve the problems required of a magnetic recording head as the recording density of such a recording medium is improved, and enables magnetic recording capable of high-density recording and suppressing side erasure.
  • An object is to provide a method for manufacturing a recording head.
  • the present invention has the following configuration in order to achieve the above object.
  • a step of sequentially laminating a first nonmagnetic layer, a stopper layer, and a mask layer, a step of patterning the stopper layer and the mask layer, and the first mask using the patterned mask layer as a mask Etching the nonmagnetic layer to form a groove for forming a magnetic pole; removing the patterned mask layer; and laminating a first magnetic layer to serve as a shield layer; and an inner surface of the groove, or Etching the first magnetic layer on the stopper layer up to the stopper layer, leaving the first magnetic layer on the inner side surface and inner bottom surface of the groove; and a second nonmagnetic layer and a main magnetic pole
  • the magnetic pole can be accurately formed in a predetermined shape such as an inverted trapezoidal shape, and a shield layer can be formed on the side of the magnetic pole, and side erasure by the magnetic pole can be performed. Can be prevented.
  • the thickness of the second nonmagnetic layer and the thickness of the first magnetic layer are added to the core width of the main magnetic pole By forming the width with the added thickness, it is possible to secure a region for forming the shield layer on the side of the magnetic pole.
  • B is repeated.
  • the magnetic pole can be formed in a multilayer film structure having a predetermined cross-sectional shape, and a magnetic recording head having a magnetic pole with suppressed side erasure and improved magnetic recording accuracy can be provided.
  • a step of polishing the magnetic layer up to the stopper layer is provided instead of the last step (b).
  • a magnetic layer serving as a shield layer is laminated as the magnetic layer in the first step (a), thereby forming a magnetic pole having a multilayer film structure including the shield layer.
  • the magnetic recording head can be provided.
  • 1A to 1E are cross-sectional views showing the manufacturing process of the first embodiment of the manufacturing method of the magnetic recording head.
  • 2A to 2D are cross-sectional views showing the manufacturing process of the first embodiment of the method of manufacturing the magnetic recording head.
  • 3A to 3D are plan views of the main pole in the manufacturing process of the magnetic recording head.
  • 4A to 4F are cross-sectional views showing the manufacturing process of the second embodiment of the method of manufacturing the magnetic recording head.
  • 5A to 5E are cross-sectional views showing the manufacturing process of the second embodiment of the method of manufacturing the magnetic recording head.
  • 6A to 6D are cross-sectional views showing the manufacturing process of the third embodiment of the method for manufacturing the magnetic recording head, and
  • FIG. 6E is a cross-sectional view of the conventional method.
  • FIGS. 2A to 2D show the manufacturing process of the first embodiment of the method of manufacturing the magnetic recording head according to the present invention, and show the cross-sectional shape at the magnetic pole end portion of the main magnetic pole.
  • the manufacturing process of this embodiment is a process of forming the main magnetic pole of the perpendicular magnetic recording head.
  • FIG. 1A shows a state where a read head structure is formed on a substrate, alumina is sputtered on the surface of a work substrate to form a first nonmagnetic layer 10, and a stopper layer 12 and a mask layer 14 are further formed. Indicates.
  • the first nonmagnetic layer 10 is formed of a nonmagnetic material such as alumina in the same layer as the main magnetic pole layer.
  • the stopper layer 12 is used as a stopper that defines a polishing position when polishing the surface of a workpiece in a subsequent process.
  • a nonmagnetic material such as Ta or Ti is used for the stopper material.
  • the stopper layer 12 is formed by sputtering these stopper materials.
  • the stopper layer 12 is formed on the entire surface of the workpiece.
  • the mask layer 14 is for forming a mask pattern used when the first nonmagnetic layer 10 is dry-etched. FIG.
  • FIG. 1B shows a state in which the mask layer 14 is etched to form a mask pattern that exposes a planar region portion of the main pole formed in the first nonmagnetic layer 10.
  • the mask pattern is formed by forming a resist pattern on the surface of the mask layer 14 and etching the mask layer 14 using the resist pattern as a mask.
  • the stopper layer 12 which is an underlayer of the mask layer 14 is also etched, and the stopper layer 12 is also patterned in the same pattern as the mask layer 14.
  • the first nonmagnetic layer 10 is dry-etched using the mask layer 14 as a mask.
  • a region of the first nonmagnetic layer 10 that is not covered with the mask layer 14 is removed, and a groove 10a for forming the main magnetic pole is formed (FIG. 1C).
  • the figure shows a cross-sectional shape at the magnetic pole end portion of the main magnetic pole.
  • the dry etching of the first nonmagnetic layer 10 is performed by reactive ion etching (RIE method) using BCl 3 gas as an etching gas.
  • RIE method reactive ion etching
  • BCl 3 gas as an etching gas.
  • the etching conditions are set so that the taper angle ( ⁇ in the figure) of the inner surface of the groove 10a is about 70 to 90 degrees.
  • the planar shape of the groove 10 a is defined by a mask pattern formed by patterning the mask layer 14.
  • the shape of the groove 10a can be arbitrarily set by appropriately forming a mask pattern.
  • the cross-sectional shape of the groove is designed to coincide with the cross-sectional shape of the main pole, but in the present embodiment, the first nonmagnetic layer 10 Of the groove 10a formed in the step, at least a portion (a portion shown in FIG. 1C) which becomes a magnetic pole end of the main magnetic pole is formed wider than the core width of the main magnetic pole. This is to secure a region where the shield layer is provided on the side of the magnetic pole end of the main magnetic pole. That is, the width of the groove 10a shown in FIG.
  • FIG. 1C is the core width and the thickness of the shield layer formed on the inner surface of the groove 10a and the nonmagnetic layer for separating the main pole and the shield layer (core width + main pole)
  • the nonmagnetic layer for separating the shield layer ⁇ 2 + the wall thickness of the shield layer ⁇ 2) is set.
  • the width of the inner bottom surface of the groove 10a shown in FIG. 1C is set to 300 nm.
  • FIG. 1D shows a state in which the first magnetic layer 16 serving as a shield layer is formed on the surface of the workpiece.
  • the first magnetic layer 16 is formed after the mask layer 14 is removed.
  • the first magnetic layer 16 is made of a soft magnetic material containing Ni, Fe, Co, B, and C, such as NiFe and CoFeB.
  • the first magnetic layer 16 is formed by depositing these soft magnetic materials on the inner bottom surface, inner side surface, and workpiece surface of the groove 10a by sputtering.
  • FIG. 1E is a characteristic process in the present manufacturing process, and shows a state in which the first magnetic layer 16 is etched from the surface side until the stopper layer 12 is exposed by dry etching (referred to as an etch-back method).
  • dry etching the first magnetic layer 16 deposited on the inner bottom surface of the groove 10a is removed at the same time as the first magnetic layer 16 deposited on the surface of the stopper layer 12, and the inside of the groove 10a is removed.
  • the first magnetic layer 16 remains on the side surface as the shield layer 16a.
  • the edge of the first magnetic layer 16 deposited on the inner surface of the groove 10a is etched, and the edge of the first magnetic layer 16 (part A in the figure) Etching into a curved surface (tapered shape) with a cross-sectional shape.
  • a method of etching the first magnetic layer 16 reactivity using NH 3 and CO or CH 3 OH as main etching gas and a mixed gas in which O 2 , Ar, He, Xe, and Kr are mixed with this gas. Ion etching or ion milling can be used.
  • FIG. 2 shows a process of forming the main magnetic pole.
  • FIG. 2A shows a state in which the second nonmagnetic layer 18 is formed on the inner bottom surface and inner side surface of the groove 10a and the surface of the workpiece.
  • the second nonmagnetic layer 18 is formed by sputtering a nonmagnetic material such as alumina or Ta.
  • the thickness of the second nonmagnetic layer 18 is about 20 to 30 nm.
  • the second nonmagnetic layer 18 is provided to separate the main magnetic pole and the shield layer 16a.
  • FIG. 2B shows a state where the plating seed layer 20 is formed.
  • the plating seed layer 20 is formed by sputtering a magnetic material constituting the main magnetic pole, such as NiFe or FeCo.
  • the plating seed layer 20 is provided to form the main pole by electrolytic plating, and is provided so as to cover the entire surface of the workpiece including the inner surface of the groove 10a.
  • FIG. 2C shows a state in which the second magnetic layer 22 serving as the main magnetic pole is formed by electrolytic plating using the plating seed layer 20 as a plating power feeding layer.
  • the second magnetic layer 22 is formed to a thickness that completely fills the groove 10a and the entire surface of the workpiece is flat.
  • the main magnetic pole is formed of a magnetic material such as NiFe or FeCo.
  • FIG. 2D shows a state in which the main magnetic pole 22a is formed by polishing (chemical mechanical polishing) the surface of the workpiece.
  • polishing chemical mechanical polishing
  • the polishing height position is defined when the stopper layer 12 is exposed. That is, the upper surface of the main magnetic pole 22a is defined at the height position of the stopper layer 12 by polishing, and the cross-sectional shape at the magnetic pole end of the main magnetic pole 22a is determined.
  • the second magnetic layer 22 is polished so that the cross-sectional shape of the magnetic pole end of the main magnetic pole 22 a is formed in an inverted trapezoidal shape and shielded on both sides of the main magnetic pole 22 a via the second nonmagnetic layer 18.
  • the state in which the layer 16a is formed is shown.
  • the stopper layer 12 may be left as it is if there is no problem. If the stopper layer 12 is unnecessary, only the stopper layer 12 may be selected and removed.
  • the first magnetic layer 16 is formed, and the first magnetic layer 16 is etched back.
  • a region for forming the main magnetic pole 22a is set.
  • the shape of the magnetic pole tip is set using the inner surface of the shield layer 16a formed on the tapered surface by etch back, so that the main magnetic pole can be formed in a highly accurate inverted trapezoidal shape.
  • the thickness of the shield layer 16a can be adjusted by adjusting the film thickness for forming the first magnetic layer 16.
  • the present embodiment is characterized in that the shield layer 16a functions as a side shield, and at the same time, the shield layer 16a functions to define the inverted trapezoidal shape of the magnetic pole end of the main magnetic pole 22a.
  • the shape of the magnetic pole end of the main magnetic pole 22a can be formed with high accuracy, and the problem of side erasure caused by the magnetic recording head can be effectively avoided by the shield layer 16a acting as a side shield. .
  • FIG. 3A shows the state of FIG. 1C in which the groove 10a is formed in the first nonmagnetic layer 10 as viewed from the plane direction. In the planar shape of the groove 10a, the portion that becomes the magnetic pole end of the main magnetic pole is narrowed down.
  • 1C is a cross-sectional view taken along the line BB in FIG. 3A.
  • FIG. 3B shows a state in which the first magnetic layer 16 is etched back after the first magnetic layer 16 is formed. The first magnetic layer 16 is deposited on the inner surface of the groove 10a.
  • FIG. 3C shows a state in which after the unnecessary portion of the first magnetic layer 16 is removed, the resist 17 is removed and the shield layer 16a is left only at the magnetic pole end portion of the main magnetic pole.
  • the manufacturing process after FIG. 3D is exactly the same as the manufacturing process shown in FIGS.
  • FIG. 4A to 4F show a second embodiment of the method for manufacturing a magnetic recording head according to the present invention.
  • the present embodiment is characterized in that the shield layer 16a is disposed on the side of the main magnetic pole 22a and on the bottom of the main magnetic pole 22a (the shorter side of the main magnetic pole having an inverted trapezoidal shape).
  • the thickness of the first magnetic layer 16 is set to be thicker than that in the first embodiment (FIG. 4C), and when the first magnetic layer 16 is etched back, the inner bottom surface of the groove 10a.
  • the first magnetic layer 16 is set to have a predetermined thickness (FIG. 4D).
  • the width of the groove 10a is reduced to some extent, the action of dry etching is suppressed on the bottom side of the groove 10a, and the first magnetic layer 16 tends to remain at the bottom of the groove 10a.
  • the second nonmagnetic layer 18 and the plating seed layer 20 are formed from the state shown in FIG. 4D, and the second magnetic layer 22 is formed by electrolytic plating using the plating seed layer 20 as a plating power feeding layer. Indicates the state.
  • FIG. 4F shows a state where the second magnetic layer 22 is polished to form the main magnetic pole 22a.
  • the upper surface of the second magnetic layer 22 is defined by the height position of the stopper layer 12, and the magnetic pole end portion of the main magnetic pole 22a is formed in an inverted trapezoidal shape.
  • the shield layer 16a is disposed on the side and bottom of the main magnetic pole 22a, and the effect of suppressing side track erase by the shield layer 16a is further effective.
  • Side track erase by the main magnetic pole 22a occurs due to the skew angle of the main magnetic pole.
  • side track erase occurs when the bottom side (short side) of the main magnetic pole 22a protrudes to the adjacent track side.
  • the shield effect can be made to work more effectively by adopting the form covered with the shield layer 16a.
  • FIG. 5A shows a state in which the first nonmagnetic layer 10 is dry-etched to form a groove 10a serving as a main magnetic pole.
  • FIG. 5A shows a state in which the first magnetic layer 24 including the inner bottom surface and the inner side surface of the groove 10a is formed by sputtering. Next, the first magnetic layer 24 is dry etched until the surface of the stopper layer 12 is exposed (etch back).
  • the first magnetic layer 24 remains on the inner bottom surface and the inner side surface of the groove 10a (FIG. 5C).
  • the width of the groove 10a is reduced to about 150 nm or less, the etching by RIE does not reach the first magnetic layer 24 at the bottom of the groove 10a, and the first magnetic layer 24 on the surface of the stopper layer 12 is etched. Even in this case, the first magnetic layer 24 remains on the inner bottom surface of the groove 10a.
  • the width (core width) of the magnetic pole end portion of the main magnetic pole by the perpendicular magnetic recording method is about 150 nm or less.
  • the inner surface of the edge portion of the first magnetic layer 24 in the vicinity of the opening of the groove 10a is curved (tapered).
  • the second magnetic layer 25 is formed by sputtering (FIG. 5D).
  • the second magnetic layer 25 is formed by being laminated on the first magnetic layer 24a.
  • FIG. 5E shows a state in which the second magnetic layer 25 is etched back by reactive ion dry etching until the stopper layer 12 is exposed.
  • the second magnetic layer 25a is deposited and remains on the inner bottom surface and the inner side surface of the groove 10a.
  • the inner surface of the second magnetic layer 25a in the vicinity of the opening of the groove 10a has a curved surface (tapered shape).
  • FIG. 6A shows a state in which the third magnetic layer 26 is etched back by dry etching until the stopper layer 12 is exposed.
  • FIG. 6B shows a state in which the third magnetic layer 26 is etched back by dry etching until the stopper layer 12 is exposed.
  • the third magnetic difference 26a is laminated on the second magnetic layer 25a.
  • FIG. 6C shows a state where a fourth magnetic layer 27 is further formed and the groove 10 a is filled with the fourth magnetic layer 27.
  • the fourth magnetic layer 27 covering the workpiece surface is polished to the height of the stopper layer 12 to form the main magnetic pole 22a (FIG. 6D).
  • the main magnetic pole 22a has a multilayer structure in which the first magnetic layer 24a, the second magnetic layer 25a, the third magnetic layer 26a, and the fourth magnetic layer 27a are stacked from the outer layer side.
  • a characteristic configuration in the manufacturing method of the present embodiment is that the first magnetic layer 24a, the second magnetic layer 25a, and the third magnetic layer 26a are processed so as to remain in the groove 10a by dry etching (etched back).
  • the upper end portion of the fourth magnetic layer 27a filled in the groove 10a is formed in an outwardly open curved surface shape (tapered shape). That is, according to the manufacturing method of the present embodiment, the width dimension of the upper end surface of the fourth magnetic layer 27a located on the uppermost layer side of the main magnetic pole 22a can be increased.
  • FIG. 6E shows a laminated structure of the main magnetic pole 22a as a comparative example in the case where a magnetic layer is simply laminated sequentially from the lower layer side to form a multilayer film structure in the groove 10a. Comparing FIG. 6D and FIG. 6E, it can be seen that the upper end portion (width C) of the uppermost magnetic layer is wider than the conventional method in the manufacturing method of the present embodiment.
  • the main magnetic pole 22a has a multi-layered structure composed of a plurality of magnetic layers.
  • the magnetic field is strongest at the upper end (long side) of the inverted trapezoidal shape, and information is recorded at the upper part of the magnetic pole end. Therefore, it is desirable to use a magnetic material having a higher saturation magnetic flux density on the upper layer side of the main magnetic pole 22a, and to make the upper end of the main magnetic pole 22a wider. As shown in FIG. 6E, even if the magnetic film 28 having a large saturation magnetic flux density is arranged on the upper layer side, the width of the upper end surface of the upper magnetic layer in the structure in which another magnetic film is arranged on the side surface portion of the magnetic film 28 Cannot be sufficiently obtained, and the characteristics of the magnetic film 28 are not sufficiently exhibited.
  • the fourth magnetic layer 27a disposed on the uppermost layer of the main magnetic pole 22a is formed with a wide upper portion, so that the recording accuracy by the magnetic recording head can be improved.
  • the main magnetic pole 22a of the present embodiment is an example in which the magnetic film has a four-layer structure, but the number of magnetic layers constituting the main magnetic pole 22a can be appropriately selected.
  • the magnetic material constituting each magnetic layer can also be selected as appropriate, but the following examples can be given as examples of the magnetic material constituting the first magnetic layer 24a to the fourth magnetic layer 27a.
  • Ni80Fe20, Ni50Fe50, Ni20Fe80, and Ni15Fe85 are sequentially laminated as the first to fourth magnetic layers.
  • Co65NiFe15, Ni15Fe85, Fe60CoNi4, and Ni15Fe85 are sequentially laminated as the first to fourth magnetic layers.
  • Both the first example and the second example are examples in which the saturation magnetic flux density is arranged in order from the first magnetic layer to the fourth magnetic layer.
  • the saturation magnetic flux density of the magnetic material constituting the magnetic layer on the bottom side is set to the magnetic value constituting the magnetic layer constituting the upper side (upper layer side).
  • the present embodiment is an example in which the shield layer 16a is not provided on the side of the main magnetic pole 22a.
  • the present embodiment By making it the same as the manufacturing process of the embodiment, the main magnetic pole 22a can have a multilayer film structure.
  • the manufacturing process of the magnetic pole of the perpendicular magnetic recording system has been described.
  • the present invention can also be applied to the manufacturing process of the magnetic pole of the horizontal magnetic recording system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

 第1の非磁性層10と、ストッパ層12と、マスク層14とを順次積層する工程と、前記ストッパ層12および前記マスク層14をパターニングする工程と、前記パターニング後のマスク層14をマスクとして前記第1の非磁性層10をエッチングし、磁極を形成する溝10aを形成する工程と、前記パターニングされたマスク層14を除去し、シールド層となる第1の磁性層16を積層する工程と、前記溝10aの内側面、あるいは溝10aの内側面および内底面に前記第1の磁性層16を残して、前記ストッパ層12上の前記第1の磁性層16をストッパ層12までエッチングする工程と、第2の非磁性層と主磁極となる第2の磁性層を順次積層する工程と、前記ストッパ層まで、前記第2の非磁性層および第2の磁性層を研磨する工程とを有することを特徴とする。

Description

磁気記録ヘッドの製造方法
 本発明は磁気記録ヘッドの製造方法に関し、より詳細には磁気記録ヘッドの磁極の端面形状を高精度に形成することができる磁気記録ヘッドの製造方法に関する。
 垂直記録方式の磁気記録ヘッドでは、浮上面側から見た磁極の端面形状を逆台形状としたものが提供されている。磁極の端面形状を逆台形状とするのは、磁気ヘッドスライダーが媒体の内周側に位置するときと外周側に位置するときとでスキュー角(磁気ヘッドスライダーが記録用のトラックの接線方向となす角)が異なるために、隣接するトラックに記録された情報を消去する(サイドイレーズ)問題を回避するためである。
 磁気記録ヘッドの磁極を端面形状が台形状となるように形成する従来方法としては、磁気記録ヘッドとなる磁性層を形成した後に、端面形状が逆台形状になるようにイオンミリングする方法(ミリング法)、アルミナ等からなる絶縁層を形成した後にドライエッチングによって端面形状が逆台形状となる凹溝を形成し、凹溝を磁性材によって充填する方法(ダマシン法)、めっきシード層を形成した後、レジストパターンに端面形状が逆台形状となる溝を形成しめっきにより磁性層を形成する方法(めっき法)がある。
特開平07-182633号公報 特開2006-18985号公報
 磁気記録ヘッドの磁極を端面形状が逆台形状に形成する方法のうち、ダマシン法は、磁気ヘッドを構成する絶縁層をアルミナ等によって形成した後に絶縁層に凹溝を形成し、凹溝に磁性材を充填する方法によるから、磁極端となる凹溝部分の断面形状を逆台形状に形成することによって磁極端の形状を高精度に形成することが可能である。
 しかしながら、記録媒体の記録密度をさらに高密度にするためには磁気記録ヘッドの磁極端部分をさらに微小にかつ高精度に形成する必要がある。また、記録密度が高密度になるとともにトラック幅が狭くなるから、磁気記録ヘッドはより強い磁界を発生させる必要があり、これによって隣接するトラックに作用する漏洩磁界によるサイドイレーズの問題をより的確に回避する必要が生じる。
 本発明は、このような記録媒体の記録密度の向上にともなって磁気記録ヘッドに求められる課題を解消すべくなされたものであり、高密度記録を可能とし、サイドイレーズを抑制することができる磁気記録ヘッドの製造方法を提供することを目的とする。
 本発明は、上記目的を達成するため次の構成を備える。
 すなわち、第1の非磁性層と、ストッパ層と、マスク層とを順次積層する工程と、前記ストッパ層および前記マスク層をパターニングする工程と、前記パターニング後のマスク層をマスクとして前記第1の非磁性層をエッチングし、磁極を形成する溝を形成する工程と、前記パターニングされたマスク層を除去し、シールド層となる第1の磁性層を積層する工程と、前記溝の内側面、あるいは溝の内側面および内底面に前記第1の磁性層を残して、前記ストッパ層上の前記第1の磁性層をストッパ層までエッチングする工程と、第2の非磁性層と主磁極となる第2の磁性層を順次積層する工程と、前記ストッパ層まで、前記第2の非磁性層および第2の磁性層を研磨する工程とを有することを特徴とする。
 この磁気記録ヘッドの製造方法によれば、磁極を逆台形状等の所定の形状に精度良く形成することができ、また、磁極の側方にシールド層を形成することができ、磁極によるサイドイレーズを防止することができる。
 また、前記溝を形成する工程において、前記溝の前記磁極の磁極端を形成する部位については、主磁極のコア幅に前記第2の非磁性層の膜厚および前記第1の磁性層の膜厚を加えた幅に形成することによって、磁極の側方にシールド層を形成する領域を確保することができる。
 また、第1の非磁性層と、ストッパ層と、マスク層とを順次積層する工程と、前記ストッパ層および前記マスク層をパターニングする工程と、前記パターニング後のマスク層をマスクとして前記第1の非磁性層をエッチングし、磁極となる溝を形成する工程と、前記パターニングされたマスク層を除去する工程と、(a)磁性層を積層する工程と、(b)前記溝の内側面、あるいは溝の内側面および内底面に前記磁性層を残して、前記ストッパ層上の磁性層を前記ストッパ層までエッチングする工程と、さらに、磁性層となる磁性材を変えながら上記工程(a)および工程(b)を繰り返すことを特徴とする。
 この方法によれば磁極を所定の断面形状の多層膜構造に形成することができ、サイドイレーズを抑制し、磁気記録精度を高めた磁極を備えた磁気記録ヘッドを提供することができる。
 また、繰り返して行う前記工程(a)および工程(b)のうち、最後の工程(b)に代えて、前記ストッパ層まで、前記磁性層を研磨する工程を有することを特徴とする。
 また、繰り返して行う工程(a)および工程(b)のうち、最初の工程(a)における磁性層としてシールド層となる磁性層を積層することによって、シールド層を備えた多層膜構造の磁極を備えた磁気記録ヘッドとして提供することができる。
図1A~1Eは、磁気記録ヘッドの製造方法についての第1の実施の形態の製造工程を示す断面図である。 図2A~2Dは、磁気記録ヘッドの製造方法についての第1の実施の形態の製造工程を示す断面図である。 図3A~3Dは、磁気記録ヘッドの製造工程における主磁極の平面図である。 図4A~4Fは、磁気記録ヘッドの製造方法についての第2の実施の形態の製造工程を示す断面図である。 図5A~5Eは、磁気記録ヘッドの製造方法についての第2の実施の形態の製造工程を示す断面図である。 図6A~6Dは、磁気記録ヘッドの製造方法についての第3の実施の形態の製造工程を示す断面図、図6Eは、従来方法の断面図である。
(第1の実施の形態)
 図1A~1E、図2A~2Dは、本発明に係る磁気記録ヘッドの製造方法についての第1の実施の形態についての製造工程を示すし、主磁極の磁極端部分における断面形状を示す。なお、本実施の形態の製造工程は、垂直磁気記録ヘッドの主磁極を形成する工程である。
 図1Aは、基板にリードヘッドの構造を形成した後、ワーク基板の表面にアルミナをスパッタリングして第1の非磁性層10を形成し、さらにストッパ層12とマスク層14とを成膜した状態を示す。
 第1の非磁性層10は主磁極を形成する層と同一層に、アルミナ等の非磁性材によって形成する。ストッパ層12は、後工程においてワークの表面を研磨する際の研磨位置を規定するストッパとして使用される。ストッパ材にはTa、Ti等の非磁性材が用いられる。ストッパ層12は、これらのストッパ材をスパッタリングすることによって形成する。ストッパ層12はワークの表面の全面に形成される。
 マスク層14は第1の非磁性層10をドライエッチングする際に用いるマスクパターンを形成するためのものである。図1Bは、マスク層14をエッチングし、第1の非磁性層10に形成する主磁極の平面領域部分が露出するマスクパターンを形成した状態を示す。マスクパターンはマスク層14の表面にレジストパターンを形成し、レジストパターンをマスクとしてマスク層14をエッチングすることによって形成する。このエッチングの際に、マスク層14の下地層であるストッパ層12についてもエッチングし、ストッパ層12についてもマスク層14と同一のパターンにパターニングする。
 次いで、マスク層14をマスクとして第1の非磁性層10をドライエッチングする。このドライエッチングにより、第1の非磁性層10のマスク層14によって被覆されていない領域が除去され、主磁極を形成するための溝10aが形成される(図1C)。図は、主磁極の磁極端部分における断面形状を示す。第1の非磁性層10のドライエッチングは、BCl3ガスをエッチングガスとする反応性イオンエッチング(RIE法)等によって行う。この溝10aを形成する工程では、溝10aの内側面のテーパ角度(図のθ)が70~90度程度となるように、エッチング条件を設定する。
 溝10aの平面形状は、マスク層14をパターニングして形成されるマスクパターンによって規定される。したがって、マスクパターンを適宜パターンに形成することによって溝10aの形状を任意に設定することができる。
 従来のダマシン法では、第1の非磁性層に溝を形成する場合、溝の断面形状は主磁極の断面形状と一致させる設計とするが、本実施形態においては、第1の非磁性層10に形成する溝10aのうち、少なくとも主磁極の磁極端となる部分(図1Cに示す部分)については、主磁極のコア幅よりも広幅に形成する。これは、主磁極の磁極端の側方にシールド層を設ける領域を確保するためである。すなわち、図1Cに示す溝10aの幅は、コア幅と溝10aの内側面に形成するシールド層及び主磁極とシールド層とを分離するための非磁性層の厚さ(コア幅+主磁極とシールド層とを分離するための非磁性層×2+シールド層の壁面厚さ×2)を確保するように設定する。本実施形態では、図1Cに示す溝10aの内底面の幅を300nmとした。
 図1Dは、ワークの表面にシールド層となる第1の磁性層16を成膜した状態を示す。第1の磁性層16はマスク層14を除去した後に成膜して形成する。第1の磁性層16にはNiFe、CoFeB等の、Ni、Fe、Co、B、Cを含む軟磁性材が用いられる。第1の磁性層16は、スパッタリング法によって、これらの軟磁性材を溝10aの内底面、内側面、ワークの表面に被着させて形成する。
 図1Eは、本製造工程における特徴的な工程であり、ドライエッチングによってストッパ層12が露出するまで第1の磁性層16を表面側からエッチングした状態を示す(エッチバック法という)。このドライエッチングにより、ストッパ層12の表面に被着していた第1の磁性層16と同時に、溝10aの内底面に被着していた第1の磁性層16が除去され、溝10aの内側面に第1の磁性層16がシールド層16aとして残留する。なお、溝10aの開口部近傍では、溝10aの内側面に被着する第1の磁性層16の縁部がエッチングされ、第1の磁性層16の縁の部分(図のA部分)が、断面形状で曲面状(テーパー状)にエッチングされる。
 第1の磁性層16をエッチングする方法としては、NH3とCO、あるいはCH3OHを主たるエッチングガスとし、これにO2、Ar、He、Xe、Krを混合させた混合ガスを用いる反応性イオンエッチングまたはイオンミリングが利用できる。
 次に、溝10aの内側面に被着したシールド層16aによって挟まれた領域(断面形状がV字状の溝部分)に主磁極を形成する。図2は、主磁極を形成する工程を示す。
 図2Aは、溝10aの内底面および内側面とワークの表面に第2の非磁性層18を形成した状態を示す。第2の非磁性層18は、アルミナ、Ta等の非磁性材をスパッタリングして形成する。第2の非磁性層18の厚さは20~30nm程度である。この第2の非磁性層18は主磁極とシールド層16aとを分離するために設けられる。
 図2Bは、めっきシード層20を形成した状態である。めっきシード層20は主磁極を構成する磁性材、たとえばNiFe、FeCoをスパッタリングして形成する。めっきシード層20は主磁極を電解めっきによって形成するために設けるものであり、溝10aの内面を含めてワークの表面の全面を被覆するように設ける。
 図2Cは、めっきシード層20をめっき給電層とする電解めっきにより、主磁極となる第2の磁性層22を形成した状態を示す。第2の磁性層22は、溝10aを完全に充填し、ワークの表面の全面が平坦状の厚さになる厚さに形成する。主磁極はNiFe、FeCo等の磁性材によって形成する。
 図2Dは、ワークの表面を研磨加工(化学的機械研磨)し、主磁極22aを形成した状態を示す。第2の磁性層22によって被覆された面側からワークを研磨することにより、ストッパ層12が露出したところで研磨高さ位置が規定される。すなわち、研磨加工によりストッパ層12の高さ位置で主磁極22aの上面が規定され、主磁極22aの磁極端での断面形状が決められる。
 図2Dは、第2の磁性層22を研磨することにより、主磁極22aの磁極端の断面形状が逆台形状に形成され、第2の非磁性層18を介して主磁極22aの両側にシールド層16aが形成された状態を示す。なお、ストッパ層12は支障がなければそのまま残しておいてよい。また、ストッパ層12が不要であれば、ストッパ層12のみを選択して除去すればよい。
 本実施形態の磁気記録ヘッドの製造方法においては、第1の非磁性層10に溝10aを形成した後、第1の磁性層16を形成し、さらに第1の磁性層16をエッチバックすることによって主磁極22aを形成する領域を設定している。主磁極22aは、エッチバックによりテーパ面に形成されたシールド層16aの内面を利用して磁極端の形状が設定されるから、主磁極を高精度の逆台形状に形成することができる。
 エッチバック工程ではシールド層16aの膜厚が影響を受けないから、第1の磁性層16を成膜する膜厚を調節することによってシールド層16aの厚さを調節することができる。本実施形態においては、シールド層16aがサイドシールドとして作用すると同時に、シールド層16aが主磁極22aの磁極端の逆台形形状を規定する作用をなすという特徴がある。
 そして、主磁極22aの磁極端の形状を精度良く形成することができ、シールド層16aがサイドシールドとして作用することによって、磁気記録ヘッドによるサイドイレーズの問題を効果的に回避することが可能になる。
(シールド層をパターニングする例)
 上述した図1C~1Eの工程は、第1の非磁性層10に溝10aを形成した後、第1の磁性層16を形成し、第1の磁性層16をエッチバックする工程を示す。図3Aは、第1の非磁性層10に溝10aを形成した図1Cの状態を平面方向から見た状態を示す。溝10aの平面形状で、主磁極の磁極端となる部位については細幅に絞られた形状となっている。図1Cは、図3AのB-B線位置での断面図である。
 図3Bは、第1の磁性層16を成膜した後、第1の磁性層16をエッチバックした状態を示す。溝10aの内側面に第1の磁性層16が被着している。
 主磁極のサイドシールドは、主磁極の磁極端部分で作用する。したがって、シールド層16aを主磁極の磁極端の側方部分にのみ残すようにするには、図3Cに示すように、第1の磁性層16でシールド層16aとして残す部位をレジスト17によって被覆し、ウエットエッチングによって第1の磁性層16の露出部分を除去すればよい。図3Dが、第1の磁性層16の不要部分を除去した後、レジスト17を除去して主磁極の磁極端部分にのみシールド層16aを残した状態を示す。
 図3D以後の製造工程は、図2A~2Dについての製造工程とまったく同様であり、これによって主磁極22aの磁極端の側方部分にのみシールド層16aが形成された磁気記録ヘッドが得られる。
(第2の実施の形態)
 図4A~4Fは、本発明に係る磁気記録ヘッドの製造方法についての第2の実施の形態を示す。本実施の形態においては、主磁極22aの側方と主磁極22aの底部(逆台形状となる主磁極の短辺側)にシールド層16aを配置する構成としたことを特徴とする。
 本実施形態では、第1の磁性層16の膜厚を第1の実施の工程におけるよりも厚く設定し(図4C)、第1の磁性層16をエッチバックした際に、溝10aの内底面に第1の磁性層16が所定の厚さに残るように設定する(図4D)。溝10aの幅がある程度狭くなると、ドライエッチングの作用が溝10aの底部側で抑制され、溝10aの底部に第1の磁性層16が残りやすくなる。
 図4Eは、図4Dに示す状態から、第2の非磁性層18、めっきシード層20を成膜し、めっきシード層20をめっき給電層とする電解めっきにより第2の磁性層22を形成した状態を示す。
 図4Fは、第2の磁性層22を研磨して、主磁極22aを成形した状態である。第1の実施の形態におけると同様に、第2の磁性層22の上面はストッパ層12の高さ位置によって規定され、主磁極22aの磁極端部分が逆台形状に形成される。
 本実施形態の製造方法によって得られる磁気記録ヘッドでは、主磁極22aの側方および底部にシールド層16aが配され、シールド層16aによるサイドトラックイレーズを抑制する作用がさらに有効となる。主磁極22aによるサイドトラックイレーズは主磁極のスキュー角によって生じ、とくに主磁極22aの底部側(短辺側)が隣接トラック側にはみ出すことによってサイドトラックイレーズが起こるから、主磁極22aの底部側をシールド層16aによって覆う形態とすることによってシールド作用をより有効に作用させることができる。
(第3の実施の形態)
 上述した第1の実施の形態および第2の実施の形態においては、主磁極22aの磁極端位置の側方あるいは底部にシールド層16aを備える磁気記録ヘッドの製造方法について説明した。上述した第1の実施の形態と第2の実施の形態において利用したエッチバック方法は、シールド層を備えない多層膜構造の主磁極を形成する場合にも適用することができる。
 図5A~5E、6A~6Dは主磁極を多層膜構造に形成する場合の製造工程を示す。
 図5Aは、第1の非磁性層10をドライエッチングして主磁極となる溝10aを形成した状態を示す。本実施形態では、シールド層を形成しないから、溝10aで主磁極の磁極端部分を構成する部位は逆台形状とする磁極端の形状に合わせて形成する。図5Aに示す溝10aが上述した第1、第2の実施形態における溝10aよりも狭幅となっているのは、磁極端の形状に合わせて溝10aを形成しているからである。
 図5Bは、スパッタリングにより、溝10aの内底面、内側面を含めて第1の磁性層24を成膜した状態を示す。
 次いで、ストッパ層12の表面が露出するまで第1の磁性層24をドライエッチングする(エッチバック)。このエッチングにより、溝10aの内底面と内側面に第1の磁性層24が残る(図5C)。溝10aの幅が150nm以下程度にまで狭幅になると、溝10aの底部の第1の磁性層24にまでRIEによるエッチングが到達せず、ストッパ層12の表面の第1の磁性層24がエッチングされても、溝10aの内底面に第1の磁性層24が残るようになる。垂直磁気記録方式による主磁極の磁極端部分の幅(コア幅)は150nm程度以下となっている。第1の磁性層24をエッチングすることにより、溝10aの開口部近傍の第1の磁性層24の縁部分は、内側面が曲面状(テーパ状)となる。
 次に、スパッタリングにより第2の磁性層25を成膜する(図5D)。溝10a内では、第2の磁性層25は第1の磁性層24aに積層して形成される。
 図5Eは、反応性イオンドライエッチングにより、ストッパ層12が露出するまで第2の磁性層25をエッチバックした状態を示す。溝10aの内底面および内側面に第2の磁性層25aが被着して残留する。溝10aの開口部の近傍の第2の磁性層25aの内側面は曲面状(テーパ状)となる。
 次に、第3の磁性層26をスパッタリングにより成膜する(図6A)。図6Bは、ドライエッチングにより、ストッパ層12が露出するまで第3の磁性層26をエッチバックした状態を示す。溝10a内では、第2の磁性層25aに積層して第3の磁性相違26aが積層される。
 図6Cは、さらに第4の磁性層27を成膜し、溝10aを第4の磁性層27によって充填した状態である。
 最後にワークの表面を被覆する第4の磁性層27をストッパ層12の高さ位置まで研磨し、主磁極22aを形成する(図6D)。主磁極22aは、外層側から、第1の磁性層24a、第2の磁性層25a、第3の磁性層26a、第4の磁性層27aが積層された多層膜構造となる。
 本実施形態の製造方法において特徴的な構成は、第1の磁性層24a、第2の磁性層25a、第3の磁性層26aがドライエッチングにより溝10a内に残るように処理した(エッチバックした)ことであり、これによって溝10aに充填された第4の磁性層27aの上端部が外開きの曲面状(テーパ状)に形成されることである。すなわち、本実施形態の製造方法によれば、主磁極22aの最も上層側に位置する第4の磁性層27aの上端面の幅寸法を広くすることができる。
 図6Eは、比較例として、溝10a内に単に下層側から磁性層を順次積層して多層膜構造とする場合の主磁極22aの積層構造を示す。図6Dと図6Eとを比較すると、本実施形態の製造方法の場合には、最上層の磁性層の上端部(幅C)が従来方法よりも幅広となることがわかる。
 主磁極22aを複数の磁性層からなる多層膜構造とするのは、磁気特性が異なる磁性膜の積層構造とすることによって、主磁極22aの底部側ではサイドトラックイレーズが生じ難く、主磁極22aの上端部ではできるだけ記録磁界を強くして書き込み精度を向上させるようにするためである。主磁極22aの磁極端では、逆台形状の上端(長辺)において最も磁界が強くなり、この磁極端の上部で情報を記録する。したがって、主磁極22aの上層側により飽和磁束密度の大きな磁性材を使用し、主磁極22aの上端が幅広に形成されることが望ましい。図6Eに示すように、飽和磁束密度の大きな磁性膜28を上層側に配したとしても、その磁性膜28の側面部分に他の磁性膜が配置される構造では上層の磁性層の上端面幅が十分にとれず、磁性膜28の特性が十分に発揮されなくなる。
 本実施形態では、主磁極22aの最上層に配される第4の磁性層27aは上部が幅広に形成されることによって、磁気記録ヘッドによる記録精度を向上させることができる。
 本実施形態の主磁極22aは磁性膜を4層構造とした例であるが、主磁極22aを構成する磁性層の積層数は適宜選択することができる。また、各磁性層を構成する磁性材も適宜選択可能であるが、第1の磁性層24a~第4の磁性層27aを構成する磁性材の構成として、以下の例を上げることができる。
 (第1例)第1~第4の磁性層として、順に、Ni80Fe20、Ni50Fe50、Ni20Fe80、Ni15Fe85を積層する。
 (第2例)第1~第4の磁性層として、順に、Co65NiFe15、Ni15Fe85、Fe60CoNi4、Ni15Fe85を積層する。
 第1例、第2例ともに、第1の磁性層から第4の磁性層へ順に飽和磁束密度が大きくなる順に配列した例である。このように、主磁極22aの逆台形状となる磁極端部分において、底部側(下層側)の磁性層を構成する磁性材の飽和磁束密度を上部側(上層側)の磁性層を構成する磁性材にくらべて小さくすることで、主磁極によるサイドイレーズを抑制し、かつ記録磁界を強めることができる。
 本実施形態は、主磁極22aの側方にシールド層16aを設けない例であるが、第1、第2の実施の形態のようにシールド層16aを設ける製造方法による場合であっても、本実施形態の製造工程と同様にすることで、主磁極22aを多層膜構造とすることが可能である。
 なお、上記各実施形態では、垂直磁気記録方式の磁極の製造工程について説明したが、本発明は水平型の磁気記録方式の磁極の製造工程に適用することも可能である。

Claims (7)

  1.  第1の非磁性層と、ストッパ層と、マスク層とを順次積層する工程と、
     前記ストッパ層および前記マスク層をパターニングする工程と、
     前記パターニング後のマスク層をマスクとして前記第1の非磁性層をエッチングし、磁極を形成する溝を形成する工程と、
     前記パターニングされたマスク層を除去し、シールド層となる第1の磁性層を積層する工程と、
     前記溝の内側面、あるいは溝の内側面および内底面に前記第1の磁性層を残して、前記ストッパ層上の前記第1の磁性層をストッパ層までエッチングする工程と、
     第2の非磁性層と主磁極となる第2の磁性層を順次積層する工程と、
     前記ストッパ層まで、前記第2の非磁性層および第2の磁性層を研磨する工程とを有することを特徴とする磁気記録ヘッドの製造方法。
     
  2.  前記溝を形成する工程において、前記溝の前記磁極の磁極端を形成する部位については、主磁極のコア幅に前記第2の非磁性層の膜厚および前記第1の磁性層の膜厚を加えた幅に形成することを特徴とする請求項1記載の磁気記録ヘッドの製造方法。
     
  3.  第1の非磁性層と、ストッパ層と、マスク層とを順次積層する工程と、
     前記ストッパ層および前記マスク層をパターニングする工程と、
     前記パターニング後のマスク層をマスクとして前記第1の非磁性層をエッチングし、磁極となる溝を形成する工程と、
     前記パターニングされたマスク層を除去する工程と、
     (a)磁性層を積層する工程と、
     (b)前記溝の内側面、あるいは溝の内側面および内底面に前記磁性層を残して、前記ストッパ層上の磁性層を前記ストッパ層までエッチングする工程と、
     さらに、磁性層となる磁性材を変えながら上記工程(a)および工程(b)を繰り返すことを特徴とする磁気記録ヘッドの製造方法。
     
  4.  繰り返して行う工程(a)および工程(b)のうち、最後の工程(b)に代えて、前記ストッパ層まで、前記磁性層を研磨する工程を有することを特徴とする請求項3記載の磁気記録ヘッドの製造方法。
     
  5.  繰り返して行う工程(a)および工程(b)のうち、最初の工程(a)における磁性層としてシールド層となる磁性層を積層することを特徴とする請求項3記載の磁気記録ヘッドの製造方法。
     
  6.  前記研磨が化学的機械研磨であることを特徴とする請求項1または請求項4記載の磁気記録ヘッドの製造方法。
     
  7.  さらに前記ストッパ層を除去する工程を有することを特徴とする請求項1~6のいずれか一項記載の磁気記録ヘッドの製造方法。
     
PCT/JP2008/052416 2008-02-14 2008-02-14 磁気記録ヘッドの製造方法 WO2009101689A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052416 WO2009101689A1 (ja) 2008-02-14 2008-02-14 磁気記録ヘッドの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052416 WO2009101689A1 (ja) 2008-02-14 2008-02-14 磁気記録ヘッドの製造方法

Publications (1)

Publication Number Publication Date
WO2009101689A1 true WO2009101689A1 (ja) 2009-08-20

Family

ID=40956734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052416 WO2009101689A1 (ja) 2008-02-14 2008-02-14 磁気記録ヘッドの製造方法

Country Status (1)

Country Link
WO (1) WO2009101689A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371019B1 (en) 2011-07-20 2013-02-12 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing a magnetic write pole having straight side walls and a well defined track-width
US8570686B2 (en) 2012-03-13 2013-10-29 HGST Netherlands B.V. Magnetic recording head with non-conformal side shield gap
JP2014130671A (ja) * 2012-12-31 2014-07-10 Headway Technologies Inc プラズモンジェネレータの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196142A (ja) * 2004-12-17 2006-07-27 Tdk Corp 垂直磁気記録用の薄膜磁気ヘッド及び該薄膜磁気ヘッドの製造方法
JP2006277834A (ja) * 2005-03-29 2006-10-12 Hitachi Global Storage Technologies Netherlands Bv 垂直記録用磁気ヘッド及びその製造方法
JP2007207419A (ja) * 2006-02-02 2007-08-16 Headway Technologies Inc 垂直磁気記録ヘッドおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196142A (ja) * 2004-12-17 2006-07-27 Tdk Corp 垂直磁気記録用の薄膜磁気ヘッド及び該薄膜磁気ヘッドの製造方法
JP2006277834A (ja) * 2005-03-29 2006-10-12 Hitachi Global Storage Technologies Netherlands Bv 垂直記録用磁気ヘッド及びその製造方法
JP2007207419A (ja) * 2006-02-02 2007-08-16 Headway Technologies Inc 垂直磁気記録ヘッドおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371019B1 (en) 2011-07-20 2013-02-12 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing a magnetic write pole having straight side walls and a well defined track-width
US8570686B2 (en) 2012-03-13 2013-10-29 HGST Netherlands B.V. Magnetic recording head with non-conformal side shield gap
JP2014130671A (ja) * 2012-12-31 2014-07-10 Headway Technologies Inc プラズモンジェネレータの製造方法

Similar Documents

Publication Publication Date Title
US7392577B2 (en) Method for manufacturing a perpendicular magnetic head
US7124498B2 (en) Method for manufacturing magnetic head
JP4745892B2 (ja) 薄膜磁気ヘッド用構造物及びその製造方法並びに薄膜磁気ヘッド
KR100272479B1 (ko) 복합형박막자기헤드및그제조방법
JP3503874B2 (ja) 薄膜磁気ヘッドの製造方法
US7910160B2 (en) Thin-film magnetic head structure adapted to manufacture a thin-film head having a base magnetic pole part, a york magnetic pole part, and an intervening insulative film
JP2010146600A (ja) 垂直磁気記録ヘッド、その製造方法及び磁気記録再生装置
JP5718384B2 (ja) 主磁極とシールドを備えた垂直磁気記録用磁気ヘッド
US6882502B2 (en) Thin-film magnetic head with narrowed track width and method for making same
WO2009101689A1 (ja) 磁気記録ヘッドの製造方法
JP2001256610A (ja) 薄膜磁気ヘッド及びその製造方法
US6901651B2 (en) Method of manufacturing thin-film magnetic head
JP2010061715A (ja) 磁気ヘッドの製造方法および情報記憶装置
JP2010135008A (ja) 磁気ヘッドとその製造方法および情報記憶装置
JP2009187612A (ja) 磁気ヘッドの製造方法
US7167340B2 (en) Thin-film magnetic head appropriately suppressing side fringing and method for fabricating the same
US20090097159A1 (en) Perpendicular magnetic recording head and manufacturing method therefor
JP3936135B2 (ja) 磁気ヘッドの製造方法
JP3866472B2 (ja) 薄膜磁気ヘッド及びその製造方法
US7190553B2 (en) Thin-film magnetic head having lower magnetic pole layer and insulator layer behind the lower magnetic pole layer in the direction of height of the pole layer, and method for manufacturing the thin-film magnetic head
KR100682943B1 (ko) 자기 기록 헤드, 이를 이용한 자기 기록 장치 및 상기 자기 기록 헤드의 제조방법
JP2001195707A (ja) 薄膜磁気ヘッド及びその製造方法
JP2007012186A (ja) Cpp型薄膜磁気ヘッド
US7602584B2 (en) Magnetic recording head with trapezoidal layered portion and method of manufacturing the same
JP3839754B2 (ja) 薄膜磁気ヘッド及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP