WO2009096525A1 - 薄膜トランジスタ - Google Patents

薄膜トランジスタ Download PDF

Info

Publication number
WO2009096525A1
WO2009096525A1 PCT/JP2009/051586 JP2009051586W WO2009096525A1 WO 2009096525 A1 WO2009096525 A1 WO 2009096525A1 JP 2009051586 W JP2009051586 W JP 2009051586W WO 2009096525 A1 WO2009096525 A1 WO 2009096525A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
tft
thin film
film transistor
electrode
Prior art date
Application number
PCT/JP2009/051586
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Endoh
Satoru Toguchi
Hideaki Numata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2009551602A priority Critical patent/JPWO2009096525A1/ja
Publication of WO2009096525A1 publication Critical patent/WO2009096525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to a thin film transistor having an organic material or a carbon nanotube as a semiconductor layer, and more particularly to obtaining a thin film transistor (TFT) having a small variation in transistor characteristics.
  • TFT thin film transistor
  • Thin film transistors are widely used as switching elements for display in liquid crystal displays and the like.
  • thin film transistors hereinafter also referred to as TFTs
  • TFTs thin film transistors
  • TFTs using organic substances or carbon nanotubes in place of amorphous or polycrystalline silicon have been proposed.
  • a vacuum evaporation method, a coating method, etc. are known as a film-forming method used when forming TFT by organic substance or a carbon nanotube, according to these film-forming methods, the enlargement of an element is realized suppressing cost increase. This enables the process temperature required for film formation to be relatively low.
  • Organic substances used for the organic compound layer of the TFT include multimers such as conjugated polymers and thiophenes (Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, etc.) or metal phthalocyanine compound (Patent Document 1) Documents 6), condensed aromatic hydrocarbons such as pentacene (Patent documents 7 and 8), etc. are used alone or in a mixture with other compounds.
  • Non-Patent Document 17 shows that the performance is higher than that of silicon or silicon.
  • FIG. 1 the cross-sectional structure of a typical organic or carbon nanotube TFT is shown in FIG.
  • This TFT has a gate electrode (layer) 14 and an insulator layer 16 in this order on a substrate 11, and source electrode 12 and drain electrode 13 formed on the insulator layer 16 at predetermined intervals.
  • a gate electrode (layer) 14 and an insulator layer 16 in this order on a substrate 11, and source electrode 12 and drain electrode 13 formed on the insulator layer 16 at predetermined intervals.
  • a semiconductor layer 15 is formed on the insulator layer 16 that includes the partial surfaces of both the electrodes 12 and 13 and is exposed between the electrodes 12 and 13.
  • the semiconductor layer 15 forms a channel region, and the voltage applied to the gate electrode 14 controls the current flowing between the source electrode 12 and the drain electrode 13 to turn on / off.
  • Unexamined-Japanese-Patent No. 8-228034 JP-A-8-228035 JP 9-232589 A Unexamined-Japanese-Patent No. 10-125924 Japanese Patent Application Laid-Open No. 10-190001 JP 2000-174277 A Unexamined-Japanese-Patent No. 5-55568 JP, 2001-94107, A F.
  • film formation control of the channel material is also important, but manufacturing control of the gate electrode and the gate insulating film is also very important.
  • an electrode having a large line width is formed by performing coating or the like, but non-uniformity occurs in the film thickness between the overlapping portion and the other portion, which causes the shape variation of the gate electrode, and the TFT It causes variations in the characteristics.
  • a first thin film transistor according to the present invention is a thin film transistor in which a gate electrode is formed on a substrate and an insulating thin film is disposed on the gate electrode,
  • the gate electrode is formed with a line width smaller than the channel length, and the cross section is formed from a straight line or a curve having a semicircular, semielliptical, or convex structure, and the gate electrodes overlap each other from the source electrode to the drain electrode. It is characterized in that it is installed in plural without
  • the shape and surface control of the gate electrode and the gate insulating film can be easily realized, and further shape control can be realized to provide a thin film transistor capable of reducing performance variation. Make it possible.
  • the present invention has found that by using a TFT having a specific shape, the shape and surface control of the gate electrode and the gate insulating film can be easily realized, and further, the shape control can be realized to reduce the performance variation as a TFT. .
  • the thin film transistor according to the present invention is a thin film transistor in which a gate electrode is formed on a substrate and an insulating thin film is disposed on the gate electrode, and the gate electrode is formed with a line width smaller than the channel length and a semicircular cross section. , A semi-elliptic, or a straight line or a curve having a convex structure.
  • gate electrodes formed of straight lines or curves having a semicircular, semielliptical, or convex structure in cross section are independent of each other.
  • the semicircular and semielliptical shapes of the cross section described here not only indicate strictly geometrical semicircular and semielliptical shapes, but also include shapes obtained by cutting a part of a circle and an ellipse with a chord. In addition to arcs constituting the cross section that are strictly geometrically correct, it also includes arcs of a structure approximating a circle or an ellipse formed when the liquid substance dries.
  • control of a single line drawn under certain conditions can be performed relatively easily, but when overlapping each to draw a line with a large line width, only the overlapping part may become thick It is difficult to secure the uniformity of the surface.
  • the structure of the present invention by using a single line which can be controlled to some extent as one or a plurality of gate electrodes, it is possible to obtain a TFT in which the shape and the surface of the gate electrode or gate insulating film are controlled.
  • the present invention relates to a thin film transistor in which the gate electrode is formed in a coating process by a dispenser device.
  • Each of the gate electrodes is formed by a single discharge operation, and in the case of a thin film transistor in which a gate electrode is formed in a coating process by an ink jet apparatus, each of a single gate electrode or a plurality of gate electrodes is a gate electrode It is characterized in that it is formed by superposition of 1 dot discharge in the longitudinal direction.
  • the thin line can be formed by a single discharge operation by moving the discharge head while discharging a solution under a constant discharge condition. Further, the line width and thickness can be controlled to be constant by setting the discharge conditions of the solution constant.
  • the ejection time of adjacent dots can be extremely shortened, and the next droplet is formed before the concentration or the like of the droplets changes, and even if the dots overlap with each other, the dots are combined. It is possible to form a constant continuous thin line.
  • the TFT structure of the present invention is a structure capable of uniformly manufacturing the shape and the surface of the gate electrode or the gate insulating film, and the manufacturing process of each constituent material is not limited. Therefore, it can be manufactured by a vacuum deposition method, a sputtering method, a coating method or the like which is a general thin film manufacturing method.
  • FIG. 2 is a cross-sectional view and a plan view showing the configuration of the first TFT according to the present invention.
  • FIG. 3 is a cross-sectional view and a plan view showing the configuration of the second TFT according to the present invention.
  • FIG. 4 is a cross-sectional view and a plan view showing the configuration of the third TFT according to the present invention.
  • the first TFT according to the present invention has a pair of source electrode 12 and drain electrode 13 as shown in FIG.
  • the first TFT has a general field effect transistor (FET) structure, as shown in FIG.
  • the TFT according to the present invention includes a source electrode (first electrode) 12 and a drain electrode (first electrode) which are formed to face the semiconductor layer (organic compound layer or carbon nanotube layer) 15 at a predetermined distance from each other. 2) and a gate electrode (third electrode) 14 formed with a predetermined distance from each of the electrodes 13 and 14, and applying a voltage to the gate electrode 14 results in source / drain electrodes A configuration is provided to control the current flowing between 12 and 13.
  • the material that can be used as the substrate 11 is not particularly limited as long as it is a material that can hold a TFT formed thereon, such as an inorganic material such as glass or silicon, a plastic such as an acrylic resin, or the like.
  • a material that can hold a TFT formed thereon such as an inorganic material such as glass or silicon, a plastic such as an acrylic resin, or the like.
  • the structure of the TFT can be sufficiently supported by components other than the substrate, it is possible not to use it.
  • ITO indium tin oxide alloy
  • NESA tin oxide
  • gold silver, platinum, copper, indium, aluminum, magnesium
  • organic materials such as conductive polymers may be mentioned, but are limited thereto It is not a thing.
  • the compound contained in the semiconductor layer 15 has semiconductive characteristics such as a condensed polycyclic aromatic compound such as tetracene and pentacene, a phthalocyanine compound such as copper phthalocyanine and zinc phthalocyanine, an amine compound, a polymer such as polythiophene and polyvinylcarbazole
  • a condensed polycyclic aromatic compound such as tetracene and pentacene
  • a phthalocyanine compound such as copper phthalocyanine and zinc phthalocyanine
  • an amine compound such as polythiophene and polyvinylcarbazole
  • an organic compound or a mixture containing carbon nanotubes and carbon nanotubes can be used, it is not particularly limited as long as it is a material having semiconductor characteristics.
  • an organic insulating material such as an acrylic resin or polyimide can be used. It can be used if it has a property, and it is not particularly limited.
  • an ordinary electrode forming process such as a vacuum evaporation method, a sputtering method, an etching method, and a lift off can be used, and it is not particularly limited.
  • an organic material such as a conductive polymer, a dispersion containing silver paste or metal particles, or an organic compound of a metal is used as an electrode, a spin coating method, a dip method, a dispenser method, an inkjet method, etc.
  • a solution process can also be used, and in this case, it is not particularly limited.
  • the method for producing the electrode 14 is not particularly limited as long as it is a solution process such as a dispenser method or an inkjet method capable of drawing a thin line.
  • the second TFT according to the present invention shown in FIG. 3 has a structure including one or more thin lines consisting of straight lines as shown in FIG. 3.
  • the line width of the electrode 14 is smaller than the channel length (the distance between the source electrode and the drain electrode), but the line width of the electrode 14 is several minutes compared to the channel length.
  • the gate electrode portion which can modulate the current becomes small and it becomes difficult to modulate, in that case, it is desirable to provide a plurality of electrodes 14.
  • a plurality of electrodes 14 are provided, they need to be independent of each other.
  • the third TFT according to the present invention shown in FIG. 4 may be disposed even if a plurality of electrodes 14 having a linear shape are arranged as shown in the second TFT according to the present invention shown in FIG.
  • One electrode 14 may be bent and disposed as shown in FIG.
  • solution processes such as a spin coating method, a dip method, a dispenser method, and an inkjet method can be used in addition to dry processes such as a vacuum evaporation method, and it is not particularly limited.
  • solution processes such as spin coating method, dipping method, dispenser method, ink jet method can be used besides dry processes such as vacuum evaporation method and sputtering method, and it is not particularly limited.
  • the film thickness of the semiconductor thin film layer 15 in the first TFT, the second TFT, and the third TFT according to the present invention is not particularly limited.
  • the film thickness is too thin, defects such as pinholes are likely to occur, and on the contrary, if the film thickness is too thick, the channel length becomes long or a high applied voltage is required to cause TFT performance degradation.
  • the range of nm to 1 ⁇ m is preferred.
  • Example 1 the second TFT of FIG. 3 described in the embodiment example was manufactured in the following procedure.
  • nano silver colloid solutions were formed on a glass substrate 11 with a line width of 100 ⁇ m and a spacing of 200 ⁇ m using a dispenser device, and heated at 150 ° C. for 30 minutes to form a gate electrode 14.
  • a gate electrode having a line width of 100 ⁇ m was formed by one discharge operation.
  • a film of 200 nm in thickness was formed on the gate electrode 14 by a silicon dioxide film sputtering method, and this was used as an insulator layer 16.
  • a source electrode 12 and a drain electrode 13 are formed on the insulator layer 16 by forming two nano silver colloid solutions with a line width of 200 ⁇ m and an interval of 500 ⁇ m by sandwiching the gate electrode 14 using a dispenser device. It formed.
  • TFTs Twenty TFTs were manufactured by the same manufacturing method, current values at a gate voltage of -20 V and a drain voltage of -10 V were measured, and the ratio of the maximum current to the minimum current was calculated.
  • Comparative Example 1 A TFT was manufactured in exactly the same manner as in Example 1 except that five gate insulating films 14 with a line width of 100 ⁇ m were applied over 400 ⁇ m to form a gate electrode, and a TFT 102 was obtained.
  • the ratio of the maximum value to the minimum value of the current value measured under the same conditions as in Example 1 was 8.7 for the manufactured organic TFT 102.
  • Example 2 A TFT was produced in exactly the same manner as in Example 1 except that the compound (F8T2) shown in Table 2 was used as a semiconductor material, to obtain a TFT 103.
  • Example 3 A TFT was produced in exactly the same manner as in Example 1 except for using (pentacene) using the compounds shown in Table 2 as the semiconductor material, to obtain a TFT 104.
  • the ratio of the maximum current value to the minimum current value was good also in any TFT.
  • Example 4 A TFT was produced in exactly the same manner as in Example 1 except that the compounds shown in Table 2 were used as the semiconductor material (carbon nanotube toluene solution) to obtain a TFT 105.
  • the ratio of the maximum current value to the minimum current value was good also in any TFT.
  • Example 5 A TFT was produced in the same manner as in Example 1 except that the compounds shown in Table 2 were used as the semiconductor material (carbon nanotube aqueous dispersion), to obtain a TFT 106.
  • the ratio of the maximum current value to the minimum current value was good also in any TFT.
  • Example 6 A TFT was produced in exactly the same manner as in Example 1 except that polyethylene naphthalate (PEN) was used as the substrate 11, to obtain a TFT 107.
  • PEN polyethylene naphthalate
  • the ratio of the maximum value to the minimum value of the current value measured under the same conditions as in Example 1 was 2.55 for the manufactured organic TFT 107.
  • Comparative Example 2 A TFT was produced in exactly the same manner as in Comparative Example 1 except that polyethylene naphthalate (PEN) was used as the substrate 11, to obtain a TFT.
  • PEN polyethylene naphthalate
  • the ratio of the maximum value to the minimum value of the current values measured under the same conditions as in Example 1 was 18.3 for the manufactured organic TFT 108.
  • Example 7 A TFT was produced in exactly the same manner as in Example 6 except that the compounds shown in Table 2 were used as the semiconductor material, to obtain a TFT 109.
  • Example 8 A TFT was produced in exactly the same manner as in Example 6 except that the compounds shown in Table 2 were used as the semiconductor material, to obtain a TFT 110.
  • the ratio of the maximum current value to the minimum current value was good also in any TFT.
  • Example 9 A TFT was produced in exactly the same manner as in Example 6 except that the compounds shown in Table 2 were used as the semiconductor material, to obtain a TFT 111.
  • the ratio of the maximum current value to the minimum current value was good also in any TFT.
  • Example 10 A TFT was produced in exactly the same manner as in Example 6 except that the compounds shown in Table 2 were used as the semiconductor material, to obtain a TFT 112.
  • the ratio of the maximum current value to the minimum current value was good also in any TFT.
  • a thin film transistor concerning the present invention is not limited only to composition of the above-mentioned embodiment, and various corrections from composition of the above-mentioned embodiment And modified thin film transistors are also included within the scope of the present invention.
  • the thin film transistor of the present invention it is possible to provide a thin film transistor with excellent uniformity of the TFT characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 製膜プロセスが簡便な塗布プロセスで製造した薄膜トランジスタにおいて、TFT特性のばらつきが小さな薄膜トランジスタを提供する。  基板上にゲート電極が形成され、ゲート電極上に絶縁性薄膜が配置される薄膜トランジスタであって、ゲート電極がチャネル長より細い線幅で形成され、かつ、断面が半円、半楕円、凸状構造を有する直線もしくは曲線から形成され、前記ゲート電極は、ソース電極からドレイン電極に向かって互いに重なることなく複数本設置されている。

Description

薄膜トランジスタ
 本発明は、有機材料もしくはカーボンナノチューブを半導体層として有する薄膜トランジスタに関し、特に、トランジスタ特性のばらつきの小さなTFT(Thin Film Transistor)を得ることに関する。
 薄膜トランジスタは、液晶表示装置等の表示用のスイッチング素子として広く用いられている。従来、薄膜トランジスタ(以下、TFTとも呼ぶ)は、アモルファスや多結晶のシリコンを用いて作製されていた。
 しかし、このようなシリコンを用いたTFTの作製に用いられるCVD装置は、非常に高額であり、TFTを用いた表示装置等の大型化は、製造コストの大幅な増加を伴うという問題点があった。
 また、アモルファスや多結晶のシリコンを成膜するプロセスは非常に高い温度下で行われるので、基板として使用可能な材料の種類が限られ、従って、軽量な樹脂基板等は使用できないという問題があった。
 上記問題を解決するために、アモルファスや多結晶のシリコンに代えて有機物あるいはカーボンナノチューブを用いたTFTが提案されている。
 有機物あるいはカーボンナノチューブでTFTを形成する際に用いる成膜方法として真空蒸着法や塗布法等が知られているが、これらの成膜方法によれば、コストアップを抑えつつ素子の大型化が実現可能になり、成膜時に必要となるプロセス温度を比較的低温にすることができる。
 このため、有機物あるいはカーボンナノチューブを用いたTFTでは、基板に用いる材料の選択時の制限が少ないといった利点が得られ、その実用化が期待される。
 実際、近年、有機物を用いたTFTは盛んに報告されるようになった。この報告例として、特許文献1から特許文献8および非特許文献1から非特許文献16などを挙げることができる。
 TFTの有機化合物層に用いる有機物としては、共役系ポリマーやチオフェンなどの多量体(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5等)、或いは、金属フタロシアニン化合物(特許文献6)、またペンタセンなどの縮合芳香族炭化水素(特許文献7、特許文献8)などが、単体或いは他の化合物との混合物の状態で用いられている。
 一方、カーボンナノチューブを用いたTFTも盛んに発表されており、非特許文献17では、シリコンもしくはシリコン以上の性能を有することが示されている。
 また、半導体層の材料として有機材料やカーボンナノチューブを使用することにより、素子の基板もガラスなどの硬い材料はもちろんのこと、樹脂やプラスチックを適用することで素子全体にフレキシブル性を持たせることが可能となり、フレキシブルTFTに関する研究も盛んに行われている。
 さらに、有機もしくはカーボンナノチューブTFTの製造プロセスとして溶液もしくは分散液を用いた塗布プロセスを採用することができるため、低コスト化等を目標とした塗布プロセス、印刷プロセスを適用した製造方法の研究も盛んに行われている。
 ここで、代表的な有機もしくはカーボンナノチューブTFTの断面構造を図1に示す。このTFTは、基板11上に、ゲート電極(層)14および絶縁体層16をこの順に有し、絶縁体層16上に、所定の間隔をあけて形成されたソース電極12およびドレイン電極13を有している。
 双方の電極12、13の一部表面を含み、電極12、13間に露出する絶縁体層16上には、半導体層15が形成されている。このような構成を有するTFTでは、半導体層15がチャネル領域を成しており、ゲート電極14に印加される電圧でソース電極12とドレイン電極13の間に流れる電流が制御されることによってオン/オフ動作する。
特開平8-228034号公報 特開平8-228035号公報 特開平9-232589号公報 特開平10-125924号公報 特開平10-190001号公報 特開2000-174277号公報 特開平5-55568号公報 特開2001-94107号公報 F. Ebisawa,Journal of Applied Physics,54巻,3255頁,1983年 A. Assadi,Applied Physics Letter,53巻,195頁,1988年 G. Guillaud,Chemical Physics Letter,167巻,503頁,1990年 X. Peng,Applied Physics Letter,57巻,2013頁,1990年 G. Horowitz, Synthetic Metals, 41-43巻,1127頁,1991年 S. Miyauchi,Synthetic Metals,41-43巻,1991年 H. Fuchigami,Applied Physics Letter,63巻,1372頁,1993年 H. Koezuka,Applied Physics Letter,62巻,1794頁,1993年 F. Garnier,Science,265巻,1684頁,1994年 A. R. Brown,Synthetic Metals,68巻,65頁,1994年 A. Dodabalapur,Science,268巻,270頁,1995年 T. Sumimoto,Synthetic Metals,86巻,2259頁,1997年 K. Kudo,Thin Solid Films,331巻,51頁,1998年 K. Kudo,Synthetic Metals,102巻,900頁,1999年 K. Kudo,Synthetic Metals,111-112巻,11頁、2000年 P. Avouris, Proc.IEEE, 91巻, 11号, 1772頁, 2003年 S.wind、Applied Physics Letter 2002年5月20日号
 ところで、上記のTFTを均一にばらつきなく製造使用とする場合、ゲート電極およびゲート絶縁膜の形状、表面性の制御が重要である。
 チャネル構成半導体層が均一に形成できたとしてもゲート電極およびゲート絶縁膜の形状、表面性を同一に作製することができなければ製造したTFTの特性も同一にすることはきわめて困難である。
 TFTの性能を一定に保つためにはチャネル材料の製膜制御も重要であるがゲート電極、ゲート絶縁膜の製造制御も非常に重要である。
 特にゲート電極を溶液もしくは分散液から製造する塗布プロセスを適用する場合、さらに塗布プロセスのなかでもディスペンサやインクジェット法を用いて製造する場合、大きな線幅の電極を製造したり、大面積の電極を均一に形成することは非常に困難である。
 通常、重ね塗り等を行うことによって線幅の大きな電極を形成するが、重ね合わせの部分とそれ以外の部分との膜厚に不均一が生じ、このことがゲート電極の形状ばらつきを引き起こし、TFT特性のばらつきを生じさせる。
 本発明は、上記に鑑み、形状制御が困難な塗布プロセスの適用においてもゲート電極、ゲート絶縁膜の形状、表面の制御が容易に行うことができる薄膜トランジスタを提供することを目的とする。
 上記目的を達成するために、本発明にかかる第1の薄膜トランジスタは、基板上にゲート電極が形成され、ゲート電極上に絶縁性薄膜が配置される薄膜トランジスタであって、
ゲート電極がチャネル長より細い線幅で形成され、かつ、断面が半円、半楕円、凸状構造を有する直線もしくは曲線から形成され、前記ゲート電極は、ソース電極からドレイン電極に向かって互いに重なることなく複数本設置されていることを特徴とする。
 本発明によれば、特定の形状を有するTFTを用いることによって、ゲート電極、ゲート絶縁膜の形状、表面制御が容易に実現でき、さらに形状制御が実現でき、性能ばらつきを小さくできる薄膜トランジスタを提供することを可能とする。
 本発明は、特定の形状を有するTFTを用いることによって、ゲート電極、ゲート絶縁膜の形状、表面制御が容易に実現でき、さらに形状制御が実現できることによりTFTとしての性能ばらつきを小さくできることを見出した。
 本発明にかかる薄膜トランジスタは、基板上にゲート電極が形成され、ゲート電極上に絶縁性薄膜が配置される薄膜トランジスタであり、ゲート電極が、チャネル長より細い線幅で形成され、かつ断面が半円、半楕円、凸状構造を有する直線もしくは曲線から形成されることを特徴とする。
 また好ましくは、断面が半円、半楕円、凸状構造を有する直線もしくは曲線から形成されるゲート電極がお互いに独立させる。
 ここで記載する断面の半円、半楕円の形状とは厳密な幾何学的な半円、半楕円形状を示すだけでなく、円、楕円の一部を弦で切り取った形状も含まれる。また、断面を構成する弧は厳密に幾何学的に正確な弧であるほかに、液状の物質が乾燥した際に出来る円、楕円に近似した構造の弧も含まれる。
 ディスペンサ法やインクジェット法の場合、一定の条件で描画した単線の制御は比較的容易に行えるが、それぞれを重ね合わせて線幅の大きな線を描画しようとすると重ね合わせの部分のみ厚くなってしまったりにじんだりして表面の均一性を確保することが困難である。
 そこで、本発明の構造においては、ある程度制御可能な単線をひとつあるいは複数ゲート電極として利用することで、ゲート電極あるいはゲート絶縁膜の形状、表面が制御されたTFTを得ることができる。
 さらにゲート電極あるいはゲート絶縁膜の形状、表面が制御されたTFTを得るために本発明は、ゲート電極がディスペンサ装置による塗布工程で形成される薄膜トランジスタのばあい、単数のゲート電極または複数のゲート電極のそれぞれは1回の吐出動作で形成されることを特徴とし、ゲート電極がインクジェット装置による塗布工程で形成される薄膜トランジスタのばあい、単数のゲート電極または複数のゲート電極のそれぞれがゲート電極の長さ方向に1ドット吐出の重ね合わせで形成されることを特徴とする。
 ディスペンサ装置を使用した塗布工程において、細線を形成する場合、一定の吐出条件で溶液を吐出させながら吐出ヘッドを移動させることにより1回の吐出動作で細線を形成することが出来る。また、形成された細線は溶液の吐出条件を一定にすることで線幅、厚みを一定に制御することが可能である。
 この細線を単独あるいは複数重ならないように配置することによって一定の形状のゲート電極を得ることができる。
 インクジェット装置を使用した塗布工程においては、其の構造上連続した細線を1回の吐出で形成することは不可能であり、細線を形成する場合、1ドット吐出を線の長さ方向に重ね合わせ細線を形成する。
 この場合、隣接したドット同士の吐出時間は極めて短くすることが可能であり、液滴の濃度等が変化しないうちに次の液滴が形成されるためにドットとドットが重なってもお互いが結合し一定の連続した細線を形成することができる。
 これと比較して細線を重ね合わせて幅の広い線を形成する場合、先に形成された細線と次に形成される細線の形成時間が長くなり、重ね合わせた部分の液滴の濃度差等から一定の形状の線を形成することは困難となる。
 本発明のTFT構造はゲート電極あるいはゲート絶縁膜の形状、表面を均一に製造することが可能である構造であり、それぞれの構成材料の作製プロセスを限定されるものでない。したがって、一般的な薄膜製造方法である、真空蒸着法、スパッタリング法、塗布法などで製造することが可能である。
 以下、図面等を参照し、本発明をさらに詳細に説明する。図2は、本発明にかかる第1のTFTの構成を示す断面図および平面図である。図3は、本発明にかかる第2のTFTの構成を示す断面図および平面図である。図4は、本発明にかかる第3のTFTの構成を示す断面図および平面図である。
 本発明にかかる第1のTFTは、図2に示すように、1対のソース電極12とドレイン電極13を有している。
 第1のTFTは、図2に示すように、一般的な電界効果トランジスタ(FET:Field Effect Transistor)構造を有している。
 本発明にかかるTFTは、半導体層(有機化合物層もしくはカーボンナノチューブ層)15と、相互に所定の間隔をあけて対向するように形成されたソース電極(第1の電極)12およびドレイン電極(第2の電極)13と、電極13、14からそれぞれ所定の距離をあけて形成されたゲート電極(第3の電極)14とを有し、ゲート電極14に電圧を印加することによってソース/ドレイン電極12、13間に流れる電流を制御する構成を備える。
 基板11として用いることが可能な材料としては、ガラス、シリコン等の無機材料やアクリル系樹脂のようなプラスチックなどその上に形成されるTFTを保持できる材料であれば特に限定はされない。また、基板以外の構成要素によりTFTの構造を十分に支持し得る場合には、使用しない事も可能である。
 ソース電極12、ドレイン電極13およびゲート電極14にそれぞれ用いることが可能な材料としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、金、銀、白金、銅、インジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等の金属や合金の他、導電性ポリマーなどの有機材料が挙げられるが、これらに限定されるものではない。
 半導体層15に含まれる化合物として、テトラセン、ペンタセン等の縮合多環式芳香族化合物や、銅フタロシアニン、亜鉛フタロシアニン等のフタロシアニン系化合物、アミン系化合物、ポリチオフェン、ポリビニルカルバゾール等のポリマー等半導体特性を有する有機化合物もしくはカーボンナノチューブおよびカーボンナノチューブを含有した混合物を使用することが出来るが半導体特性を有する材料であれば特に限定されない。
 ゲート絶縁膜16に用いることが可能な材料としては、二酸化ケイ素膜、窒化珪素膜のような無機化合物のほか、アクリル樹脂、ポリイミドのような有機絶縁性材料を使用することが出来るが、電気絶縁性を有していれば用いることができとくに限定されない。
 電極12,13の作製方法としては、真空蒸着法、スパッタ法、エッチング法、リフトオフ等通常の電極形成プロセスを利用でき、特に限定されない。
 また、導電性ポリマーのような有機材料や、銀ペーストや金属粒子を含んだ分散液、金属の有機化合物を電極として使用する場合には、スピンコート法、ディップ法、ディスペンサ法、インクジェット法等の溶液プロセスも利用することができ、この場合にも特に限定されない。
 電極14の作製方法としては、ディスペンサ法、インクジェット法等の細線の描画が可能な溶液プロセスであれば特に限定されない。
 電極14の形状としては、図3に示す本発明にかかる第2のTFTは、図3に示すように直線からなる細線を1本もしくは複数本備える構造である。
 チャネル長(ソース電極とドレイン電極との距離)よりも電極14の線幅が小さいことが良好なTFTを得るための条件であるが、電極14の線幅がチャネル長と比較して数分の一以下の場合、電流を変調できるゲート電極部位が小さくなり変調しにくくなるため、その場合、複数本の電極14を備えることが望ましい。電極14を複数本備える場合は、お互いが独立に存在することが必要である。
 また、電極14を複数本備える場合、図3に示す本発明にかかる第2のTFTに示すように直線形状からなる電極14を複数配置しても図4に示す本発明にかかる第3のTFTに示すように1本の電極14を屈曲させて配置させても良い。
 半導体層15の形成方法としては、真空蒸着法等のドライプロセスの他、スピンコート法、ディップ法、ディスペンサ法、インクジェット法等の溶液プロセスも利用することができ、特に限定されない。
 ゲート絶縁膜16の形成方法としては、真空蒸着法、スパッタリング法等のドライプロセスの他、スピンコート法、ディップ法、ディスペンサ法、インクジェット法等の溶液プロセスも利用することができ、特に限定されない。
 本発明にかかる第1のTFT、第2のTFT、第3のTFTにおける半導体薄膜層15の膜厚は、特に制限されることはない。
 しかし、一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎるとチャネル長が長くなり、或いは高い印加電圧が必要となってTFTの性能劣化の要因になるので、数nmから1μmの範囲が好ましい。
 以下、実施例をもとに本発明を詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
[実施例1]
 本実施例では、実施形態例で説明した図3の第2のTFTを以下の手順で作製した。
 まず、ガラス基板11上にナノ銀コロイド溶液をディスペンサ装置を用いて線幅100μm、間隔200μmで2本形成し150℃で30分加熱することによりゲート電極14とした。
 このとき線幅100μmのゲート電極は1回の吐出動作で形成した。
 次いで、このゲート電極14上に、二酸化ケイ素膜スパッタリング法によって200nmの膜厚に成膜し、これを絶縁体層16とした。
 さらに、この絶縁体層16上に、ディスペンサ装置を用いてゲート電極14を挟み込む形でナノ銀コロイド溶液を線幅200μm、間隔500μmで2本製膜することで、ソース電極12およびドレイン電極13を形成した。
 続いて、ディスペンサ装置を用いてポリ(3-ヘキシル)チオフェン溶液を直径700μmの大きさで上記ソース電極・ドレイン電極、絶縁薄膜層で囲まれた領域に4滴塗布し半導体層15を形成しTFT101を得た。
 同様の製造方法でTFT20個を作製し、ゲート電圧-20V、ドレイン電圧-10Vのときの電流値を測定し、最大電流と最小電流の比を算出した。
 その結果、比は1.08であり、比較例1と比較して良好な値が得られた。
 以下に表1を示す。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 線幅100μmのゲート絶縁膜14を400μmの間に5本重ね塗りしてゲート電極とした以外は実施例1と全く同様にTFTを作製し、TFT102を得た。
 作製した有機TFT102について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は8.7であった。
[実施例2]
 半導体材料として表2に示す(F8T2)の化合物を用いた以外は実施例1と全く同様にTFTを作製し、TFT103を得た。
 作製したTFT103について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表2(2.01)に示す結果であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。以下に表2を示す。
Figure JPOXMLDOC01-appb-T000002
[実施例3]
 半導体材料として表2に示した化合物を用いた(ペンタセン)の以外は実施例1と全く同様にTFTを作製し、TFT104を得た。
 作製したTFT104について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表2に示す結果(1.86)であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。
[実施例4]
 半導体材料として表2に示した化合物を用いた(カーボンナノチューブトルエン溶液)の以外は実施例1と全く同様にTFTを作製し、TFT105を得た。
 作製したTFT105について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表2に示す結果(2.21)であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。
[実施例5]
 半導体材料として表2に示した化合物を用いた(カーボンナノチューブ水分散液)の以外は実施例1と全く同様にTFTを作製し、TFT106を得た。
 作製したTFT106について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表2に示す結果(1.54)であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。
[実施例6]
 基板11としてポリエチレンナフタレート(PEN)を用いた以外は実施例1と全く同様にTFTを作製し、TFT107を得た。
 作製した有機TFT107について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は2.55であった。
[比較例2]
 基板11としてポリエチレンナフタレート(PEN)を用いた以外は比較例1と全く同様にTFTを作製し、TFT108を得た。
 作製した有機TFT108について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は18.3であった。
[実施例7]
 半導体材料として表2に示した化合物を用いた以外は実施例6と全く同様にTFTを作製し、TFT109を得た。
 作製したTFT109について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表3に示す結果(3.76)であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。以下に表3を示す。
Figure JPOXMLDOC01-appb-T000003
[実施例8]
 半導体材料として表2に示した化合物を用いた以外は実施例6と全く同様にTFTを作製し、TFT110を得た。
 作製したTFT110について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表3に示す結果(1.21)であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。
[実施例9]
 半導体材料として表2に示した化合物を用いた以外は実施例6と全く同様にTFTを作製し、TFT111を得た。
 作製したTFT111について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表3に示す結果(2.01)であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。
[実施例10]
 半導体材料として表2に示した化合物を用いた以外は実施例6と全く同様にTFTを作製し、TFT112を得た。
 作製したTFT112について、実施例1と同様の条件で測定した電流値の最大値と最小値の比は、表3(1.69)に示す結果であった。
 いずれのTFTにおいても最大電流値と最小電流値の比は良好であった。
 以上、本発明をその好適な実施形態例に基づいて説明したが、本発明に係る薄膜トランジスタは、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正および変更を施した薄膜トランジスタも、本発明の範囲に含まれる。
 以上説明したように、本発明の薄膜トランジスタによると、TFT特性の均一性が良好な薄膜トランジスタを提供することができる。
 なお、この出願は、2008年2月1日に出願した、日本特許出願番号2008-023007号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
一般的なTFTの構成を示す断面図である。 本発明にかかる第1のTFTの構成を示す断面図である。 本発明にかかる第2のTFTの構成を示す平面図である。 本発明にかかる第3のTFTの構成を示す平面図である。
符号の説明
 11  基板
 12  ソース電極
 13  ドレイン電極
 14  ゲート電極
 15  有機薄膜層
 16  絶縁体層

Claims (6)

  1.  基板上にゲート電極が形成され、ゲート電極上に絶縁性薄膜が配置される薄膜トランジスタであって、
     ゲート電極がチャネル長より細い線幅で形成され、かつ、断面が半円、半楕円、凸状構造を有する直線もしくは曲線から形成され、
     前記ゲート電極は、ソース電極からドレイン電極に向かって互いに重なることなく複数本設置されていることを特徴とする請求項1に記載の薄膜トランジスタ。
  2.  前記ゲート電極が塗布工程で形成されることを特徴とする請求項1に記載の薄膜トランジスタ。
  3.  前記ゲート電極の塗布工程がインクジェットまたはディスペンサで形成されることを特徴とする請求項1または2に記載の薄膜トランジスタ。
  4.  前記ゲート電極がディスペンサ装置による塗布工程で形成され、
     単数のゲート電極または複数のゲート電極のそれぞれが1回の吐出動作で形成されることを特徴とする請求項1から3のいずれか1項に記載の薄膜トランジスタ。
  5.  前記ゲート電極がインクジェット装置による塗布工程で形成され、
     単数のゲート電極または複数のゲート電極のそれぞれがゲート電極の長さ方向に1ドット吐出の重ね合わせで形成されることを特徴とする請求項1から4のいずれか1項に記載の薄膜トランジスタ。
  6.  チャネルを形成する半導体材料が有機材料またはカーボンナノチューブまたはカーボンナノチューブを含有する混合物であることを特徴とする請求項1から5のいずれか1項に記載の薄膜トランジスタ。
PCT/JP2009/051586 2008-02-01 2009-01-30 薄膜トランジスタ WO2009096525A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551602A JPWO2009096525A1 (ja) 2008-02-01 2009-01-30 薄膜トランジスタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008023007 2008-02-01
JP2008-023007 2008-02-01

Publications (1)

Publication Number Publication Date
WO2009096525A1 true WO2009096525A1 (ja) 2009-08-06

Family

ID=40912868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051586 WO2009096525A1 (ja) 2008-02-01 2009-01-30 薄膜トランジスタ

Country Status (2)

Country Link
JP (1) JPWO2009096525A1 (ja)
WO (1) WO2009096525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041791A (ko) * 2009-10-16 2011-04-22 삼성전자주식회사 그라핀 소자 및 그 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285843A (ja) * 2004-03-26 2005-10-13 Semiconductor Energy Lab Co Ltd 薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393968B2 (ja) * 2003-10-28 2010-01-06 株式会社半導体エネルギー研究所 配線の作製方法及び半導体装置の作製方法
JP4899504B2 (ja) * 2006-02-02 2012-03-21 株式会社日立製作所 有機薄膜トランジスタの製造方法および製造装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285843A (ja) * 2004-03-26 2005-10-13 Semiconductor Energy Lab Co Ltd 薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041791A (ko) * 2009-10-16 2011-04-22 삼성전자주식회사 그라핀 소자 및 그 제조 방법
KR101694877B1 (ko) 2009-10-16 2017-01-11 삼성전자주식회사 그라핀 소자 및 그 제조 방법

Also Published As

Publication number Publication date
JPWO2009096525A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5499422B2 (ja) 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
US8274084B2 (en) Method and structure for establishing contacts in thin film transistor devices
US8309992B2 (en) Switching element including carbon nanotubes and method for manufacturing the same
WO2010010766A1 (ja) 電界効果型トランジスタおよび回路装置
JP5333221B2 (ja) カーボンナノチューブ構造物及び薄膜トランジスタ
US7960718B2 (en) Printable thin-film transistor for flexible electronics
US10312375B2 (en) Thin-film transistor, method for producing thin-film transistor and image display apparatus using thin-film transistor
JP2008258608A (ja) 両極性トランジスタ設計
US8896071B2 (en) Reducing defects in electronic switching devices
US8304763B2 (en) Thin-film semiconductor device and field-effect transistor
US20160072086A1 (en) Thin film transistor, transistor array, method of manufacturing thin film transistor, and method of manufacturing transistor array
WO2010053171A1 (ja) スイッチング素子及びその製造方法
JP2010079225A (ja) 電界効果型トランジスタ及びその製造方法並びに画像表示装置
JP4807174B2 (ja) 有機トランジスタとその製造方法
JP5671911B2 (ja) 薄膜トランジスタアレイ及び画像表示装置並びに薄膜トランジスタアレイの製造方法
JP2010080896A (ja) 電界効果型トランジスタ及びその製造方法並びに画像表示装置
WO2009096525A1 (ja) 薄膜トランジスタ
JP6459385B2 (ja) 半導体素子、及び半導体装置
JP5055844B2 (ja) 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
JP4345317B2 (ja) 有機薄膜トランジスタ素子
WO2009090966A1 (ja) 薄膜トランジスタ及びその製造方法
JP2008300419A (ja) 有機薄膜トランジスタ
JP6197306B2 (ja) 薄膜トランジスタの製造方法
Onojima et al. Preparation of wettability-controlled surface by electrostatic spray deposition to improve performance uniformity of small molecule/polymer blend organic field-effect transistors
JP2020096006A (ja) 薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551602

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705717

Country of ref document: EP

Kind code of ref document: A1