WO2009095521A1 - Copolímeros sililados con grupos silsesquioxano, su preparación y utilización como matrices láser de alta fotoestabilidad - Google Patents

Copolímeros sililados con grupos silsesquioxano, su preparación y utilización como matrices láser de alta fotoestabilidad Download PDF

Info

Publication number
WO2009095521A1
WO2009095521A1 PCT/ES2009/070007 ES2009070007W WO2009095521A1 WO 2009095521 A1 WO2009095521 A1 WO 2009095521A1 ES 2009070007 W ES2009070007 W ES 2009070007W WO 2009095521 A1 WO2009095521 A1 WO 2009095521A1
Authority
WO
WIPO (PCT)
Prior art keywords
silsesquioxane
laser
copolymers
groups
matrices
Prior art date
Application number
PCT/ES2009/070007
Other languages
English (en)
French (fr)
Inventor
Ángel COSTELA GONZALEZ
Olga Garcia Ballesteros
Inmaculada GARCÍA-MORENO
Virginia Martin Torres
Roberto SASTRE MUÑOZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2009095521A1 publication Critical patent/WO2009095521A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix

Definitions

  • Optics One of the most significant application and consumption sectors of synthetic polymers is that of Optics.
  • its most common applications range from the manufacture of conventional optical components, such as lenses, diffraction nets, filters, polarizers, ..., and its commissioning in glasses, sunglasses and correctors, contact lenses, rigid, soft, oxygen permeable, permanent and disposable, even intraocular lenses, which because of its biocompatibility represents a clear example that its importance goes beyond that of being a simple material, because of the function they fulfill.
  • Complementary examples of other more specific developments and applications are found within Optoelectronics, as well as within the field of Optics, many of them based on the non-linear optical behavior of certain polymers.
  • Dye lasers are used today in many different fields, both industrial and medical.
  • these types of lasers are increasingly used in different treatments and therapies, including their recent application for the selective destruction of cancerous tissues, in the so-called photodynamic therapy, as well as in the detection and tumor diagnosis.
  • mesoporous or aerogels consisting of three-dimensional networks of open pore silica of nanometric size, which are flood with the appropriate monomer-laser dye formulations, to be subsequently polymerized in situ, in a controlled manner, thus allowing to obtain more efficient materials in their laser emission and highly photostable, mainly when the polymers obtained within the mesoporous silica matrix were fluorinated in nature [Costela, A., Garc ⁇ a-Moreno, I., Gómez, C, Garc ⁇ a, O., Sastre, R., Roig, A., and Molins, E., Polymer-Filled Nanoporous Silica Aerogels as Hosts for Highly Stable Solid-State Dye Lasers, J.
  • silica into the polymeric structure of the hybrid matrices used as emitters of laser light, we start from the hypothesis that if silica could be incorporated at the molecular level, everything could be achieved the potential that silica can provide, with the main objective of increasing the thermal conductivity of the matrix and thus improving its thermo- and photostability.
  • the obtaining of the matrices object of the present invention is based on the copolymerization of different monomers, of which at least one of them carries as a substituent of the polymerizable double bond a silsesquioxane group ( structure I), or it consists of a functionalized silsesquioxane with a variable number of polymerizable double bonds, greater than one and up to a maximum of eight, ten or twelve polymerizable groups (structure II):
  • substituent R of the structure I can be any aliphatic or aromatic organic group, suitably selected to favor its solubility and compatibility with other conventional organic monomers,
  • any unsaturated group is considered as a polymerizable group of silsesquioxane, preferably the best results are those obtained with vinyl, acrylic and methacrylic double bonds, the latter two unsaturated groups having achieved the best optical properties.
  • the best results have also been obtained with acrylic and methacrylic monomers, with one to four unsaturated groups per comonomer molecule.
  • the use of polyfunctional monomers leads to the obtaining of crosslinked polymers with a degree of cross-linking of varying extent and dependent on the proportion or concentration of the monomer or polyfunctional monomers used, as well as the degree of functionality thereof.
  • the proportion or concentration of this type of monomers is determinant of their properties and behavior as solid matrix of those dyes usable for the stimulated generation of laser light.
  • the proportion or concentration of the silsesquioxane monomers, with structure I or II can vary within wide ranges, however, we have verified that the copolymers with the best laser properties are obtained when their concentration is between 1 and 50 % by weight, with respect to the total volume of the mixture of starting monomers.
  • the initiation of the polymerization process can be carried out by conventional methods and procedures used in macromolecular synthesis; namely: free radical pathway or ionic pathway, both thermally and photochemically or redox, in solution, suspension, emulsion, interface, block or mass.
  • free radical pathway or ionic pathway both thermally and photochemically or redox, in solution, suspension, emulsion, interface, block or mass.
  • the best results obtained have been achieved by block polymerization by thermal initiation via free radicals.
  • the initiators employable for the generation of free radicals are all those also commonly used in the polymerization processes, the most suitable being those of the peroxide and hydroperoxide type, as well as the aliphatic azo compounds, having been with the azobis-isobutyronitrile initiator with which better Results have been obtained, when it is used at a concentration of between 0.1 and 5% by weight, with respect to the monomer mixture. It is also advisable to carry out the polymerization in an inert atmosphere, such as under nitrogen or argon, or under vacuum (at least 15 Pa). Once the initiator is conveniently dissolved in the monomer mixture, the selected laser dye is incorporated according to the desired laser emission wavelength.
  • the concentration to be used of the laser dye is determined specifically by its molar absorption coefficient at the excitation or pumping wavelength, by its optical density, by the configuration of the laser cavity and by the type of pumping, transverse or longitudinal, of Said cavity Therefore, in each case, for each dye it is necessary to carry out previously the optimization of its concentration, according to the indicated parameters.
  • a determining and vital aspect is that of the solubility of the laser dye, both in the initial mixing of the starting monomers, and in the final solid polymer obtained, since even a partial insolubility of the dye leads to the impossibility of generating laser light, or a material with a low stability that excludes its commercial use for this application.
  • it is necessary and essential to ensure the total prior solubility of the dye in the initial monomer mixture being therefore necessary to choose the nature and proportions of the starting monomers, as well as using the appropriate methods to ensure and facilitate its total solubility, having been very effective for this purpose the use of ultrasound.
  • the final solution obtained, once microfiltered, is poured into a mold with the appropriate dimensions to obtain, once carried out its polymerization, a piece suitable to be machined to the shape and dimensions chosen for its adaptation to the laser cavity.
  • the mold used can be of any of the materials commonly used in the casting by casting of a plastic material, having to be especially careful in its choice with a view to facilitating the subsequent demolding of the piece, once the polymerization process is finished.
  • the laser properties of the final material obtained turn out to be equally dependent on the optical homogeneity thereof, it is necessary to optimize in each case the conditions of the polymerization process in order to avoid possible differences in the index of refraction within the material, following the procedures, methods and conditions described in our ES 19990001540.
  • the polymeric matrices carrying the laser dyes in the appropriate proportions and concentrations are obtained, they are demoulded and machined, following the usual procedures in the machining of materials, until the desired geometric shape and dimensions are reached, as well as a subsequent polishing of said piece until a laser quality or at least optical quality finish is achieved.
  • the physical properties of the materials obtained are a function of the composition of the corresponding copolymers, being noteworthy, for the purposes pursued in this patent, the increase experienced by two thermal properties as the proportion or content in the copolymer in silsesquioxane units increases, such as the glass transition temperature and the thermal conductivity.
  • the glass transition temperature of the methyl methacrylate copolymers with the Silsesquioxane monomers is doubled when passing from the homopolymer (approx. 100 0 C) to a copolymer with 33% by weight / volume of the silsesquioxane octamethyl methacrylate (approx. 190 0 C).
  • thermal conductivity which grows linearly with the content of silsesquioxane in the copolymer, according to the values set out in the attached Table 1.
  • Said increase in thermal conductivity entails a parallel increase in its laser emission efficiency, from 12% for polymer without silsesquioxane to, for example, 64.8% for the 33% copolymer in silsesquioxane. These values are even higher than that of this same dye, PM 567, in liquid solution (approx. 36%), which are the maximum efficiencies attainable in the current commercial lasers of this dye. What is even more important, is the marked increase in its stability under irradiation when pumped transversely at 532 nm, with a frequency of 10Hz and an energy of 5 mJ, conditions under which its emission efficiency is maintained, after 100 000 shots, at a level of 90 to 100% of its initial value. This stability has been proven experimentally that it is also maintained even using more drastic pumping conditions, such as the use of frequencies of 30 Hz, thus exceeding the behavior of the dye in liquid solution, which greatly guarantees the commercial use of these new materials in the manufacture of solid state dye lasers.
  • silsesquioxane copolymers Using the commercial laser dye Pirrometene 567 as a reference, a 1.5 mM solution thereof is prepared in a mixture of silsesquioxane octamethyl methacrylate and pure methyl methacrylate, in varying proportions ranging from 1 to 50 % weight / volume in both monomers (1OmI). To each of these solutions the azobisisobutyronitrile initiator (10 mg; 0.06 mmol) is added, which is solubilized by stirring and subsequent treatment in an ultrasonic bath.
  • said solutions are microfiltered with a membrane of 0.2 microns in pore size and poured on cylindrical polypropylene molds of 12 cm inside diameter, within which the resulting solution is deoxygenated by pure argon or nitrogen bubbling , immersing in these solutions a capillary for about ten minutes.
  • the molds are closed and sealed under inert atmosphere and maintained at 40 0 C for 48 hours. After this time, the solutions will have solidified, then pulling up the temperature to 50 0 C, temperature at which the molds are maintained for at least 24 hours.
  • the temperature is raised again slowly (50 ° C / day), until reaching 80 0 C, keeping at this temperature for 2 more hours, then Cool both molds slowly until room temperature is reached, in order to avoid freezing of residual stresses that could affect the optical quality of the material obtained, and then the pieces can be demoulded.
  • the laser evaluation of the materials obtained following the procedure described in the previous example was carried out once conveniently machined and polished in the form of cylinders 1cm high and 1cm in diameter, with a cut parallel to its axis, with object of obtaining a flat lateral surface.
  • the device used in said evaluation was the one described in ES 19990001540.
  • Table 2 shows the values of the laser parameters: emission wavelength, efficiency and stability, of different copolymers obtained based on the content of the silsesquioxane octamethyl methacrylate monomer, following the procedure described in example 1.
  • the copolymer with a silsesquioxane weight content of 13% was subjected to irradiation under more drastic conditions, using a pumping frequency of 30Hz, checking that even after 100,000 shots it was maintained its emission efficiency at 100%. Therefore, the use of the new materials as laser light emitters, object of the present invention patent, has shown that they have efficiency, tunability and photostability values that make them viable to be used as laser light emitters, substantially improving other polymer matrices described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La incorporación de los grupos silsesquioxano al copolímero se lleva a cabo a partir de monómeros con un número variable de dobles enlaces polimerizables por molécula de silsesquioxano, de uno hasta doce. Los copolímeros obtenidos, lineales y entrecruzados, presentan unas excelentes propiedades ópticas y altas fotoestabilidades, propiedades que les hacen especialmente aplicables como matrices sólidas para la fabricación de emisores de luz láser cuando a las mismas se les incorporan durante el proceso de su polimerización un colorante láser soluble en el medio de reacción y en el copolímero final obtenido. Los emisores láser así obtenidos presentan unas eficiencias superiores a las obtenidas con los colorantes comerciales, tanto en disolución líquida, como en otras matrices sólidas, siendo de destacar la alta fotoestabilidad que presentan estas matrices sililadas, incluso bajo condiciones extremas de trabajo.

Description

COPOÜMEROS SILILADOS CON GRUPOS SILSESQUIOXANO, SU PREPARACIÓN Y UTILIZACIÓN COMO MATRICES LÁSER DE ALTA
FOTOESTABILIDAD.
SECTOR DE LA TÉCNICA
Uno de los sectores de aplicación y consumo de los polímeros sintéticos mas significativo es el de Ia Óptica. Así, sus aplicaciones mas comunes van desde Ia fabricación de componentes ópticos convencionales, como son lentes, redes de difracción, filtros, polarizadores, ..., y su puesta en servicio en gafas, de sol y correctoras, lentes de contacto, rígidas, blandas, permeables al oxígeno, permanentes y desechables, hasta las lentillas intraoculares, que por su biocompatibilidad representa un claro ejemplo de que su importancia va más allá de Ia de ser un simple material, por Ia función que los mismos cumplen. Ejemplos complementarios de otros desarrollos y aplicaciones más específicos los encontramos dentro de Ia Optoelectrónica, así como también dentro del campo de Ia Óptica, muchos de ellos basados en el comportamiento óptico no-lineal de determinados polímeros. Aunque inicialmente Ia utilización de los polímeros sintéticos en diversas aplicaciones dentro del campo de Ia Óptica estuvo impulsada, principalmente, por el bajo precio de estos materiales en comparación con los vidrios inorgánicos tradicionales, sin embargo, posteriormente, se fue ampliando su utilización y consumo en otras muchas aplicaciones debido, además, a toda una serie de ventajas sobre los vidrios inorgánicos; ventajas basadas en las propiedades intrínsecas de estos materiales, como son su bajo peso, su fácil mecanización y pulido, su mayor resistencia a Ia rotura, su baja temperatura de transformación, etc, etc. Sin embargo, en comparación con los vidrios inorgánicos convencionales, sus principales desventajas radican, para determinadas aplicaciones, en su baja resistencia al rayado y su baja resistencia térmica. Tratando de mejorar estas dos propiedades de los polímeros sintéticos, así como otras propiedades relacionadas, se ha venido realizando un considerable esfuerzo investigador dirigido a modificar estructuralmente aquellos polímeros sintéticos que presentan unas adecuadas propiedades ópticas, principalmente: mediante copolimerización de diferentes monómeros; mediante entrecruzamiento de aquellos polímeros y copolímeros de probado interés por sus propiedades ópticas, así como por recubrimiento superficial o tratamiento superficial mediante radiaciones ultravioleta o por haces de electrones. Asimismo, se han desarrollado nuevos polímeros híbridos orgánico-inorgánicos, siguiendo un proceso sol-gel, tratando de aunar en un mismo material las propiedades de los polímeros orgánicos y los vidrios inorgánicos. Todos estos avances y desarrollos han permitido mejorar y ampliar considerablemente el número de aplicaciones de los polímeros sintéticos dentro del campo de Ia Óptica. Sin embargo, determinadas aplicaciones imponen unas exigencias aún mayores, principalmente en Io que respecta a sus propiedades térmicas; propiedades que los polímeros aún distan de poder alcanzar las de otros materiales convencionales, como son, además de los metales y las cerámicas, y específicamente en las aplicaciones ópticas, Ia de los vidrios inorgánicos. Una característica de los polímeros sintéticos, relacionada con sus propiedades térmicas, es su comportamiento como aislante, tanto térmico, como eléctrico y acústico, características que a su vez son fundamentales en toda una serie de aplicaciones de estos materiales. Es precisamente este carácter aislante el que determina los márgenes de utilización de los polímeros sintéticos en aquellas aplicaciones ópticas en las que Ia luz incidente sobre los mismos es parcialmente absorbida, bien de forma directa, por algún cromóforo presente en Ia estructura del polímero, o bien indirectamente, a través de algún aditivo incorporado al mismo. En ambos casos, Ia parte de Ia energía absorbida que se libera al medio en forma de calor presenta el inconveniente de su pobre disipación, como consecuencia del carácter aislante de estos materiales, Io cual puede llegar a provocar su degradación térmica, y/o Ia de los aditivos incorporados a los mismos, como consecuencia de las altas temperaturas alcanzadas localmente en las zonas donde incide Ia luz. Este inconveniente resulta pues ser un factor limitante a Ia hora de utilizar los polímeros sintéticos como matrices sólidas en determinados componentes ópticos, como son los filtros ópticos, guías de onda y los láseres de colorante en estado sólido, entre otros. Es en esta última aplicación de los polímeros como matriz generadora de luz láser de colorantes en estado sólido, en donde Ia estabilidad térmica es el factor determinante de Ia posible utilización de estos materiales a escala industrial y comercial.
Centrándonos en esta última aplicación y con el objetivo de mejorar Ia baja conductividad térmica de los polímeros sintéticos en general, y más concretamente Ia de aquellos polímeros potencialmente utilizables en aplicaciones ópticas, hemos desarrollado una serie de nuevos polímeros mediante Ia incorporación en su estructura de sílice siguiendo diferentes estrategias. La elección de Ia sílice se ha basado en sus excelentes propiedades ópticas, su alta estabilidad térmica y, fundamentalmente, en su elevada conductividad térmica.
ESTADO DE LA TÉCNICA
Los láseres de colorante se utilizan hoy en día en muy diversos campos, tanto en el industrial como en el médico. A título de ejemplo, dentro del campo de Ia Medicina se utilizan cada vez más profusamente este tipo de láseres en diferentes tratamientos y terapias, incluida su reciente aplicación para Ia destrucción selectiva de tejidos cancerosos, en Ia denominada terapia fotodinámica, así como en Ia detección y diagnóstico de tumores. Sin embargo, Ia utilización de estos láseres de colorante implica el empleo de un colorante en disolución líquida, Io cual conlleva una serie de inconvenientes y limitaciones, como son: Ia necesidad de tener que emplear grandes volúmenes de disolventes orgánicos, algunos de los cuales son tóxicos, volátiles e inflamables; el tener que mantener un flujo constante y uniforme de estas disoluciones dentro de cavidad láser; el tener que renovar periódicamente esta disolución del colorante, al degradarse el mismo durante su continuado uso, o bien sustituirla cuando se necesita cambiar Ia longitud de onda de emisión, así como otra serie de operaciones tediosas que se presentan a Ia hora de limpiar Ia cavidad y eliminar dichas disoluciones, sin olvidar Ia complejidad del diseño y de Ia instrumentación auxiliar a que obliga el bombeo de dichas disoluciones a Ia cavidad láser. Todos estos inconvenientes suponen unas serias limitaciones a su empleo intensivo, así como a su extensión a otras aplicaciones. Por ello, resulta de gran interés técnico poder disponer de láseres de colorante en estado sólido, ya que se evitaran así dichos inconvenientes por las ventajas que conlleva dichos láseres sólidos sobre los láseres líquidos, ya que, además de ser mas compactos, de menor tamaño, mas ligeros, y por tanto mas manejables, permiten trabajar en ausencia total de disolventes, Io cual es de particular importancia en su uso clínico, al tiempo que exigen un mantenimiento mínimo, pudiéndose además cambiar el intervalo de emisión láser de una forma rápida y sencilla. Otras ventajas adicionales derivadas del empleo de un láser de colorante en el estado sólido, aunque no por ello menos importantes, son Ia libertad de diseño de Ia cavidad láser y su bajo precio. Sobre Ia base de este evidente interés, se ha venido realizando un considerable esfuerzo investigador, a nivel internacional, dirigido tanto al estudio de los procesos fotofísicos y fotoquímicos puestos en juego cuando los colorantes láser se encuentran en un medio sólido, como a Ia síntesis de nuevos colorantes y materiales láser mas eficientes y, térmica y fotoquímicamente, mas estables. Aunque se han estudiado una gran variedad de materiales como matrices de colorantes láser, que van desde disolventes solidificados a baja temperatura, gelatinas, cristales orgánicos moleculares, vidrios inorgánicos..., han sido los polímeros (orgánicos e híbridos orgánico-inorgánicos) los que presentan mejores posibilidades potenciales de ser operativos a nivel industrial y comercial, según han demostrado los trabajos y resultados alcanzados durante Ia última década (A.Costela, I. García-Moreno, R.Sastre, Materials for solid-state dye lasers, en Handbook of Advanced Electronic and Photonic Materials and Devices, Ed. Academic Press, San Diego, CA, 2001 ).
Una de Ia direcciones de trabajo seguida para mejorar Ia fotoestabilidad de estos materiales ha consistido en el desarrollo de toda una serie de nuevas matrices poliméricas, lineales y entrecruzadas, en las que por copolimerización introducíamos covalentemente las moléculas de colorante, consiguiendo de esta forma mejorar Ia vida útil de estos nuevos láseres, así como toda Ia serie de ventajas señaladas anteriormente para los láseres de colorante en estado sólido (ES 9501419, 1995 y USA 6,281,315 2001). Asimismo, se ha llevado a cabo un estudio sistemático sobre Ia modificación estructural de los sustituyentes de colorantes dipirrometénicos, con el objetivo de mejorar sus propiedades y fotoestabilidad. Con este fin, centramos nuestros esfuerzos en establecer el efecto de Ia sustitución en Ia posición 8 del anillo pirrometénico, introduciendo, inicialmente, tanto grupos acetoxipolimetilénicos como grupos metacriloxipolimetilénicos, que fueron utilizados como colorantes modelos y colorantes monómeros. Estos nuevos colorantes presentaron, tanto en disolución líquida como en matrices sólidas, una mejor eficiencia láser y una destacable mayor fotoestabilidad, que los correspondientes colorantes láser comerciales cuando eran unidos covalentemente a un polímero (ES 19990001540; A. Costela., I. García-Moreno, F. Amat-Guerri, M. Liras, R. Sastre, Appl. Phys. B, 76, 365, 2003, y M. Álvarez, F. Amat- Guerri, A. Costela, I. García-Moreno, M. Liras, R. Sastre, Appl. Phys. B, 80, 993, 2005). A continuación, incorporamos también en dicha posición 8 del anillo indacénico, solo un grupo p-fenilen-acetoxipolimetileno y un grupo p-fenilen-metacriloxipolimetileno, cuyas propiedades fotofísicas y su evaluación como láser demostraron que, tanto en disolución líquida saturada al aire, como en sus copolímeros sólidos con metacrilato de metilo, sus eficiencias en emisión láser y su fotoestabilidad eran mejoradas notablemente ( I. García-Moreno, A. Costela, R. Sastre, F. Amat-Guerri, M. Liras, F. López-Arbeloa, J. Bañuelos, I. López-Arbeloa, J. Phys. Chem. A, 108, 3315, 2004).
Posteriormente, tratando de mejorar las propiedades térmicas de estas matrices poliméricas, se desarrollaron también nuevos polímeros híbridos orgánico-inorgánicos, obtenidos por procedimientos de síntesis simultanea de polimerización-policondensación, que han permitido alcanzar aún mayores fotoestabilidades [Costela, A., García-Moreno, I., Gómez, C, García, O., Garrido, L. y Sastre, R., Highly efficient and stable doped hybrid organic-inorganic materials for solid-state dye lasers, Chem. Phys. Lett. 387: 496-501 (2004); Costela, A., García-Moreno, I., Gómez, C, García, O. y Sastre, R., Enhancement of láser properties of pyrromethene 567 dye incorporated into new organic-inorganic hybrid materials, Chem. Phys. Lett. 369: 656-661 (2003); Costela, A., García-Moreno, I., Gómez, C, García, O., y Sastre, R., Environment effects on the lasing photostability of Rhodamine 6G incorporated into organic-inorganic hybrid materials, Appl. Phys. B 78: 629-634 (2004); Costela, A., García-Moreno, I., García, O., del Agua, D. y Sastre, R., Structural influence of the inorganic network in the láser performance of dye-doped hybrid materials, Appl. Phys. B. 80: 749-755 (2005); García-Moreno, I., Costela, A., Cuesta. A., García, O., del Agua, D. y Sastre, R., Synthesis, Structure, and Physical Properties of Hybrid Nanocomposites for Solid-State Dye Lasers, J. Phys. Chem. B 109: 21618-21626 (2005)]. Igualmente, tratando de mejorar aún mas Ia fotoestabilidad, al tiempo que sus propiedades termoópticas y mecánicas, se obtuvieron otros nuevos polímeros híbridos orgánico-inorgánicos partiendo de sílices mesoporosas o aerogeles, consistentes en redes tridimensionales de sílice de poro abierto de tamaño nanométrico, que se inundan con las apropiadas formulaciones de monómeros-colorante láser, para posteriormente ser polimerizadas in situ, de forma controlada, permitiendo así obtener unos materiales mas eficientes en su emisión láser y altamente fotoestables, principalmente cuando los polímeros obtenidos dentro de Ia matriz de sílice mesoporosa eran de naturaleza fluorada [ Costela, A., García-Moreno, I., Gómez, C, García, O., Sastre, R., Roig, A., y Molins, E., Polymer-Filled Nanoporous Silica Aerogels as Hosts for Highly Stable Solid-State Dye Lasers, J. Phys. Chem B 109: 4475-4480 (2005). 45 ; García, O., Sastre, R., del Agua, D., Costela, A., García-Moreno, I., and Roig, A., Efficient optical materials based on fluorinated-polymeric silica aerogels, Chem. Phys. Lett. 427: 375- 378 (2006); Costela, A., García-Moreno, I., del Agua, D., García, O. y Sastre, R., Highly photostable solid-state dye lasers based on silicon- modified organic matrices, J. Appl. Phys. 101 : 073110 (2007)]. Todos estos resultados y desarrollos permiten obtener unos materiales suficientemente eficientes y estables como para poder ser utilizados, tanto a nivel industrial y comercial, como medios activos para Ia emisión de luz láser. La principal ventaja que aporta Ia incorporación de Ia sílice en estos materiales radica en Ia mejora sustancial de su conductividad térmica, que favorece Ia disipación del calor local liberado durante el proceso de excitación o bombeo del colorante, evitándose así, en gran extensión, Ia degradación térmica del colorante y, por tanto, alargándose el tiempo de vida en servicio del generador láser. Sin embargo, en ambas familias de estos polímeros híbridos orgánico-inorgánicos, aunque Ia sílice se encuentra distribuida homogéneamente en el material final, los dominios de esta fase inorgánica pueden dar lugar a fenómenos indeseables en cuanto a su interferencia con Ia luz, así como a Ia segregación del colorante de dichos dominios, el cual permanece disuelto únicamente en los dominios del polímero orgánico. Por ello, y considerando además las dificultades de síntesis de ambas familias de polímeros, nos planteamos para estas aplicaciones Ia síntesis de nuevos polímeros en los que hemos incorporado Ia sílice a nivel molecular, con objeto de obtener materiales intrínsecamente más homogéneos para así poder obviar dichos inconvenientes y mejorar aún más su conductividad térmica y sus propiedades ópticas.
DESCRIPCIÓN DE LA INVENCIÓN La hidrólisis y posterior condensación de los silanos trifuncionales (trialcóxidos de silicio) conducen a Ia formación de agrupaciones poliédricas de fórmula general (RSiOi 5), denominados Silsesquioxanos, también conocidos comercialmente con el nombre de POSS (del acrónimo en inglés de Poliedros Oligoméricos de Silsesquioxanos):
O R \ O /
' R siendo R un sustituyente de naturaleza orgánica. Aunque en estos compuestos el silicio está coordinado con tres átomos de oxígeno, mientras que en Ia sílice dicha coordinación es cuádruple, por Ia similitud entre ambos se ha dado en considerar a los Silsesquioxanos como una sílice de estructura poliédrica o prismática.
Dadas las mejoras alcanzadas en Ia fotoestabilidad láser, anteriormente descritas, al incorporar sílice en Ia estructura polimérica de las matrices híbridas empleadas como emisores de luz láser, partimos de Ia hipótesis de que si Ia sílice se pudiese incorporar a nivel molecular, se podría alcanzar todo el potencial que puede aportar Ia sílice, con el objetivo principal de aumentar Ia conductividad térmica de Ia matriz y mejorar así su termo- y fotoestabilidad. Otras ventajas adicionales de gran interés, desde el punto de vista de otras aplicaciones potenciales de estos nuevos materiales dentro del campo de Ia Óptica, serían las derivadas de las propiedades que puede aportar también Ia presencia de esta forma de sílice en Io referente a su excelente transmisión de Ia luz ultravioleta- visible, índice de refracción, estabilidad, resistencia..., al tiempo que estos materiales pueden ser obtenidos a temperaturas próximas a temperatura ambiente, Io cual permite incorporar a su estructura compuestos orgánicos, que de otra forma no sería posible, teniendo en cuenta las elevadas temperaturas necesariamente empleadas en Ia síntesis y/o modificación, transformación y moldeo de Ia sílice; todo Io cual abre un abanico de nuevas posibilidades para las aplicaciones de estos materiales. Puesto que Ia principal característica perseguida en Ia obtención de una matriz sólida como medio activo en Ia emisión láser de un colorante orgánico es su homogeneidad óptica, es requisito previo indispensable Ia solubilidad y compatibilidad de los monómeros a emplear. Por ello, Ia adecuada funcionalización del Silsesquioxano de partida es fundamental, con el fin de conseguir su total solubilidad en el comonómero o comonómeros seleccionados. Desde un punto de vista general y a Ia vez simplificado, Ia obtención de las matrices objeto de Ia presente invención, se basa en Ia copolimerización de diferentes monómeros, de los cuales al menos uno de ellos lleva como sustituyente del doble enlace polimerizable un grupo silsesquioxano (estructura I), o bien consiste en un silsesquioxano funcionalizado con un número variable de dobles enlaces polimerizables, superior a uno y hasta un máximo de ocho, diez o doce grupos polimerizables (estructura II):
Figure imgf000010_0001
Estructura I
v.
Estructura II
en las que el sustituyente R de Ia estructura I, puede ser cualquier grupo orgánico alifático o aromático, seleccionado adecuadamente para favorecer su solubilidad y compatibilidad con otros monómeros orgánicos convencionales,
Aunque como grupo polimerizable del silsesquioxano se considera cualquier grupo insaturado, preferentemente los mejores resultados son los obtenidos con dobles enlaces vinílicos, acrílicos y metacrílicos, siendo estos dos últimos grupos insaturados con los que se han conseguido alcanzar las mejores propiedades ópticas. Asimismo, en Io que respecta a los comonómeros empleables en esta invención, los mejores resultados también se han obtenido con los monómeros acrílicos y metacrílicos, con uno a cuatro grupos insaturados por molécula de comonómero. La utilización de monómeros polifuncionales conduce a Ia obtención de polímeros entrecruzados con un grado de entrecruzamiento de extensión variable y dependiente de Ia proporción o concentración del monómero o monómeros polifuncionales empleados, así como del grado de funcionalidad de los mismos. Dado que Ia principal característica diferenciadora de los materiales objeto de Ia presente patente es Ia utilización y empleo de monómeros portadores de estructuras silsesquioxano I y II, Ia proporción o concentración de este tipo de monómeros es determinante de sus propiedades y comportamiento como matriz sólida de aquellos colorantes utilizables para Ia generación estimulada de luz láser. Aunque Ia proporción o concentración de los monómeros de silsesquioxano, con estructura I o II, puede variar dentro de amplios márgenes, sin embargo, hemos comprobado que los copolímeros con mejores propiedades láser se obtienen cuando su concentración se encuentra comprendida entre el 1 y el 50% en peso, respecto del volumen total de Ia mezcla de monómeros de partida.
La iniciación del proceso de polimerización se puede llevar a cabo por Io métodos y procedimientos convencionales empleados en Ia síntesis macromolecular; a saber: vía radicales libres o vía iónica, tanto térmicamente como fotoquímicamente o redox, en disolución, suspensión, emulsión, interfase, bloque o masa. Los mejores resultados obtenidos se han conseguido por polimerización en bloque mediante iniciación térmica vía radicales libres. Los iniciadores empleables para Ia generación de radicales libres son todos aquellos también comúnmente utilizados en los procesos de polimerización, siendo los mas adecuados los de tipo peróxido e hidroperóxido, así como los azocompuestos alifáticos, habiendo sido con el iniciador azobis-isobutironitrilo con el que mejores resultados se han obtenido, cuando el mismo se emplea a una concentración de entre el 0,1 y el 5 % en peso, respecto de Ia mezcla de monómeros. Igualmente resulta aconsejable llevar a cabo Ia polimerización en atmósfera inerte, como puede ser bajo atmósfera de nitrógeno o argón, o bien a vacío (como mínimo a 15 Pa). Una vez convenientemente disuelto el iniciador en Ia mezcla de monómeros, se Ie incorpora el colorante láser seleccionado de acuerdo a Ia longitud de onda de emisión láser que se desea. La concentración a emplear del colorante láser viene determinada específicamente por su coeficiente de absorción molar a Ia longitud de onda de excitación o bombeo, por su densidad óptica, por Ia configuración de Ia cavidad láser y por el tipo de bombeo, transversal o longitudinal, de dicha cavidad. Por ello, en cada caso, para cada colorante es necesario el llevar a cabo previamente Ia optimización de su concentración, de acuerdo a los parámetros indicados.
Un aspecto determinante y de vital importancia es el de Ia solubilidad del colorante láser, tanto en Ia mezcla inicial de los monómeros de partida, como en el polímero sólido final obtenido, ya que incluso una insolubilidad parcial del colorante conduce a Ia imposibilidad de generación de luz láser, o bien a un material con una baja estabilidad que excluye su empleo comercial para esta aplicación. A tal fin, es necesario e imprescindible el asegurar Ia total solubilidad previa del colorante en Ia mezcla inicial de monómeros, siendo pues necesario el elegir Ia naturaleza y proporciones de los monómeros de partida, así como emplear los métodos adecuados para asegurar y facilitar su total solubilidad, habiendo resultado ser de gran eficacia a tal fin el empleo de ultrasonidos. Una vez disuelto el colorante en Ia mezcla de monómeros, es aconsejable microfiltrar Ia disolución resultante con una membrana inerte de tamaño de poro de 0,2 mieras o inferior, con el fin de eliminar las posibles trazas del colorante láser que no se hayan disuelto, así como otras posibles partículas e impurezas sólidas que pudieran existir en el medio. La disolución final obtenida, una vez microfiltrada, se vierte en un molde con las dimensiones adecuadas para obtener, una vez llevada a cabo su polimerización, una pieza apta para ser mecanizada a Ia forma y dimensiones elegidas para su adaptación a Ia cavidad láser. El molde utilizado puede ser de cualquiera de los materiales comúnmente empleados en el moldeo por colada de un material plástico, debiendo tener especial cuidado en su elección con vista a facilitar el posterior desmoldeo de Ia pieza, una vez finalizado el proceso de polimerización. Puesto que las propiedades láser del material final obtenido resultan ser igualmente dependientes de Ia homogeneidad óptica del mismo, es necesario el optimizar en cada caso las condiciones del proceso de polimerización con el fin de evitar las posibles diferencias de índice de refracción dentro del material, siguiendo los procedimientos, métodos y condiciones descritos en nuestra ES 19990001540. Una vez obtenidas las matrices poliméricas portadoras de los colorantes láser en las proporciones y concentraciones adecuadas, se procede a su desmoldeo y mecanizado, siguiendo los procedimientos habituales en el mecanizado de materiales, hasta alcanzar Ia forma y dimensiones geométricas deseadas, así como un pulido posterior de dicha pieza hasta conseguir un acabado de calidad láser o, como mínimo, de calidad óptica. Las propiedades físicas de los materiales obtenidos son función de Ia composición de los correspondientes copolímeros, siendo de destacar, para los fines perseguidos en Ia presente patente, el aumento que experimentan dos propiedades térmicas al aumentar Ia proporción o contenido en el copolímero en unidades silsesquioxano, como son Ia temperatura de transición vitrea y Ia conductividad térmica. Así, Ia temperatura de transición vitrea de los copolímeros de metacrilato de metilo con los monómeros de Silsesquioxano, se duplica al pasar del homopolímero (aprox. 100 0C) a un copolímero con el 33 % en peso/volumen del octametilmetacrilato de silsesquioxano (aprox. 190 0C). Lo que es aún más importante, es el aumento que experimenta Ia conductividad térmica, que crece linealmente con el contenido de silsesquioxano en el copolímero, de acuerdo a los valores recogidos en Ia Tabla 1 adjunta.
TABLA 1.- Conductividad térmica de diferentes copolímeros de MMA con el octametacrilato de silsesquioxano (8MMAPOSS).
MATERIAL
Conductividad Térmica Eficiencia Láser Estabilidad Láser*
PM567 (1.5mM) (W m"1 K"1) (%) (%)
MMA/8MMAPOS
S
Figure imgf000015_0001
Condiciones de Bombeo: Bombeo Transversal a 532nm, 10Hz, energía: 5mJ/pulso, durante 100.000 pulsos en una única posición.
Dicho aumento de conductividad térmica, conlleva un aumento en paralelo de su eficiencia de emisión láser, pasando de un 12% para polímero sin silsesquioxano a, por ejemplo, un 64,8% para el copolímero del 33% en silsesquioxano. Dicho valores son incluso superiores al de este mismo colorante, PM 567, en disolución líquida (aprox. 36%), que son las eficiencias máximas alcanzables en los actuales láseres comerciales de este colorante. Lo que aún es más importante, es el destacado aumento de su estabilidad bajo irradiación cuando se bombea transversalmente a 532 nm, con una frecuencia de 10Hz y una energía de 5 mJ, condiciones bajo las cuales se mantiene su eficiencia de emisión, después de 100 000 disparos, a un nivel del 90 al 100% de su valor inicial. Dicha estabilidad se ha comprobado experimentalmente que también se mantiene incluso utilizando unas condiciones de bombeo más drásticas, como ha sido el empleo de frecuencias de 30 Hz, superando pues el comportamiento del colorante en disolución líquida, Io cual garantiza sobradamente Ia utilización comercial de estos nuevos materiales en Ia fabricación de láseres de colorante en estado sólido.
Para Ia evaluación como medio activo para Ia generación de radiación láser de estos nuevos materiales, objeto de Ia presente patente, se pueden utilizar diferentes montajes de los comúnmente empleados en los dispositivos láser conocidos, aunque en el presente caso se recomiendan los dos descritos en nuestra ES 19990001540 , así como las cavidades, sistema de bombeo y procedimientos detallados en Ia misma.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN Como ejemplos representativos, pero no limitativos, de los materiales objeto de esta patente, así como de sus propiedades, comportamiento y aplicación, a continuación se describe Ia obtención de estos copolímeros de Silsesquioxanos, así como Ia evaluación como emisores de luz láser de los copolímeros obtenidos.
Ejemplo 1
Obtención de copolímeros de Silsesquioxano Tomando como referencia el colorante láser comercial Pirrometeno 567, se prepara una disolución 1 ,5 mM del mismo, en una mezcla de octametilmetacrilato de silsesquioxano y metacrilato de metilo puro, en proporciones variables y comprendidas entre el 1 y el 50% peso/volumen en ambos monómeros (1OmI). A cada una de estas disoluciones se les añade el iniciador azobisisobutironitrilo (10 mg; 0,06 mmol), que se solubiliza mediante agitación y posterior tratamiento en un baño de ultrasonidos. A continuación dichas disoluciones se microfiltran con una membrana de 0,2 mieras de tamaño de poro y se vierten sobre unos moldes cilindricos de polipropileno de 12 cm de diámetro interior, dentro de los cuales Ia disolución resultante se desoxigena mediante borboteo de argón o nitrógeno puros, sumergiendo en dichas disoluciones un capilar durante unos diez minutos. Los moldes se cierran y sellan bajo atmósfera inerte y se mantiene a 40 0C durante 48 horas. Transcurrido este tiempo, las disoluciones habrán solidificado, subiéndose entonces Ia temperatura hasta los 50 0C, temperatura a Ia cual se mantienen los moldes durante al menos 24 horas. A continuación, con objeto de destruir los restos del iniciador que no hubiesen reaccionado, se sube de nuevo Ia temperatura lentamente (50°C/día), hasta alcanzar los 80 0C, manteniéndose en esta temperatura durante 2 horas mas, para a continuación enfriar lentamente ambos moldes hasta alcanzar Ia temperatura ambiente, con objeto de evitar Ia congelación de tensiones residuales que podrían afectar Ia calidad óptica del material obtenido, pudiéndose entonces desmoldear las piezas.
Ejemplo 2 Evaluación de los nuevos copolímeros como emisores de radiación láser
La evaluación láser de los materiales obtenidos siguiendo el procedimiento descrito en el ejemplo anterior, se llevó a cabo una vez convenientemente mecanizados y pulidos en Ia forma de cilindros de 1cm de altura y 1 cm de diámetro, con un corte paralelo a su eje, con objeto de obtener una superficie plano lateral. El dispositivo empleado en dicha evaluación fue el descrito en Ia ES 19990001540.
En Ia Tabla 2 se presentan los valores de los parámetros láser: longitud de onda de emisión, eficiencia y estabilidad, de diferentes copolímeros obtenidos en función del contenido en el monómero octametilmetacrilato de silsesquioxano, siguiendo el procedimiento descrito en el ejemplo 1.
TABLA 2.- Parámetros láser de diferentes copolímeros de MMA en función del contenido en peso en el monómero octametacrilato de Silsesquioxano (8MMAPOSS).
Figure imgf000018_0001
Condiciones de Bombeo: Bombeo Transversal a 532nm, 10Hz, energía: 5mJ/pulso, durante 100.000 pulsos en una única posición.
Los valores obtenidos para las eficiencias láser se encuentran comprendidos entre el 46 y el 65 %, con unas estabilidades, después de su irradiación con 100.000 disparos a 532 nm con una energía 5mJ por disparo a 10Hz. Dichos valores de eficiencia en su emisión láser son superiores incluso a las de este mismo colorante en disolución en etanol (aprox. 36 %), al tiempo que su elevada fotoestabilidad les capacita para su implementación comercial como emisores de luz láser de colorante en el estado sólido. Una mejora significativa de las estabilidades de aquellos copolímeros con mayor proporción en el monómero sililado se consiguió mediante un tratamiento de postpolimerización, consistente en mantener dichas muestras a una temperatura de 90 0C durante al menos una semana, con objeto de activar los dobles enlaces remanentes que no hubiesen polimerizado, Io cual se refleja en unas mejoras de estabilidad del orden del 10%.
Con objeto de contrastar las altas estabilidades alcanzadas, se sometió al copolímero con un contenido en peso del silsesquioxano del 13 % a una irradiación bajo condiciones más drásticas, empleando para ello una frecuencia de bombeo de 30Hz, comprobando que aún después de 100.000 disparos se mantenía su eficiencia de emisión al 100%. Por tanto, Ia utilización de los nuevos materiales como emisores de luz láser, objeto de Ia presente patente de invención, ha demostrado que los mismos presentan unos valores de eficiencia, sintonizabilidad y fotoestabilidad que les hacen viables para ser empleados como emisores de luz láser, mejorando sustancialmente a otras matrices poliméricas anteriormente descritas.
Ejemplo 3
Extensión del empleo de estas matrices a otros colorantes láseres Con objeto de demostrar Ia aplicabilidad de estas matrices con cualquiera de los colorantes láseres utilizados comercialmente, se sintetizaron nuevos copolímeros con un contenido en octametilmetacrilato del 13% en peso, siguiendo el procedimiento descrito en el ejemplo 1 , pero ahora adicionando a cada muestra de copolímero uno de los cinco colorantes láser comerciales más representativos: Pirrometeno 569, Rodamina 6G, Perileno Rojo y Cumarina 503, además del Pirrometeno 567. Las concentraciones de cada uno de ellos fueron elegidas de acuerdo a su coeficiente de absorción molar para alcanzar a 532 nm una densidad óptica óptima, con el fin de obtener en cada caso una eficiencia máxima bajo las condiciones experimentales de excitación o bombeo descritas en el ejemplo anterior. Los valores experimentales obtenidos se recogen en Ia Tabla 3 adjunta.
TABLA 3.- Evaluación láser de diferentes colorantes al ser incorporados en el copolímero de M MA/8M MAPOSS- 13% p.
Figure imgf000020_0001
*Rh6G en MMA/HEMA (1/1 )/8MMAPOSS-13%p **CU503 en MMA/HEMA (7/3)/8MMAPOSS-13%p
Condiciones de Bombeo Láser: aTransversal a 532nm; 10Hz;
5mJ/pulso durante 100.000pulsos transversal a 355nm; 1 ,5Hz; 2mJ/pulso durante 3.000pulsos Estos resultados demuestran que, tanto las altas eficiencias láser alcanzadas, cuando el colorante está verdaderamente disuelto en las matrices sólidas de los copolímero con octametilmetacrilato de silsesquioxano, son superiores o, como mínimo, iguales a las obtenidas con los mismos colorantes en disolución. En cuanto a las altas fotoestabilidades obtenidas, ponen de manifiesto que también estos materiales son utilizables con cualquier colorante láser, que sea soluble en las mismas, como emisores sólidos de luz láser.
Ejemplo 4
Influencia de Ia funcionalidad de monómero portador del grupo Silsesquioxano
Con objeto de ilustrar Ia influencia que tiene el número de dobles enlaces del monómero portador del grupo Silsesquioxano, se llevo a cabo Ia obtención de dos copolímeros con el monómero con un solo doble enlace metacrílico (estructura I) y otro con el monómero con ocho dobles enlaces metacrílicos (estructura II), ambos a Ia concentración del 13% respecto al volumen total de Ia mezcla de monómeros. Las condiciones de síntesis, concentración del colorante PM 567, así como su evaluación láser, fueron idénticas para ambas muestras y con las descritas en los ejemplos anteriores.
TABLA 4.- Comparación de los parámetros láser evaluados en función del número de grupos metacrílicos presentes en el monómero sililado (xMMAPOSS).
Figure imgf000021_0001
Figure imgf000022_0001
Aunque los valores de eficiencia y estabilidad fueron ambos del mismo orden, los obtenidos para el copolímero de octametilmetacrilato de Silsesquioxano fueron superiores en un 20 y en un 10%, respectivamente, respecto de los obtenidos con el monómero con solo un grupo metacrilato. Dichas diferencias son asignables al entrecruzamiento del copolímero obtenido con este monómero polifuncional, frente al copolímero lineal obtenido con el primer monómero.

Claims

REIVINDICACIONES
1. Copolímeros lineales sililados con grupos silsesquioxano, caracterizados porque al menos uno de los comonómeros empleados en su obtención lleva como sustituyente de su doble enlace polimerizable un grupo Silsesquioxano (estructura I):
Figure imgf000023_0001
Estructura I
en donde R son hidrógenos o cualquier grupo orgánico, alifático o aromático.
2. Copolímeros entrecruzados sililados con grupos silsesquioxano, caracterizados porque al menos uno de los comonómeros empleados en su obtención tiene un grupo Silsesquioxano funcionalizado con un número variable de dobles enlaces polimerizables, superior a uno y hasta un máximo de ocho grupos por molécula (estructura II):
Figure imgf000023_0002
Estructura Il
3. Copolímeros sigilados con grupos silsesquioxano, lineales o entrecruzados, según las reivindicaciones 1 y 2, caracterizados además porque los dobles enlaces de los monómeros portadores del grupo Silsesquioxano, así como los de sus comonómeros, puede ser cualquier doble enlace polimerizable en un número variable, de uno a ocho, aunque preferentemente los mejores resultados son los obtenidos con dobles enlaces vinílicos, acrílicos y metacrílicos, siendo estos dos últimos grupos insaturados con los que se han conseguido alcanzar las mejores propiedades ópticas.
4. Copolímeros sililados con grupos silsesquioxano, según las reivindicaciones 1 , 2 y 3, caracterizados porque Ia concentración de monómeros de silsesquioxano con estructura I o Il varia dentro de amplios márgenes, si bien los copolímeros con mejores propiedades láser se obtienen cuando su concentración se encuentra entre I y 50% en peso, respecto del volumen de Ia mezcla total de monómeros de partida.
5. Procedimiento de obtención de los copolímeros sililados con grupos silsesquioxano según las reivindicaciones anteriores, caracterizado por realizar Ia polimerización en bloque mediante iniciación térmica vía radicales libres; utilizando como iniciador, los de tipo peróxido e hidroperóxido, así como los azocompuestos alifáticos, preferentemente el azobis-isobutironitrilo, a una concentración de entre el 0,1 y el 5 % en peso, respecto de Ia mezcla de monómeros.
6. Utilización de los anteriores copolímeros sililados, según reivindicaciones 1 a 5, en aquellas aplicaciones ópticas donde se requieran materiales poliméricos con buenas propiedades ópticas, alta fotoestabilidad, así como mayor estabilidad y conductividad térmica que las de los polímeros comerciales convencionales.
7. Utilización de los anteriores copolímeros sililados con grupos silsesquioxano, según las reivindicaciones 1 a 6, en aplicaciones en las que Ia estabilidad térmica es determinante, tal como su utilización para Ia obtención de matrices emisoras de luz láser de colorantes de alta eficiencia y estabilidad, cuando a dichas matrices sólidas se les incorpora, antes o durante su polimerización, cualquier colorante láser, siempre que los mismos sean solubles en Ia mezcla inicial de monómeros y en el polímero final obtenido.
PCT/ES2009/070007 2008-01-29 2009-01-23 Copolímeros sililados con grupos silsesquioxano, su preparación y utilización como matrices láser de alta fotoestabilidad WO2009095521A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200800220 2008-01-29
ES200800220A ES2324806B1 (es) 2008-01-29 2008-01-29 Copolimeros sililados con grupos silsesquioxano, su preparacion y utilizacion como matrices laser de alta fotoestabilidad.

Publications (1)

Publication Number Publication Date
WO2009095521A1 true WO2009095521A1 (es) 2009-08-06

Family

ID=40912313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070007 WO2009095521A1 (es) 2008-01-29 2009-01-23 Copolímeros sililados con grupos silsesquioxano, su preparación y utilización como matrices láser de alta fotoestabilidad

Country Status (2)

Country Link
ES (1) ES2324806B1 (es)
WO (1) WO2009095521A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573619A1 (en) 2011-09-21 2013-03-27 Dow Global Technologies LLC Compositions and antireflective coatings for photolithography
WO2015100957A1 (zh) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 改性聚丙烯酸酯分散剂、颜料分散液、彩色光刻胶、彩膜基板和显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
JP2004354547A (ja) * 2003-05-28 2004-12-16 Kri Inc 光学素子および光学素子形成用の有機無機複合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
JP2004354547A (ja) * 2003-05-28 2004-12-16 Kri Inc 光学素子および光学素子形成用の有機無機複合材料

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CASTELVETRO V. ET AL.: "Hybrid nanocomposite films from mono- and multi-functional POSS copolyacrylates in miniemulsion", MACROMOL. RAPID COMMUN., vol. 27, no. 8, 2006, pages 619 - 625 *
COSTELA A. ET AL.: "Highly photostable solid- state dye lasers based on silicon-modified organic matrices", J. APPL. PHYS., vol. 101, 2007, pages 073110 - 1-11 *
DATABASE WPI Derwent World Patents Index; AN 2005-076532 *
GARCIA O. ET AL.: "New laser hybrid materials based on POSS copolymers", J. PHYSICAL CHEM. C, vol. 112, no. 38, September 2008 (2008-09-01), pages 14710 - 14713 *
LI G. ET AL.: "Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review", J. INORG. ORGANOMET. POLYMERS, vol. 11, no. 3, 2001, pages 123 - 154 *
LICHTENHAN J.D. ET AL.: "liner hybrid polymer building blocks: Methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers", MACROMOLECULES, vol. 28, no. 24, 1995, pages 8435 - 8437 *
XIAO J. ET AL.: "Copolymers ofMMA and polyhedral oligosilsesquioxanes (POSS) with thermal property enhancements", POLYMER PREPRINTS, vol. 43, no. 1, 2002, pages 504 - 505 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573619A1 (en) 2011-09-21 2013-03-27 Dow Global Technologies LLC Compositions and antireflective coatings for photolithography
CN103113827A (zh) * 2011-09-21 2013-05-22 陶氏环球技术有限责任公司 用于光蚀刻法的组合物和防反射涂层
US9366964B2 (en) 2011-09-21 2016-06-14 Dow Global Technologies Llc Compositions and antireflective coatings for photolithography
WO2015100957A1 (zh) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 改性聚丙烯酸酯分散剂、颜料分散液、彩色光刻胶、彩膜基板和显示装置
US9651866B2 (en) 2013-12-31 2017-05-16 Boe Technology Group Co., Ltd. Modified polyacrylate dispersant, pigment dispersion, coler photoresist, color filter substrate and display device

Also Published As

Publication number Publication date
ES2324806B1 (es) 2010-05-31
ES2324806A1 (es) 2009-08-14

Similar Documents

Publication Publication Date Title
JP6131442B2 (ja) 重合可能な材料
ES2338681T3 (es) Surfactantes polimerizables y su utilizacion como comonomeros en la formacion de dispositivos polimericos.
Costela et al. Polymeric solid-state dye lasers: Recent developments
ES2573503T3 (es) Macromonómeros de múltiples brazos, materiales poliméricos y lentes de contacto que comprenden los mismos
ES2564629T3 (es) Dispositivos biomédicos, materiales poliméricos y lentes de contacto que comprenden los mismos
JP5720103B2 (ja) シリコーンハイドロゲル、眼用レンズおよびコンタクトレンズ
ES2654421T3 (es) Dispositivos biomédicos
ES2850899T3 (es) Compuestos hidrófobos para dispositivos ópticamente activos
ES2850898T3 (es) Compuestos hidrófobos para dispositivos ópticamente activos
ES2848058T3 (es) Compuestos bis para dispositivos ópticamente activos
CN111801389A (zh) Uv和高能可见光的可聚合吸收剂
ES2305205T3 (es) Monomeros, polimeros, lentes oftalmicas de contacto fabricadas con ayuda de los mismos.
Costela et al. Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees
ES2324806B1 (es) Copolimeros sililados con grupos silsesquioxano, su preparacion y utilizacion como matrices laser de alta fotoestabilidad.
Rahn et al. High-performance solid-state dye laser based on peryleneorange-doped polycom glass
Costela et al. Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene. BF 2 complexes incorporated into solid matrices of poly (methyl methacrylate)
WO1997004510A1 (es) Matrices polimericas solidas conteniendo rodaminas y su utilizacion en laseres
JP2016512566A (ja) 水溶性シリコーン材料
ES2543551T3 (es) Métodos para la preparación de polímeros biocompatibles, los polímeros y sus usos
ES2340566B1 (es) Procedimiento para eliminar manchas pigmentarias y tatuajes en la piel mediante un sistema laser de colorante en estado solido.
Suratwala et al. Processing and photostability of Pyrromethene 567 polycerams
US9048628B2 (en) Solid-state dye laser medium and process for production thereof
WO2019218063A1 (en) Hydrogel polymers
JP4686839B2 (ja) モノマー、ポリマーおよびそれを用いた眼用レンズ
JP2009204770A (ja) 眼用レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706996

Country of ref document: EP

Kind code of ref document: A1