WO2009096025A1 - 放電加工装置および放電加工方法 - Google Patents
放電加工装置および放電加工方法 Download PDFInfo
- Publication number
- WO2009096025A1 WO2009096025A1 PCT/JP2008/051552 JP2008051552W WO2009096025A1 WO 2009096025 A1 WO2009096025 A1 WO 2009096025A1 JP 2008051552 W JP2008051552 W JP 2008051552W WO 2009096025 A1 WO2009096025 A1 WO 2009096025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse
- voltage
- polarity
- pulse group
- electric discharge
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H1/00—Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
- B23H1/02—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
- B23H1/022—Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
Definitions
- the present invention relates to an electric discharge machining apparatus and an electric discharge machining method for machining a workpiece by electric discharge.
- the electrical discharge machining apparatus is an apparatus for machining a workpiece by generating an arc discharge between the machining electrode and the workpiece.
- the electric discharge machining apparatus requires a power source (processing power supply) for generating arc discharge, and there are various types of configurations of the machining power supply.
- the power supply unit includes a power supply unit for finishing and a power supply unit for rough machining, and also includes resistors connected in series to four switching elements constituting a full bridge circuit in the power supply unit for finishing.
- a power supply device for electric discharge machining configured with different resistance values (for example, Patent Document 1).
- a positive polarity processing that applies a positive electrode potential to a workpiece and a negative electrode potential to a processing electrode
- a reverse polarity processing that applies a negative electrode potential to a workpiece and a positive electrode potential to the processing electrode.
- the value of the resistance value is set so that the value of the machining current supplied to the electric discharge machining gap is small during positive polarity machining and large during reverse polarity machining.
- a small machining voltage is applied to the electric discharge machining gap during positive polarity machining, and the electric discharge machining is reliably cut off at the end of reverse polarity machining while suppressing increase in surface roughness of the electric discharge machining surface.
- a large machining voltage is applied to the electric discharge machining gap during reverse polarity machining, so that electric discharge is stably performed and machining with small surface roughness is performed.
- the present invention has been made in view of the above, and an object thereof is to provide an electric discharge machining apparatus and an electric discharge machining method capable of suppressing the complexity of the configuration and the increase in the number of parts.
- an electric discharge machining apparatus applies a plurality of continuous voltage pulses between a machining electrode and a workpiece, and each time a plurality of voltage pulses are applied.
- a power supply device that supplies a DC voltage
- four switching elements are connected in a full bridge, a pair of DC terminals that connect the power supply device, the machining electrode, and the coated electrode
- a control unit for controlling the four switching elements using the generated switching signal, and a positive pulse group consisting of a plurality of positive pulses in the switching signal waveform
- the reverse polarity pulse group including a plurality of reverse polarity pulses has a different duty ratio.
- the electric discharge machining apparatus in the switching signal waveform composed of a bipolar pulse group for controlling the output timing of the voltage pulse output from the full bridge circuit, the positive pulse composed of a plurality of positive pulses. Since the duty ratio is set to be different between the group and the reverse polarity pulse group composed of a plurality of reverse polarity pulses, the electrical discharge machining apparatus and the electrical discharge machining method capable of suppressing the complexity of the configuration and the increase in the number of parts There is an effect that can be provided.
- FIG. 1 is a diagram illustrating a schematic configuration of an electric discharge machining apparatus according to a first embodiment of the present invention.
- FIG. 2 is a diagram illustrating an example of a switching signal waveform and a voltage waveform between the electrodes at that time (when not discharging).
- FIG. 3 is a diagram showing a switching signal waveform, an inter-electrode voltage waveform (during non-discharge, during discharge), and a discharge current waveform.
- FIG. 4 is a chart comparing the characteristics of positive polarity processing and reverse polarity processing.
- FIG. 5 is a flowchart showing the operation of the control unit in each embodiment.
- FIG. 6 is a flowchart showing a zero volt control process in each embodiment.
- FIG. 7 is a diagram illustrating an example of a switching signal waveform according to the second embodiment and an inter-electrode voltage waveform at that time.
- FIG. 8 is a diagram illustrating an example of a switching signal waveform according to the third embodiment and an inter-electrode voltage waveform at that time.
- FIG. 9 is a diagram illustrating an example of a switching signal waveform according to the fourth embodiment and an inter-electrode voltage waveform at that time.
- FIG. 10 is a diagram illustrating an example of a switching signal waveform according to the fifth embodiment and an inter-electrode voltage waveform at that time.
- FIG. 11 is a diagram illustrating an example of a switching signal waveform suitable for processing workpieces having different thicknesses.
- FIG. 12 is a diagram illustrating an example of a switching signal waveform different from that in FIG. 11.
- FIG. 13 is a diagram illustrating an example of switching signal waveforms different from those in FIGS. 11 and 12.
- FIG. 1 is a diagram showing a schematic configuration of the electric discharge machining apparatus according to the first embodiment of the present invention, and is a functional block diagram mainly showing a power supply unit.
- an electric discharge machining apparatus 1 includes a power supply unit, an electric discharge machining unit 3, and a control unit 4.
- circuit elements such as switching elements SW 1 to SW 4 and a resistor 13, and functional elements such as a voltage detector 16 are disposed around the workpiece 11 and the machining electrode 12 that are arranged to face each other. Is arranged.
- a full bridge circuit in which four switching elements SW1 to SW4 are connected in a full bridge is configured.
- a terminal D1 to which one end of the switching element SW1 and one end of the switching element SW3 are connected, and a terminal D2 to which one end of the switching element SW3 and one end of the switching element SW4 are connected are a pair of direct currents.
- the terminal D3 to which the switching element SW1 and the switching element SW2 are connected and the terminal D4 to which the switching element SW3 and the switching element SW4 are connected constitute a pair of AC terminals.
- the positive terminal of the DC power supply 10 is connected to the terminal D1 of the DC terminal, and the negative electrode of the DC power supply 10 is connected to the terminal D2 of the DC terminal.
- the workpiece 11 is connected to the terminal D3 of the AC terminal via the resistor 13, and the processing electrode 12 is connected to the terminal D4 of the AC terminal.
- the resistor 13 is connected to the workpiece 11 side, but it may be connected to the machining electrode 12 side. Further, when the current flowing between the workpiece 11 and the processing electrode 12 is not so large, the resistor 13 may be omitted.
- the power supply unit and the electric discharge machining unit 3 are provided with a voltage detector 16 for detecting a voltage (hereinafter referred to as “electrode voltage”) generated between the workpiece 11 and the machining electrode 12. Note that the voltage detected by the voltage detector 16 is input to the control unit 4.
- a host controller 5 including a machining parameter 6 and an operation identification processing unit 7 is provided outside the electric discharge machining apparatus 1.
- the machining parameter 6 includes information indicating machining operation, machining conditions, and the like, and the operation identification processing unit 7 controls information (hereinafter referred to as “machining”) required for performing electric discharge machining based on the information of the machining parameter 6.
- Information is identified and transmitted to the control unit 4.
- this control information includes, for example, information on voltage polarity such as whether to perform positive polarity processing, reverse polarity processing, or both, processing speed, surface roughness, electrode wear, straightness Information on which of these is to be emphasized is included.
- the control unit 4 determines the voltage to be applied between the workpiece 11 and the processing electrode 12 (hereinafter referred to as “interelectrode applied voltage”) using the processing information output from the motion identification processing unit 7. , Pulse width (pulse application time), pulse pause width (pulse pause time), ratio of pulse width to pulse cycle (pulse width + pulse cycle width) (duty ratio) in a pulse signal for switching control of switching elements SW1 to SW4 ) And so on.
- the switching elements SW1 to SW4 are controlled based on the switching signal output from the control unit 4, and a desired inter-electrode applied voltage is supplied between the workpiece 11 and the processing electrode 12.
- control unit 4 performs control called zero volt control using the detected voltage detected by the voltage detector 16.
- the zero volt control is a control for suppressing the electrolytic corrosion phenomenon caused by the current flowing between the workpiece 11 and the machining electrode 12, and the machining fluid is biased to one polarity. Is suppressed.
- FIG. 2 is a diagram illustrating an example of a switching signal waveform output from the control unit 4 and an inter-electrode voltage waveform at that time. More specifically, FIG. 4A shows a switching signal applied to the switching elements SW1 and SW4, and FIG. 5B shows a switching signal applied to the switching elements SW2 and SW3.
- FIG. 6C shows an inter-electrode voltage waveform between the workpiece 11 and the machining electrode 12 generated by the switching signals shown in FIGS. However, the waveform shown in FIG. 3C is a voltage waveform when no discharge is generated between the workpiece 11 and the processing electrode 12. The voltage waveform when discharge is occurring will be described later.
- the pulse width in a group of switching signals (hereinafter referred to as “positive pulse group”) applied to the switching elements SW1 and SW4 is ⁇ 1
- the pulse pause width is t1.
- ⁇ 2 be a pulse width
- t2 be a pulse pause width in a group of switching signals (hereinafter referred to as “reverse polarity pulse group”) applied to the switching elements SW2 and SW3.
- reverse polarity pulse group a pulse pause width in a group of switching signals
- V1 and V2 shown in the above equation (2) are the magnitudes of the interelectrode voltages when the respective pulse groups are applied.
- the respective pulse width and pulse pause width are set as in the above formulas (1) and (2), so that the interelectrode voltage V1 when the positive pulse group is applied and For the interpolar voltage V2 when the reverse polarity pulse group is applied, the positive pulse group in which the pulse application time for the same time becomes longer becomes larger, and the relationship of V1> V2 occurs.
- the number of pulses of the reverse polarity pulse group is larger. This is because the zero volt control is performed. To do. In short, in order to make the application time of the positive pulse and the application time of the reverse polarity pulse substantially the same for the same time, the number of reverse polarity pulse groups having a large pulse pause width is increased. In addition, further detailed operations of the control unit 4 including zero-volt control will be described later.
- FIG. 3 is a diagram showing an example of an inter-electrode voltage waveform during discharge and a waveform of a discharge current flowing between the workpiece 11 and the processing electrode 12. More specifically, FIG. 5B shows an inter-electrode voltage waveform when the switching signal shown in FIG. 6A is applied and discharge occurs at points P and R in FIG. Is shown.
- a waveform K1 indicated by a broken line indicates an inter-electrode voltage waveform during non-discharge
- a waveform K2 indicated by a solid line indicates an inter-electrode voltage waveform during discharge.
- discharge occurs at point P in FIG.
- the floating capacitance 14 accumulates between the workpiece 11 and the processing electrode 12 during the period from the point P to the point Q where the switching signal falls. Since electric power is supplied from the DC power source 10 in addition to the electric power that is being used, the discharge current increases as shown in FIG. On the other hand, when a discharge occurs at point R in FIG. 5A, only the electric power stored in the stray capacitance 14 is supplied, and no electric power is supplied from the DC power supply 10, so the discharge current is reduced. . Thus, the discharge between the workpiece 11 and the processing electrode 12 does not necessarily occur only during the ON period of the switching signal. However, the machining amount increases as the discharge current increases. For this reason, from the viewpoint of improving the processing efficiency, it is preferable to perform the processing by generating discharge in the period during which power supply from the DC power supply 10 is possible, that is, the ON period of the switching signal.
- FIG. 4 is a chart comparing the characteristics of positive polarity processing and reverse polarity processing.
- the meaning of “ ⁇ ” means superior to “ ⁇ ”, and conversely, the meaning of “ ⁇ ” means inferior to “ ⁇ ”.
- FIG. 5 is a flowchart showing the operation of the control unit 4
- FIG. 6 is a flowchart showing the zero-volt control process included in the flow of FIG. 5 and 6 are executed under the control of the control unit 4.
- the control unit 4 determines the peak voltage (V1) during positive polarity machining and the peak during reverse polarity machining based on the machining information output from the operation identification processing unit 7 as information necessary when performing electric discharge machining.
- the voltage (V2) is determined (step S11).
- the control unit 4 sets the pulse widths of the positive polarity pulse group and the reverse polarity pulse group to the same value, and sets the pulse pause width (t1) of the positive polarity pulse group and the pulse pause width (t2) of the reverse polarity pulse group. ) Is determined (step S12). As shown in FIG.
- the pulse widths ⁇ 1, ⁇ 2 and the pulse pause widths t1, t2 are determined according to the conditions shown in the above equations (1) and (2). . Further, when machining is performed under the condition of V1 ⁇ V2, the pulse widths ⁇ 1, ⁇ 2 and the pulse pause widths t1, t2 are determined according to the condition shown in the following equation.
- the control unit 4 determines the number of positive pulse groups and the number of reverse polarity pulse groups based on the above formulas (1) and (2) or the above formulas (3) and (4).
- the number of pulses is determined (step S13).
- the number of pulses determined at this time is the basic number of pulses for performing the zero volt control, and the number of basic pulses in each pulse group is not required unless the zero volt control in step S15 described later is required. Is not changed.
- a bipolar pulse group based on the positive polarity pulse group and the reverse polarity pulse group determined in steps S11 to S13 is applied between the workpiece 11 and the machining electrode 12, and a desired electric discharge machining is performed (step S14).
- step S15 After the zero volt control process in step S15, the processes in steps S14 and S15 are repeated.
- conditions relating to the positive pulse group and the reverse polarity pulse group are not changed while one electric discharge machining is performed. However, interrupt processing and machining condition change processing are not performed.
- the control for changing the setting of the positive polarity pulse group and the reverse polarity pulse group may be performed.
- the voltage detector 16 monitors the inter-electrode voltage (V0) (step S101). Based on the interpolar voltage (V0) sequentially transmitted from the voltage detector 16, the controller 4 integrates the time integral value (VT1) related to the applied voltage of the positive polarity pulse and the time integrated value (VT2) related to the applied voltage of the reverse polarity pulse. Is calculated (step S102), and the number of pulses of the positive polarity pulse group or the number of pulses of the reverse polarity pulse group is corrected so that these VT1 and VT2 are substantially equal (step S103).
- a process of adding a predetermined number of pulses to the number of basic pulses or a process of deleting a predetermined number of pulses from the number of basic pulses is performed.
- this pulse number correction process either the number of pulses in the positive pulse group or the number of pulses in the reverse polarity pulse group may be controlled. For example, when it is necessary to increase the number of pulses of the positive pulse group, a process of decreasing the number of pulses of the reverse polarity pulse group may be performed instead of this process. Conversely, when it is necessary to reduce the number of pulses of the positive pulse group, a process of increasing the number of pulses of the reverse polarity pulse group may be performed instead of this process.
- the zero-volt control cycle may be a relatively slow control speed. For this reason, in the comparison process between VT1 and VT2 in step S103 of FIG. 6, the comparison determination threshold value may be increased.
- step S13 the number of pulses to be output can be designed by step S13 at least when the electrodes are not discharged. Yes.
- the controller 4 outputs an output according to the above design without performing zero volt control (without performing control using the voltage detector 16). By doing this, the average voltage between the electrodes can be reduced to approximately zero volts.
- the function of arbitrarily changing the applied voltage between the machining electrode and the workpiece within the range of the power supply voltage can be achieved without using a plurality of power supplies. And since it can implement
- the pulse widths between the positive polarity pulse group and the reverse polarity pulse group are equalized, while the positive pulse duration and the reverse polarity pulse group are paused.
- FIG. FIG. 7 is a diagram illustrating an example of a switching signal waveform according to the second embodiment (an example different from FIG. 2) and an inter-electrode voltage waveform at that time.
- the pulse width between the positive polarity pulse group and the reverse polarity pulse group is equalized, while the pulse pause width of the positive polarity pulse group and the reverse polarity pulse group.
- the pulse pause width is set to a different value, in the switching signal waveform of this embodiment, the pulse pause width of the positive pulse group and the pulse pause width of the reverse polarity pulse group are equalized, The pulse width between the pulse group and the reverse polarity pulse group is set to a different value.
- the switching signal waveform according to the second embodiment shows a case where the pulse pause width is constant and the pulse width is different.
- the determination of the pulse width and the pulse pause width based on the applied voltage and the zero volt control are executed according to the processing flow of FIGS.
- the pulse width in the positive pulse group is ⁇ 1
- the pulse pause width is t1
- the pulse width in the reverse polarity pulse group is ⁇ 2
- the pulse pause is t2.
- V1 and V2 shown in the above equation (5) are the magnitudes of the interelectrode voltages when the respective pulse groups are applied.
- the pulse width and the pulse pause width are set as in the above formulas (5) and (6), so that the interelectrode voltage V1 when the positive pulse group is applied and For the interpolar voltage V2 when the reverse polarity pulse group is applied, the positive pulse group in which the pulse application time for the same time becomes longer becomes larger, and the relationship of V1> V2 occurs.
- the pulse widths ⁇ 1, ⁇ 2 and the pulse pause widths t1, t2 may be determined according to the conditions shown in the following equation.
- the number of pulses of the positive polarity pulse group and the number of pulses of the reverse polarity pulse group are compared, the number of pulses of the reverse polarity pulse group is larger.
- the reason for this is also the same as in the first embodiment.
- the number of reverse polarity pulse groups having a small pulse width is set to Try to increase.
- the pulse pause width of the positive polarity pulse group and the pulse pause width of the reverse polarity pulse group are equalized, while the positive polarity pulse group and the reverse polarity pulse group are Since the optimum applied voltage of each polarity can be determined by setting the pulse width between to different values, it is possible to perform good machining according to the workpiece.
- the pulse pause width may be extended and the discharge frequency may be lowered.
- the pulse pause width is constant. As compared with the first embodiment, it is possible to suppress the decrease in the discharge frequency and to obtain the effect that the decrease in the processing efficiency can be suppressed.
- FIG. FIG. 8 is a diagram illustrating an example of a switching signal waveform according to the third embodiment (an example different from FIGS. 2 and 7) and a voltage waveform between the electrodes at that time.
- the duty ratio in the positive pulse group (the ratio of the pulse width to the pulse period) and the duty ratio in the reverse polarity pulse group are set to different values.
- the duty ratios in the positive polarity pulse group and the reverse polarity pulse group are set to be equal.
- the determination of the pulse width and the pulse pause width based on the applied voltage and the zero volt control are executed according to the processing flow of FIGS.
- the pulse width in the positive pulse group is ⁇ 1
- the pulse pause width is t1
- the pulse width in the reverse polarity pulse group is ⁇ 2.
- the reverse application pulse group having a smaller pulse pause width has a shorter total application period.
- T1> T2 occurs.
- Such a switching signal waveform is suitable, for example, when it is desired to increase the discharge period of positive polarity processing or when it is desired to increase the discharge current during positive polarity processing and reduce the discharge current during reverse polarity processing. By using such a switching signal waveform, efficient and effective electric discharge machining can be performed.
- FIG. 9 is a diagram illustrating an example of a switching signal waveform according to the fourth embodiment (an example different from FIGS. 2, 7, and 8) and an inter-electrode voltage waveform at that time.
- the pulse width of each head pulse in the positive polarity pulse group and the reverse polarity pulse group is set longer (wider) than the second and subsequent pulse widths.
- the difference from the switching signal waveform is the same as that of the third embodiment.
- the determination of the pulse width and the pulse pause width based on the applied voltage and the zero volt control are executed according to the processing flow of FIGS.
- the pulse width of the head pulse in the positive pulse group is ⁇ 1 ′
- the second and subsequent pulse widths are ⁇ 1
- the pulse width of the head pulse in the reverse polarity pulse group is ⁇ 2 ′
- the pulse width after the first is ⁇ 2. At this time, the relationship of the following equation is satisfied between these set values.
- the pulse width of each leading pulse in each pulse group is set wider than the second and subsequent pulse widths, the effective machining time is effectively reduced. The effect that it can ensure and processing efficiency can be acquired is acquired.
- FIG. FIG. 10 is a diagram illustrating an example of a switching signal waveform according to the fifth embodiment (an example different from FIGS. 2 and 7 to 9) and an inter-electrode voltage waveform at that time.
- the pulse pause width between each leading pulse and each second pulse in the positive polarity pulse group and the reverse polarity pulse group is longer than the pause width between other pulses ( Widely set is the difference from the switching signal waveform according to the third embodiment, and the rest is the same as the third embodiment.
- the determination of the pulse width and the pulse pause width based on the applied voltage and the zero volt control are executed according to the processing flow of FIGS.
- the pulse pause width between the first pulse and the second pulse in the positive pulse group is t1 ′
- the pulse pause width after the second pulse is t1
- the reverse polarity pulse Let t2 ′ be the pulse pause width between the first pulse and the second pulse in the group, and let t2 be the pulse pause width after the second pulse. At this time, the relationship of the following equation is satisfied between these set values.
- the pulse pause width between the first pulse and the second pulse is set to be long, the portion where the voltage drops after the rise of the interelectrode voltage can be shortened.
- the time of the portion where the interelectrode voltage waveform K2 falls between the first pulse and the second pulse can be shortened.
- the effective machining time for each pulse group can be ensured, and the machining efficiency can be increased.
- the pulse pause width between each head pulse and each second pulse in each pulse group is set longer than the pause width between other pulses. Therefore, the effective machining time can be effectively ensured, and the machining efficiency can be increased.
- FIG. FIG. 11 is a diagram illustrating an example of a switching signal waveform suitable for processing workpieces having different thicknesses. Specifically, FIG. 5A shows a switching signal waveform when machining the “A” portion of the workpiece, and FIG. 5B shows when the “B” portion of the workpiece is machined. The switching signal waveform of FIG. 4C shows the switching signal waveform when machining the “C” portion of the workpiece.
- the inter-electrode voltage waveform is varied by making the pulse width in the pulse group constant and changing the pulse pause width. That is, the pulse pause width is set shorter as the workpiece thickness increases, and conversely, the pulse pause width is set longer as the workpiece thickness decreases.
- FIG. 12 is a diagram illustrating an example of a switching signal waveform different from that in FIG. 11, and similarly to FIG. 11, (a) shows a switching signal waveform when machining the portion “A” of the workpiece. , (B) shows the switching signal waveform when machining the “B” portion of the workpiece, and (c) shows the switching signal waveform when machining the “C” portion of the workpiece. Yes.
- the inter-electrode voltage waveform is varied by making the pulse pause width in the pulse group constant and changing the pulse width. That is, the pulse width is set longer as the workpiece thickness increases, and conversely, the pulse width is set shorter as the workpiece thickness decreases.
- the pulse width in the pulse group is constant and the pulse pause width is made different.
- the important point is that the duty ratio of the pulse group is varied according to the processing thickness. Therefore, the duty ratio may be set larger as the thickness of the workpiece increases, and conversely, the duty ratio may be set smaller as the thickness of the workpiece decreases. At this time, the pulse width and the pulse pause width may be different.
- FIG. 13 is a diagram showing an example of a switching signal waveform different from those in FIGS. 11 and 12, (a) is a switching signal waveform when processing the portion “A” of the workpiece, and (b) is a switching signal waveform.
- FIG. 4C shows a switching signal waveform when machining the “B” portion of the workpiece
- FIG. 5C shows a switching signal waveform when machining the “C” portion of the workpiece.
- the example shown in FIG. 11 shows a switching signal waveform in which processing speed and straightness are more important than surface roughness.
- the example shown in FIG. 12 shows a switching signal waveform in which processing speed and straightness are more important than surface roughness and both processing speed and straightness are achieved.
- the example shown in FIG. 13 shows a switching signal waveform in which both electrode wear and straightness are achieved while placing importance on electrode wear.
- the waveform may be selected in the thin plate region so that the surface roughness does not deteriorate even if the straightness deteriorates. I can say that.
- the processing speed of a thick plate tends to be lower than that of a thin plate as the processing volume increases, and when there is a demand for the same speed at any plate thickness, the interelectrode voltage during thin plate processing It is only necessary to select a waveform that is low and increases the voltage between the electrodes when processing a thick plate.
- Which combination can provide the optimum machining varies greatly depending on the machining environment, machining conditions, target accuracy, target machining speed, etc., and the waveform to be selected is also arbitrary.
- the positive polarity machining pulse group and the reverse polarity machining pulse group are configured by combining the various switching signal waveforms shown in the first to fifth embodiments. Even when workpieces with different thicknesses are continuously processed, flexible and efficient processing is performed taking into consideration processing speed, surface roughness, straightness, electrode wear, etc. It becomes possible.
- switching signal waveforms shown in FIGS. 11 to 13 show an example, and it goes without saying that various signals generated based on various viewpoints may be used.
- the electric discharge machining apparatus and the electric discharge machining method according to the present invention are useful as an invention capable of suppressing the complication of the configuration and the increase in the number of parts and types.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
3 電源部および放電加工部
4 制御部
5 上位コントローラ
6 加工パラメータ
7 動作識別処理部
10 直流電源
11 被加工物
12 加工用電極
13 抵抗
14 浮遊容量
15 浮遊抵抗
16 電圧検出器
図1は、本発明の実施の形態1にかかる放電加工装置の概略構成を示す図であり、電源部を中心として示した機能ブロック図である。図1において、放電加工装置1は、電源部および放電加工部3および制御部4を備えている。
t1<t2(V1>V2の場合) …(2)
t1>t2 …(4)
図7は、実施の形態2にかかるスイッチング信号波形の一例(図2とは異なる一例)および、そのときの極間電圧波形を示す図である。図2に示す実施の形態1にかかるスイッチング信号波形では、正極性パルス群と逆極性パルス群との間のパルス幅を等しくする一方で、正極性パルス群のパルス休止幅と逆極性パルス群のパルス休止幅とを異なる値に設定しているが、この実施の形態のスイッチング信号波形では、正極性パルス群のパルス休止幅と逆極性パルス群のパルス休止幅とを等しくする一方で、正極性パルス群と逆極性パルス群との間のパルス幅を異なる値に設定している。すなわち、実施の形態2にかかるスイッチング信号波形は、パルス休止幅が一定でパルス幅が異なる場合を示すものである。なお、印加電圧に基づく、パルス幅およびパルス休止幅の決定、ならびに零ボルト制御については、図5および図6の処理フローに従って実行される。
t1=t2 …(6)
t1=t2 …(8)
図8は、実施の形態3にかかるスイッチング信号波形の一例(図2、図7とは異なる一例)および、そのときの極間電圧波形を示す図である。図2および図7に示す実施の形態1、2にかかるスイッチング信号波形では、正極性パルス群におけるデューティ比(パルス周期に対するパルス幅の比)と逆極性パルス群におけるデューティ比とを異なる値に設定しているが、この実施の形態のスイッチング信号波形では、正極性パルス群および逆極性パルス群における各デューティ比が等しくなるように設定している。なお、印加電圧に基づく、パルス幅およびパルス休止幅の決定、ならびに零ボルト制御については、図5および図6の処理フローに従って実行される。
Στ1=Στ2 …(10)
図9は、実施の形態4にかかるスイッチング信号波形の一例(図2、図7、図8とは異なる一例)および、そのときの極間電圧波形を示す図である。本実施の形態にかかるスイッチング信号では、正極性パルス群および逆極性パルス群における各々の先頭パルスのパルス幅を各2番目以降のパルス幅より長く(広く)設定しているところが実施の形態3のスイッチング信号波形との相違点であり、その他については実施の形態3と同一である。なお、印加電圧に基づく、パルス幅およびパルス休止幅の決定、ならびに零ボルト制御については、図5および図6の処理フローに従って実行される。
τ2’>τ2 …(12)
図10は、実施の形態5にかかるスイッチング信号波形の一例(図2、図7~図9とは異なる一例)および、そのときの極間電圧波形を示す図である。本実施の形態にかかるスイッチング信号では、正極性パルス群および逆極性パルス群における各々の先頭パルスと各々の2番目のパルスとの間のパルス休止幅を他のパルス間の休止幅よりも長く(広く)設定しているところが実施の形態3にかかるスイッチング信号波形との相違点であり、その他については実施の形態3と同一である。なお、印加電圧に基づく、パルス幅およびパルス休止幅の決定、ならびに零ボルト制御については、図5および図6の処理フローに従って実行される。
t2’<t2 …(14)
図11は、厚さの異なる被加工物を加工するときに好適なスイッチング信号波形の一例を示す図である。具体的には、同図(a)は、被加工物の“A”の部分を加工するときのスイッチング信号波形、同図(b)は、被加工物の“B”の部分を加工するときのスイッチング信号波形、同図(c)は、被加工物の“C”の部分を加工するときのスイッチング信号波形をそれぞれ示している。
Claims (8)
- 加工用電極と被加工物との間に連続する複数の電圧パルスを印加し、複数回の電圧パルス毎に極性を切り替えて加工を行う放電加工装置において、
直流電圧を供給する電源装置と、
4つのスイッチング素子がフルブリッジ接続され、前記電源装置を接続する一対の直流端子と、前記加工用電極と前記被加工物とを接続する一対の交流端子と、を具備してなり、該電源装置から供給される直流電圧を、正極性加工を行うための電圧パルスと、逆極性加工を行うための電圧パルスと、に変換して出力するフルブリッジ回路と、
放電加工に必要な加工情報に基づき、前記フルブリッジ回路から出力される前記電圧パルスの出力タイミングを制御するための両極性のパルス群からなるスイッチング信号を生成するとともに、該生成したスイッチング信号を用いて前記4つのスイッチング素子を制御する制御部と、
を備え、
前記スイッチング信号波形における複数の正極性パルスからなる正極性パルス群と、複数の逆極性パルスからなる逆極性パルス群とでは、デューティ比が異なっていることを特徴とする放電加工装置。 - 前記正極性パルス群および前記逆極性パルス群のデューティ比は、各パルス群におけるパルス幅を略等しくし、かつ、各パルス群におけるパルス休止幅を異ならせたものであることを特徴とする請求項1に記載の放電加工装置。
- 前記正極性パルス群および前記逆極性パルス群のデューティ比は、各パルス群におけるパルス休止幅を略等しくし、かつ、各パルス群におけるパルス幅を異ならせたものであることを特徴とする請求項1に記載の放電加工装置。
- 前記制御部は、加工速度、面粗さ、電極消耗、または真直度を含む一つ以上の重視項目を設定し、該決定した重視項目に基づいて前記スイッチング信号を決定することを特徴とする請求項1に記載の放電加工装置。
- 前記制御部は、前記正極性パルス群における正極性パルスの印加電圧に関する時間積分値と、前記逆極性パルス群における逆極性パルスの印加電圧に関する時間積分値とが、略一致するように制御することを特徴とする請求項1に記載の放電加工装置。
- 加工用電極と被加工物との間に連続する複数の電圧パルスを印加し、複数回の電圧パルス毎に極性を切り替えて加工を行う放電加工装置において、
直流電圧を供給する電源装置と、
4つのスイッチング素子がフルブリッジ接続され、前記電源装置を接続する一対の直流端子と、前記加工用電極と前記被加工物とを接続する一対の交流端子と、を具備してなり、該電源装置から供給される直流電圧を、正極性加工を行うための電圧パルスと、逆極性加工を行うための電圧パルスと、に変換して出力するフルブリッジ回路と、
放電加工に必要な加工情報に基づき、前記フルブリッジ回路から出力される前記電圧パルスの出力タイミングを制御するための両極性のパルス群からなるスイッチング信号を生成するとともに、該生成したスイッチング信号を用いて前記4つのスイッチング素子を制御する制御部と、
を備え、
前記スイッチング信号波形における複数の正極性パルスからなる正極性パルス群と、複数の逆極性パルスからなる逆極性パルス群とでは、各パルス群におけるパルス幅またはパルス休止幅が異なり、かつ、各パルス群におけるデューティ比が略等しく設定されていることを特徴とする放電加工装置。 - 加工用電極と被加工物との間に連続する複数の電圧パルスを印加し、複数回の電圧パルス毎に極性を切り替えて加工を行う放電加工装置において、
直流電圧を供給する電源装置と、
4つのスイッチング素子がフルブリッジ接続され、前記電源装置を接続する一対の直流端子と、前記加工用電極と前記被加工物とを接続する一対の交流端子と、を具備してなり、該電源装置から供給される直流電圧を、正極性加工を行うための電圧パルスと、逆極性加工を行うための電圧パルスと、に変換して出力するフルブリッジ回路と、
放電加工に必要な加工情報に基づき、前記フルブリッジ回路から出力される前記電圧パルスの出力タイミングを制御するための両極性のパルス群からなるスイッチング信号を生成するとともに、該生成したスイッチング信号を用いて前記4つのスイッチング素子を制御する制御部と、
を備え、
前記被加工物が板厚の異なる場合には、板厚ごとに前記スイッチング信号波形におけるデューティ比が異なっていることを特徴とする放電加工装置。 - 被加工物に正極性、加工用電極に負極性の電源極性を与えるような複数の正極性パルスからなる正極性パルス群を印加する第1工程と、
被加工物に負極性、加工用電極に正極性の電源極性を与え、かつ、前記正極性パルスのデューティ比とは異なるデューティ比に設定された複数の逆極性パルスからなる逆極性パルス群を印加する第2工程と、
を含み、
前記第1工程と前記第2工程とを交互に繰り返すこと
を特徴とする放電加工方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/051552 WO2009096025A1 (ja) | 2008-01-31 | 2008-01-31 | 放電加工装置および放電加工方法 |
DE112008003662.4T DE112008003662B4 (de) | 2008-01-31 | 2008-01-31 | Elektrische Entladungsbearbeitungsvorrichtung und elektrisches Entladungsbearbeitungsverfahren |
JP2009551375A JP5127843B2 (ja) | 2008-01-31 | 2008-01-31 | 放電加工装置および放電加工方法 |
CN200880126041.8A CN101932404B (zh) | 2008-01-31 | 2008-01-31 | 放电加工装置及放电加工方法 |
US12/865,655 US8309876B2 (en) | 2008-01-31 | 2008-01-31 | Electric discharge machining apparatus and electric discarge machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/051552 WO2009096025A1 (ja) | 2008-01-31 | 2008-01-31 | 放電加工装置および放電加工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009096025A1 true WO2009096025A1 (ja) | 2009-08-06 |
Family
ID=40912394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/051552 WO2009096025A1 (ja) | 2008-01-31 | 2008-01-31 | 放電加工装置および放電加工方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8309876B2 (ja) |
JP (1) | JP5127843B2 (ja) |
CN (1) | CN101932404B (ja) |
DE (1) | DE112008003662B4 (ja) |
WO (1) | WO2009096025A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013244542A (ja) * | 2012-05-23 | 2013-12-09 | Shin-Nihon Tech Inc | 焼結ダイヤモンドの放電加工方法 |
WO2014024918A1 (ja) * | 2012-08-08 | 2014-02-13 | 株式会社ソディック | 放電加工装置 |
US9446465B2 (en) | 2012-10-30 | 2016-09-20 | Mitsubishi Electric Corporation | Wire electric-discharge machining apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103451651B (zh) * | 2012-05-31 | 2016-03-30 | 通用电气公司 | 沉积-加工组合方法及系统 |
JP5642810B2 (ja) * | 2013-01-08 | 2014-12-17 | ファナック株式会社 | 放電加工用電源装置 |
JP6541287B1 (ja) * | 2018-08-23 | 2019-07-10 | 株式会社ソディック | 放電加工機 |
EP3950200B1 (en) * | 2020-08-07 | 2023-05-03 | Agie Charmilles SA | Method for high-speed wire cutting |
CN117655440B (zh) * | 2023-09-22 | 2024-09-20 | 新疆大学 | 双极性高低压复合脉冲电源 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61203221A (ja) * | 1985-03-02 | 1986-09-09 | Inoue Japax Res Inc | 放電加工用電源装置 |
JPS61274811A (ja) * | 1985-05-30 | 1986-12-05 | Fanuc Ltd | 放電加工電源 |
JPH11347846A (ja) * | 1998-06-04 | 1999-12-21 | Fanuc Ltd | ワイヤ放電加工機におけるモニタ装置 |
WO2002102538A1 (en) * | 2001-06-15 | 2002-12-27 | Mitsubishi Denki Kabushiki Kaisha | Wire electric-discharge machining method and device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2692510B2 (ja) * | 1991-12-02 | 1997-12-17 | 三菱電機株式会社 | 放電加工装置 |
US5317122A (en) * | 1992-01-28 | 1994-05-31 | Mitsubishi Denki Kabushiki Kaisha | Discharge-processing electric power-source assembly |
JP2707019B2 (ja) | 1992-05-26 | 1998-01-28 | 三菱電機株式会社 | 放電加工装置 |
EP0934791B1 (en) | 1998-02-05 | 2008-04-02 | Fanuc Ltd | Controller of wire electric discharge machine |
JP4224556B2 (ja) | 1998-02-20 | 2009-02-18 | 日立ビアエンジニアリング株式会社 | 放電加工方法および放電加工装置 |
US6222149B1 (en) * | 1998-06-10 | 2001-04-24 | Sodick Co., Ltd. | Power supply device for electric discharge machining apparatus |
JP3361057B2 (ja) | 1998-06-10 | 2003-01-07 | 株式会社ソディック | 放電加工方法及び放電加工用電源装置 |
JP3664879B2 (ja) | 1998-06-10 | 2005-06-29 | 株式会社ソディック | 放電加工方法及び放電加工装置 |
WO2001087526A1 (fr) * | 2000-05-15 | 2001-11-22 | Mitsubishi Denki Kabushiki Kaisha | Alimentation pour usinage par etincelage |
WO2003106088A1 (ja) * | 2002-06-12 | 2003-12-24 | 三菱電機株式会社 | ワイヤ放電加工機の加工電源装置 |
WO2006046599A1 (ja) * | 2004-10-27 | 2006-05-04 | Mitsubishi Denki Kabushiki Kaisha | 放電加工用電源装置及び細穴放電加工装置 |
CN100562394C (zh) * | 2004-10-28 | 2009-11-25 | 三菱电机株式会社 | 放电加工用电源装置以及放电加工方法 |
-
2008
- 2008-01-31 WO PCT/JP2008/051552 patent/WO2009096025A1/ja active Application Filing
- 2008-01-31 DE DE112008003662.4T patent/DE112008003662B4/de not_active Expired - Fee Related
- 2008-01-31 US US12/865,655 patent/US8309876B2/en not_active Expired - Fee Related
- 2008-01-31 JP JP2009551375A patent/JP5127843B2/ja active Active
- 2008-01-31 CN CN200880126041.8A patent/CN101932404B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61203221A (ja) * | 1985-03-02 | 1986-09-09 | Inoue Japax Res Inc | 放電加工用電源装置 |
JPS61274811A (ja) * | 1985-05-30 | 1986-12-05 | Fanuc Ltd | 放電加工電源 |
JPH11347846A (ja) * | 1998-06-04 | 1999-12-21 | Fanuc Ltd | ワイヤ放電加工機におけるモニタ装置 |
WO2002102538A1 (en) * | 2001-06-15 | 2002-12-27 | Mitsubishi Denki Kabushiki Kaisha | Wire electric-discharge machining method and device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013244542A (ja) * | 2012-05-23 | 2013-12-09 | Shin-Nihon Tech Inc | 焼結ダイヤモンドの放電加工方法 |
WO2014024918A1 (ja) * | 2012-08-08 | 2014-02-13 | 株式会社ソディック | 放電加工装置 |
KR20150038578A (ko) * | 2012-08-08 | 2015-04-08 | 가부시키가이샤 소딕 | 방전 가공 장치 |
KR101717609B1 (ko) * | 2012-08-08 | 2017-03-17 | 가부시키가이샤 소딕 | 방전 가공 장치 |
US9770773B2 (en) | 2012-08-08 | 2017-09-26 | Sodick Co., Ltd. | Electric discharge machining apparatus |
RU2635057C2 (ru) * | 2012-08-08 | 2017-11-08 | Содик Ко., Лтд. | Установка для электроэрозионной обработки |
US9446465B2 (en) | 2012-10-30 | 2016-09-20 | Mitsubishi Electric Corporation | Wire electric-discharge machining apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE112008003662T5 (de) | 2010-12-30 |
DE112008003662B4 (de) | 2015-05-21 |
CN101932404A (zh) | 2010-12-29 |
JP5127843B2 (ja) | 2013-01-23 |
JPWO2009096025A1 (ja) | 2011-05-26 |
CN101932404B (zh) | 2013-02-13 |
US20110000889A1 (en) | 2011-01-06 |
US8309876B2 (en) | 2012-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5127843B2 (ja) | 放電加工装置および放電加工方法 | |
US8168914B2 (en) | Electric-discharge-machining power supply apparatus and electric discharge machining method | |
JP5220036B2 (ja) | 放電加工装置 | |
JP5045104B2 (ja) | 放電加工用電源装置及び細穴放電加工装置 | |
TWI580312B (zh) | 除電裝置及除電控制方法 | |
TWI442985B (zh) | 金屬線放電加工機 | |
JP5414864B1 (ja) | ワイヤカット放電加工装置の加工電源装置 | |
WO2013080347A1 (ja) | 放電加工機用電源装置 | |
WO2009096026A1 (ja) | 放電加工装置 | |
JP5642810B2 (ja) | 放電加工用電源装置 | |
US9770773B2 (en) | Electric discharge machining apparatus | |
JP2014012323A (ja) | ワイヤ放電加工装置 | |
JP5044898B2 (ja) | 放電加工機用電源装置及びワイヤ放電加工装置 | |
JP5253441B2 (ja) | 放電加工用電源装置 | |
JP5478532B2 (ja) | 放電加工装置 | |
JP5236368B2 (ja) | 単一電源を備えたワイヤ放電加工機 | |
JP6165210B2 (ja) | ワイヤ放電加工装置の加工電源装置 | |
JP5466255B2 (ja) | 細穴放電加工機の放電制御方法および細穴放電加工用電源装置 | |
JP2002160128A (ja) | 放電加工装置 | |
JP5474148B2 (ja) | 放電加工用電源装置 | |
WO2016059689A1 (ja) | 放電加工機の電源装置 | |
JP2004050299A (ja) | 放電加工方法及び放電加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880126041.8 Country of ref document: CN |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08710662 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009551375 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12865655 Country of ref document: US |
|
RET | De translation (de og part 6b) |
Ref document number: 112008003662 Country of ref document: DE Date of ref document: 20101230 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08710662 Country of ref document: EP Kind code of ref document: A1 |