WO2009101271A2 - Aerogels de nanotubes de carbone - Google Patents

Aerogels de nanotubes de carbone Download PDF

Info

Publication number
WO2009101271A2
WO2009101271A2 PCT/FR2008/001627 FR2008001627W WO2009101271A2 WO 2009101271 A2 WO2009101271 A2 WO 2009101271A2 FR 2008001627 W FR2008001627 W FR 2008001627W WO 2009101271 A2 WO2009101271 A2 WO 2009101271A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
airgel
solution
carbon
aerogels
Prior art date
Application number
PCT/FR2008/001627
Other languages
English (en)
Other versions
WO2009101271A3 (fr
Inventor
Alain PÉNICAUD
Original Assignee
Centre National De La Recherche Scientifique - Cnrs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs filed Critical Centre National De La Recherche Scientifique - Cnrs
Priority to JP2010534517A priority Critical patent/JP5837301B2/ja
Priority to US12/743,969 priority patent/US9381471B2/en
Priority to EP08872468.7A priority patent/EP2231516B1/fr
Publication of WO2009101271A2 publication Critical patent/WO2009101271A2/fr
Publication of WO2009101271A3 publication Critical patent/WO2009101271A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/443Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with carbon fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a process for preparing aerogels of individualized carbon nanotubes and its applications, in particular for the manufacture of composite aerogels and electrochemical compounds.
  • the present invention relates in particular to individualized carbon nanotube aerogels obtained by said process, as well as to uses of these aerogels.
  • Carbon aerogels Materials commonly referred to as “carbon aerogels” are essentially (and usually exclusively) macroscopic materials made of carbon, which have an extremely porous structure, resulting in a very low bulk density.
  • carbon aerogels type Materials commonly referred to as “carbon aerogels” are essentially (and usually exclusively) macroscopic materials made of carbon, which have an extremely porous structure, resulting in a very low bulk density.
  • Carbon aerogels are generally obtained by processes called “replication”("templating” in English).
  • a porous three-dimensional structure of carbon or a precursor of carbon by employing a solid structure or molecular organization of the liquid crystal type as a "mold" of the desired structure.
  • This "mold”, said texturing agent ("template” in English) can take different forms depending on the method used.
  • the airgel obtained contains a surfactant compound if the process does not provide a step to remove it.
  • the presence of surfactant may affect the quality of the airgel, and may hinder its use depending on the intended application.
  • surfactants are frequently associated with problems of poor biodegradability. These methods therefore the disadvantage that an additional step of removing the surfactant should be provided.
  • each of the two methods mentioned above uses carbon nanotubes in the form of beams (i.e., they are not individualized).
  • the specific surface of the airgel thus obtained is thus affected.
  • the specific surface of the currently known aerogels is far from optimal.
  • Steps a) and b) of the process are always carried out under an inert atmosphere.
  • inert atmosphere is meant herein a gas or a gaseous mixture which does not promote the re-oxidation of the reduced carbon nanotubes into neutral nanotubes.
  • the process is conducted under gaseous atmosphere without oxygen.
  • the process can be carried out under an argon or nitrogen atmosphere.
  • the alkali metal may be any alkali metal for carrying out the present invention. It can be chosen by example in the group comprising lithium, sodium, potassium, rubidium and cesium. More particularly, the alkali metal may be lithium, sodium or potassium. In some particular embodiments, the alkali metal is lithium or sodium. In other particular embodiments, the alkali metal is potassium.
  • alkali metal reduction is meant herein a reduction in which an alkali metal is involved.
  • the reduction can be done directly in the presence of an alkali metal, for example in the vapor phase.
  • Reduction methods in the presence of an alkali metal are well known in the art.
  • those skilled in the art will be able to identify the appropriate operating conditions for carrying out a reduction process in the presence of an alkali metal, for example in the vapor phase.
  • those skilled in the art can draw inspiration from the methods described in "Synthesis of Graphite Intercalation Compounds", A. Hérold in Chemical Physics of Intercalation, A. P. Legrand and S. Flandrois Eds, NATO ASI Series, Series B, Vol. 172, pp. 3-45 (1987) for example [ref 18], which are directly applicable to carbon nanotubes.
  • the reduction is in the presence of an alkali metal salt obtained from an alkali metal.
  • the reduction can be carried out in the presence of an alkali polyaryl salt of formula A + B " , wherein A + represents a cation of an alkaline ion, and B " represents an anion of a polyaromatic compound.
  • Alkaline polyaryl salts and their method of manufacture are described, for example, in (C. Stein, J. Poulenard, L. Bonnetain, J. Gole, CR Acad Sci Paris 260, 4503 (1965) [ref 19]; graphite intercalation compounds ", A. Herold in Chemical Physics of intercalation, AP Legrand and S.
  • Flandrois Eds NATO ASI Series, Series B, Vol 172, pp. 3-45 (1987) [ref 20], F. Beguin and R. Setton New ternary lamellar compounds of graphite, Carbon 13, 293-) 295 (1975) [ref 21]; Penicaud et al., Spontaneous dissolution of a single-walled carbon nanotube, J. Am. Chem. Soc., 127, 8-9, (2005) [ref 34].
  • the polyaromatic compound is selected from the group consisting of naphthalene, phenanthrene, biphenyl, anthracene, perylene, benzophenone, fluorenone, benzoquinone and anthraquinone.
  • the polyaromatic compound is the naphthalene.
  • the alkali polyaryl salt is a polyaryl potassium salt (i.e., a salt of formula A + B ' , wherein A + is K + ).
  • the alkali polyaryl salt of formula A + B ' is a potassium salt of naphthalene (Naph " K + ).
  • reduced individualized carbon nanotubes is meant herein a compound comprising at least two individual carbon nanotubes.
  • Carbon nanotubes generally exist in the form of bundles of nanotubes (ie, the nanotubes are not individual, they are "agglomerated” into bundles)
  • the term “reduced individualized carbon nanotubes” refers to bundles of partially deagglomerated carbon nanotubes, ie, bundles of carbon nanotubes whose specific surface area is increased relative to that starting beams (before the implementation of steps a) and b) of the process of the invention.)
  • the expression “carbon nanotubes in Reduceduals can represent a mixture of individual carbon nanotubes and partially deagglomerated, negatively charged and neutralized beams by positive alkali metal counter ions.
  • the "reduced individualized carbon nanotubes” comprise mainly nanotubes of individual carbons negatively charged and neutralized by positive counterions of alkali metal.
  • said carbon nanotubes are not in the form of beams, but exclusively in the form of individual nanotubes.
  • the bundles of nanotubes are initially reduced by an alkali metal to form a polyelectrolyte salt of carbon nanotubes (step a) of the process of the invention).
  • the individualization (partial, and preferably complete) of carbon nanotubes is done during step b) of the process by exposure to an aprotic polar solvent, which solvates the reduced carbon nanotubes, and thus separates them from each other .
  • the reduced individualized carbon nanotubes may be in the form of a binary compound of formula MC V where M represents a positive counterion of an alkali metal (M +), and x represents an integer between
  • the alkali metal may be potassium, lithium or sodium.
  • the reduced individualized carbon nanotubes may be in the form of a ternary compound of formula M (Solv) yCx in which M is an alkali metal ion (M +), SoIv is an aprotic solvent molecule, x represents an integer inclusive between 6 and 200, and y represents a number between 0 and 8.
  • the solvent molecule can be a molecule of an aromatic solvent (for example benzene or toluene) or nucleophilic (for example, a solvent whose structure contains at least one oxygen atom such as THF).
  • the solvent is THF and the polyelectrolyte salt of carbon nanotubes is a ternary compound of structure Na (THF) yCx, Li (THF) yCx or K (THF) yCx in which x represents an integer between 6 and 200, and y represents a number between 0 and 8.
  • the ternary compound may correspond to the formula K (THF) Ci 0 , Na (THF) Ci 0 , Li (THF) Ci 0 or Li (THF) C 6 .
  • the number y is not necessarily an integer. It may in fact represent an average of the coordination number of the SolI solvent on the alkali metal cation.
  • ternary compounds M (Solv) yCx were prepared and isolated where the variable y was measured as 0.8. In the present, and for simplicity of writing, the number y is rounded up to the nearest whole or lower integer.
  • the ternary compounds of formula Na (THF) Ci 0 or Li (THF) Ci 0 referenced above include compounds whose elemental analysis revealed that they were compounds of formula Na (THF) 0 , 8 Ci 0 or Li (THF) 0 , 8Ci 0 .
  • any formula M (Solv) YCX referenced herein shall be understood as representing a compound of formula M (Solv) y ⁇ 0, 5 Cx.
  • the reduction step a) is in the presence of a solvent.
  • the solvent may be a nucleophilic solvent.
  • the nucleophilic solvent may be an aprotic solvent whose structure contains at least one oxygen atom, in particular THF.
  • the reduction step is selected from the group consisting of vapor phase alkali metal reduction followed by exposure to an aprotic solvent, electrochemical reduction, and reduction by an alkali polyaryl salt in an aprotic solvent.
  • the solvent may be an aromatic solvent, such as benzene or toluene.
  • the solvent can be an aprotic solvent whose structure contains at least one oxygen atom such as THF.
  • the reduction step a) comprises the addition to the carbon nanotubes, under an inert atmosphere, of an alkali polyaryl salt of formula A + B " , in which:
  • a + represents a cation of an alkaline ion
  • B " represents an anion of a polyaromatic compound.
  • the polyaromatic compound is selected from the group consisting of naphthalene, phenanthrene, biphenyl, anthracene, perylene, benzophenone, fluorenone, benzoquinone and anthraquinone.
  • the aprotic polar solvent used in the exposure step b) has a dielectric constant of 25 to 200.
  • the aprotic polar solvent may be sulfolane, dimethylsulfoxide (DMSO), dimethylformamide N-methylpyrrolidone or N-methylformamide.
  • the aprotic polar solvent is DMSO.
  • the aprotic polar solvent is N-methylpyrrolidone.
  • the process of the invention makes it possible to prepare an airgel of carbon nanotubes from a polar organic solution, as opposed to doped aqueous solutions of surfactants used in the prior art (Yodh et al., And Backov et al. ).
  • aprotic polar solvents such as sulfolane, dimethylsulfoxide (DMSO), dimethylformamide (DMF), N-methylpyrrolidone (NMP) or N-methylformamide have much lower vapor pressures than water.
  • aprotic polar solvents such as sulfolane, dimethylsulfoxide (DMSO), dimethylformamide (DMF), N-methylpyrrolidone (NMP) or N-methylformamide
  • DMSO dimethylsulfoxide
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • aprotic polar organic solution such as a solution of DMSO
  • an aprotic polar organic solution containing individualized carbon nanotubes is possible to lyophilize.
  • this lyophilization can in particular be carried out with a powerful vacuum pump, such as a turbomolecular pump, or even several (at least two) turbomolecular pumps in series.
  • a powerful vacuum pump such as a turbomolecular pump, or even several (at least two) turbomolecular pumps in series.
  • the exposure step b) is carried out at a temperature of -60 to 285 ° C.
  • the exposure step b) is carried out at a temperature of 0 to 35 ° C. preferably from 20 to 25 ° C.
  • the process of the invention, in particular the exposure step b) can be carried out with or without stirring.
  • a stirring system it may be a mechanical stirring system, magnetic or bath sonication.
  • agitation by sonication is to be avoided because it can damage the carbon nanotubes.
  • bath sonication (as opposed to probes), a milder method, may help solubilize the carbon nanotubes of step b) in somewhat difficult cases.
  • the process is carried out with mechanical stirring.
  • the process is carried out with magnetic stirring.
  • step (ai) of filtration it is possible to apply after step (a) and before step (b), a step (ai) of filtration.
  • step (a) of the process involves a reduction in the presence of an alkali metal salt obtained from an alkali metal
  • the filtration can make it possible to separate the liquid phase (for example a solution of K + Napht- in THF) of the solid phase comprising the polyelectrolyte salt of carbon nanotubes and optionally unreduced carbon nanotubes.
  • the polyelectrolyte salt of carbon nanotubes thus obtained can be rinsed one or more times with a suitable solvent.
  • the polyelectrolyte salt of carbon nanotubes may be rinsed with the same solvent used in step (a), in particular THF.
  • the polyelectrolyte salt of carbon nanotubes thus rinsed may be optionally dried before step (b).
  • the method further comprises a centrifugation step (b1), which makes it possible to separate any undissolved fraction from the solution of reduced individualized carbon nanotubes after step (b).
  • a centrifugation step (b1) which makes it possible to separate any undissolved fraction from the solution of reduced individualized carbon nanotubes after step (b).
  • the centrifugation can be carried out between 100 and 200000 g for 0.1 to 24 hours.
  • the centrifugation step is carried out at 2800 g for 1 hour.
  • the presence of aggregates in the solution during the centrifugation is verified with the naked eye.
  • a sample of the solution can be taken at different intervals in the centrifugation step to determine when it has made it possible to obtain a clear solution (that is to say without aggregates visible to the naked eye).
  • the examination with the naked eye makes it possible to detect possible aggregates having a minimum size of the order of the 10th of a millimeter (100 microns).
  • the presence of aggregates in the solution during the centrifugation is verified by optical microscope.
  • a sample of the solution can be taken at different intervals in the centrifugation step to determine when it has made it possible to obtain a clear solution (that is to say without aggregates visible under an optical microscope).
  • the optical microscope examination allows the detection of possible aggregates with a minimum size of about one micron.
  • the sample of the solution can be analyzed under an optical microscope with a magnification of 20 to 100 or even 400.
  • nanotube is meant, in the sense of the present description, a tubular structure based on carbon, and which has a diameter of between 0.5 and 200 nm. These compounds belong to the so-called “nanostructured materials” family, which have at least one characteristic dimension of the order of one nanometer. For more details about these materials and their modes of synthesis, one will be able to refer in particular to the article “Nanotubes from carbon” of PM Ajayan (Chem Rev, vol 99, p.1787, 1999) [ref 9] .
  • the process of the invention is very versatile, and has the advantage of being able to be used both from single wall nanotubes and from multiwall nanotubes, which are less expensive.
  • step (a) of the process mono- or multiwall nanotubes having an average diameter of between 0.5 and 100 nm will be used.
  • the carbon nanotubes used in step (a) of the process are single-wall nanotubes having an average diameter of between 0.7 and 2.0 nm, preferably between 0.8 and 1.4. nm.
  • the carbon nanotubes used in step (a) of the process are multiwall nanotubes having a mean diameter of between 2 and 20 nm, preferably between 10 and 15 nm.
  • the average length of nanotubes employed in step (a) is generally between 0.05 and 1000 microns.
  • the solution of individualized carbon nanotubes prepared in step (b) comprises between 0.1 and 10 g of nanotubes per liter of solution. In a preferred embodiment, the solution of individualized carbon nanotubes prepared in step (b) comprises between 0.1 and 2 g of nanotubes per liter of solution.
  • the structure of the airgel can be obtained by slow or abrupt freezing of the solution of reduced individualized carbon nanotubes obtained at the end of step b) of the process.
  • the structure of the airgel is obtained by abrupt freezing of the solution of reduced individualized carbon nanotubes obtained at the end of step b) of the process.
  • the freezing step c) can be carried out by placing said solution obtained in step (b) at a temperature below -50 ° C., or for example below -80 ° C., or for example less than -100 0 C, or even less than -150 0 C, or for example less than -18O 0 C, or for example less than -190 0 C.
  • the step Freezing is carried out abruptly by immersion of the solution of individualized carbon nanotubes in liquid nitrogen.
  • the solution of individualized carbon nanotubes obtained at the end of step b) is a solution in DMSO.
  • the freezing of the solution of carbon nanotubes in DMSO can be frozen suddenly by exposure to a temperature much lower than the freezing temperature of DMSO (in particular by immersion in liquid nitrogen).
  • the freezing of the solution of carbon nanotubes in DMSO can also be obtained slowly, that is to say by a softer method (not involving sudden freezing), for example by immersion in a thermostatically controlled medium at a temperature below the freezing temperature of DMSO.
  • the freezing step may be performed by immersing the carbon nanotube solution obtained in step b) in a bath thermostated at a temperature below 18 ° C.
  • the structure of the airgel is obtained by slow freezing of the solution of reduced individualized carbon nanotubes obtained at the end of step b) of the process.
  • the freezing step c) is advantageously carried out by immersion of the solution of individualized carbon nanotubes obtained in step (b) in a thermostatically controlled medium at a temperature below the freezing temperature of the aprotic apolar solvent used. in step b).
  • the sublimation step d) is carried out by cold lyophilization, with or without a thermostatic bath, of the frozen nanotube solution.
  • a thermostated bath advantageously, the sublimation step is carried out by thermostating the solution of individualized carbon nanotubes at a temperature sufficiently below the freezing temperature of the aprotic apolar solvent used in step b).
  • the temperature of the thermostated bath is at least 1 ° C. below the freezing temperature of the aprotic polar solvent, preferably at least 5 ° C. below the freezing temperature of the polar aprotic solvent. .
  • the sublimation step d) is carried out at a pressure less than or equal to 10 -2 mbar, preferably less than or equal to 10 -3 mbar, preferably less than or equal to 10 -4 mbar, more preferably less than or equal to 10 "5 mbar.
  • the sublimation step d) is carried out at a pressure of 10 -6 mbar.
  • a powerful vacuum pump can be used to obtain the correct pressure to perform the sublimation.
  • a lyophilizer designed for solutions the airgel, for example, a judicious control of parameters such as the refrigeration temperature (choice of refrigerant bath to keep the organic solution frozen), and the applied vacuum (choice of a vacuum pump adequate to obtain a satisfactory vacuum, need to overcome the rubber connections often used in freeze-dryers (ie, use of a "direct" connection between the chamber containing the solution to be freeze-dried and the vacuum pump), and to make sure that the volume of the vacuum enclosure is not too large relative to the volume of solution to be evaporated) is necessary .
  • lyophilization is performed with a vacuum pump capable of generating a pressure of less than 0.1 mbar.
  • a turbomolecular pump may be used.
  • the airgel can be shaped before or after sublimation (or lyophilization).
  • the airgel may be "molded" by choosing the appropriate shape of the container in which the frozen solution is sublimated (or lyophilized).
  • the airgel may also be formed into thin membranes after sublimation (or lyophilization) by compression of the airgel.
  • the sublimation step d) is carried out with a sufficiently powerful pump to obtain, above the frozen solution, a pressure lower than the saturating vapor pressure of the solvent.
  • the sublimation device may be designed so that there is a direct connection between the tube to be freeze-dried and the pump. Such a device avoids the use of rubber hoses which has the disadvantage of "degassing" and does not provide the vacuum required for sublimation, especially for polar organic solvents such as DMSO.
  • this direct connection allows a passage of the chamber under inert atmosphere used for the preparation of the carbon nanotube solution to the vacuum pump, without exposure of the solution to the air (which would lead to oxidation nanotubes, and therefore their reaggregation).
  • the aprotic polar solvent used in step b) is DMSO and the sublimation step is carried out by thermostating the solution of carbon nanotubes in DMSO at a temperature below 18 ° C. (temperature freezing of DMSO), by Example 6 ° C.
  • the sublimation step d) is carried out at a pressure less than or equal to 10 -2 mbar, preferably less than or equal to 10 -3 mbar, preferably less than or equal to 10 -4 mbar, more preferably less than or equal to 10 "5 mbar.
  • the aprotic polar solvent is DMSO and the sublimation step d) is carried out at a pressure of 10 -5 mbar.
  • the present invention also provides aerogels of carbon nanotubes obtainable by a method according to the invention.
  • the aerogels may be used as such, or may be deposited on a substrate or mixed with another material.
  • a material is obtained based on individualized nanotubes of carbon, generally monolithic.
  • the material obtained has the form of the frozen solution, but there remains only a network pierced (in contact) of individualized carbon nanotubes.
  • the aerogels of the invention also have a very low bulk density, in particular much lower than that of currently known carbon nanotube aerogels.
  • Yodh et al. [ref 16] report aerogels with a density of between 10 and 30 mg / cm 3 .
  • Backov et al. [ref 17] report apparent densities "typically around 0.2 g / cc" (i.e. 200 mg / cm 3 ).
  • an airgel as obtained according to the invention has an apparent density most often less than or equal to 10 mg / cm 3 , generally less than or equal to 5 mg / cm 3 , preferably 2 ⁇ 0.5 mg / cm 3 .
  • An airgel as obtained according to the invention has an apparent density of between 0.1 and 10 mg / cm 3 , generally between 0.1 and 5 mg / cm 3 , preferably between 0.1 and 2 ⁇ 0.5 mg / cm 3. .
  • This very low bulk density reflects a very high pore volume for the aerogels of the invention, where, most often, the volume occupied by the pores represents at least 99% of the total volume of the airgel, generally at least
  • the pore volume can be influenced by the concentration of the solution of individualized carbon nanotubes obtained in step b). It will therefore be possible to increase the pore volume of the airgel by using a solution of individualized carbon nanotubes of lower concentration. It will be appreciated, however, that the mechanical strength of the final airgel is likely to be less. It will therefore be necessary to adapt the concentration of the solution of individualized carbon nanotubes according to the application to which the airgel is intended.
  • the concentration of the solution of individualized carbon nanotubes is between 0.01 and 10 mg / g or between 0.001 and 1% v / v, advantageously between 0.1 and 4 mg / g or between 0.01 and 0.4% v / v, more advantageously between 1 and 2 mg / g or between 0.1 and 0.2% v / v.
  • the concentration of the solution of individualized carbon nanotubes is of the order of 1 mg / g or 0.1% v / v.
  • the carbon aerogels thus obtained have a structure of high porosity. These are open and closed porosities, the latter being considered negligible.
  • open porosity material is meant a material in which all the pores communicate with the surface of the material.
  • the closed porosity corresponds to the internal volume of the carbon nanotubes.
  • the aerogels obtained according to the process of the invention also have a specific surface area greater than that of the carbon nanotube aerogels known hitherto (due to the fact that, in the present aerogels, the carbon nanotubes are individualized).
  • the aerogels of the invention most often have a high specific surface area, generally between 100 and 2000 m 2 / g, this specific surface area being advantageously greater than 200 m 2 / g, preferably greater than 250 m 2. / g, preferably greater than 300 m 2 / g
  • the term "specific surface” refers to the BET specific surface area, as determined by nitrogen adsorption, according to the well-known method called BRUNAUER - EMMET - TELLER which is described in The Journal of the American Chemical Society, volume 60, page 309 (1938), and corresponding to the international standard ISO 5794/1.
  • a specific surface as high as 2000 m 2 / g can be observed especially if a certain proportion of the tubes are open.
  • the monolithic character (in one piece) of the airgel besides ensuring electrical contact, allows a certain mechanical strength.
  • This particular structure of the aerogels of the invention can in particular be demonstrated on clichés of the materials obtained by field effect scanning microscopy, examples of which are given in the appended figures.
  • two types of open porosity are noted: pores with a diameter of about 20 microns in diameter and two-dimensional pores (holes in the walls of the first pores) with a diameter of 10 to 100 nanometers.
  • the aerogels obtained according to the present invention are electrically conductive. As such, they could advantageously be used for the preparation of electrochemical components. For example, they could replace carbon electrodes in fuel cells, biosensors and / or supercapacitors because of their large surface area. The increased porosity over conventional carbon electrodes is expected to yield quantative leaps in performance for energy applications (fuel cells, biosensors, supercapacitors).
  • the particular structure of the carbon aerogels obtained according to the invention makes them particularly suitable as separation materials, especially for performing liquid / liquid type separations.
  • the aerogels of the present invention are suitable for the adsorption of hydrophobic molecules, especially present in aqueous media.
  • an application of the aerogels of the present relates to the decontamination of aqueous media containing hydrophobic pollutants such as hydrocarbons, for example.
  • the high porosity of the airgel makes it possible to obtain a good diffusion of the species, thus inducing high separation rates.
  • the aerogels of the invention can for example be used for constitution of membranes or filtration materials, in particular for filtration or for the cleaning of wastewater.
  • the aerogels of the present application represent a more advantageous and more effective alternative to the materials described in application FR 2 881 362 for retaining the hydrophobic species of aqueous media.
  • the aerogels can be implemented in the form of membranes by compression of said airgel. They can therefore be used as filtration membranes and / or depollution, especially for the depollution of oil slicks.
  • the large surface area of the aerogels according to the invention, as well as their hydrophobicity, allows the preferential adsorption of oil in an oil / water mixture.
  • said aerogels make it possible to envisage solutions to pollution problems, in particular for the treatment of water or oil spills, by adsorption of hydrocarbons present in an aqueous medium, whereas at present there is no powerful way to solve these pollution problems.
  • the aerogels of the invention are also well suited to other applications.
  • they can especially be used for the preparation of biomaterials, and in particular for the preparation of support for cell growth, for bone growth or for cartilage replacement. They can especially find application for the preparation of biocompatible supports for the growth of bone cells, or neurons.
  • the particular porosity of the material ensures optimal colonization: the porosity ensures on the one hand a diffusion of the cells, which can reach substantially all of the surface of the material, and secondly an irregularity of the surface of the material to ensure good fixation of the cells on the airgel.
  • the reduced individualized carbon nanotube solution obtained in step (b) can be filled with insoluble beads in the aprotic polar solvent of interest. After lyophilization, the airgel is formed around these beads.
  • the process of the invention may further comprise a step (b1) of adding beads of material insoluble in the polar aprotic solvent of step (b). Said beads may have a diameter of between 10 microns and 1 mm, preferably between 50 and 100 microns.
  • the beads can then be removed by dissolution or acid attack, leaving a controlled pore airgel.
  • templates The use of such spherical particles as "templates" is widespread in the scientific literature and one skilled in the art can easily apply and / or adapt this technique to the reduced carbon nanotube solutions described herein.
  • the aerogels can be implemented in the form of membranes by compression of said airgel.
  • the elastic nature of these membranes due to the presence of pores), as well as their excellent wear resistance and their biocompatibility, make these materials particularly attractive candidates for applications in the field of cartilage replacement.
  • the aerogels of the prior art being prepared from aqueous suspensions of carbon nanotubes in the presence of non-biocompatible surfactants (see works by Yodh et al and Backov et al.), They are not really adapted to biomedical applications. Even though Yodh et al. describe a step of removing the surfactant used, there remains uncertainty as to the possible presence of surfactant residues. In addition, this requires an additional step of removing the surfactants which is not necessarily easy to implement, nor even advantageous on an industrial level.
  • the aerogels of the present invention thus have a significant technical advantage for the development of new biocompatible materials.
  • the aerogels of the invention can be used in most known applications of carbon-based aerogels, insofar as they have the specific advantages of these materials, in particular a high chemical inertness, particularly with respect to reducers, a high thermal stability up to more than 2000 0 C (in non-oxidizing medium), as well as a very good thermal and electrical conductivity.
  • the aerogels of the invention can thus, in particular, be used for the preparation of support for catalytic species, for example for the catalysis of reactions in a reducing medium, especially at high temperature.
  • the aerogels obtained can be post-treated, for example to be impregnated with catalytic species.
  • the aerogels are used for the preparation of catalyst supports for heterogeneous catalysis.
  • the aerogels can also make it possible to obtain conductive composites, because of their network pierced (in contact).
  • the present invention also relates to the use of aerogels obtainable by the process of the invention for the preparation of composite materials.
  • the method of the invention further comprises a step e) of imbibing said airgel with another material, in liquid form or in solution.
  • another material in liquid form or in solution. It may be for example a polymer, a polymer mixture or a resin, in liquid form or in solution, or molten silicon.
  • the airgel is thus impregnated with said material in liquid form or in solution; is (ii) by mixing a solution of a material with the individualized carbon nanotube solution obtained at the end of step b) of the process of the invention.
  • the material may be, for example, a polymer, a polymer blend, or a resin.
  • the method of the invention further comprises, before the freezing step c), a step b2) of mixing a solution of a material (for example a polymer solution, of a polymer mixture, or a resin) with the reduced individualized carbon nanotube solution obtained in step b).
  • the mixture is then frozen and sublimed according to steps c) and d) of the process to form a composite airgel.
  • the resins used may be unsaturated polyester resins (used for example in fiberglass-reinforced plastics), epoxy resins (used for example in adhesives and in the manufacture of plastics), phenolic resins or polyimide resins.
  • the polymer may be any polymer that makes it possible to implement the present invention. It can be chosen for example from the group comprising polystyrene; polyolefins, for example polyethylene, polypropylene, poly (alpha-olefin) s, polyisobutene and polypropylene; polyethers; polyesters; polyamides; polyacrylamides; polyacrylates (for example polymethyl methacrylate or "PMMA"); polysilanes; polysiloxanes.
  • polystyrene polyolefins, for example polyethylene, polypropylene, poly (alpha-olefin) s, polyisobutene and polypropylene
  • polyethers polyesters
  • polyamides polyacrylamides
  • polyacrylates for example polymethyl methacrylate or "PMMA”
  • PMMA polymethyl methacrylate
  • polysilanes for example polymethyl methacrylate or "PMMA”
  • the polymer may be a linear block copolymer or a random copolymer.
  • Those skilled in the art will be able to identify suitable operating conditions and the polymer (s) to be used for producing a composite material having the desired / desired properties.
  • a person skilled in the art can draw inspiration from the methods described in FR 04/05120 [ref 29] and / or
  • WO 2006/136715 [ref. 30] which describes the preparation of composite materials from carbon nanotubes and polymers or polymer blends.
  • the skilled person will adapt the methods described in these documents to achieve the preparation of composite aerogels from aerogels obtainable by the method of the present application.
  • the polymer (s) can be selected in order to optimize the polymer / carbon nanotube surface interactions.
  • block copolymer herein is meant a block polymer comprising more than one species of monomer.
  • identical monomers are grouped together.
  • Such polymers and their method of manufacture are described for example in Matyjaszewski, K.; Eds. ; Advances in Controlled / Living Radical Polymerization, (American Chemical Society 2003) [ref 23] or Hsieh, H. L.; Quirk, R.P .; Eds. ; Anionic Polymerization Principles and Practical Applications, (Marcel Dekker 1996) [ref 24].
  • random copolymer is meant herein a polymer in which the different monomers are mixed according to the reactivity and concentration thereof.
  • Such polymers and their methods of manufacture are described for example in Matyjaszewski, K .; Davies, T. P .; Eds .; Handbook of Radical Polymerization, (Wiley-Interscience 2002) [ref 25] or Fontaine, L.; Initiation to Macromolecular Chemistry and Physico-Chemistry (French Group for Studies and Applications of Polymers Volume 12 (Chapter 3)) [ref 26].
  • the invention when it is a block copolymer, it may be for example a diblock copolymer synthesized for example by controlled radical polymerization or by living anionic polymerization or by living cationic polymerization or a copolymer statistic synthesized by controlled radical polymerization or uncontrolled radical polymerization.
  • Controlled radical polymerization is a method of choice for preparing well-defined polymers and copolymers with flexible molecular weights and low polymolecularity indices. Techniques useful in the present invention are described for example in Matyjaszewski, K .; Davies, T. P .; Eds .; Handbook of Radical Polymerization, (Wiley-Interscience 2002) [ref 25].
  • the term "living polymerization” is understood to mean a polymerization in which there are no termination reactions or transfer reactions, and where the polymer chains continue to grow as long as there remain molecules of monomers to add to the chains. According to the invention, the living polymerization can be cationic or anionic.
  • the monomers can be introduced in full during the polymerization step. They can also be introduced separately or in a mixture, continuously or discontinuously. A monomer supplement may also be introduced at the end of the polymerization in order to obtain the desired polymer composition.
  • adjuvants that may be incorporated during conventional polymerization processes can be used according to the method of the invention.
  • initiators chain transfer agents, catalysts, antioxidants and lubricants known to those skilled in the art can be used.
  • the composite material is obtained by impregnating an airgel obtained according to the invention with another material, in liquid form or in solution, for example silicon, a polymer or mixture of polymers, or a resin.
  • impregnation is meant here an impregnation of the airgel by soaking it according to the embodiment (i) above.
  • the method further comprises an additional step e) which consists in imbibing the airgel of the invention with another material (for example a polymer, a mixture of polymers or a resin, in the form of liquid or a solution thereof, or molten silicon), said material being in liquid form or in solution.
  • another material for example a polymer, a mixture of polymers or a resin, in the form of liquid or a solution thereof, or molten silicon
  • the airgel may be soaked with PMMA or a PMMA solution.
  • the PMMA may be in solution in the same solvent as the reduced nanotubes of step b).
  • this solvent may be sulfolane, dimethyl sulfoxide (DMSO), dimethylformamide, N-methylpyrrolidone or N-methylformamide.
  • the solvent is DMSO.
  • the solvent is N-methylpyrrolidone.
  • Said step e) may be followed by a step of solidifying the composite airgel, by drying, to remove the solvent, for example by heating the impregnated airgel, optionally under reduced pressure, so as to evaporate the solvent from the pores of the airgel.
  • the airgel of the invention may be impregnated with molten silicon. Since the airgel is composed of carbon nanotubes, this silicon impregnation is in this case a reactive impregnation: the silicon then reacts with the carbon to form silicon carbide.
  • silicon impregnation is meant herein an impregnation of the airgel by a molten silicon type phase penetrating into the porosity of the airgel.
  • the molten silicon is very fluid and has a high wetting power especially with respect to carbon surfaces.
  • the airgel may be impregnated with a composition containing an organosilicon compound in solution, for example an organosilicon compound precursor of silicon carbide such as a polycarbosilane.
  • an organosilicon compound precursor of silicon carbide such as a polycarbosilane.
  • the airgel of the invention may be impregnated with silicon and / or germanium (that is to say silicon alone, germanium alone or a mixture of silicon and germanium. all proportions).
  • the airgel of the invention may be predominantly impregnated with silicon and / or germanium alloyed with at least one metal or another metalloid.
  • the metal or other metalloid may be chosen in particular from iron, cobalt, titanium, zirconium, molybdenum, vanadium, carbon or boron according to the particular properties to be conferred on the airgel after impregnation. of silicon.
  • the composite material is obtained by a process comprising a step b2) mixing a solution of a material with the individualized carbon nanotube solution obtained in step b).
  • Said material may for example be a polymer, a mixture of polymers, or a resin.
  • the material may be in solution in the same solvent used to form the individualized carbon nanotube solution obtained in step b).
  • it may be sulfolane, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone or N-methylformamide.
  • the solvent is DMSO.
  • the method of the invention further comprises, before the freezing step c), a step b2) of mixing a solution of a material with the individualized carbon nanotube solution. obtained in step b). The mixture is then frozen and sublimed according to steps c) and d) of the process to form a composite airgel. It is understood that the different embodiments of steps c) and d) described in the present are also applicable to the implementation of a composite airgel according to embodiment (ii) described above.
  • the method according to embodiment (ii) comprises a step of in situ polymerization of a monomer or monomer mixture in said reduced individualized carbon nanotube solution.
  • Such polymers and their method of manufacture are described for example in Matyjaszewski, K.; Eds. ; Advances in Controlled / Living Radical Polymerization, (American Chemical Society 2003) [ref 23]; Hsieh, H. L.; Quirk, R.P .; Eds. ; Anionic Polymerization Principles and Practical Applications, (Marcel Dekker 1996) [ref 24]; Matyjaszewski, K .; Davies, T.
  • the method according to embodiment (ii) comprises a polymerization-grafting step of one or more monomers on one or more individualized carbon nanotubes.
  • Polymerization-grafting methods are well known in the art. Those skilled in the art will be able to identify suitable operating conditions for implementing a polymerization-grafting process of a monomer on one or more individualized carbon nanotubes.
  • the individualized carbon nanotubes are functionalized by one or more grafts of functional groups before their association with the polymer (s).
  • the term "combination” means the combination of the grafted carbon nanotubes with the polymer (s) by simple mixing, by in situ polymerization of a monomer or mixture of monomers in a solution of grafted carbon nanotubes. or by graft-polymerizing one or more monomers onto one or more grafted carbon nanotubes. Fixing said functional groups on the carbon nanotubes can be carried out by any method suitable organic chemistry known to those skilled in the art.
  • These grafts can (i) allow functionalization of the individualized carbon nanotubes, (ii) increase the interactions between the individualized carbon nanotubes (Van der Waals-type bonds, hydrophobic bonds or hydrogen bonds), and / or (iii) increase the interactions between the individualized carbon nanotubes and the polymer (s) with which they are associated, and may have the advantage of enhancing composite aerogels comprising these individualized carbon nanotubes.
  • the composite material is obtained from an individualized carbon nanotube solution and a PMMA solution, for example in DMSO.
  • a PMMA / carbon nanotube composite airgel can be obtained by introducing, before the freezing step c), a step of mixing a solution of PMMA (for example in DMSO) with the reduced individualized carbon nanotube solution obtained in step b). The mixture is then frozen and sublimed to form a composite PMMA / carbon nanotube airgel.
  • the composite aerogels according to the invention can be used in all the applications provided for the aerogels of the invention by giving them a better mechanical strength.
  • these composite aerogels can be used as separation materials (eg, filtration membranes, water-borne surface-cleaning membranes for absorbing hydrocarbons), as heterogeneous catalyst supports, or as biomaterials (in the case of biocompatible polymers). ).
  • the composite airgel can to understand, in addition to carbon nanotubes, other materials conventionally used in composite materials.
  • the charges used in the composition of said composite aerogels may be of nanometric and / or micrometric size.
  • nanoscale material is understood to mean a material whose size is a few nanometers in at least one of the dimensions of space.
  • the size of the material in at least one of the dimensions of the space is between 1 and 20 nm, preferably between 1 and 2 nm.
  • micrometric size material is understood to mean a material having a size of between 1 and 100 microns.
  • the composite material may comprise charges of only micrometric or nanometric size only, or a mixture of micro- and nanometric charges (see, for example, FR 2 873 381 [ref 32] in which composite materials comprising nano fillers and micrometric fillers in the same material are described).
  • the method of the invention has, among others, the advantage of being simple to implement and inexpensive.
  • the process of the present invention involves lyophilization of a solution of nanotubes of carbons in an aprotic polar solvent.
  • An advantage of this process over prior art processes which are based on the lyophilization of aqueous dispersions is that the use of an organic solvent allows a better homogeneity of the solution to be freeze-dried and greater flexibility as to the incorporation of complementary constituents, for example a polymer or a mixture of polymers, in order to prepare a composite material.
  • the process of the present invention does not require the use of surfactants. It also does not require the use of sonication, which damages carbon nanotubes or at least shortens them. Thus, the length / diameter ratio of the carbon nanotubes in the airgel obtained is maximum.
  • sonication affects the structural integrity of carbon nanotubes.
  • sonication can cause cleavage of carbon nanotubes, and the appearance of defects such as bends ("buckling", "bending") and / or dislocations in carbon structures.
  • Sonication also causes the upper layers of graphite sheets to tear out, in the case of multiwall tubes, which leads to a thinning of the nanotubes in a manner similar to the damage reported by the oxidation.
  • Sonication can also lead to an impairment of performance, especially electrical, carbon nanotubes, due to damage aforementioned structural See for example Badaire et al. [ref 38].
  • Yodh et al. [ref 16] and Backov et al. [ref 17] relate to obtaining aerogels by lyophilization or critical drying ("critical-point drying") of an aqueous suspension of carbon nanotubes containing surfactants, previously subjected to ultrasonic treatment, a mechanical process that alters the structure of carbon nanotubes, and their electrical properties.
  • the carbon nanotubes are individualized by a so-called "soft dissolution” chemical method of reducing the carbon nanotubes with an alkali metal and dissolving the polyelectrolyte salt obtained in an aprotic polar solvent.
  • the method of the invention respects the structure of carbon nanotubes that are found unaltered in the airgel. See, for example, Figure 3 which illustrates Raman spectra of crude carbon nanotubes and an airgel of the present invention. As shown in FIG. 3, the two curves (crude nanotubes and airgel) are indistinguishable.
  • the aerogels of the present invention are superior to the aerogels of the prior art in that they do not have the aforementioned drawbacks due to the sonication process.
  • an advantage of the process of the invention compared to the processes of the prior art which are based on the lyophilization of dispersions in the presence of surfactants, is that the dissolution of the nanotubes of an aprotic polar organic solvent allows a better homogeneity from the solution to lyophilized.
  • the tubes are all exfoliated unlike crude tubes dispersed in ethanol, which remain in large beams.
  • there is a large size distribution of the nanotubes if there is little sonication and very short lengths if there is a lot of sonication. See article by Islam et al., "High weight fraction surfactant solubilization of single-wall carbon nanotubes in water", Nanoletters, Vol. 3 (2): 269-273 (2003) [ref. 41].
  • the process of the invention makes it possible to obtain an airgel from individualized carbon nanotubes, that is to say by complete exfoliation of the nanotube bundles.
  • the aerogels according to the invention are biocompatible.
  • the present aerogels can be used as biomaterials in biomedical applications, for example as a support for the growth of cells, in particular bone cells.
  • the method of the invention makes it possible to prepare aerogels of biocompatible carbon nanotubes, which is extremely advantageous for all biological applications. Finally, the process works equally well with single-walled carbon nanotubes and multi-walled nanotubes.
  • one of the main advantages of the present invention is the possibility of obtaining a biocompatible material, particularly suitable for the growth of cells.
  • Other advantages include the simplicity of implementation of the process, as well as its ability to provide airgel carbon nanotubes very low apparent density.
  • FIG. 1 represents scanning electron microscopy (field-effect microscope) images of an airgel sample obtained according to the method of the invention at magnifications x 1000 (FIG. 1A), ⁇ 3000 (FIG. 1B). and x 60000 ( Figure 1C).
  • FIG. 2 represents a photograph of an airgel obtained according to the method of the invention.
  • Figure 3 shows Raman spectra of crude carbon nanotubes and an airgel of the present invention.
  • FIG. 4 represents the diameter distribution of the carbon nanotubes observed after drying of the solution of reduced individualized carbon nanotubes obtained at the end of step (b) of the process of the invention (narrow curve on the left) by compared to raw carbon nanotubes in bundles (wide right curve).
  • naphthalene potassium salt Naoh ⁇ K + 100 mg of naphthalene are placed in a flask of 250 cm 3 which is added 30 mg of potassium into small pieces of shiny surface (peeled at scalpel just prior to use), then of the order of 100 cm3 of THF. The ball is heated to reflux until the solution turns a very dark green color and is refluxed a few hours.
  • the solution obtained above is then poured by filtering, to avoid an excess of solid potassium, on 55 mg of crude nanotubes (synthesized with the electric arc).
  • the whole is left stirring magnetically at room temperature for about fifteen hours.
  • the decrease in the concentration of Naph-K + can be monitored by visible UV spectroscopy.
  • the reaction mixture is filtered through a Millipore® type membrane (0.45 micron porosity).
  • the solid is rinsed several times with THF (distilled on a potassium / naphthalene mixture), until the THF remains colorless after passing through the filter.
  • the solid is then dried under vacuum at room temperature.
  • the solid has a good storage stability of at least several months, under controlled atmosphere.
  • nanotube salt obtained above are subjected to magnetic stirring for about 15 hours in 16 cm 3 of DMSO at room temperature.
  • the solution obtained is centrifuged at 4000 rpm for 1 hour and decanted.
  • a homogeneous solution of individualized carbon nanotubes, that is to say not comprising aggregates visible under optical microscope (magnification 400).
  • Said solution contains 2 mg of reduced carbon nanotubes per gram of DMSO.
  • a glass test tube provided with a valve which (i) hermetically isolates the contents of the test tube, (ii) has a connection mode to the vacuum pump (swageloke type for example).
  • the tube is filled with solution in an inert atmosphere, the valve is closed and the tube can then be taken out of the enclosure with an inert atmosphere.
  • the tube is optionally immersed in liquid nitrogen to freeze the solution abruptly.
  • the tube is then placed in a thermostatic bath at a temperature of temperature below that of freezing the solvent (for example at 60 ° C. with DMSO) and the other side of the valve is connected to the vacuum pump.
  • the contents of the test tube is then evacuated by opening the valve (10 "5 mbar).
  • Example 1 made from electric arc-synthesized single-wall carbon nanotubes, were also carried out with single-wall carbon nanotubes manufactured using the HiPCO process (high pressure carbon monoxide process). "High Pressure CO"), swan nanotubes (2 to 4 walls), and multiparoists from Arkema, with similar results.
  • HiPCO high pressure carbon monoxide process
  • Example 2 Measurement of the Apparent Density of the Airgel of Example 1 Measurement of the Volume of the Airgel
  • the airgel is prepared according to Example 1 from a sodium salt of single nanotubes synthesized by electric arc. 4 ml of solution of reduced individualized carbon nanotubes in DMSO are lyophilized in a test tube. A mark is made on the wall of the test tube at the upper surface of the airgel.
  • a liquid is introduced to the level of the aforementioned mark.
  • the volume of the liquid is then measured in a graduated cylinder: 2.5 ml.
  • the liquid can be weighed, and its volume determined from its density. Measurement of airgel mass
  • Example 3 Measurement of the volume occupied by the pores of the airgel of Example 2
  • the specific surface measurement was made by Krypton adsorption and by the BET method.
  • the specific surface area determined by Krypton adsorption 311 m 2 / g.
  • the specific surface area determined by the BET method is: 345 m 2 / g. It must be understood that the two methods give an identical value.
  • Example 5 Measurement of Electrical Resistance of the Airgel of Example 1
  • Aerogels of carbon nanotubes were prepared according to Example 1 from three sources of different nanotubes: nanotubes called “Elicarb” marketed by the company Thomas Swan, nanotubes synthesized by the method of the electric arc and nanotubes so-called “HipCO”.
  • a solution of reduced individualized carbon nanotubes in DMSO is prepared according to the protocol described in Example 1 from carbon nanotubes called “Elicarb” sold by the company Thomas Swan. 6% by weight (relative to the carbon nanotubes) of polymethyl methacrylate (PMMA) is added to the solution. The resulting mixture is then lyophilized according to the protocol described in Example 1.
  • PMMA polymethyl methacrylate
  • Example 7 Measurement of the Electrical Resistivity of the Airgel of Example 6
  • the resistivity of the airgel of Example 6 was determined according to the protocol of Example 5.
  • the airgel obtained from a solution comprising PMMA and the carbon nanotube salt has a conductivity lower than that observed for the aerogels of Example 5.
  • an airgel containing 6% by weight of PMMA has a conductivity of 0.05 S / cm instead of 5 S / cm.
  • the experimental principle consists in comparing the behavior of cells cultured in contact with an airgel to 'control' cells: without airgel (substrate favorable for cell growth, for example, laboratory culture plates).
  • the same amount of cells is cultured, in contact or not with the airgel (a test sample and a control sample respectively); at times T1, T2 ... (7 days, 14 days ... for example) cell proliferation is then measured for each sample.
  • the material shall be considered to be biocompatible and / or lacking in cytotoxicity when the values obtained for the test sample are greater than or equal to 75% of the values of the control sample.
  • MTS test Promega's Celititer 96 AQueous One CeII Solution Proliferation Assay, promega
  • the principle of this test is to measure the bioreduction of the tetrazolium salt in a colored product-formazan, by living cells. Quantification can be done directly by counting the cells or indirectly by colorimetric change reflecting the modification of the substrate (optical density measurements).

Abstract

La présente invention se rapporte à un procédé de préparation d'aérogels de nanotubes de carbone individualisés et ses applications, notamment pour la fabrication d'aérogels composites et de composés électrochimiques. Le procédé de l'invention se caractérise en ce qu'il comprend les étapes suivantes réalisées sous atmosphère inerte: (a) réduction de nanotubes de carbone par un métal alcalin pour conduire à un sel polyélectrolyte de nanotubes de carbone; (b) exposition dudit sel polyélectrolyte de nanotubes de carbone à un solvant polaire aprotique pour conduire à une solution de nanotubes de carbone individualisés réduits; (c) congélation de ladite solution de nanotubes individualisés; et (d) sublimation du solvant. La présente invention se rapporte en particulier à des aérogels de nanotubes de carbone individualisés obtenus par ledit procédé, ainsi qu'à des utilisations de ces aérogels.

Description

AEROGELS DE NANOTUBES DE CARBONE
DESCRIPTION
Domaine technique
La présente invention se rapporte à un procédé de préparation d'aérogels de nanotubes de carbone individualisés et ses applications, notamment pour la fabrication d'aérogels composites et de composés électrochimiques. La présente invention se rapporte en particulier à des aérogels de nanotubes de carbone individualisés obtenus par ledit procédé, ainsi qu'à des utilisations de ces aérogels.
L'obtention de tels aérogels de nanotubes de carbone présente un grand intérêt pour leurs applications industrielles, en particulier en vue des propriétés uniques des nanotubes de carbone, et de la très faible densité apparente et grande surface spécifique des aérogels précités.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentée après les exemples.
État de la technique
Les matériaux communément désignés par "aérogels de carbone" sont des matériaux macroscopiques essentiellement (et généralement exclusivement) constitués de carbone, qui présentent une structure extrêmement poreuse, entraînant une densité apparente très réduite. Pour plus de détails concernant les structures de type aérogels de carbone, on pourra notamment se reporter à l'article "Les aérogels et le structure alvéolaires : deux exemples de mousses de carbone" de L. Kocon et T. Piquero, dans L'actualité Chimique, N0 245-246, pp. 119-123 (mars-avril 2006) [ref 1].
Les aérogels de carbone sont généralement obtenus par des processus dits par "réplique" ("templating" en anglais). Dans ces procédés, schématiquement, on forme une structure tridimensionnelle poreuse de carbone ou d'un précurseur de carbone en employant une structure solide ou une organisation moléculaire de type cristal liquide à titre de "moule" de la structure recherchée. Ce "moule", dit agent texturant ("template" en anglais) peut prendre différentes formes selon le procédé utilisé. Dans ce cadre, il existe trois grandes familles de procédés par texturation conduisant aux aérogels de carbone : (1) l'emploi de solides micro- ou mésoporeux à titre de texturants solides ["Nouveaux concepts d'élaboration de matériaux carbonés poreux" de C. Vix-Guterl, J. Parmentier, P. Delhaés, dans L'actualité chimique, n° 245-246, pp 124-128 (mars-avril 2006) [ref 2] ; et "Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation" de R. Ryoo, S.-H. Soo, S. Jun, dans The Journal of Physical chemistry B, 103 (37), pp. 7743-7746 (1999) [ref 3]], (2) la texturation de carbone en milieu liquide ou gélifié ["High-thermal conductivity, mesophase pitch- derived carbon foams : effect of precursors on structure and properties" de J. Klett et col., dans Carbon, 38, pp. 153-173 (2000) [ref 4] ou "Novel high strength graphitic foams", de T. Beechem, K. Lafdi, dans Carbon, 44, pp. 1548-1549 (2002) [ref 5]] et (3) la texturation de précurseurs carbonés en milieu liquide ou gélifié ["Fabrication of nano-structure control of carbon aerogels via microemulsion templatted sol-gel polymérisation method", de D. Wu, R. Fu, M. S. Dresselhaus, G. Dresselhaus, dans Carbon, 44, pp 675-680 (2005) [ref 6] ou "Préparation and properties ofresorcinol formaldehyde organic and carbon gels", de S.A. Al-Muthtsabeb, JA Ritter, dans Adv. Mater., 15(2), pp. 101-104 (2003) [ref 7]].
Cependant, aucune de ces méthodes ne concerne les aérogels de nanotubes de carbone. Or, la possibilité d'élaborer des aérogels de nanotubes de carbone présente un intérêt industriel et scientifique manifeste, en vue des propriétés mécaniques, électriques et chimiques uniques des nanotubes de carbone . En effet, ceux-ci sont couramment utilisés dans les matériaux composites (Schaffer, M. S. P., Windle, A. H., "Fabrication and Characterization of Carbon Nanotube/poly (vinyl alcohol) Composites", Adv. Mater., 11 , pp 937- 941 (1999) [ref 8]), les supercondensateurs (Aldissi, M.; Schmitz, B.; Lazaro, E.; Bhamidipati, M.; Dixon, B., "Conducting Polymers In Ultracapacitor Applications", 56.sup.th Annu. Tech. Conf.-Soc. Plast. Eng., (Vol. 2), pp 1197-1201 (1998) [ref 10]; An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J.-M.; Bae, D. J.; Lim, S. C; Lee, Y. S.; Lee, Y. H. "Electrochemical Properties Of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes", Adv. Funct. Mater. 11 , pp 387-392 (2001) [ref 11]), la catalyse (Yu, R., Chen, L, Liu, Q., Lin, J., Tan, K. -L1 Ng, S. C1 Chan, H. S. O., Xu, G.-Q.,Hor, T. S. A. "Platinum Déposition On Carbon Nanotubes Via Chemical Modification", Chem. Mater. 10, pp 718-722 (1998) [ref 12]; (Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M., "Application Of Carbon Nanotubes As Supportsjn Heterogeneous Catalysis", J. Am. Chem. Soc. 116, pp 7935-7936 (1994) [ref 13]) et les composants ou systèmes électroniques de taille nanométrique (Tans, S. J., Verschueren, A. R. M., Dekker, C, "Room- Temperature Transistor Based On A Single Carbon Nanotube", Nature 393, pp 49-52 (1998) [ref 14]; Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C, "Logic Circuits With Carbon Nanotube Transistors". Science 294 pp 1317-1320 (2001) [ref 15]). Ainsi, développer un matériau aérogel à base de nanotubes de carbone présente un grand intérêt.
Deux méthodes d'élaboration de tels matériaux ont été rapportées à ce jour : (1) Yodh et al., « Carbon nanotube aerogels », Advanced Materials, 2007, 19, pp. 661-664 [ref 16] ; et (2) Backov et al., Demande de brevet français N° 06/11143 (publication N° FR 2 910 458 ) [ref 17]. Cependant, dans les deux cas, la méthode utilise une dispersion de nanotubes de carbone en présence de tensioactifs et une étape de sonication pour optimiser la dispersion. Cela engendre plusieurs inconvénients. D'une part, les nanotubes de carbone sont raccourcis par la sonication. Le rapport diamètre/longueur des nanotubes de carbone dans l'aérogel n'est donc pas optimal. Cela peut également se traduire par des problèmes de contacts électriques entre les nanotubes dans l'aérogel final. D'autre part, l'aérogel obtenu contient un composé tensioactif si le procédé ne prévoit pas une étape visant à le retirer. La présence de tensioactif peut nuire à la qualité de l'aérogel, et peut entraver son utilisation selon l'application envisagée. Par ailleurs, les tensioactifs sont fréquemment associés à des problèmes de mauvaise biodégradabilité. Ces méthodes présentent donc l'inconvénient qu'une étape supplémentaire d'élimination du tensioactif doive être prévue.
Par ailleurs, chacune des deux méthodes précitées utilise des nanotubes de carbone sous forme de faisceaux (i.e., ils ne sont pas individualisés). La surface spécifique de l'aérogel ainsi obtenu s'en trouve donc affectée. En tout état de cause, la surface spécifique des aérogels actuellement connus est loin d'être optimale.
Il existe donc un réel besoin d'un procédé de préparation d'aérogels de nanotubes de carbone palliant ces défauts, inconvénients et obstacles de l'art antérieur.
Description de l'invention
La présente invention a précisément pour but de répondre à ce besoin en fournissant un procédé de préparation d'aérogels de nanotubes de carbone caractérisé en ce qu'il comprend les étapes suivantes réalisées sous atmosphère inerte:
(a) réduction de nanotubes de carbone par un métal alcalin pour conduire à un sel polyélectrolyte de nanotubes de carbone;
(b) exposition dudit sel polyélectrolyte de nanotubes de carbone à un solvant polaire aprotique pour conduire à une solution de nanotubes de carbone individualisés réduits ;
(c) congélation de ladite solution de nanotubes individualisés ; et
(d) sublimation du solvant.
Les étapes a) et b) du procédé sont toujours effectuées sous atmosphère inerte. Par « atmosphère inerte », on entend par la présente un gaz ou un mélange gazeux qui ne favorise pas la ré-oxydation des nanotubes de carbone réduits en nanotubes neutres. Par exemple, le procédé est conduit sous atmosphère gazeuse dépourvue d'oxygène. En particulier, le procédé peut être effectué sous atmosphère d'argon ou d'azote.
Dans un mode de réalisation, le métal alcalin peut être tout métal alcalin permettant de mettre en œuvre la présente invention. Il peut être choisi par exemple dans le groupe comprenant le lithium, le sodium, le potassium, le rubidium et le césium. Plus particulièrement, le métal alcalin peut être le lithium, le sodium ou le potassium. Dans certains modes de réalisation particuliers, le métal alcalin est le lithium ou le sodium. Dans d'autres modes de réalisation particuliers, le métal alcalin est le potassium.
Par « réduction par un métal alcalin» on entend dans la présente une réduction dans laquelle un métal alcalin est impliqué. Ainsi, la réduction peut se faire directement en présence d'un métal alcalin, par exemple en phase vapeur. Des méthodes de réduction en présence d'un métal alcalin sont bien connues dans l'art. L'homme du métier saura identifier les conditions opératoires adéquates pour mettre en oeuvre un procédé de réduction en présence d'un métal alcalin, par exemple en phase vapeur. Notamment, l'homme du métier pourra s'inspirer des méthodes décrites dans « Synthesis of graphite intercalation compounds », A. Hérold in Chemical physics of intercalation, A.P. Legrand et S. Flandrois Eds, NATO ASI Séries, séries B, Vol. 172, pp. 3-45 (1987) par exemple [ref 18], qui sont directement applicables aux nanotubes de carbone.
Dans un autre mode de réalisation, la réduction se fait en présence d'un sel de métal alcalin obtenu à partir d'un métal alcalin. Par exemple, la réduction peut se faire en présence d'un sel polyaryl alcalin de formule A+B", dans laquelle A+ représente un cation d'un ion alcalin, et B" représente un anion d'un composé polyaromatique.De tels sels polyaryl alcalin et leur procédé de fabrication sont décrits par exemple dans (C. Stein, J. Poulenard, L Bonnetain, J. Golé, CR. Acad. Sci. Paris 260, 4503 (1965) [ref 19]; « Synthesis of graphite intercalation compounds », A. Hérold in Chemical physics of intercalation, A.P. Legrand et S. Flandrois Eds, NATO ASI Séries, séries B, Vol. 172, pp. 3-45 (1987) [ref 20]; F. Béguin et R. Setton New ternary lamellar compounds of graphite, Carbon 13, 293-)295 (1975) [ref 21] ; Pénicaud et al., « Spontaneous dissolution of a single- wall carbon nanotube sait », J. Am. Chem. Soc, 127, 8-9, (2005) [ref 34].
Selon un mode de réalisation, le composé polyaromatique est choisi dans le groupe comprenant le naphtalène, le phénanthrène, le biphényle, l'anthracène, le pérylène, la benzophénone, la fluorénone, la benzoquinone et l'anthraquinone.
Dans un mode de réalisation particulier, le composé polyaromatique est le naphtalène. Dans un mode de réalisation particulier, le sel polyaryl alcalin est un sel polyaryl de potassium (c'est-à-dire, un sel de formule A+B', dans laquelle A+ représente K+). Avantageusement, Ie sel polyaryl alcalin de formule A+B', est un sel de potassium de naphtalène (Naph" K+). Par «nanotubes de carbone individualisés réduits» on entend dans la présente un composé comprenant au moins deux nanotubes individuels de carbone chargés négativement et neutralisés par des contre ions positifs de métal alcalin en solution dans un solvant polaire aprotique. Les nanotubes de carbone existent généralement sous forme de faisceaux de nanotubes (i.e., les nanotubes ne sont pas individuels, ils sont « agglomérés » en faisceaux). Dans la présente, l'expression «nanotubes de carbone individualisés réduits» se réfère à des faisceaux de nanotubes de carbone partiellement désagglomérés, c'est-à- dire des faisceaux de nanotubes de carbone dont la surface spécifique est accrue par rapport à celle des faisceaux de départ (avant la mise en oeuvre des étapes a) et b) du procédé de l'invention). Ainsi, l'expression «nanotubes de carbone individualisés réduits» peut représenter un mélange de nanotubes de carbones individuels et de faisceaux partiellement désagglomérés, chargés négativement et neutralisés par des contre ions positifs de métal alcalin. De préférence, les «nanotubes de carbone individualisés réduits» comportent majoritairement des nanotubes de carbones individuels chargés négativement et neutralisés par des contre ions positifs de métal alcalin. De préférence, lesdits nanotubes de carbone ne se présentent pas sous la forme de faisceaux, mais exclusivement sous la forme de nanotubes individuels.
Les faisceaux de nanotubes sont dans un premier temps réduits par un métal alcalin pour former un sel polyélectrolyte de nanotubes de carbone (étape a) du procédé de l'invention). L'individualisation (partielle, et de préférence complète) des nanotubes de carbone se fait lors de l'étape b) du procédé par exposition à un solvant polaire aprotique, qui solvate les nanotubes de carbone réduits, et les sépare ainsi les uns des autres. Les nanotubes de carbone individualisés réduits peuvent se présenter sous la forme d'un composé binaire de formule MCV où M représente un contre- ion positif d'un métal alcalin (M+), et x représente un nombre entier compris entre 6 et 200. En particulier, le métal alcalin peut être le potassium, le lithium ou le sodium.
Les nanotubes de carbone individualisés réduits peuvent se présenter sous la forme d'un composé ternaire de formule M(Solv)yCx dans laquelle M est un ion métallique alcalin (M+), SoIv est une molécule de solvant aprotique, x représente un nombre entier compris entre 6 et 200, et y représente un nombre compris entre 0 et 8. La molécule de solvant peut être une molécule d'un solvant aromatique (par exemple le benzène ou le toluène) ou nucléophile (par exemple, un solvant dont la structure contient au moins un atome d'oxygène comme le THF). Par exemple, le solvant est le THF et le sel polyélectrolyte de nanotubes de carbone est un composé ternaire de structure Na(THF)yCx, Li(THF)yCx ou K(THF)yCx dans laquelle x représente un nombre entier compris entre 6 et 200, et y représente un nombre compris entre 0 et 8. Par exemple, le composé ternaire peut répondre à la formule K(THF)Ci0, Na(THF)Ci0, Li(THF)Ci0 ou Li(THF)C6. Le nombre y n'est pas forcément un nombre entier. Il peut en effet représenter une moyenne du nombre de coordination du solvant SoIv sur le cation de métal alcalin. Par exemple, des composés ternaires M(Solv)yCx ont été préparés et isolés où la variable y a été mesurée comme étant égale à 0,8. Dans la présente, et par simplicité d'écriture, le nombre y est arrondi au nombre entier supérieur ou inférieur le plus proche. Par exemple, les composés ternaires de formule Na(THF)Ci0 ou Li(THF)Ci0 référencées ci-dessus englobent des composés dont l'analyse élémentaire a révélé qu'il s'agissait de composés de formule Na(THF)0,8Ci0 ou Li(THF)0,8Ci0. Ainsi, toute formule M(Solv)yCx référencée dans la présente doit être entendue comme représentant un composé de formule M(Solv)y±0,5Cx.
Selon un mode de réalisation particulier, l'étape de réduction a) se fait en présence d'un solvant. Par exemple, le solvant peut être un solvant nucléophile. Par exemple, le solvant nucléophile peut être un solvant aprotique dont la structure contient au moins un atome d'oxygène, en particulier le THF. Selon un mode de réalisation particulier, l'étape de réduction est choisie dans le groupe comprenant la réduction par un métal alcalin en phase vapeur suivie d'une exposition à un solvant aprotique, la réduction électrochimique et la réduction par un sel polyaryl alcalin dans un solvant aprotique. Par exemple, le solvant peut être un solvant aromatique, tel que le benzène ou le toluène. Le solvant peut être un solvant aprotique dont la structure contient au moins un atome d'oxygène comme le THF. Selon un mode de réalisation particulier, l'étape de réduction a) comprend l'addition aux nanotubes de carbone, sous atmosphère inerte, d'un sel polyaryl alcalin de formule A+B", dans laquelle :
A+ représente un cation d'un ion alcalin, et
B" représente un anion d'un composé polyaromatique.
Selon un mode de réalisation, le composé polyaromatique est choisi dans le groupe comprenant le naphtalène, le phénanthrène, le biphényle, l'anthracène, le pérylène, la benzophénone, la fluorénone, la benzoquinone et l'anthraquinone. Selon un mode de réalisation particulier, le solvant polaire aprotique utilisé dans l'étape d'exposition b) a une constante diélectrique de 25 à 200. Par exemple, le solvant polaire aprotique peut être le sulfolane, le diméthylsulfoxyde (DMSO), le diméthylformamide, la N-méthylpyrrolidone ou le N-méthylformamide. Dans un mode de réalisation particulier, le solvant polaire aprotique est le DMSO. Dans un autre mode de réalisation particulier, le solvant polaire aprotique est la N-méthylpyrrolidone.
Ainsi, le procédé de l'invention permet de préparer un aérogel de nanotubes de carbone à partir d'une solution organique polaire, par opposition aux solutions aqueuses dopées de tensioactifs utilisées dans l'art antérieur (Yodh et al. et Backov et al.).
Ceci n'est aucunement trivial, et ne découle pas d'une manière évidente de l'état de la technique.
En effet, les solvants polaires aprotiques tels que le sulfolane, le diméthylsulfoxyde (DMSO), le diméthylformamide (DMF), la N-méthylpyrrolidone (NMP) ou le N-méthylformamide ont des tensions de vapeur bien plus faible que l'eau. Par exemple, la tension de vapeur du DMSO est un ordre de grandeur plus faible que celle de l'eau à environ O0C (à titre d'exemple, Pvap (eau) = 6 mbars à zéro degrés contre Pvap(DMSO) = 0.2 mbars à 6 degrés).
De plus, la lyophilisation étant fréquemment utilisée en biologie, à notre connaissance sur des solutions exclusivement aqueuses ou contenant un solvant organique tel que le DMSO en proportion mineure, les lyophilisateurs commerciaux sont calibrés pour l'eau. Pour cette raison, ils ne sont pas adaptés à Ia lyohilisation de solutions organiques, particulièrement des solvants polaires à tension de vapeur très faible comme les solvants précités.
L'homme du métier n'était donc pas encouragé à explorer la lyophilisation de solutions de nanotubes de carbone individualisés réduits dans un solvant polaire aprotique telles que celles intervenant dans le procédé de l'invention, dans la mesure où l'on n'a pas affaire à des solutions aqueuses.
Ainsi, compte tenu des difficultés techniques précitées et des caractéristiques physicochimiques des solvants polaires aprotiques (notamment leur tension de vapeur), la lyophilisation de solutions organiques polaires aprotiques avant la présente invention n'était pas évidente pour l'homme du métier.
Les inventeurs ont découvert de manière tout à fait surprenante qu'il était possible de lyophiliser une solution organique polaire aprotique, telle qu'une solution de DMSO, en particulier une solution organique polaire aprotique contenant des nanotubes de carbone individualisés.
Une difficulté est de s'affranchir des lyophilisateurs commerciaux qui, comme indiqué ci-dessus, sont calibrés pour des solutions aqueuses.
Pour les solvants plus réfractaires tels que la NMP (Tension de vapeur = 2.10"3 mbars à -300C (Tcongélation≈ -250C)), cette lyophilisation peut notamment être mise en œuvre avec une pompe à vide puissante, telle qu'une pompe turbomoléculaire, voire plusieurs (au moins deux) pompes turbomoléculaires en série.
Selon un mode de réalisation particulier, l'étape d'exposition b) est effectuée à une température de -60 à 285 0C. Par exemple, l'étape d'exposition b) est effectuée à une température de 0 à 35 0C, de préférence de 20 à 25°C. D'une manière générale, le procédé de l'invention, en particulier l'étape d'exposition b), peut être mis en œuvre avec ou sans agitation. Lorsqu'un système d'agitation est utilisé, il peut s'agir d'un système d'agitation mécanique, magnétique ou par sonication en bain. D'une manière générale, l'agitation par sonication est à éviter car celle-ci peut endommager les nanotubes de carbone. Cependant, la sonication en bain (par opposition aux sondes), méthode plus douce, peut aider à la solubilisation des nanotubes de carbones de l'étape b) dans des cas un peu difficiles. Dans un mode de réalisation particulier, le procédé est effectué sous agitation mécanique. Dans un autre mode de réalisation, le procédé est effectué sous agitation magnétique.
Selon un mode particulier de mise en œuvre du procédé de la présente invention, on peut appliquer après l'étape (a) et avant l'étape (b), une étape (ai) de filtration. Par exemple, lorsque l'étape (a) du procédé implique une réduction en présence d'un sel de métal alcalin obtenu à partir d'un métal alcalin, la filtration peut permettre de séparer la phase liquide (par exemple une solution de K+Napht- dans du THF) de la phase solide comprenant le sel polyélectrolyte de nanotubes de carbone et éventuellement des nanotubes de carbone non réduits. Le sel polyélectrolyte de nanotubes de carbone ainsi obtenu peut être rincé une ou plusieurs fois avec un solvant adéquat. Par exemple, après l'étape de filtration (ai), le sel polyélectrolyte de nanotubes de carbone peut être rincé avec le même solvant utilisé lors de l'étape (a), notamment le THF. Le sel polyélectrolyte de nanotubes de carbone ainsi rincé peut être éventuellement séché avant l'étape (b).
Selon un mode de réalisation particulier, le procédé comprend en outre une étape de centrifugation (b1), celle-ci permettant de séparer toute fraction non dissoute de la solution de nanotubes de carbone individualisés réduits après l'étape (b). L'homme du métier saura déterminer les conditions de centrifugation adéquates pour obtenir une solution de nanotubes de carbone individualisés réduits limpide, c'est-à-dire ne comprenant pas d'agrégats détectables. Par exemple, la centrifugation peut être effectuée entre 100 et 200000 g , pendant 0.1 à 24 heures. Dans un mode de réalisation particulier, l'étape de centrifugation est effectuée à 2800 g pendant 1 heure. Selon un mode de réalisation, la présence d'agrégats dans la solution au cours de la centrifugation est vérifiée à l'œil nu. Ainsi, un échantillon de la solution peut être prélevé à différents intervalles dans l'étape de centrifugation pour déterminer lorsque celle-ci aura permis d'obtenir une solution limpide (c'est- à-dire sans agrégats visibles à l'œil nu). L'examen à l'œil nu permet de détecter des agrégats éventuels ayant une taille minimale de l'ordre du 10ième de millimètre (100 microns).
Selon un mode de réalisation, la présence d'agrégats dans la solution au cours de la centrifugation est vérifiée par microscope optique. Ainsi, un échantillon de la solution peut être prélevé à différents intervalles dans l'étape de centrifugation pour déterminer lorsque celle-ci aura permis d'obtenir une solution limpide (c'est-à-dire sans agrégats visibles au microscope optique). L'examen au microscope optique permet de détecter des agrégats éventuels ayant une taille minimale de l'ordre du micron. Dans un mode de réalisation particulier, l'échantillon de la solution peut être analysé au microscope optique avec un grossissement de 20 à 100, voire 400.
Par "nanotube", on entend, au sens de la présente description, une structure tubulaire à base de carbone, et qui possède un diamètre compris entre 0,5 et 200 nm. Ces composés appartiennent à la famille dite des "matériaux nanostructurés", qui présentent au moins une dimension caractéristique de l'ordre du nanomètre. Pour plus de détails concernant ces matériaux et leurs modes de synthèse, on pourra notamment se reporter à l'article "Nanotubes from carbon"de P.M. Ajayan (Chem. Rev., vol. 99, p.1787, 1999) [ref 9].
Le procédé de l'invention est très versatile, et a l'avantage de pouvoir être utilisé aussi bien à partir de nanotubes monoparoi que de nanotubes multiparoi, qui sont moins onéreux.
Avantageusement, on emploiera dans l'étape (a) du procédé des nanotubes mono- ou multiparoi ayant un diamètre moyen compris entre 0,5 et 100 nm.
Dans un mode de réalisation particulier, les nanotubes de carbone utilisés dans l'étape (a) du procédé sont des nanotubes monoparoi ayant un diamètre moyen compris entre 0,7 et 2,0 nm, de préférence entre 0,8 et 1 ,4 nm. Dans un autre mode de réalisation particulier, les nanotubes de carbone utilisés dans l'étape (a) du procédé sont des nanotubes multiparoi ayant un diamètre moyen compris entre 2 et 20 nm, de préférence entre 10 et 15 nm.
Par ailleurs, la longueur moyenne de nanotubes employés dans l'étape (a) est en général entre 0,05 et 1000 microns.
Avantageusement, la solution de nanotubes de carbone individualisés préparée dans l'étape (b) comprend entre 0.1 et 10 g de nanotubes par litre de solution. Dans un mode de réalisation préféré, la solution de nanotubes de carbone individualisés préparée dans l'étape (b) comprend entre 0.1 et 2 g de nanotubes par litre de solution.
Selon l'invention, la structure de l'aérogel peut être obtenue par congélation lente ou brutale de la solution de nanotubes de carbone individualisés réduits obtenue à l'issue de l'étape b) du procédé. Selon un mode particulier de réalisation, la structure de l'aérogel est obtenue par congélation brutale de la solution de nanotubes de carbone individualisés réduits obtenue à l'issue de l'étape b) du procédé. A cet effet, l'étape de congélation c) peut être réalisée en plaçant ladite solution obtenue dans l'étape (b) à une température inférieure à -5O0C, ou par exemple inférieure à -800C, ou encore par exemple inférieure à -1000C, ou encore par exemple inférieure à -1500C, ou encore par exemple inférieure à -18O0C, ou encore par exemple inférieure à -1900C. Dans un mode de réalisation particulier, l'étape de congélation est effectuée de façon brutale par immersion de la solution de nanotubes de carbone individualisés dans l'azote liquide. Dans un mode de réalisation particulier, la solution de nanotubes de carbone individualisés obtenue à l'issue de l'étape b) est une solution dans le DMSO. La congélation de la solution de nanotubes de carbone dans DMSO peut être congelée brutalement par exposition à une température très inférieure à la température de congélation du DMSO (notamment par immersion dans de l'azote liquide). La congélation de la solution de nanotubes de carbone dans DMSO peut être également obtenue de façon lente , c'est-à-dire par une méthode plus douce (ne faisant pas intervenir de congélation brutale), par exemple, par immersion dans un milieu thermostaté à une température inférieure à la température de congélation du DMSO. Par exemple, l'étape de congélation peut être réalisée par immersion de la solution de nanotubes de carbone obtenue à l'étape b) dans un bain thermostaté à une température inférieure à 18°C.
Selon un mode particulier de réalisation, la structure de l'aérogel est obtenue par congélation lente de la solution de nanotubes de carbone individualisés réduits obtenue à l'issue de l'étape b) du procédé. A cet effet, l'étape de congélation c) est avantageusement réalisée par immersion de la solution de nanotubes de carbone individualisés obtenue dans l'étape (b) dans un milieu thermostaté à une température inférieure à la température de congélation du solvant apolaire aprotique utilisé dans l'étape b).
Dans un mode de réalisation particulier, l'étape de sublimation d) est effectuée par lyophilisation à froid, avec ou sans bain thermostaté, de Ia solution de nanotubes congelée. Lorsqu'un bain thermostaté est utilisé, avantageusement, l'étape de sublimation est effectuée en thermostatant la solution de nanotubes de carbone individualisés à une température suffisamment inférieure à la température de congélation du solvant apolaire aprotique utilisé dans l'étape b). Dans un mode de réalisation particulier, la température du bain thermostaté est inférieure d'au moins 10C à la température de congélation du solvant polaire aprotique, de préférence inférieure d'au moins 5°C à la température de congélation du solvant polaire aprotique.
Dans un mode de réalisation particulier, l'étape de sublimation d) est effectuée à une pression inférieure ou égale à 10~2 mbars, de préférence inférieure ou égale à 10"3 mbars, de préférence inférieure ou égale à 10'4 mbars, plus avantageusement inférieure ou égale à 10"5 mbars. Dans un mode de réalisation particulier, l'étape de sublimation d) est effectuée à une pression de 10"6 mbars. Une pompe à vide puissante peut être utilisée pour obtenir la pression adéquate pour effectuer la sublimation. Un lyophilisateur, conçu pour des solutions aqueuses, ne suffit pas pour obtenir l'aérogel. Par exemple, un contrôle judicieux de paramètres comme la température de réfrigération (choix du bain réfrigérant pour garder la solution organique congelée), et le vide appliqué (choix d'une pompe à vide adéquate pour obtenir un vide satisfaisant, nécessité de s'affranchir des connexions en caoutchouc souvent utilisées dans les lyophilisateurs (i.e., utilisation d'une connexion « directe » entre l'enceinte contenant la solution à lyophiliser et la pompe à vide), et de s'assurer que le volume de l'enceinte sous vide ne soit pas trop important par rapport au volume de solution à évaporer) est nécessaire. Dans un mode de réalisation, la lyophilisation est effectuée avec une pompe à vide susceptible de générer une pression inférieure à 0,1 mbars. Selon la nature du solvant, en particulier sa tension de vapeur, une pompe turbomoléculaire peut être utilisée.
En fonction des besoins, l'aérogel peut être mis en forme avant ou après la sublimation (ou lyophilisation). Par exemple, l'aérogel peut être « moulé » en choisissant la forme appropriée du récipient dans lequel la solution congelée est sublimée (ou lyophilisée). L'aérogel peut également être mis sous forme de fines membranes après sublimation (ou lyophilisation) par compression de l'aérogel.
Dans un mode de réalisation particulier, l'étape de sublimation d) est mise en œuvre avec une pompe suffisamment puissante pour obtenir, au-dessus de la solution congelée, une pression inférieure à la pression de vapeur saturante du solvant. Par ailleurs, afin d'optimiser le vide, le dispositif de sublimation peut être conçu de façon à ce qu'il y ait une liaison directe entre le tube à lyophiliser et la pompe. Un tel dispositif permet d'éviter l'utilisation de tuyaux en caoutchouc qui présente l'inconvénient de « dégazer » et ne permettent pas d'obtenir le vide requis pour la sublimation, en particulier pour les solvants organiques polaires tels que le DMSO. Par ailleurs, cette liaison directe permet un passage de l'enceinte sous atmosphère inerte utilisée pour la préparation de la solution de nanotubes de carbone à la pompe à vide, sans exposition de la solution à l'air (ce qui conduirait à l'oxydation des nanotubes, et donc à leur réaggrégation).
Dans un mode de réalisation particulier, le solvant polaire aprotique utilisé dans l'étape b) est le DMSO et l'étape de sublimation est effectuée en thermostatant la solution de nanotubes de carbone dans le DMSO à une température inférieure à 18°C (température de congélation du DMSO), par exemple 6°C. Dans ce mode de réalisation particulier, l'étape de sublimation d) est effectuée à une pression inférieure ou égale à 10'2 mbars, de préférence inférieure ou égale à 10"3 mbars, de préférence inférieure ou égale à 10~4 mbars, plus avantageusement inférieure ou égale à 10"5 mbars. Dans un mode de réalisation particulier, le solvant polaire aprotique est le DMSO et l'étape de sublimation d) est effectuée à une pression de 10"5 mbars.
Selon un autre aspect, la présente invention fournit également des aérogels de nanotubes de carbone susceptibles d'être obtenus par un procédé selon l'invention. Par exemple, les aérogels peuvent être utilisés comme tels, ou peuvent être déposés sur un substrat ou mélangés à un autre matériau.
A l'issue du procédé de l'invention, on obtient un matériau à base de nanotubes de carbones individualisés, généralement monolithique. Le matériau obtenu a la forme de la solution congelée, mais il ne reste qu'un réseau percolé (en contact) de nanotubes de carbones individualisés.
Les aérogels de l'invention présentent par ailleurs une très faible densité apparente, en particulier bien inférieure à celles des aérogels de nanotubes carbone actuellement cjonnus. Par exemple, Yodh et al. [ref 16] rapportent des aérogels de densité comprise entre 10 et 30 mg/cm3. Backov et al. [ref 17] rapportent des densités apparentes "typiquement aux alentours de 0.2 g/cc" (c'est-à-dire 200 mg/cm3). Ainsi, généralement, un aérogel tel qu'obtenu selon l'invention a une densité apparente le plus souvent inférieure ou égale à 10 mg/cm3, généralement inférieure ou égale à 5 mg /cm3, de préférence 2 ± 0,5 mg /cm3. Un aérogel tel qu'obtenu selon l'invention a une densité apparente comprise entre 0.1 et 10 mg/cm3, généralement comprise entre 0.1 et 5 mg/cm3, de préférence comprise entre 0.1 et 2 ± 0,5 mg /cm3.
Cette très faible densité apparente traduit un volume poreux très élevé pour les aérogels de l'invention, où, le plus souvent, le volume occupé par les pores représente au moins 99% du volume total de l'aérogel, généralement au moins
99,5%, voire au moins 99,8%. Comme il sera apparent à l'homme du métier, le volume poreux peut être influencé par la concentration de la solution de nanotubes de carbone individualisés obtenue à l'étape b). On pourra donc augmenter le volume poreux de l'aérogel en utilisant une solution de nanotubes de carbone individualisés de plus faible concentration. On appréciera cependant que la tenue mécanique de l'aérogel final sera vraisemblablement moindre. Il conviendra donc d'adapter la concentration de la solution de nanotubes de carbone individualisés en fonction de l'application à laquelle l'aérogel est destiné.
Généralement, la concentration de la solution de nanotubes de carbone individualisés est comprise entre 0.01 et 10 mg/g ou entre 0.001 et 1 % v/v, avantageusement entre 0.1 et 4 mg/g ou entre 0.01 et 0.4 % v/v, plus avantageusement entre 1 et 2 mg/g ou entre 0.1 et 0.2 % v/v. Généralement, la concentration de la solution de nanotubes de carbone individualisés est de l'ordre de 1 mg/g ou 0,1% v/v.
De façon générale, les aérogels de carbone ainsi obtenus présentent une structure de grande porosité. Il s'agit de porosités ouverte et fermée, cette dernière pouvant être considérée comme négligeable. On entend par matériau à porosité ouverte un matériau dans lequel l'ensemble des pores communique avec la surface du matériau. La porosité fermée correspond au volume intérieur des nanotubes de carbone.
Les aérogels obtenus selon le procédé de l'invention présentent également une surface spécifique supérieure à celle des aérogels de nanotube de carbone connus jusqu'à présent (due au fait que, dans les présents aérogels, les nanotubes de carbones sont individualisés). De ce fait, les aérogels de l'invention ont le plus souvent une surface spécifique élevée, en général comprise entre 100 et 2000 m2/g, cette surface spécifique étant avantageusement supérieure à 200 m2/g, de préférence supérieure à 250m2/g, de préférence supérieure à 300 m2/g
Au sens de la présente description, le terme de "surface spécifique " se réfère à la surface spécifique BET, telle que déterminée par adsorption d'azote, selon la méthode bien connue dite de BRUNAUER - EMMET - TELLER qui est décrite dans The journal of the American Chemical Society, volume 60, page 309 (1938), et correspondant à la norme internationale ISO 5794/1. Une surface spécifique aussi élevée que 2000 m2/g peut être observée notamment si une certaine proportion des tubes sont ouverts.
Par ailleurs, le caractère monolithe (d'un seul tenant) de l'aérogel, outre qu'il assure un contact électrique, permet une certaine tenue mécanique. Cette structure particulière des aérogels de l'invention peut notamment être mise en évidence sur des clichés des matériaux obtenus par microscopie à balayage à effet de champ, dont des exemples sont donnés sur les Figures ci- annexées. On y remarque en particulier deux types de porosité ouverte : des pores en volume de diamètre de l'ordre de 20 microns et des pores bidimensionnels (trous dans les parois des premiers pores) de diamètre de 10 à 100 nanomètres.
Les aérogels obtenus selon la présente invention sont électriquement conducteurs. A ce titre, ils pourraient avantageusement être utilisés pour la préparation de composants électrochimiques. Par exemple, ils pourraient remplacer les électrodes de carbone dans les piles à combustible, les biocapteurs et/ou les supercondensateurs, du fait de leur grande surface spécifique. La porosité accrue par rapport à des électrodes de carbone classiques devrait donner des saut quantitatifs en termes de performance pour les applications énergétiques (piles à combustible, biocapteurs, supercondensateurs).
La structure particulière des aérogels de carbone obtenus selon l'invention les rend particulièrement adaptés à titre de matériaux de séparation, notamment pour effectuer des séparations de type liquide/liquide. En particulier, les aérogels de la présente invention sont adaptés pour l'adsorption de molécules hydrophobes, notamment présentes dans les milieux aqueux. Ainsi, une application des aérogels de la présente concerne la décontamination des milieux aqueux contenant des polluants hydrophobes tels que les hydrocarbures, par exemple.
Dans ce cadre, la grande porosité de l'aérogel permet d'obtenir une bonne diffusion des espèces, induisant ainsi des vitesses de séparation élevée. Dans ce cadre, les aérogels de l'invention peuvent par exemple être employés pour la constitution de membranes ou de matériaux de filtration, notamment pour la filtration ou bien pour le nettoyage d'eaux usées.
A ce titre, l'enseignement de la demande de brevet français N° FR 2 881
362 [ref 22] pourra être adapté pour mettre en œuvre des dispositifs de dépollution utilisant les aérogels de l'invention. La différence notoire des présent aérogels avec les matériaux nanostructurés à base de carbone de la demande de brevet précitée est leur densité apparente inégalée. A ce titre, les aérogels de la présente demande représentent donc une alternative plus avantageuse et plus efficace aux matériaux décrits dans la demande FR 2 881 362 pour retenir les espèces hydrophobes de milieux aqueux.
Les aérogels peuvent être mis en œuvre sous forme de membranes par compression dudit aérogel. Ils peuvent donc être utilisés comme membranes de filtration et/ou dépollution, notamment pour la dépollution des nappes de pétrole. La grande surface spécifique des aérogels selon l'invention, ainsi que leur hydrophobicité, permet l'adsorption préférentielle d'huile dans un mélange huile/eau. Ainsi, lesdits aérogels permettent d'envisager des solutions aux problèmes de pollution, en particulier pour le traitement des eaux ou de marées noires, par adsorption des hydrocarbures présents en milieu aqueux, alors qu'il n'existe pas à l'heure actuelle de moyen performant pour résoudre ces problèmes de pollution.
Compte tenu de leur structure spécifique, les aérogels de l'invention sont également bien adaptés à d'autres applications. En particulier, du fait du caractère biocompatible du carbone, ils peuvent notamment être employés pour la préparation de biomatériaux, et en particulier pour la préparation de support pour la croissance cellulaire, pour la croissance osseuse ou pour le remplacement de cartilage. Ils peuvent notamment trouver application pour la préparation de supports biocompatibles pour la croissance de cellules osseuses, ou de neurones. Dans ce type d'application, la porosité particulière du matériau assure une colonisation optimale : la porosité assure d'une part une diffusion des cellules, qui peuvent accéder sensiblement à l'ensemble de la surface du matériau, et d'autre part une irrégularité de la surface du matériau propre à assurer une bonne fixation des cellules sur l'aérogel.
Dans certains modes de réalisation, afin d'assurer une topologie optimale pour la croissance cellulaire, la solution de nanotubes de carbone individualisés réduits obtenue à l'étape (b) peut être remplie de billes insolubles dans le solvant polaire aprotique considéré. Après lyophilisation, l'aérogel se forme autour de ces billes. Ainsi, Ie procédé de l'invention peut comprendre en outre une étape (b1) d'addition de billes de matériau insoluble dans le solvant polaire aprotique de l'étape (b). Lesdites billes peuvent avoir un diamètre compris entre 10 microns et 1 mm, de préférence entre 50 et 100 microns.
Les billes peuvent être ensuite éliminées par dissolution ou attaque acide, laissant un aérogel à pores contrôlés. L'utilisation de telles particules sphériques comme "templates" est très répandue dans la littérature scientifique et l'homme de l'art peut facilement appliquer et/ou adapter cette technique aux solutions de nanotubes de carbone réduits décrites ici.
Les aérogels peuvent être mis en œuvre sous forme de membranes par compression dudit aérogel. Le caractère élastique de ces membranes (dû à la présence de pores), ainsi que leur excellente résistance à l'usure et leur biocompatibilité, font de ces matériaux des candidats particulièrement intéressants pour des applications dans Ie domaine du remplacement de cartilage.
Il faut noter que les aérogels de l'art antérieur étant préparés à partir de suspensions aqueuses de nanotubes de carbone en présence de tensioactifs non-biocompatibles (cf. travaux de Yodh et al. et Backov et al.), ils ne sont pas vraiment adaptés aux applications biomédicales. Même si Yodh et al. décrivent une étape d'élimination du tensioactif utilisé, il reste une incertitude quant à la présence éventuelle de résidus de tensioactifs. De plus, cela requiert une étape d'élimination des tensioactifs supplémentaire qui n'est pas forcément facile à mettre en œuvre, ni même avantageux sur le plan industriel. Les aérogels de la présente invention présentent donc un avantage technique non négligeable pour l'élaboration de nouveaux matériaux biocompatibles. Plus généralement les aérogels de l'invention peuvent être employés dans la plupart des applications connues des aérogels à base de carbone, dans la mesure où ils présentent les avantages spécifiques de ces matériaux, notamment une grande inertie chimique, notamment vis-à-vis des réducteurs, une stabilité thermique importante jusqu'à plus de 20000C (en milieu non oxydant), ainsi qu'une très bonne conductivité thermique et électrique.
Les aérogels de l'invention peuvent ainsi, en particulier, être utilisés pour la préparation de support d'espèces catalytiques, par exemple pour la catalyse de réactions en milieu réducteur, notamment à haute température. Ainsi, pour certaines applications, les aérogels obtenus peuvent être post-traités, par exemple pour être imprégnés par des espèces catalytiques. Dans un mode de réalisation particulier, les aérogels sont utilisés pour la préparation de supports de catalyseur pour la catalyse hétérogène.
Imprégnés par exemple par du silicium, des résines ou des polymères, les aérogels peuvent également permettre d'obtenir des composites conducteurs, du fait de leur réseau percolé (en contact). Ainsi, la présente invention concerne également l'utilisation des aérogels susceptibles d'être obtenus par le procédé de l'invention pour la préparation de matériaux composites. Par "imprégné", on entend ici une imprégnation de l'aérogel avec un matériau soit:
(i) en imbibant l'aérogel avec un autre matériau, sous forme liquide ou en solution, pénétrant dans la porosité de l'aérogel. Ainsi, selon ce mode de réalisation particulier, le procédé de l'invention comprend en outre une étape e) consistant à imbiber ledit aérogel avec un autre matériau, sous forme liquide ou en solution. Il peut s'agir par exemple d'un polymère, un mélange de polymères ou une résine, sous forme liquide ou en solution, ou du silicium en fusion.
L'aérogel se trouve ainsi imbibé dudit matériau sous forme liquide ou en solution; soit (ii) par mélange d'une solution d'un matériau avec la solution de nanotube de carbone individualisés obtenue à l'issue de l'étape b) du procédé de l'invention. Le matériau peut être par exemple un polymère, un mélange de polymères, ou une résine. Ainsi, selon ce mode de réalisation particulier, le procédé de l'invention comprend en outre, avant l'étape de congélation c), une étape b2) de mélange d'une solution d'un matériau (par exemple une solution de polymère, d'un mélange de polymères, ou d'une résine) avec la solution de nanotube de carbone individualisés réduits obtenue à l'étape b). Le mélange est ensuite congelé et sublimé selon les étapes c) et d) du procédé pour former un aérogel composite. Les résines utilisées peuvent être des résines polyesters insaturées (utilisées par exemple dans les plastiques renforcés de fibre de verre), les résines époxydes (utilisées par exemple dans les adhésifs et dans la fabrication des plastiques), les résines phénoliques ou les résines polyimides.
Selon l'invention, le polymère peut être tout polymère permettant de mettre en œuvre la présente invention. Il peut être choisi par exemple dans le groupe comprenant le polystyrène ; les polyoléfines, par exemple le polyéthylène, le polypropylène, les poly(alpha-oléfine)s, le polyisobutène et le polypropylène ; les polyéthers ; les polyesters ; les polyamides ; les polyacrylamides ; les polyacrylates (par exemple le polymethyl methacrylate ou « PMMA ») ; les polysilanes ; les polysiloxanes.
Selon l'invention, le polymère peut être un copolymère à blocs linéaire ou un copolymère statistique. L'homme du métier saura identifier des conditions opératoires adéquates et le ou les polymères à utiliser pour réaliser un matériau composite ayant les propriétés requises/désirées. Notamment, l'homme du métier pourra s'inspirer des méthodes décrites dans FR 04/05120 [ref 29] et/ou
WO 2006/136715 [ref 30] qui décrivent la préparation de matériaux composites à partir de nanotubes de carbone et de polymères ou mélanges de polymères.
L'homme du métier saura adapter les méthodes décrites dans ces documents pour réaliser la préparation d'aérogels composites à partir d'aérogels susceptibles d'être obtenus par le procédé de la présente demande. Le (ou les) polymère(s) peu(ven)t être sélectionné(s) de façon à optimiser les interactions de surface polymère/nanotubes de carbone.
Par « copolymère à blocs », on entend dans la présente un polymère séquence comprenant plus d'une espèce de monomère. Dans un copolymère à blocs, des monomères identiques sont groupés. De tels polymères et leur procédé de fabrication sont décrits par exemple dans Matyjaszewski, K. ; Eds. ; Advances in Controlled/Living Radical Polymerization, (American Chemical Society 2003) [ref 23] ou Hsieh, H. L. ; Quirk, R. P. ; Eds. ; Anionic Polymerization Principles and Practical Applications, (Marcel Dekker 1996) [ref 24].
Par « copolymère statistique », on entend dans la présente un polymère dans lequel les différents monomères se mélangent en fonction de la réactivité et de la concentration de ceux-ci. De tels polymères et leurs procédés de fabrication sont décrits par exemple dans Matyjaszewski, K.; Davies, T. P; Eds.; Handbook of Radical Polymerization, (Wiley-lnterscience 2002) [ref 25] ou Fontaine, L. ; Initiation à la Chimie et à la Physico-Chimie Macromoléculaires (Groupe Français d'Etudes et d'Applications des Polymères volume 12 (Chapitre 3)) [ref 26].
Selon l'invention, lorsqu'il s'agit d'un copolymère à blocs, il peut s'agir par exemple d'un copolymère diblocs synthétisé par exemple par polymérisation radicalaire contrôlée ou par polymérisation anionique vivante ou par polymérisation cationique vivante ou un copolymère statistique synthétisé par polymérisation radicalaire contrôlée ou polymérisation radicalaire non contrôlée.
La polymérisation radicalaire contrôlée (PRC) est une méthode de choix pour préparer des polymères et copolymères bien définis avec des masses molaires modulables et des indices de polymolécularité faibles. Des techniques utilisables dans la présente invention sont décrites par exemple dans Matyjaszewski, K.; Davies, T. P; Eds.; Handbook of Radical Polymerization, (Wiley-lnterscience 2002) [ref 25]. On entend par « polymérisation vivante » une polymérisation dans laquelle il n'y a ni réactions de terminaison, ni réactions de transfert, et où les chaînes de polymères continuent à croître tant qu'il reste des molécules de monomères à ajouter aux chaînes. Selon l'invention, la polymérisation vivante peut être cationique ou anionique. De tels procédés sont décrits par exemple dans Matyjaszewski, K. ; Eds. ; Cationic Polymerizations Mechanisms, Synthesis, and Applications, (Marcel Dekker 1996) [ref 31] ou Hsieh, H. L. ; Quirk, R. P. ; Eds. ; Anionic Polymerization Principles and Practical Applications, (Marcel Dekker 1996) [ref 24].
Les monomères peuvent être introduits en totalité pendant l'étape de polymérisation. Ils peuvent également être introduits séparément ou en mélange, en continu ou en discontinu. Un supplément de monomère peut également être introduit en fin de polymérisation afin d'obtenir la composition souhaitée en polymère.
Les adjuvants éventuellement incorporés lors des procédés de polymérisation classiques sont utilisables selon le procédé de l'invention. Ainsi, on peut utiliser des initiateurs, des agents de transfert de chaînes, des catalyseurs, des antioxydants et des lubrifiants connus de l'homme du métier.
(i) Imprégnation en imbibant l'aéroqel d'un autre matériau
Selon un mode de réalisation, le matériau composite est obtenu par imprégnation d'un aérogel obtenu selon l'invention avec un autre matériau, sous forme liquide ou en solution, par exemple du silicium, un polymère ou mélange de polymères, ou une résine.
Par "imprégnation", on entend ici une imprégnation de l'aérogel en imbibant celui-ci selon le mode de réalisation (i) ci-dessus.
Ainsi, dans un mode de réalisation particulier, le procédé comprend en outre une étape supplémentaire e) qui consiste à imbiber l'aérogel de l'invention avec un autre matériau (par exemple un polymère, un mélange de polymères ou une résine, sous forme liquide ou une solution de ceux-ci, ou du silicium en fusion), ledit matériau étant sous forme liquide ou en solution. Par exemple, l'aérogel peut être imbibé de PMMA ou d'une solution de PMMA. Par exemple, le PMMA peut être en solution dans le même solvant que les nanotubes réduits de l'étape b). Par exemple ce solvant peut être le sulfolane, le diméthylsulfoxyde (DMSO), Ie diméthylformamide, la N-méthylpyrrolidone ou le N-méthylformamide. Dans un mode de réalisation particulier, le solvant est le DMSO. Dans un autre mode de réalisation particulier, le solvant est la N-méthylpyrrolidone.
Ladite étape e) peut être suivie d'une étape de solidification de l'aérogel composite, par séchage, pour éliminer le solvant, par exemple en chauffant l'aérogel imprégné, éventuellement sous pression réduite, de manière à évaporer le solvant des pores de l'aérogel.
En ce qui concerne l'imprégnation des aérogels de l'invention par le silicium, celle-ci peut permettre d'une part la densification de l'aérogel, et d'autre part la combinaison des propriétés du carbure de silicium (dureté et stabilité à haute température) avec la porosité de l'aérogel.
Ainsi, dans un mode de réalisation particulier, l'aérogel de l'invention peut être imprégné de silicium en fusion. L'aérogel étant composé de nanotubes de carbone, cette imprégnation de silicium est dans ce cas une imprégnation réactive : le silicium réagit alors avec le carbone pour former du carbure de silicium.
Par "imprégnation de silicium ", on entend ici une imprégnation de l'aérogel par une phase de type silicium en fusion pénétrant dans la porosité de l'aérogel. Le silicium en fusion est très fluide et possède un fort pouvoir mouillant notamment vis-à-vis de surfaces en carbone. Ainsi, lorsqu'un aérogel selon l'invention est imprégné par du silicium à l'état liquide, celui-ci progresse dans le réseau de porosités du matériau en suivant la surface des pores.
Dans un autre mode de réalisation particulier, l'aérogel peut être imprégné par une composition contenant un composé organosilicié en solution, par exemple un composé organosilicié précurseur du carbure de silicium tel qu'un polycarbosilane.
Dans un autre mode de réalisation particulier, l'aérogel de l'invention peut être imprégné par du silicium et/ou du germanium (c'est-à-dire du silicium seul, du germanium seul ou un mélange de silicium et de germanium en toutes proportions). Dans un autre mode de réalisation particulier, l'aérogel de l'invention peut être imprégné majoritairement par du silicium et/ou du germanium allié avec au moins un métal ou un autre métalloïde. Dans ce dernier cas, le métal ou autre métalloïde peut être choisi notamment parmi le fer, le cobalt, le titane, le zirconium, le molybdène, le vanadium, le carbone ou le bore selon les propriétés particulières à conférer à l'aérogel après imprégnation de silicium.
L'homme du métier saura identifier des conditions opératoires adéquates pour mettre en œuvre un procédé d'imprégnation de l'aérogel de l'invention par du silicium et/ou du germanium, éventuellement allié avec au moins un métal ou un autre métalloïde. Par exemple, on pourra se référer à la demande de brevet internationale publiée sous le N° WO 2004/076381 [ref 36].
(JD Imprégnation par mélange d'une solution d'un matériau avec la solution de nanotube de carbone individualisés obtenue à l'issue de l'étape b) Selon un autre mode de réalisation, le matériau composite est obtenu par un procédé comprenant une étape b2) de mélange d'une solution d'un matériau avec la solution de nanotube de carbone individualisés obtenue à l'étape b). Ledit matériau peut être par exemple un polymère, un mélange de polymères, ou une résine. Le matériau peut être en solution dans le même solvant que celui utilisé pour former la solution de nanotube de carbone individualisés obtenue à l'étape b). Par exemple, il peut s'agir du sulfolane, du diméthylsulfoxyde, du diméthylformamide, de la N-méthylpyrrolidone ou du N-méthylformamide. Dans un mode de réalisation particulier, le solvant est le DMSO. Dans un autre mode de réalisation particulier, le solvant est la N-méthylpyrrolidone. Ainsi, selon ce mode de réalisation particulier, le procédé de l'invention comprend en outre, avant l'étape de congélation c), une étape b2) de mélange d'une solution d'un matériau avec la solution de nanotube de carbone individualisés obtenue à l'étape b). Le mélange est ensuite congelé et sublimé selon les étapes c) et d) du procédé pour former un aérogel composite. Il est entendu que les différents modes de réalisation des étapes c) et d) décrits dans la présente sont également applicables à la mise en œuvre d'un aérogel composite selon le mode de réalisation (ii) décrit ci-dessus.
Plusieurs variantes du mode de réalisation (ii) peuvent être mises en oeuvre. Ainsi, selon un mode de réalisation, le procédé selon le mode de réalisation (ii) comprend une étape de polymérisation in situ d'un monomère ou mélange de monomères dans ladite solution de nanotube de carbone individualisés réduits. De tels polymères et leur procédé de fabrication sont décrits par exemple dans Matyjaszewski, K. ; Eds. ; Advances in Controlled/Living Radical Polymerization, (American Chemical Society 2003) [ref 23]; Hsieh, H. L. ; Quirk, R. P. ; Eds. ; Anionic Polymerization Principles and Practical Applications, (Marcel Dekker 1996) [ref 24] ; Matyjaszewski, K.; Davies, T. P; Eds.; Handbook of Radical Polymerization, (Wiley-lnterscience 2002) [ref 25] ou Fontaine, L. ; Initiation à la Chimie et à la Physico-Chimie Macromoléculaires (Groupe Français d'Etudes et d'Applications des Polymères volume 12 (Chapitre 3)) [ref 26].
Selon un mode de réalisation, le procédé selon le mode de réalisation (ii) comprend une étape de polymérisation-greffage d'un ou plusieurs monomères sur un ou plusieurs nanotubes de carbone individualisés. Des méthodes de polymérisation-greffage sont bien connues dans l'art. L'homme du métier saura identifier des conditions opératoires adéquates pour mettre en œuvre un procédé de polymérisation-greffage d'un monomère sur un ou plusieurs nanotubes de carbone individualisés.
Selon un mode de réalisation particulier, les nanotubes de carbone individualisés sont fonctionnalisés par une ou plusieurs greffes de groupements fonctionnels avant leur association avec le(s) polymère(s). Dans ce contexte, on entend par « association » la combinaison des nanotubes de carbone greffés avec le(s) polymère(s) par simple mélange, par polymérisation in situ d'un monomère ou mélange de monomères dans une solution de nanotubes de carbone greffés, ou par polymérisation-greffage d'un ou plusieurs monomères sur un ou plusieurs nanotubes de carbone greffés. La fixation desdits groupements fonctionnels sur les nanotubes de carbone peut être réalisée par tout procédé approprié de chimie organique connu de l'homme du métier. On trouvera par exemple un panorama général des méthodes de fonctionnalisation des nanotubes de carbone dans: "Chemistry of Carbon Nanotubes" de Dimitrios Tasis, Nikos Tagmatarchis, Alberto Bianco et Maurizio Prato, Chem. Rev. 2006, 106, 1105-1136 [ref 33]. Il peut s'agir par exemple de greffes de groupes polyéthylène glycol, ou de groupes acide. Ces greffes peuvent (i) permettre une fonctionnalisation des nanotubes de carbone individualisés, (ii) augmenter les interactions entres les nanotubes de carbone individualisés (Liaisons de type Van der Waals, liaisons hydrophobes ou liaisons hydrogène), et/ou (iii) augmenter les interactions entre les nanotubes de carbone individualisés et le(s) polymère(s) au(x)quel(s) ils sont associés, et peuvent présenter l'avantage de renforcer les aérogels composites comprenant ces nanotubes de carbone individualisés.
Selon un mode de réalisation particulier, le matériau composite est obtenu à partir d'une solution de nanotube de carbone individualisés et d'une solution de PMMA, par exemple dans du DMSO. Ainsi, selon ce mode de réalisation particulier, un aérogel composite PMMA/nanotubes de carbone peut être obtenu en introduisant, avant l'étape de congélation c), une étape de mélange d'une solution de PMMA (par exemple dans du DMSO) avec la solution de nanotube de carbone individualisés réduits obtenue à l'étape b). Le mélange est ensuite congelé et sublimé pour former un aérogel composite PMMA/nanotubes de carbone.
Les aérogels composites selon l'invention peuvent être utilisés dans l'ensemble des applications prévues pour les aérogels de l'invention en leur conférant une meilleure tenue mécanique. Par exemple, ces aérogels composites peuvent être utilisés comme matériaux de séparation (e.g., membranes de filtration, membranes de dépollution à étendre en surface aqueuse pour absorber des hydrocarbures), comme supports de catalyse hétérogène, ou comme biomatériaux (dans le cas de polymères biocompatibles).
Selon un mode de réalisation particulier de l'utilisation du procédé de l'invention pour la préparation d'aérogels composites, l'aérogel composite peut comprendre, en plus des nanotubes de carbone, d'autres matériaux conventionnellement utilisés dans les matériaux composites.
Les charges entrant dans la composition desdits aérogels composites, peuvent être de dimension nanométrique et/ou micrométrique. On entend dans la présente demande par « matériau de dimension nanométrique » un matériau dont la taille est de quelques nanomètres dans au moins une des dimensions de l'espace. Par exemple, la taille du matériau dans au moins une des dimensions de l'espace est comprise entre 1 et 20 nm, de préférence entre 1 et 2 nm. On entend dans la présente demande par « matériau de dimension micrométrique » un matériau de taille comprise entre 1 et 100 microns.
Le matériau composite peut comprendre des charges de dimension micrométrique uniquement, ou nanométrique uniquement, ou un mélange de charges micro- et nanométriques (voir par exemple FR 2 873 381 [ref 32] où des matériaux composites comprenant des charges nano- et des charges micrométriques dans le même matériau sont décrits).
Ces différentes utilisations des aérogels de l'invention constituent encore un objet particulier de l'invention.
De façon inattendue, les aérogels de nanotubes de carbone de l'invention et leurs avantages spécifiques sont obtenus très simplement, par la succession d'étapes (a) à (d) du procédé de l'invention.
Le procédé de l'invention présente, entre autres, l'avantage d'être simple à mettre en œuvre et peu onéreux.
Différentes caractéristiques et divers modes de réalisation avantageux du procédé de l'invention vont maintenant être décrits plus en détail.
Le procédé décrit dans la présente résout les problèmes majeurs actuels au développement d'aérogels de nanotubes de carbone. D'une part, le procédé de la présente invention implique la lyophilisation d'une solution de nanotubes de carbones dans un solvant polaire aprotique. Un avantage de ce procédé par rapport aux procédés de l'art antérieur qui sont basés sur la lyophilisation de dispersions aqueuses, est que l'utilisation d'un solvant organique permet une meilleure homogénéité de la solution à lyophiliser et une plus grande flexibilité quant à l'incorporation de constituants complémentaires, par exemple un polymère ou mélange de polymères en vue de préparer un matériau composite.
D'autre part, le procédé de la présente invention ne nécessite pas l'utilisation de tensioactifs. Il ne nécessite pas non plus l'utilisation de la sonication, qui endommage les nanotubes de carbone ou tout du moins les raccourcit. Ainsi, le rapport longueur/diamètre des nanotubes de carbone dans l'aérogel obtenu est maximal.
En effet, comme en atteste de nombreuses publications, il est largement connu que le traitement aux ultrasons (sonication) affecte l'intégrité structurale des nanotubes de carbone. En particulier, la sonication peut provoquer la coupure des nanotubes de carbone, et l'apparition de défauts tels que des courbures (« buckling », « bending ») et/ou des dislocations dans les structures carbonées.
La sonication provoque également l'arrachement des couches supérieures de feuillets de graphite, dans le cas des tubes multiparois, ce qui conduit à un amincissement des nanotubes d'une manière similaire à l'endommagement rapporté par l'oxydation. On pourra se référer par exemple, à Lago et al., « Mechanical damage of carbon nanotubes by ultrasound », Carbon, 34(6) 814- 816, (1996) [ref 37] ; Badaire et al., « In situ measurement of nanotube dimensions in suspensions by depolarized dynamic light scattering », Langmuir, 20 : 10367-10370 (2004) [ref 38] ; Heller et al., « Concomittant length and diameter séparation of single-walled carbon nanotubes », J. Am. Chem. Soc, 126 :14567-14573 (2004) [ref 39] ; Hennrich et al., « The mechanism of cavitation-induced scission of single-walled carbon nanotubes », J. Phys. Chem. B, 111 : 1932-1937 (2007) [ref 40].
La sonication peut également entraîner une altération des performances, notamment électriques, des nanotubes de carbone, due à l'endommagement structural précité. Voir par exemple Badaire et al. [ref 38].
Les travaux de Yodh et al. [ref 16] et de Backov et al. [ref 17] concernent l'obtention d'aérogels par lyophilisation ou séchage critique (« critical-point drying ») d'une suspension aqueuse de nanotubes de carbone contenant des surfactants, préalablement soumise à un traitement aux ultrasons, un procédé mécanique qui altère la structure des nanotubes de carbone, et leurs propriétés électriques.
Par opposition, dans le procédé de l'invention, les nanotubes de carbone sont individualisés par une méthode chimique dite « de dissolution douce » consistant à réduire les nanotubes de carbone par un métal alcalin et dissoudre le sel polyélectrolyte obtenu dans un solvant polaire aprotique. Ainsi, le procédé de l'invention respecte la structure des nanotubes de carbone que l'on retrouve non-altérée dans l'aérogel. Voir par exemple la figure 3 qui illustre des spectres Raman de nanotubes de carbone bruts et d'un aérogel de la présente invention. Comme le montre Ia figure 3, les deux courbes (nanotubes bruts et aérogel) sont indifférenciables. En particulier, la bande "D" à 1300 cm"1, signature du désordre et la bande "RBM" vers 200 cm"1 sensible à l'environnement du tube, sont indifférenciables. Cette observation a été vérifiée à deux longueurs d'ondes différentes du laser Raman.
Par ailleurs, la sonication provoque la fragmentation des nanotubes de carbone, ce qui implique la présence de débris et particules de carbone dans le produit final. Cet inconvénient ne se retrouve pas dans les aérogels de l'invention.
Ainsi, les aérogels de la présente invention sont supérieurs aux aérogels de l'art antérieur en ce qu'ils ne présentent pas les inconvénients précités dus au processus de sonication.
Par ailleurs, un avantage du procédé de l'invention par rapport aux procédés de l'art antérieur qui sont basés sur la lyophilisation de dispersions en présence de tensioactifs, est que la dissolution des nanotubes d'un solvant organique polaire aprotique permet une meilleure homogénéité de la solution à lyophiliser. En effet, comme le montre la figure 4, après dissolution selon le procédé de l'invention, les tubes sont tous exfoliés au contraire des tubes bruts dispersés dans l'éthanol, qui restent en gros faisceaux. Ainsi, dans un aérogel obtenu par dispersion et tensio-actifs, on a une grande distribution de taille des nanotubes si l'on sonique peu et de très petites longueurs si l'on sonique beaucoup. Voir article de Islam et al., « High weight fraction surfactant solubilization of single-wall carbon nanotubes in water », Nanoletters, Vol. 3(2) : 269-273 (2003) [ref 41].
Ainsi, le procédé de l'invention permet d'obtenir un aérogel à partir de nanotubes de carbones individualisés, c'est-à-dire par exfoliation complète des faisceaux de nanotubes.
D'autre part, les aérogels selon l'invention sont biocompatibles. Ainsi, outre les applications conventionelles des nanotubes de carbone (matériaux composites, composants électroniques, etc.), les présents aérogels peuvent être utilisés comme biomatériaux dans des applications biomédicales, par exemple comme support pour la croissance de cellules, notamment osseuses.
En outre, le procédé de l'invention permet de préparer des aérogels de nanotubes de carbone biocompatibles, ce qui est extrêmement avantageux pour toutes les applications biologiques. Enfin, le procédé fonctionne aussi bien avec des nanotubes de carbone monoparoi que des nanotubes multiparoi.
Comme l'homme du métier peut le constater à la lecture de la présente description, un des principaux avantages de la présente invention est la possibilité d'obtenir un matériau biocompatible, particulièrement adapté pour la croissance de cellules. D'autres avantages incluent la simplicité de mise en œuvre du procédé, ainsi que son habilité à fournir, des aérogels de nanotubes de carbone de très faible densité apparente.
D'autres avantages pourront encore apparaître à l'homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre illustratif. Brève description des figures
- La Figure 1 représente des images de microscopie électronique à balayage (microscope à effet de champ) d'un échantillon d'aérogel obtenu selon le procédé de l'invention aux grossissements x 1000 (Figure 1A), x 3000 (Figure 1 B) et x 60000 (Figure 1C).
- La Figure 2 représente une photographie d'un aérogel obtenu selon le procédé de l'invention.
- La Figure 3 représente des spectres Raman de nanotubes de carbone bruts et d'un aérogel de la présente invention.
- La Figure 4 représente la distribution du diamètre des nanotubes de carbone observée après séchage de la solution de nanotubes de carbone individualisés réduits obtenue à l'issue de l'étape (b) du procédé de l'invention (courbe étroite de gauche) par rapport aux nanotubes de carbone brut en faisceaux (courbe large de droite).
EXEMPLES
Sauf indication contraire, toutes les expérimentations sont effectuées sous atmosphère inerte, par exemple sous argon ou azote. En particulier, les manipulations sont effectuées en boîte à gants sous atmosphère d'argon sec (teneur en O2 < 10 ppm, teneur en H2O < 10 ppm)
Exemple 1 : Préparation d'un aérogel de nanotubes de carbone à partir d'une solution d'un sel polyélectrolyte de nanotubes de carbone dans DMSO
La préparation d'une solution de sel polyélectrolyte de nanotubes de carbone peut être effectuée selon la méthode décrite dans WO 2005/073127 [ref 35]. Une variante de cette méthode est décrite ci-dessous :
Préparation d'un sel de potassium de naphtalène (Naoh~ K+) 100 mg de naphtalène sont placés dans un ballon de 250 cm3 auquel on rajoute 30 mg de potassium en petits morceaux de surface brillante (épluchés au scalpel juste avant utilisation), puis de l'ordre de 100 cm3 de THF. Le ballon est chauffé au reflux jusqu'à ce que la solution prenne une couleur vert très sombre et est laissé au reflux quelques heures.
Réduction de nanotubes de carbone
La solution obtenue ci-dessus est ensuite versée en filtrant, pour éviter un excès de potassium solide, sur 55 mg de nanotubes bruts (synthétisés à l'arc électrique). Le tout est laissé sous agitation magnétique à température ambiante pendant une quinzaine d'heures. Alternativement, on peut suivre la diminution de la concentration en Naph-K+ par spectroscopie UV visible. Le mélange réactionnel est filtré sur membrane de type Millipore® (0,45 microns de porosité). Le solide est rincé plusieurs fois avec du THF (distillé sur un mélange potassium/naphtalène), jusqu'à ce que le THF reste incolore après passage à travers le filtre. Le solide est ensuite séché sous vide à température ambiante. Le solide présente une bonne stabilité au stockage d'au moins plusieurs mois, sous atmosphère contrôlée. Préparation d'une solution de nanotubes de carbone individualisés réduits dans du DMSO
40 mg de sel de nanotubes obtenu ci-dessus sont soumis à agitation magnétique pendant environ 15 heures dans 16 cm3 de DMSO à température ambiante. La solution obtenue est centrifugée à 4000 t/min pendant 1 heure, puis décantée. Une solution homogène de nanotubes de carbones individualisés, c'est-à-dire ne comprenant pas d'agrégats visibles au microscope optique (grossissement = 400). Ladite solution contient 2 mg de nanotubes de carbone réduits par gramme de DMSO.
Lyophilisation de la solution de nanotubes de carbone individualisés réduits dans du DMSO
De 1 à 6 g de la solution précédente sont placés dans un tube à essai en verre, muni d'une vanne qui (i) permet d'isoler hermétiquement le contenu du tube à essai, (ii) possède un mode de connexion à la pompe à vide (de type swageloke par exemple). Le tube est rempli de solution sous atmosphère inerte, la vanne est fermée et le tube peut alors être sorti de l'enceinte à atmosphère inerte. Le tube est optionnellement plongé dans l'azote liquide pour congeler brutalement la solution. Le tube est ensuite placé dans un bain thermostaté à une température inférieure à celle de congélation du solvant (par exemple à 60C avec du DMSO) et l'autre côté de la vanne est connecté à la pompe à vide. Le contenu du tube à essai est alors mis sous vide par ouverture de la vanne (10"5 mbars). Après une quinzaine d'heures (pour 1 g de solution) ou une soixantaine d'heures (4 à 6 g de solution), [typiquement une nuit ou un week-end], on observe un solide vaporeux et sec en lieu et place de la solution (voir figure 2). Celui-ci peut être alors récupéré par ouverture du tube à essai. Alternativement, si l'on veut garder l'aérogel sous atmosphère inerte, suivant ce que l'on veut en faire après, on ferme la vanne, on remet le tube avec la vanne fermée dans la boîte à gants à atmosphère contrôlée et l'on ouvre le tube sous atmosphère inerte.
Les protocoles de l'Exemple 1 ci-dessus, effectués à partir de nanotubes de carbone monoparois synthétisés à l'arc électrique, ont également été effectués avec des nanotubes de carbone monoparois fabriqués à partir du procédé HiPCO (procédé monoxyde de carbone haute-pression « High Pressure CO »), des nanotubes de Swan (multiparois de 2 à 4 parois), et des multiparois de la société Arkema, avec des résultats similaires.
Exemple 2 : Mesure de la densité apparente de l'aérogel de l'Exemple 1 Mesure du volume de l'aéroqel :
L'aérogel est préparé selon l'Exemple 1 à partir d'un sel de sodium de nanotubes monoparois synthétisés à l'arc électrique. 4 ml de solution de nanotubes de carbone individualisés réduits dans du DMSO sont lyophilisés dans un tube à essai. Une marque est faite sur la paroi du tube à essai au niveau de la surface supérieure de l'aérogel.
Après avoir retiré l'aérogel du tube à essai, un liquide y est introduit jusqu'au niveau de la marque précitée. Le volume du liquide est ensuite mesuré dans une éprouvette graduée : 2,5 ml. Alternativement, le liquide peut être pesé, et son volume déterminé à partir de sa densité. Mesure de la masse de l'aérogel
L'aérogel retiré du tube à essai ci-dessus est pesé : 6,0 mg. Densité apparente La densité apparente de l'aérogel est calculée par le rapport masse/volume déterminés ci-dessus : 6,0/2,5 = 2,4 mg/cm3.
Exemple 3 : Mesure du volume occupé par les pores de l'aérogel de l'Exemple 2
La densité des nanotubes monoparois étant de 1.4 g/cm3, une masse de 6.0 mg conduit à un volume V = m/d = 6.0 10"3 / 1.4 = 4.3 10"3 cm3.
Le pourcentage du volume des pores se déduit alors simplement comme suit : (Vglobal - VNT)/Vglobal, Vglobal représentant le volume de l'aérogel tel que déterminé à l'Exemple 2.
Ainsi, pour l'aérogel de l'Exemple 2, le % du volume des pores est : (2.5 - 0.0043)/2.5 = 99.8 %.
Exemple 4 : Mesure de la surface spécifique de l'aérogel de l'Exemple 2
La mesure de surface spécifique a été faite par adsorption de Krypton et par la méthode BET.
La surface spécifique déterminée par adsorption de Krypton: 311 m2/g. La surface spécifique déterminée par la méthode BET est : 345 m2/g. II faut comprendre que les deux méthodes donnent une valeur identique.
Exemple 5 : Mesure de la résistîvité électrique de l'aérogel de l'Exemple 1
Afin de s'affranchir des problèmes de résistances de contact, les mesures de résistivité électrique des aérogels ont été effectuées par la méthode dite "en quatre points".
Des aérogels de nanotubes de carbone ont été préparés selon l'Exemple 1 à partir de trois sources de nanotubes différentes : des nanotubes dits "Elicarb" commercialisés par la socité Thomas Swan, des nanotubes synthétisés par la méthode de l'arc électrique et des nanotubes dits "HipCO".
Autour d'un échantillon de forme cylindrique, quatre anneaux ont été formés à la laque d'argent, afin d'assurer une bonne géométrie des lignes de champ. Les mesures de résistance ont montré une conductivité de 5.0 S/cm pour un aérogel de nanotubes dits "Elicarb", 0.3 S/cm pour des nanotubes synthétisés par la méthode de l'arc électrique et 0.03 S/cm pour des nanotubes dits "HipCO".
Exemple 6 : Préparation d'un aérogel de nanotubes de carbone à partir d'une solution d'un sel polyélectrolyte de nanotubes de carbone et de PMMA dans le DMSO
Une solution de nanotubes de carbone individualisés réduits dans du DMSO est préparée selon le protocole décrit dans l'Exemple 1 à partir de nanotubes de carbone dits "Elicarb" commercialisés par la société Thomas Swan. 6% en poids (par rapport aux nanotubes de carbone) de polyméthyl méthacrylate (PMMA) est ajouté à la solution. Le mélange résultant est ensuite lyophilisé selon le protocole décrit dans l'Exemple 1.
Exemple 7 : Mesure de la résistivité électrique de l'aérogel de l'Exemple 6
La résistivité de l'aérogel de l'Exemple 6 a été déterminée selon le protocole de l'Exemple 5.
L'aérogel obtenu à partir d'une solution comprenant du PMMA et du sel de nanotubes de carbone a une conductivité inférieure à celle observée pour les aérogels de l'Exemple 5. En l'occurrence, un aérogel contenant 6% en poids de PMMA a une conductivité de 0.05 S/cm au lieu de 5 S/cm.
Exemple 8 : Mise en évidence de la biocompatîbilité d'un aérogel de l'invention
Le principe expérimental consiste à comparer le comportement de cellules mises en culture au contact d'un aérogel à des cellules 'témoin' : sans aérogel (substrat favorable à la croissance cellulaire, par exemple, des plaques de culture de laboratoire). Au temps TO, Ia même quantité de cellules est mise en culture, au contact ou non de l'aérogel (un échantillon test et un échantillon témoin respectivement) ; aux temps T1 , T2... (7 jours, 14jours...par exemple) la prolifération cellulaire est alors mesurée pour chaque échantillon.
On considérera que le matériau est biocompatible et/ou qu'il y a une absence de cytotoxicité lorsque les valeurs obtenues pour l'échantillon test seront supérieures ou égales à 75% des valeurs de l'échantillon témoin.
Pour quantifier la prolifération cellulaire, le test MTS (Promega's CelITiter 96 AQueous One Solution CeII Prolifération Assay, promega) peut être utilisé. Le principe de ce test est de mesurer la bioréduction du sel de tétrazolium en un produit coloré-le formazan, par les cellules vivantes. La quantification peut se faire directement en comptant les cellules ou indirectement par changement colorimétrique traduisant la modification du substrat (mesures de densité optique).
Listes des références
[1] "Les aérogels et le structure alvéolaires : deux exemples de mousses de carbone" de L. Kocon et T. Piquero, dans L'actualité Chimique, N° 245-246, pp. 119-123 (mars-avril 2006) [2] ["Nouveaux concepts d'élaboration de matériaux carbonés poreux" de C. Vix-Guterl, J. Parmentier, P. Delhaés, dans L'actualité chimique, n° 245-246, pp 124-128 (mars-avril 2006)
[ 3 ] "Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation" de R. Ryoo, S.-H. Soo, S. Jun, dans The Journal of Physical chemistry B, 103 (37), pp. 7743-7746 (1999)
[4] ["High-thermal conductivity, mesophase pitch-derived carbon foams : effect of precursors on structure and properties" de J. Klett et col., dans Carbon, 38, pp. 153-173 (2000)
[5] "Novel high strength graphitic foams", de T. Beechem, K. Lafdi, dans Carbon, 44, pp. 1548-1549 (2002)
[6] ["Fabrication of nano-structure control of carbon aerogels via microemulsion templatted sol-gel polymérisation method", de D. Wu, R. Fu, M. S. Dresselhaus, G. Dresselhaus, dans Carbon, 44, pp 675-680 (2005)
[7] "Préparation and properties of resorcinol formaldehyde organic and carbon gels", de S.A. Al-Muthtsabeb, J.A. Ritter, dans Adv. Mater., 15(2), pp. 101-104 (2003)
[8] Schaffer, M. S. P., Windle, A. H., "Fabrication and Characterization of Carbon Nanotube/poly (vinyl alcohol) Composites", Adv. Mater., 11 , pp 937- 941 (1999) [9] "Nanotubes from carbon" de P.M. Ajayan (Chem. Rev., vol. 99, p.1787, 1999)
[10] Aldissi, M.; Schmitz, B.; Lazaro, E.; Bhamidipati, M.; Dixon, B., "Conducting Polymers In Ultracapacitor Applications", 56.sup.th Annu. Tech. Conf.-Soc. Plast. Eng., (Vol. 2), pp 1197-1201 (1998) [il] An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J.-M.; Bae, D. J.; Lim, S. C; Lee, Y. S.; Lee, Y. H. "Electrochemical Properties Of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes", Adv. Funct. Mater. 11 , pp 387-392 (2001)
[12] Yu, R., Chen, L1 Liu, Q., Lin, J., Tan, K. -L1 Ng, S. C, Chan, H. S. O., Xu, G.-Q.,Hor, T. S. A. "Platinum Déposition On Carbon Nanotubes Via Chemical Modification", Chem. Mater. 10, pp 718-722 (1998)
[13] Planeix, J. M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P. S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P. M., "Application Of Carbon Nanotubes As Supports_in Heterogeneous Catalysis", J. Am. Chem. Soc. 116, pp 7935- 7936 (1994) [14] Tans, S. J., Verschueren, A. R. M., Dekker, C, "Room-Temperature Transistor Based On A Single Carbon Nanotube", Nature 393, pp 49-52 (1998)
[15] Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C1 "Logic Circuits With Carbon Nanotube Transistors". Science 294 pp 1317-1320 (2001) [16] Yodh et al., « Carbon nanotube aerogels », Advanced Materials, 2007, 19, pp. 661-664 [17] Backov et al., Demande de brevet français N° 06/11143 (publication N° FR
2 910 458 )
[18] « Synthesis of graphite intercalation compounds », A. Hérold in Chemical physics of intercalation, A.P. Legrand et S. Flandrois Eds, NATO ASI Séries, séries B, Vol. 172, pp. 3-45 (1987)
[19] C. Stein, J. Poulenard, L. Bonnetain, J. Golé, CR. Acad. Sci. Paris 260, 4503 (1965)
[20] « Synthesis of graphite intercalation compounds », A. Hérold in Chemical physics of intercalation, A.P. Legrand et S. Flandrois Eds, NATO ASI Séries, séries B, Vol. 172, pp. 3-45 (1987)
[21] F. Béguin et R. Setton New ternary lamellar compounds of graphite, Carbon 13, 293-)295 (1975)
[22] Demande de brevet français N° FR 2 881 362 [23] Matyjaszewski, K. ; Eds. ; Advances in Controlled/Living Radical Polymerization, (American Chemical Society 2003) [24] Hsieh, H. L. ; Quirk, R. P. ; Eds. ; Anionic Polymerization Principles and Practical Applications, (Marcel Dekker 1996)
[25] Matyjaszewski, K.; Davies, T. P; Eds.; Handbook of Radical Polymerization, (Wiley-lnterscience 2002) [26] Fontaine, L. ; Initiation à la Chimie et à la Physico-Chimie Macromoléculaires (Groupe Français d'Etudes et d'Applications des Polymères volume 12 (Chapitre 3))
[27] Chakraborty et al., « Functionalization of potassium graphite », Angew. Chem. Int. Ed., 46, 4486-4488 (2007) [28] Stankovitch et al., « Graphene based composite materials », Nature, 442, 282-286 (2006)
[29] FR 04/05120 [30] WO 2006/136715
[31] Matyjaszewski, K. ; Eds. ; Cationic Polymerizations Mechanisms, Synthesis, and Applications, (Marcel Dekker 1996)
[32] FR 2 873 381
[33] "Chemistry of Carbon Nanotubes" de Dimitrios Tasis, Nikos Tagmatarchis, Alberto Bianco et Maurizio Prato, Chem. Rev. 2006, 106, 1105-1 136
[34] Pénicaud et al., « Spontaneous dissolution of a single-wall carbon nanotube sait », J. Am. Chem. Soc, 127, 8-9, (2005)
[35] WO 2005/073127 [36] WO 2004/076381
[37] Lago et al., « Mechanical damage of carbon nanotubes by ultrasound », Carbon, 34(6) 814-816, (1996) [38] Badaire et al., « In situ measurement of nanotube dimensions in suspensions by depolarized dynamic light scattering », Langmuir, 20 : 10367- 10370 (2004)
[39] Heller et al., « Concomittant length and diameter separaton of single- walled carbon nanotubes », J. Am. Chem. Soc, 126 : 14567-14573 (2004) [40] Hennrich et al., « The mechanism of cavitation-induced scission of single- walled carbon nanotubes », J. Phys. Chem. B, 111 : 1932-1937 (2007)
[41] Islam et al., « High weight fraction surfactant solubilization of single-wall carbon nanotubes in water », Nanoletters, Vol. 3(2) : 269-273 (2003)

Claims

REVENDICATIONS
1. Procédé de préparation d'un aérogel de nanotubes de carbone individualisés comprenant les étapes suivantes réalisées sous atmosphère inerte : (a) réduction de nanotubes de carbone par un métal alcalin pour conduire à un sel polyélectrolyte de nanotubes de carbone ;
(b) exposition dudit sel polyélectrolyte de nanotubes de carbone à un solvant polaire aprotique pour conduire à une solution de nanotubes de carbone individualisés réduits ; (c) congélation de ladite solution de nanotubes individualisés ; et (d) sublimation du solvant.
2. Procédé selon la revendication 1 , dans lequel l'étape de réduction a) se fait en présence d'un solvant nucléophile aprotique dont la structure contient au moins un atome d'oxygène.
3. Procédé selon la revendication 2, dans lequel le solvant aprotique est le THF.
4. Procédé selon la revendication 1 , dans lequel le métal alcalin est le sodium, le lithium ou le potassium, le solvant est le THF et le sel polyélectrolyte de nanotubes de carbone est un composé ternaire de structure Na(THF)yCx, Li(THF)yCx ou K(THF)yCx dans laquelle x représente un nombre entier compris entre 6 et 200, et y représente un nombre compris entre 0 et 8.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'étape de réduction a) comprend l'addition aux nanotubes de carbone, sous atmosphère inerte, d'un sel polyaryl alcalin de formule A+B", dans laquelle :
A+ représente un cation d'un ion alcalin, et
B" représente un anion d'un composé polyaromatique.
6. Procédé selon la revendication 5, dans lequel le composé polyaromatique est choisi dans le groupe comprenant le naphtalène, le phénanthrène, le biphényle, l'anthracène, le pérylène, la benzophénone, la fluorénone, la benzoquinone et l'anthraquinone.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le solvant polaire aprotique est le sulfolane, le diméthylsulfoxyde, le diméthylformamide, la N-méthylpyrrolidone ou le N-méthylformamide.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel les nanotubes utilisés dans l'étape (a) sont des nanotubes de carbone monoparoi ou multiparoi.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'étape de congélation est effectuée de façon lente par immersion de la solution de nanotubes de carbone individualisés dans un milieu thermostaté à une température inférieure à la température de congélation du solvant apolaire aprotique utilisé dans l'étape b), ou bien de façon brutale par immersion de la solution de nanotubes de carbone individualisés dans l'azote liquide.
10. Procédé selon la revendication 9, dans lequel le solvant polaire aprotique utilisé dans l'étape (b) est le DMSO et l'étape de sublimation est effectuée en thermostatant la solution de nanotubes de carbone dans le DMSO à une température inférieure à 18°C.
11. Aérogel de nanotubes de carbone individualisés susceptible d'être obtenu par un procédé selon l'une quelconque des revendications 1 à 10.
12. Aérogel de nanotubes de carbone selon la revendication 11 , dans lequel le volume occupé par les pores représente au moins 99 % du volume total dudit aérogel.
13. Aérogel de nanotubes de carbone selon la revendication 11 , lequel a une densité apparente comprise entre 0.1 et 10 mg/cm3.
14. Aérogel de nanotubes de carbone selon la revendication 11 , lequel a une surface spécifique comprise entre 100 et 2000 m2/g.
15. Utilisation d'un aérogel selon la revendication 11 , pour la préparation de matériaux composites.
16. Utilisation selon la revendication 15, dans laquelle le matériau composite est obtenu par un procédé comprenant une étape e) consistant à imbiber ledit aérogel avec un polymère, un mélange de polymères ou une résine, sous forme liquide ou en solution, ou du silicium en fusion.
17. Utilisation selon la revendication 15, dans laquelle le matériau composite est obtenu par un procédé comprenant une étape b2) de mélange d'une solution de polymère, d'un mélange de polymères, ou d'une résine avec la solution de nanotube de carbone individualisés réduits obtenue à l'étape b).
18. Utilisation selon la revendication 17, dans laquelle le polymère est le polymethyl methacrylate ou « PMMA ».
19. Utilisation d'un aérogel selon la revendication 11 , pour la préparation de composants électrochimiques.
20. Utilisation selon la revendication 19, dans laquelle le composant électrochimique est un supercondensateur, un biocapteur ou une électrode de pile à combustible.
21. Utilisation d'un aérogel selon la revendication 11 , pour la préparation de matériaux de filtration et/ou dépollution.
22. Utilisation d'un aérogel de carbone de la revendication 21 , dans laquelle le matériau de dépollution est une membrane pour le traitement des eaux ou des marées noires.
23. Utilisation d'un aérogel selon la revendication 11 , pour la préparation de biomatériaux.
24. Utilisation d'un aérogel de carbone de la revendication 23, dans laquelle le biomatériau est un support pour la croissance cellulaire, pour la croissance osseuse ou pour le remplacement de cartilage.
25. Utilisation d'un aérogel la revendication 11 , pour la préparation de supports de catalyseur pour la catalyse hétérogène.
PCT/FR2008/001627 2007-11-21 2008-11-20 Aerogels de nanotubes de carbone WO2009101271A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010534517A JP5837301B2 (ja) 2007-11-21 2008-11-20 カーボンナノチューブのエアロゲル
US12/743,969 US9381471B2 (en) 2007-11-21 2008-11-20 Aerogels of carbon nanotubes
EP08872468.7A EP2231516B1 (fr) 2007-11-21 2008-11-20 Aerogels de nanotubes de carbone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708167A FR2923823B1 (fr) 2007-11-21 2007-11-21 Aerogels de nanotubes de carbone
FR07/08167 2007-11-21

Publications (2)

Publication Number Publication Date
WO2009101271A2 true WO2009101271A2 (fr) 2009-08-20
WO2009101271A3 WO2009101271A3 (fr) 2009-11-26

Family

ID=39580000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001627 WO2009101271A2 (fr) 2007-11-21 2008-11-20 Aerogels de nanotubes de carbone

Country Status (5)

Country Link
US (1) US9381471B2 (fr)
EP (1) EP2231516B1 (fr)
JP (2) JP5837301B2 (fr)
FR (1) FR2923823B1 (fr)
WO (1) WO2009101271A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392546A1 (fr) 2010-06-07 2011-12-07 Centre National de la Recherche Scientifique (CNRS) Solution pour nanocornets de carbone, procédé de fabrication et utilisations correspondantes
US20120228558A1 (en) * 2009-11-06 2012-09-13 Shibaura Institute Of Technology Method for producing gel containing nano-carbon material
WO2012162644A1 (fr) * 2011-05-26 2012-11-29 Lockheed Martin Corporation Dispositif thermoélectrique à aérogel nanostructuré, sa fabrication et son utilisation
US20130316160A1 (en) 2010-11-05 2013-11-28 National Institute Of Advanced Industrial Science And Technology Cnt dispersion liquid, cnt compact, cnt composition, cnt aggregate, and method of producing each
CN103979522A (zh) * 2014-04-19 2014-08-13 东风商用车有限公司 多膜层相隔成多个规则排列孔道的宏观体及其制作方法
CN104437453A (zh) * 2014-11-28 2015-03-25 浙江大学 一种碳气凝胶催化剂及其制备方法和用途
CN108493406A (zh) * 2018-02-28 2018-09-04 中航锂电(洛阳)有限公司 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083750A (zh) 2008-07-03 2011-06-01 Ucl商业有限公司 用于分散和分离纳米管的方法
GB201005991D0 (en) * 2010-04-09 2010-05-26 Ucl Business Plc Separation method
FR2961625A1 (fr) * 2010-06-16 2011-12-23 Arkema France Procede de preparation de films transparents conducteurs a base de nanotubes de carbone
CZ2011540A3 (cs) * 2011-08-30 2012-10-31 Vysoká Škola Bánská -Technická Univerzita Ostrava Zpusob prípravy vláknitých a lamelárních mikrostruktur a nanostruktur rízeným vakuovým vymrazováním kapalinové disperze nanocástic
JP6132389B2 (ja) * 2012-01-31 2017-05-24 学校法人 芝浦工業大学 ナノカーボン材料含有ゲルの製造方法
FR2988619B1 (fr) * 2012-03-30 2014-11-28 Centre Nat Rech Scient Materiaux absorbants/solubilisants a base d'organogels microporeux
US8958198B2 (en) * 2012-10-10 2015-02-17 Lawrence Livermore National Security, Llc Super capacitor with fibers
DE202012011892U1 (de) 2012-12-12 2014-03-13 Tutech Innovation Gmbh Kohlenstoffnanomaterial
CN104418316B (zh) 2013-08-27 2017-01-25 清华大学 碳纳米管海绵体及其制备方法
WO2015054239A1 (fr) 2013-10-07 2015-04-16 Florida State University Research Foundation, Inc. Mousses de nanotubes de carbone (cnt) ayant une architecture contrôlée et procédés s'y rapportant
JP6307255B2 (ja) * 2013-11-28 2018-04-04 ニッタ株式会社 Cnt集合体、cnt集合体を製造する方法、エマルジョン、及びエマルジョンを製造する方法
EP3166886A1 (fr) * 2014-06-12 2017-05-17 Centre National de la Recherche Scientifique (CNRS) Suspensions aqueuses et organiques de matériaux en nanocarbone exfolié, leur procédé de préparation et leurs utilisations
JP6378059B2 (ja) * 2014-11-18 2018-08-22 国立研究開発法人物質・材料研究機構 グラフェン酸化物発泡体、グラフェン酸化物/カーボンナノチューブ複合体発泡体、グラフェン・エアロゲル又はグラフェン/カーボンナノチューブ複合体エアロゲルの製造方法
WO2017075554A1 (fr) 2015-10-29 2017-05-04 Golfetto Michael Procédés de lyophilisation et matériaux composites
US9972451B2 (en) * 2015-11-30 2018-05-15 City University Of Hong Kong Polyelectrolyte and a method for manufacturing an energy storage device
WO2017190182A1 (fr) 2016-05-06 2017-11-09 Delmoni Alex Racloir de bande
KR102082913B1 (ko) 2016-06-10 2020-02-28 주식회사 엘지화학 카본나노튜브 구조체 및 이의 제조방법
US9870871B1 (en) 2016-09-08 2018-01-16 Lawrence Livermore National Security, Llc Graphene macro-assembly-fullerene composite for electrical energy storage
US10633255B2 (en) 2016-09-08 2020-04-28 Lawrence Livermore National Security, Llc Graphene macro-assembly-fullerene composite for electrical energy storage
CN106340726B (zh) * 2016-10-31 2019-01-25 中国工程物理研究院激光聚变研究中心 磁性导电纳米金属/碳气凝胶吸波材料及其制备方法
CN107056318B (zh) * 2017-03-01 2019-07-05 山东省科学院新材料研究所 一种碳纳米管-碳气凝胶复合材料及其制备方法
US10391466B2 (en) * 2017-06-02 2019-08-27 Lawrence Livermore National Security, Llc Fabrication of nanoporous aerogels via freeze substitution of nanowire suspensions
CN107619092A (zh) * 2017-07-18 2018-01-23 南京工业大学 一种磁性气凝胶的制备方法
CN108816055B (zh) * 2018-07-04 2021-05-14 青岛科技大学 一种生物可降解油水分离多孔膜的制备方法
CN109589881A (zh) * 2018-12-13 2019-04-09 南京工业大学 一种以皮革废料制备氮掺杂多孔碳基气凝胶的方法及应用
CN112093946B (zh) * 2020-08-25 2022-12-02 中钢集团鞍山热能研究院有限公司 一种芴酮废水的电化学强化预处理方法
CN112410924B (zh) * 2020-10-27 2023-06-30 江西省纳米技术研究院 碳纳米管/导电聚合物复合纤维、其连续制备方法及系统
CN114212775B (zh) * 2021-11-09 2023-08-11 中国空间技术研究院 硅碳复合电极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073127A2 (fr) * 2003-12-30 2005-08-11 Centre National De La Recherche Scientifique Procede de dissolution de nanotubes de carbone et ses applications
FR2910458A1 (fr) * 2006-12-20 2008-06-27 Centre Nat Rech Scient Aerogels a base de nanotubes de carbone

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0904195B1 (fr) 1996-05-15 2004-02-18 Hyperion Catalysis International, Inc. Structures de carbone poreuses et rigides, leurs procedes de fabrication et d'utilisation et produits les contenant
DE19936281C2 (de) * 1999-08-02 2002-04-04 Bayer Ag Verfahren zur Gefriertrocknung
US20030012722A1 (en) * 2002-07-02 2003-01-16 Jie Liu High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation
MXPA06006805A (es) 2004-01-09 2006-12-19 Olga Matarredona Pastas de nanotubo de carbono y metodos de uso.
JP2007161521A (ja) * 2005-12-13 2007-06-28 Bussan Nanotech Research Institute Inc 微細炭素繊維分散体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073127A2 (fr) * 2003-12-30 2005-08-11 Centre National De La Recherche Scientifique Procede de dissolution de nanotubes de carbone et ses applications
FR2910458A1 (fr) * 2006-12-20 2008-06-27 Centre Nat Rech Scient Aerogels a base de nanotubes de carbone

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BRYNING MATEUSZ B ET AL: "Carbon nanotube aerogels" ADV MATER; ADVANCED MATERIALS MAR 5 2007, vol. 19, no. 5, 5 mars 2007 (2007-03-05), pages 661-664, XP002487809 cité dans la demande *
CHEN ET AL: "A new method for the preparation of stable carbon nanotube organogels" CARBON, ELSEVIER, OXFORD, GB, vol. 44, no. 11, 1 septembre 2006 (2006-09-01), pages 2142-2146, XP005523299 ISSN: 0008-6223 *
HOUGH L A ET AL: "Viscoelasticity of single wall carbon nanotube suspensions" PHYSICAL REVIEW LETTERS APS USA, vol. 93, no. 16, 15 octobre 2004 (2004-10-15), pages 168102/1-4, XP002487812 ISSN: 0031-9007 *
PENICAUD A ET AL: "Dissolution douce of single walled carbon nanotubes" AIP CONFERENCE PROCEEDINGS AIP USA, no. 786, 2005, pages 266-270, XP002487810 ISSN: 0094-243X *
SABBA Y ET AL: "High-concentration dispersion of single-wall carbon nanotubes" MACROMOLECULES; MACROMOLECULES JUN 29 2004, vol. 37, no. 13, 29 juin 2004 (2004-06-29) , pages 4815-4820, XP002487811 *
See also references of EP2231516A2 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228558A1 (en) * 2009-11-06 2012-09-13 Shibaura Institute Of Technology Method for producing gel containing nano-carbon material
US9419235B2 (en) * 2009-11-06 2016-08-16 Shibaura Institute Of Technology Method for producing gel containing nano-carbon material
WO2011154894A1 (fr) 2010-06-07 2011-12-15 Centre National De La Recherche Scientifique - Cnrs - Solution de nanocornets de carbone, son procédé de fabrication et ses utilisations
EP2392546A1 (fr) 2010-06-07 2011-12-07 Centre National de la Recherche Scientifique (CNRS) Solution pour nanocornets de carbone, procédé de fabrication et utilisations correspondantes
US10040686B2 (en) 2010-11-05 2018-08-07 National Institute Of Advanced Industrial Science And Technology CNT dispersion solution, CNT compact, CNT composition, CNT aggregate, and method of producing each
US20130316160A1 (en) 2010-11-05 2013-11-28 National Institute Of Advanced Industrial Science And Technology Cnt dispersion liquid, cnt compact, cnt composition, cnt aggregate, and method of producing each
JP2016175836A (ja) * 2010-11-05 2016-10-06 国立研究開発法人産業技術総合研究所 Cntゴム組成物及びcnt成形体
WO2012162644A1 (fr) * 2011-05-26 2012-11-29 Lockheed Martin Corporation Dispositif thermoélectrique à aérogel nanostructuré, sa fabrication et son utilisation
CN103979522A (zh) * 2014-04-19 2014-08-13 东风商用车有限公司 多膜层相隔成多个规则排列孔道的宏观体及其制作方法
CN104437453A (zh) * 2014-11-28 2015-03-25 浙江大学 一种碳气凝胶催化剂及其制备方法和用途
CN104437453B (zh) * 2014-11-28 2017-06-16 浙江大学 一种碳气凝胶催化剂及其制备方法和用途
CN108493406A (zh) * 2018-02-28 2018-09-04 中航锂电(洛阳)有限公司 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池
CN108493406B (zh) * 2018-02-28 2020-09-15 中航锂电(洛阳)有限公司 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池

Also Published As

Publication number Publication date
FR2923823A1 (fr) 2009-05-22
WO2009101271A3 (fr) 2009-11-26
EP2231516B1 (fr) 2019-08-07
US9381471B2 (en) 2016-07-05
JP2015221748A (ja) 2015-12-10
FR2923823B1 (fr) 2010-10-08
US20110124790A1 (en) 2011-05-26
JP5837301B2 (ja) 2015-12-24
JP2011504446A (ja) 2011-02-10
EP2231516A2 (fr) 2010-09-29

Similar Documents

Publication Publication Date Title
EP2231516B1 (fr) Aerogels de nanotubes de carbone
EP2719662B1 (fr) Utilisation d&#39;un solvant polaire aprotique pour la solubilisation d&#39;un composé d&#39;intercalation du graphite
Goh et al. Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process
Shirazi et al. Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol
JP2017527512A (ja) 親水性表面変性炭素質粒子材料
Wu et al. Bioinspired synthesis of pDA@ GO-based molecularly imprinted nanocomposite membranes assembled with dendrites-like Ag microspheres for high-selective adsorption and separation of ibuprofen
JP2011500504A (ja) カーボンナノチューブフィルム、及び超酸導入分散によるカーボンナノチューブフィルムの製造方法
EP3401293A1 (fr) Procédé de fabrication d&#39;un composite constitué d&#39;un monolithe de graphène et de silicium
FR2867600A1 (fr) Procede de fabrication d&#39;electrode, electrode ainsi obtenue et supercondensateur la comprenant
FR2962052A1 (fr) Materiau comprenant des nanotubes ou des nanofils greffes dans une matrice, procede de preparation et utilisations
Taurozzi et al. C60-polysulfone nanocomposite membranes: Entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties
WO2019079882A9 (fr) Nanotubes de nitrure de bore modifié et leurs solutions
Wang et al. Hydrophilic PVDF membrane with versatile surface functions fabricated via cellulose molecular coating
WO2015128457A1 (fr) Procédé de préparation d&#39;une suspension contenant des nanotubes de carbone et suspension stable ainsi obtenue
Roux et al. Hydrophilisation of polysulphone ultrafiltration membranes by incorporation of branched PEO-block-PSU copolymers
US20020150529A1 (en) Single-wall carbon nanotubes for hydrogen storage or superbundle formation
AU767499B2 (en) Single-wall carbon nanotubes for hydrogen storage or superbundle formation
EP2393752A2 (fr) Procédé et kit de séparation de nanotubes de carbone métalliques et semi-conducteurs
Wang et al. An ideal artificial water channel—carbon nanotube porins (Cntps) for preparing highly permeable reverse osmosis membrane with excellent antifouling capacity
FR3077012A1 (fr) Procede d&#39;obtention de (nano)particules minerales enrobees de carbone
CN116672898A (zh) 一种复合膜及其制备方法和应用
WO2011157946A1 (fr) Procede de preparation de films transparents conducteurs a base de nanotubes de carbone
CN117534057A (zh) 具有Janus结构的两亲性碳量子点及其制备方法和应用
Trisca-Rusu et al. Polysulfone-functionalized multiwalled carbon nanotubes composite membranes for potential sensing applications
Sun et al. Preparation of High-Performance Thin-Film Nanocomposite (Tfn) Reverse Osmosis Membranes Based on the Trace Loading of Soluble Carbon Nanotube Porins (Cntps)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872468

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010534517

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008872468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12743969

Country of ref document: US