WO2009093439A1 - 波長変換レーザ、画像表示装置、及びレーザ加工装置 - Google Patents

波長変換レーザ、画像表示装置、及びレーザ加工装置 Download PDF

Info

Publication number
WO2009093439A1
WO2009093439A1 PCT/JP2009/000176 JP2009000176W WO2009093439A1 WO 2009093439 A1 WO2009093439 A1 WO 2009093439A1 JP 2009000176 W JP2009000176 W JP 2009000176W WO 2009093439 A1 WO2009093439 A1 WO 2009093439A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
fundamental wave
light
converted
wave
Prior art date
Application number
PCT/JP2009/000176
Other languages
English (en)
French (fr)
Other versions
WO2009093439A9 (ja
Inventor
Tetsuro Mizushima
Hiroyuki Furuya
Shinichi Shikii
Koichi Kusukame
Nobuyuki Horikawa
Kiminori Mizuuchi
Kazuhisa Yamamoto
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN200980000182XA priority Critical patent/CN101689007B/zh
Priority to JP2009550462A priority patent/JP5450101B2/ja
Priority to US12/532,213 priority patent/US8014429B2/en
Priority to EP09704279.0A priority patent/EP2246735B1/en
Publication of WO2009093439A1 publication Critical patent/WO2009093439A1/ja
Publication of WO2009093439A9 publication Critical patent/WO2009093439A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3503Structural association of optical elements, e.g. lenses, with the non-linear optical device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/372Means for homogenizing the output beam
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/17Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to a wavelength conversion laser that performs wavelength conversion of a fundamental wave and outputs a laser beam.
  • the wavelength of the fundamental laser is converted to the wavelength of the second harmonic (Second Harmonic Generation: SHG), sum frequency, difference frequency, etc., and output wavelength There is a conversion laser.
  • SHG Signal Harmonic Generation
  • the wavelength conversion laser includes a fundamental wave laser light source 101, a lens 102 that condenses the fundamental laser beam emitted from the laser light source 101, and a focused fundamental wave laser beam. It comprises a wavelength conversion element 103 that converts to a second harmonic, and a dichroic mirror 104 that separates the fundamental laser beam and the harmonic laser beam.
  • the wavelength conversion element 103 is made of a nonlinear optical crystal and performs wavelength conversion of the fundamental wave.
  • the wavelength conversion element 103 has a crystal orientation, a polarization inversion structure, and the like appropriately adjusted so that the phases of the fundamental wave and the converted wave are matched.
  • a wavelength conversion element having a polarization inversion structure can perform wavelength conversion with high efficiency even at low power by quasi phase matching, and can perform various wavelength conversions by design.
  • the polarization inversion structure is a structure in which a region where the spontaneous polarization of the wavelength conversion element 103 is periodically inverted is provided.
  • the conversion efficiency ⁇ for converting from the fundamental wave to the second harmonic is L for the interaction length of the wavelength conversion element, P for the fundamental wave power, A for the beam cross-sectional area at the wavelength conversion element, and deviation from the phase matching condition. Assuming ⁇ k, it can be expressed as follows.
  • the temperature adjusting unit is driven so that the light intensity of the converted wave converges to a target value using a detecting unit that detects the light intensity of the converted wave and a temperature adjusting unit of a nonlinear crystal. It has been proposed to control.
  • Patent Document 1 does not propose controlling the intensity distribution of the converted wave light emitted from the wavelength conversion laser by controlling the wavelength conversion efficiency.
  • JP-A-4-318528 JP-A-4-318528
  • An object of the present invention is to provide a wavelength conversion laser capable of controlling the intensity distribution of emitted converted wave light by controlling the wavelength conversion efficiency, and an image display apparatus and a laser processing apparatus using the wavelength conversion laser. Yes.
  • a wavelength conversion laser includes a fundamental wave light source that emits a fundamental wave, a wavelength conversion element that converts a fundamental wave from the fundamental wave light source into converted wave light, and the wavelength conversion element at different angles.
  • a pair of fundamental wave reflecting surfaces that reflect the fundamental wave so as to define a plurality of fundamental wave optical paths that pass through the plurality of fundamental wave optical paths that are directed in different directions between the pair of fundamental wave reflecting surfaces
  • a control device that controls the wavelength conversion efficiency so that the wavelength conversion efficiency in a specific fundamental wave path is the highest, and at least one of the pair of fundamental wave reflection surfaces is the converted wave light. Is an output surface that passes through.
  • An image display device includes the wavelength conversion laser and a modulation element that modulates the converted wave light emitted from the wavelength conversion laser in order to display a predetermined image.
  • a laser processing apparatus includes the wavelength conversion laser and a condensing optical system that condenses the converted wave light emitted from the wavelength conversion laser, and converts the converted wave light among the fundamental wave paths.
  • the spot shape of the converted wave light is changed by increasing / decreasing the number of optical paths that emit light.
  • the present invention it is possible to control the intensity distribution of the emitted converted wave light by controlling the wavelength conversion efficiency.
  • FIG. 1 is a schematic configuration diagram of a wavelength conversion laser according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a state in which the fundamental wave path for emitting the converted wave light with priority is changed in the wavelength conversion laser of FIG.
  • FIG. 3 is a schematic configuration diagram of a wavelength conversion laser according to a modification of the first embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of a wavelength conversion laser and an image display device including the wavelength conversion laser according to a modification of the first embodiment.
  • FIG. 5 is a schematic configuration diagram of a wavelength conversion laser according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic configuration diagram showing a state in which the fundamental wave path for emitting the converted wave light with priority is changed in the wavelength conversion laser of FIG.
  • FIG. 7 is a schematic configuration diagram of a wavelength conversion laser according to the third embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing the wavelength conversion element and the electrode of FIG. 7 in an enlarged manner.
  • FIG. 9 is a schematic configuration diagram showing a state in which the fundamental wave optical path for emitting the converted wave light with priority is changed in the wavelength conversion laser of FIG.
  • FIG. 10 is a schematic configuration diagram of a laser processing apparatus including the wavelength conversion laser according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic configuration diagram of a conventional wavelength conversion laser.
  • FIG. 1 and 2 are schematic configuration diagrams of a wavelength conversion laser 100 according to Embodiment 1 of the present invention.
  • FIG. 1 and FIG. 2 differ from each other in that the fundamental wave optical path for emitting the converted wave light with priority is different.
  • the wavelength conversion laser 100 includes a distributed feedback (hereinafter abbreviated as DFB) laser 1 as a laser light source that emits a fundamental wave, a collimator 2 that collimates the fundamental wave emitted from the DFB laser 1, and a collimated fundamental wave.
  • DFB distributed feedback
  • Wavelength conversion element 10 to be operated a pair of dichroic mirrors (fundamental wave reflection surfaces, output surfaces) 3 and 4 disposed so as to sandwich the wavelength conversion element 10, a beam diffuser 5 for absorbing the fundamental wave, and wavelength conversion And a control device 6 for controlling the efficiency.
  • the DFB laser 1 has a grating provided in the active layer region of the LD so that a longitudinal single mode output can be easily obtained.
  • the DFB laser 1 can modulate the oscillation wavelength by tuning the grating that determines the oscillation wavelength with an electric field or temperature.
  • the oscillation wavelength of the DFB laser 1 can be selected from a range of 1064 to 1066 nm, and the DFB laser 1 outputs a longitudinal single mode at each wavelength.
  • the wavelength conversion element 10 is made of MgO: LiTaO 3 crystal having a polarization period inversion structure, and has a rectangular parallelepiped shape. Specifically, the wavelength conversion element 10 has a polarization period reversal structure arranged in the left-right direction in FIG. 1, and generates a second harmonic as converted wave light from the fundamental wave by quasi-phase matching of the reversal period.
  • the wavelength conversion element 10 has a uniform polarization inversion period within the wavelength conversion element 10 and is maintained at a constant temperature by a constant temperature holding mechanism. Further, the end face (left and right end faces in FIG. 1) where the fundamental wave of the wavelength conversion element 10 enters or exits is provided with a coat that transmits the fundamental wave and the second harmonic.
  • the dichroic mirrors 3 and 4 are provided on both sides of the wavelength conversion element 10 so as to define a plurality of fundamental wave paths that pass through the wavelength conversion element 10 at different angles.
  • the dichroic mirrors 3 and 4 will be described in detail.
  • the dichroic mirror 3 has a coat that reflects the fundamental wave and transmits the second harmonic.
  • the dichroic mirror 3 is disposed so as to be inclined in the length direction of the wavelength conversion element 10 (left-right direction in FIG. 1) from a posture perpendicular to the optical axis of the fundamental wave emitted from the DFB laser 1. Therefore, the fundamental wave reflected by the dichroic mirror 3 is incident on the wavelength conversion element 10 again along the optical axis inclined in the length direction of the wavelength conversion element 10.
  • the dichroic mirror 4 also has a coat that reflects the fundamental wave and transmits the second harmonic. Further, the dichroic mirror 4 is inclined with respect to the dichroic mirror 3 at an angle that is symmetric in FIG. Therefore, the fundamental wave reflected by the dichroic mirror 4 enters the wavelength conversion element 10 again along the optical axis inclined in the length direction of the wavelength conversion element 10.
  • the dichroic mirrors 3 and 4 are arranged so as to be inclined with respect to each other in this way, the fundamental wave paths A1 to A5 that gradually go upward in FIG. 1 are defined between the dichroic mirrors 3 and 4.
  • the fundamental wave paths A1 to A5 are directed in different directions between the dichroic mirrors 3 and 4, respectively.
  • the inclination angle with respect to the polarization inversion period of the wavelength conversion element 10 increases in the order of A1 to A5, and accordingly, the period of polarization inversion through which the fundamental wave passes increases.
  • the dichroic mirrors 3 and 4 constitute an output surface for wavelength-converted light.
  • the control device 6 includes an oscillation wavelength control unit 7 for controlling the wavelength of the fundamental wave oscillated from the DFB laser 1.
  • the oscillation wavelength controller 7 controls the wavelength of the fundamental wave so that the wavelength conversion efficiency in a specific optical path among the fundamental wave paths A1 to A5 is maximized.
  • the oscillation wavelength control unit 7 adjusts the oscillation wavelength by generating a desired electric field in the grating unit of the DFB laser 1.
  • the fundamental wave emitted from the DFB laser 1 is collimated by the collimator 2 and enters the wavelength conversion element 10.
  • the oscillation wavelength of the DFB laser 1 is set to 1064 nm by the oscillation wavelength control unit 7, whereby phase matching is performed in the fundamental wave path A ⁇ b> 1 that is incident perpendicular to the polarization inversion period.
  • converted wave light (second harmonic) a1 is generated with the highest conversion efficiency.
  • a deviation from the phase matching condition occurs due to tilting with respect to the polarization inversion structure of the wavelength conversion element 10 due to reflection of the dichroic mirrors 3 and 4, and conversion efficiency is improved.
  • the converted light (second harmonics) a2 to a5 is generated only slightly. For this reason, the converted wave light a1 generated in the fundamental wave path A1 is preferentially emitted from the dichroic mirrors 3 and 4 serving as the output surface of the converted wave light. The remaining fundamental wave that has not been wavelength-converted reaches the beam diffuser 5 and is absorbed.
  • the oscillation wavelength of the DFB laser 1 is set to 1066 nm by the oscillation wavelength control unit 7, so that phase matching is performed in the fundamental wave path A 5 that is most inclined with respect to the polarization inversion period.
  • the second harmonic is generated with the highest conversion efficiency in the fundamental wave path A5.
  • the converted wave light a5 generated in the fundamental wave path A5 is preferentially output from the dichroic mirrors 3 and 4 serving as the output surface of the converted wave light.
  • a fundamental wave optical path for phase matching is selected from the fundamental wave optical paths A2, A3, A4, and is generated in each of the optical paths A2 to A4.
  • the converted wave lights a2 to a4 can be emitted with priority.
  • Scanning light can also be emitted using the wavelength conversion laser 100.
  • the control device 6 of the wavelength conversion laser 100 modulates the oscillation wavelength of the DFB laser 1 at a constant period within a range of 1064 to 1066 nm, so that the fundamental wave path to be selected is A1 ⁇ A2 ⁇ A3 ⁇ A4 ⁇ A5 ⁇ A4 ⁇ A3 ⁇ A2 ⁇ A1 ⁇ A2... Since the emission angle of the converted wave light emitted at this time differs depending on the selected fundamental wave optical path, the converted wave light is emitted at different angles in order, and the wavelength converted light is repeatedly scanned. This scanning speed can be controlled by the modulation speed of the oscillation wavelength.
  • the above-described configuration is a preferable mode in which the wavelength conversion light emitted is scanned by sequentially selecting the fundamental wave path by the control device 6. In this way, beam scanning can be performed using only the wavelength conversion laser without using a movable mirror or the like, so that the number of components and loss can be reduced.
  • the converted wave light is scanned by modulating the oscillation wavelength of the fundamental wave as in the above configuration, the wavelength of the converted wave light at each scanning position is different. It can be carried out.
  • various laser light sources such as a semiconductor laser, a fiber laser, and a solid-state laser can be used as the fundamental laser light source of the present invention.
  • the collimator 2 used for beam shaping of the fundamental wave is used, but various optical components can be used for beam shaping of the fundamental wave to the wavelength conversion element and control of the divergence angle.
  • Various nonlinear materials can be used as the wavelength conversion element. For example, LBO, KTP, LiNbO 3 or LiTaO 3 having a polarization inversion periodic structure can be used.
  • two plane mirrors are used as the dichroic mirrors 3 and 4, and both of these plane mirrors are arranged to be inclined, but only one sheet may be arranged to be inclined.
  • the angle at which the plane mirror is tilted is preferably at least 1 degree or more so that the optical path of the fundamental wave has a certain degree of angle change.
  • both of the pair of dichroic mirrors 3 and 4 are used as output surfaces for converted wave light.
  • at least one of the dichroic mirrors 3 and 4 is a surface for outputting wavelength converted light. .
  • this embodiment is a preferred mode in which the oscillation wavelength control unit 7 modulates the oscillation wavelength of the fundamental wave and selects the preferred fundamental wave optical paths A1 to A5.
  • the oscillation wavelength control unit 7 modulates the oscillation wavelength of the fundamental wave and selects the preferred fundamental wave optical paths A1 to A5.
  • the modulation wavelength of the fundamental wave not only the angle and intensity distribution of the wavelength-converted light but also the wavelength of the emitted converted-wave light can be modulated.
  • the angle change of the converted wave light to be emitted can be speeded up.
  • the DFB laser 1 it is preferable to use the DFB laser 1 as in this embodiment and to use electric field modulation of the grating section. In this way, it is possible to control the oscillation wavelength at a very high speed.
  • FIG. 3 is a schematic diagram of a wavelength conversion laser 100a according to a modification of the first embodiment.
  • the same components as those of the wavelength conversion laser 100 are denoted by the same reference numerals and description thereof is omitted.
  • the wavelength conversion laser 100a includes light receiving elements 8a, 8b, and 8c that receive a part of the converted wave lights a1, a2, and a3 emitted from the fundamental wave paths A1, A3, and A5. And a sampler 65.
  • the light receiving elements 8a to 8c detect the light amount of the received converted wave light and detect which light receiving element 8a to 8c has the largest amount of incident light based on the difference between the detection values.
  • the sampler 65 is an optical component that reflects part of the converted wave light emitted from the wavelength conversion element 10 and guides it to the light receiving elements 8a to 8c.
  • the sampler 65 is a glass plate with a low reflection coating.
  • the fundamental wave paths A1 to A5 that preferentially emit the converted wave light can be selected.
  • the fundamental wave optical path from which the converted wave light is emitted with priority is detected among the fundamental wave paths A1, A3, and A5.
  • the control device 6 performs feedback control so that the fundamental wave optical path detected based on the detection results of the light receiving elements 8a to 8c matches the fundamental wave optical path selected by the oscillation wavelength control unit 7. Therefore, the converted wave light is always output with priority from the selected fundamental wave optical path.
  • the wavelength conversion laser 100a has a plurality of light receiving elements 8a to 8c for receiving the converted wave lights a1, a3, a5 from the fundamental wave paths A1, A3, A5, and is selected from the fundamental wave paths A1, A3, A5. This is a preferred mode capable of performing feedback control to the fundamental optical path.
  • the wavelength conversion laser 100a has a plurality of fundamental wave paths A1 to A5 having different phase matching conditions, and selects an optical path using the difference in the phase matching conditions.
  • the phase matching condition is affected by the surrounding environment and the elapsed time, and may change from the initial condition.
  • the wavelength conversion laser 100a by performing feedback control based on the detection results of the plurality of light receiving elements 8a to 8c that detect outputs from the plurality of fundamental wave paths, the intended fundamental wave light can be obtained regardless of changes in the phase matching conditions.
  • the output from the road can be prioritized.
  • the configuration including the three light receiving elements 8a to 8c for receiving the converted wave lights a1, a3, and a5 from the fundamental wave paths A1, A3, and A5 has been described. However, all the fundamental wave paths A1 to A5 are provided. Five light receiving elements corresponding to A5 may be provided so that feedback control can be performed for all the fundamental wave paths A1 to A5.
  • the plurality of light receiving elements includes a form in which one light receiving element is divided and used.
  • Si-PD or the like can be used.
  • FIG. 4 is a schematic diagram of a wavelength conversion laser 100b according to a modification of the first embodiment and an image display device 18 including the wavelength conversion laser 100b.
  • the same components as those described above are denoted by the same reference numerals and description thereof is omitted.
  • the wavelength conversion laser 100 b includes a DFB laser 1, a lens 2, a control device 6, and a wavelength conversion element 14.
  • the DFB laser 1 outputs a fundamental wave (near 1064 nm) in a state where the oscillation wavelength can be changed by the oscillation wavelength control unit 7.
  • the wavelength conversion element 14 has a trapezoidal shape (a trapezoid in which the left side in FIG. 4 is perpendicular to the upper and lower bases), and this side shape is orthogonal to the paper surface of FIG. It has a columnar outer shape extending in the direction of the movement.
  • This wavelength conversion element 14 is formed with a domain-inverted structure arranged in the left-right direction in FIG.
  • the wavelength conversion element 14 includes an end surface (left end surface in FIG. 4) 12 perpendicular to the fundamental wave emitted from the DFB laser 1 and an inclined end surface (right end surface in FIG. 4) 11.
  • the end surface 12 has an antireflection (Anti-Reflection: AR) coat for the fundamental wave only at the incident part of the fundamental wave, and a reflection of a fundamental wave and a converted wave light (High-Reflection: HR) coat at the other part.
  • the end face 11 has an HR coat for the fundamental wave and an AR coat for the converted wave light, and is an output surface for wavelength converted light. Further, the end surface 11 is inclined with respect to the end surface 12.
  • the wavelength conversion element 14 is made of MgO: LiNbO 3 having a domain-inverted periodic structure, and the domain-inverted period is formed in the direction of the incident fundamental wave (left-right direction in FIG. 4).
  • the fundamental wave is converted into green converted wave light (near 532 nm) by the wavelength conversion element 14. Since the end face 11 is inclined with respect to the end face 12, the optical path of the fundamental wave reflected by the end face 12 is inclined with respect to the polarization inversion period. Therefore, as the number of reflections at the end face 12 increases, the angle at which the fundamental wave path intersects the polarization inversion period increases.
  • the intersection angle with the polarization inversion period increases in the order of B1 to B5. Accordingly, the phase matching conditions in the fundamental wave paths B1 to B5 differ depending on the number of reflections on the end face 12. For this reason, by modulating the wavelength of the fundamental wave by the control device 6 including the oscillation wavelength controller 7, the converted wave light can be output with priority from any one of the fundamental wave paths B1 to B5. .
  • the image display device 18 includes the wavelength conversion laser 100b, the lens 15 that deflects the converted wave light from the wavelength conversion laser 100b, the light guide plate 16 that allows the converted wave light from the lens 15 to enter, and the conversion emitted from the light guide plate 16. And a liquid crystal panel 17 for displaying an image by wave light.
  • the wavelength-converted light emitted from the wavelength conversion laser 100b is guided to the light guide plate 16 through the lens 15.
  • the light guide plate 16 makes the beam incident from the side surface uniform, and illuminates the liquid crystal panel 17 from the back by raising the beam and emitting it from the main surface.
  • the liquid crystal panel 17 displays an image by modulating the converted wave light according to the image signal.
  • the liquid crystal panel 17 is a general transmissive liquid crystal panel including a polarizing plate, a liquid crystal, a TFT, and the like.
  • the light guide plate 16 includes sub light guide plates 16a, 16b, and 16c. The sub light guide plates 16a, 16b, and 16c make the incident converted wave light uniform and rise to the liquid crystal panel 17 side (main surface side).
  • the converted wave light b1 emitted from the fundamental wave path B1 in the wavelength conversion laser 100b is deflected by the lens 15 and enters the sub light guide plate 16a.
  • the converted wave lights b3 and b5 emitted from the fundamental wave path B3 and the fundamental wave path B5 are incident on the sub light guide plate 16b and the sub light guide plate 16c, respectively. Therefore, in the wavelength conversion laser 100b, it is possible to control which part of the sub light guide plates 16a to 16c is made to emit light according to which of the fundamental wave paths B1, B3, and B5 is selected.
  • the luminance distribution in the screen can be controlled by selecting the sub light guide plate to be lit among the sub light guide plates 16a to 16c. For example, when displaying a completely dark image, black is expressed without illuminating all of the sub light guide plates 16a to 16c. Further, when the number of fundamental wave optical paths that can be selected in the wavelength conversion laser 100b is large, the number of sub light guide plates can be increased accordingly.
  • the image display device 18 preferably includes a modulation element that emits the converted wave light generated in the optical path selected from the fundamental wave paths B1, B3, and B5 with priority from the wavelength conversion laser 100b and modulates the converted wave light. It is a form. As described above, in the wavelength conversion laser 100b, the fundamental wave optical path for emitting the converted wave light can be selected, so that the luminance distribution of the image displayed on the image display device can be controlled.
  • the portion of the liquid crystal panel 17 to be illuminated can be selected corresponding to the position of the sub light guide plates 16a to 16c.
  • the sub light guide plate arranged at the position corresponding to the bright portion is used without shining the sub light guide plate arranged at the position corresponding to the black portion of the image to be displayed.
  • the contrast of the image can be increased by making it shine strongly.
  • power consumption can be reduced by not illuminating unnecessary areas of the light guide plate 16.
  • red and blue laser light sources are used in combination with the wavelength conversion laser 100b.
  • the luminance distribution of the image display device can be set for each sub light guide plate.
  • FIG. 5 and 6 are schematic configuration diagrams of the wavelength conversion laser 200 according to Embodiment 2 of the present invention.
  • FIG. 5 differs from FIG. 6 in that the fundamental wave optical path for emitting the converted wave light with priority is different.
  • the wavelength conversion laser 200 includes a fiber laser 21 as a laser light source that emits a fundamental wave, a condensing lens 22 that collects the fundamental wave from the fiber laser 21, and a wavelength conversion element 20 on which the collected fundamental wave is incident. And a pair of concave mirrors 23 and 24 arranged so as to sandwich the wavelength conversion element 20, and a control device 25 for controlling the temperature of the wavelength conversion element 20.
  • the fiber laser 21 emits fundamental light of linear polarization with a single mode and an output of 10 W or more. Since the conversion efficiency of the wavelength conversion element 20 is proportional to the power of the fundamental wave, a high conversion efficiency can be obtained by using the fiber laser 21, and a highly efficient wavelength conversion laser 200 can be obtained. . That is, the fiber laser 21 is a suitable fundamental wave laser light source that can make the wavelength conversion laser 200 highly efficient.
  • the wavelength conversion element 20 is made of MgO: LiNbO 3 crystal having a polarization period inversion structure, and has a rectangular parallelepiped shape with a length of 25 mm, a width of 5 mm, and a thickness of 1 mm.
  • the wavelength conversion element 20 has a polarization period inversion structure arranged in the left-right direction of FIG. 5 (the length direction of the wavelength conversion element 20), and is a second harmonic wave that is converted wave light by quasi-phase matching of the inversion period. Is generated.
  • the stripe pattern shown in FIGS. 5 and 6 is an outline of the periodic structure, the inversion period is about 7 ⁇ m, and is substantially uniform in the wavelength conversion element 20.
  • the end face (left and right end faces in FIG. 5) where the fundamental wave of the wavelength conversion element 20 enters and exits is provided with a coating that transmits the fundamental wave and the second harmonic wave (converted wave light).
  • the temperature of the wavelength conversion element 20 is controlled by the temperature control unit 26 of the control device 25.
  • the temperature of the wavelength conversion element 20 can be controlled by attaching a Peltier element to the bottom surface of the wavelength conversion element 20 and applying a voltage to the Peltier element by the temperature control unit 26.
  • the temperature control may be performed on the entire wavelength conversion element 20 or may be performed on a part of the wavelength conversion element 20.
  • the concave mirror 23 has a coat that reflects the fundamental wave and transmits the second harmonic wave, and is an output surface for emitting the second harmonic wave that is the converted wave light.
  • the concave mirror 24 has a coat that reflects the fundamental wave and the second harmonic.
  • the radius of curvature of the concave mirror 23 is 22 mm
  • the radius of curvature of the concave mirror 24 is 20 mm
  • the distance between the concave mirrors is about 21 mm in terms of air.
  • the fundamental wave is reflected between the two concave mirrors 23 and 24 to reciprocate the wavelength conversion element 20 a plurality of times at different angles.
  • the two concave mirrors 23 and 24 play a role of condensing the fundamental wave on the fundamental wave path in the wavelength conversion element 20. Thereby, conversion efficiency improves.
  • the fundamental wave emitted from the fiber laser 21 is condensed by the condenser lens 22 so as to have a beam waist in the wavelength conversion element 20.
  • the fundamental wave from the condenser lens 22 enters the wavelength conversion element 20 from the end face of the wavelength conversion element 20 that is not covered by the concave mirror 24.
  • the fundamental wave emitted from the wavelength conversion element 20 is reflected by the concave mirror 23 and re-enters the wavelength conversion element 20 at a different incident angle.
  • the fundamental wave radiate
  • the fundamental wave reciprocates between the concave mirrors 23 and 24 and passes through the wavelength conversion element a plurality of times at different angles. That is, between the concave mirrors 23 and 24, there are a plurality of fundamental wave paths that are directed in different directions (only E1 to E7 are illustrated in FIG. 5 but more optical paths are actually defined). It is prescribed.
  • the fundamental wave is condensed at a plurality of locations in the wavelength conversion element 20 in the process of reciprocation between the concave mirrors 23 and 24.
  • Fundamental light is condensed and conversion efficiency is high.
  • the wavelength converted light generated when the fundamental wave passes through the wavelength conversion element 20 is output from the concave mirror 23.
  • the concave mirror 23 prevents the fundamental wave light from passing through the beam waist from diverging. In the collected state, the fundamental wave light is returned again to the concave mirror 24 side.
  • the temperature of the wavelength conversion element 20 is controlled by the temperature control unit 26 so as to be phase-matched in the fundamental wave path that passes orthogonally to the polarization inversion periodic structure of the wavelength conversion element 20, and the temperature is maintained. Yes.
  • the fundamental wave path E1 located at the bottom of FIG. 5 and the fundamental wave path E3 located above are substantially orthogonal to the polarization inversion periodic structure of the wavelength conversion element 20, these fundamental wave lights. In the paths E1 and E3, the deviation from the phase matching condition is small, the conversion efficiency is increased, and a large amount of wavelength converted light is generated.
  • the wavelength conversion efficiency in the fundamental wave path E1 is the largest.
  • the fundamental wave paths E2, E4, and E6 that pass through the wavelength conversion element 20 with an inclination the deviation from the phase matching condition is large, so that the conversion efficiency is low, and the generated wavelength conversion light is small. Therefore, the converted wave light generated in the fundamental wave path E1 located at the bottom of FIG. 5 and the fundamental wave path E3 located above is preferentially emitted.
  • FIG. 6 shows a state in which the temperature control unit 26 controls the temperature of the wavelength conversion element 20 to a temperature one degree lower than the example shown in FIG. 5 and this temperature is maintained.
  • the deviation from the phase matching condition is small in the fundamental wave paths E5 and E7 that obliquely cross the polarization inversion periodic structure of the wavelength conversion element 20, and the conversion efficiency is high.
  • the fundamental wave paths E1 and E3 substantially orthogonal to the polarization inversion periodic structure the deviation from the phase matching condition is large and the conversion efficiency is low. That is, in the example shown in FIG. 6, the converted wave light generated in the fundamental wave optical paths E5 and E7 (optical paths located in the middle stage in FIG. 6) that pass through the polarization inversion structure of the wavelength conversion element 20 is preferentially emitted. Yes. More specifically, in this embodiment, the wavelength conversion efficiency in the fundamental wave path E7 is set to be the highest.
  • the temperature control unit 26 changes the temperature of the wavelength conversion element 20 so that the deviation from the phase matching condition in each of the fundamental wave paths E1 to E7 passing through the wavelength conversion element 20 at different angles. And the converted wave light generated in the specific fundamental wave path is preferentially emitted.
  • the intensity distribution of the converted wave light emitted from the wavelength conversion laser 200 can be controlled by performing control so that the converted wave light generated in a specific fundamental wave path is emitted with priority.
  • Embodiment 2 is a preferred embodiment in which the temperature control unit 26 controls the temperature of the wavelength conversion element 20 to generate converted wave light with priority from a specific fundamental wave path. Therefore, according to the second embodiment, it is possible to control the angle and intensity distribution of the emitted converted wave light and the number of emitted beams while keeping the wavelength emitted from the wavelength conversion laser 200 constant. Further, by performing temperature control on a part of the wavelength conversion element 20, it is possible to control the angle, the intensity distribution, and the number of beams by providing a temperature distribution in the wavelength conversion element 20.
  • the converted wave light is emitted as a plurality of beams from the concave mirror 23 serving as an output surface.
  • the concave mirror 23 and the concave mirror 24 are arranged to face each other so as to be coaxial, the fundamental wave incident on the wavelength conversion element 20 is reflected by the concave mirror 23 and the concave mirror. 24 is expanded in the width direction of the wavelength conversion element 20 (vertical direction in FIGS. 5 and 6) and reaches the concave mirror 23. That is, the fundamental wave travels along a plurality of fundamental wave paths (E1 to E7) existing in the width direction of the wavelength conversion element 20, and reaches the concave mirror 23 as a plurality of beams arranged in the width direction.
  • the fundamental wave optical paths E 1 to E 7 that reciprocate between the concave mirrors 23 and 24 are at different angles in the width direction of the wavelength conversion element 20. Accordingly, the converted wave light emitted from the concave mirror 23 is the sum of the converted wave lights (e1, e3, e5, e7) generated in the respective fundamental wave paths (E1, E3, E5, E7). It is emitted as a horizontal multi-beam that is multi-directional in the width direction.
  • the converted wave light generated in a plurality of fundamental wave paths in the fundamental wave paths (E1, E3, E5, E7) is emitted and generated in any of the fundamental wave paths.
  • Preferentially emitting the converted wave light means controlling the power balance between the converted wave lights generated in the fundamental wave paths E1, E3, E5, and E7. That is, the wavelength conversion laser 200 can control the intensity distribution of the emitted lateral multi-beams by controlling the temperature of the wavelength conversion element 20.
  • This embodiment is a preferred mode for controlling the intensity distribution of the converted wave light emitted by the transverse multi-beam. Since the wavelength conversion laser 200 according to the present embodiment has a plurality of fundamental wave paths, the converted wave light can be output as a plurality of beams. These multiple beams can be handled as a single light beam by forming a linear transverse multi-beam.
  • being able to control the intensity distribution of the transverse multi-beam is an advantage of applying the wavelength conversion laser 200 to various application products. This is particularly effective in the field of video and lighting because it is necessary to make the intensity uniform.
  • the conversion efficiency is controlled.
  • the intensity of each beam included in the multi-beam can be easily controlled.
  • the intensity distribution of the transverse multi-beam can be temporally changed, so that interference noise can be reduced. it can.
  • the converted wave light generated in the fundamental wave paths E2 to E7 that pass through the wavelength conversion element thereafter increases more than the fundamental wave path E1 where the fundamental wave first enters the wavelength conversion element.
  • the temperature of the wavelength conversion element 20 is controlled by the temperature control unit 26. In this way, the destruction of the wavelength conversion element 20 due to heat generation can be suppressed. The reason is as follows.
  • the wavelength conversion laser 200 is configured to reciprocate the fundamental wave between the concave mirrors 23 and 24. Therefore, the fundamental wave has a loss during reflection at the concave mirrors 23 and 24, and Due to the consumption when the converted wave light is generated, it attenuates as the number of round trips increases. For this reason, in the fundamental wave optical path E1 which first enters the wavelength conversion element 20, the risk of heat generation and destruction of the wavelength conversion element 20 is highest. On the other hand, as shown in FIG.
  • FIG. 7 to 9 are schematic configuration diagrams of the wavelength conversion laser 300 according to Embodiment 3 of the present invention.
  • FIG. 7 and FIG. 9 are different from each other in that the fundamental wave path for emitting the converted wave light with priority is different.
  • the wavelength conversion laser 300 includes a mode-locked laser 31 as a laser light source that pulsates a fundamental wave, a condensing lens 32 that condenses the fundamental wave from the mode-locked laser 31, and a wavelength at which the collected fundamental wave is incident.
  • Conversion element 30, dichroic mirror 33 and concave mirror 34 disposed so as to sandwich wavelength conversion element 30, electrode 37 attached to wavelength conversion element 30, and voltage applied to wavelength conversion element 30 are controlled. And a control device 35.
  • the mode-locked laser 31 performs laser oscillation with a pulse width of 40 psec.
  • the wavelength conversion element 30 is made of MgO: LiNbO 3 crystal having a polarization period inversion structure, and has a length of 20 mm. Further, the wavelength conversion element 30 has a polarization period reversal structure arranged in the left-right direction (the length direction of the wavelength conversion element) in FIG. 7, and generates a second harmonic that is converted wave light by quasi-phase matching of the reversal period. .
  • the inversion period of the polarization period inversion structure is uniform in the wavelength conversion element 30. Further, the end face (the left and right end faces in FIG. 7) where the fundamental wave of the wavelength conversion element 30 enters and exits is provided with a coat that transmits the fundamental wave and the second harmonic.
  • the temperature of the wavelength conversion element 30 is kept constant by a constant temperature holding unit (not shown).
  • the dichroic mirror 33 has a coat that reflects the fundamental wave and transmits the second harmonic wave, and serves as an output surface for emitting the second harmonic wave that is the converted wave light.
  • the dichroic mirror 33 is inclined from the posture perpendicular to the optical axis of the fundamental wave emitted from the mode-locked laser 31 in the length direction of the wavelength conversion element 30 (left-right direction in FIG. 7). Therefore, the fundamental wave reflected by the dichroic mirror 33 enters the wavelength conversion element 30 again along the optical axis inclined in the length direction of the wavelength conversion element 30.
  • the concave mirror 34 has a coat that reflects the fundamental wave and the second harmonic.
  • the concave mirror 34 plays a role of collecting the fundamental wave. Therefore, a plurality of fundamental optical paths D1 to D5 that are directed in different directions are defined between the concave mirror 34 and the dichroic mirror 33.
  • the concave mirror 34 narrows the beam diameter of the fundamental wave propagating along the optical paths D3 and D5 among these fundamental wave optical paths D1 to D5.
  • the fundamental wave optical path D3 and the fundamental wave optical path D5 pass through the wavelength conversion element 30 at an angle different from that of the optical path D1.
  • the electrodes 37 are comb-shaped (ladder type) electrodes provided on the front and back surfaces (the top surface and the bottom surface in FIG. 8) of the wavelength conversion element 30.
  • the electrode 37 is provided on each of the + z-axis plane and the ⁇ z-axis plane in the z-axis direction of the MgO: LiNbO 3 crystal. More specifically, the electrodes 37 are provided at a total of four locations so as to sandwich the two regions where the fundamental wave path D3 and the fundamental wave path D5 are defined.
  • a plurality of portions extending in the width direction (the vertical direction in FIG. 7) of the wavelength conversion element 30 in each electrode 37 is formed corresponding to the period of polarization inversion of the wavelength conversion element 30.
  • the control device 35 includes a voltage control unit 36 for controlling the voltage applied between the electrodes 37.
  • the voltage control unit 36 applies a voltage between the pair of electrodes 37 disposed so as to sandwich the fundamental wave optical path D3 or between the pair of electrodes 37 disposed so as to sandwich the fundamental wave optical path D5.
  • An electric field is generated in a partial region of the wavelength conversion element 30 in which the wave optical path D3 or the fundamental wave optical path D5 is defined.
  • the electric field generated in the region of the wavelength conversion element 30 in which the fundamental wave path D3 or the fundamental wave path D5 is defined can be switched. .
  • the refractive index of the wavelength conversion element 30 changes in the region where the fundamental wave path D3 and the fundamental wave path D5 are defined.
  • the pulse light of the fundamental wave emitted from the mode-locked laser 31 is condensed by the condenser lens 32 and enters the wavelength conversion element 30.
  • phase matching is performed in the fundamental wave optical path D1 incident perpendicularly to the polarization inversion period, and the second harmonic is generated in the fundamental wave optical path D1 with high conversion efficiency.
  • the fundamental wave is incident on the wavelength conversion element 30 with an inclination, and passes through the wavelength conversion element 30 with an inclination with respect to the domain-inverted periodic structure.
  • difference from phase matching conditions arises, conversion efficiency becomes low, and a 2nd harmonic is hardly generated. Therefore, only the converted wave light d1 generated in the fundamental wave path D1 is output from the dichroic mirror 33.
  • the pulse width of the converted wave light d1 is about 40 psec.
  • an electric field is generated in the region of the wavelength conversion element 30 in which the fundamental wave path D3 and the fundamental wave path D5 are defined by applying a voltage to each electrode 37 by the voltage controller 36.
  • the difference in refractive index between the second harmonic and the fundamental wave in the fundamental wave path of the wavelength conversion element 30 is reduced, and even if the optical path is inclined with respect to the domain-inverted periodic structure, the deviation from the phase matching condition is reduced. Get smaller. Therefore, the conversion efficiency also increases in the fundamental wave path D3 and the fundamental wave path D5 of the fundamental wave path.
  • the second harmonic is generated not only in the fundamental wave path D 1 but also in the fundamental wave path D 3 and the fundamental wave path D 5, and is output from the dichroic mirror 33.
  • the pulse time width of the total output of the fundamental wave optical path D1, the fundamental wave optical path D3, and the fundamental wave optical path D5 is about 100 psec.
  • the output light in the fundamental wave path D3 is temporally delayed with respect to the output light in the fundamental wave path D1
  • the output light in the fundamental wave path D5 is temporally delayed with respect to the output light in the fundamental wave path D3. Therefore, the pulse width of the total output light is expanded more than twice with respect to the fundamental wave from the mode-locked laser 31. Note that the pulse width of the total output light can be increased five times or more by further increasing the number of optical paths.
  • the voltage controller 36 controls the amount of deviation from the phase matching condition by generating an electric field in the wavelength conversion element 30, and the fundamental of the fundamental wave path in which the converted wave light is generated. This is a preferred mode for selecting the wave paths D1, D3, and D5.
  • the amount of deviation from the phase matching condition can be controlled by the fundamental wave paths D1, D3, D5 passing through the wavelength conversion element 30 at different angles and the electric field generated in the wavelength conversion element 30.
  • Switching of the fundamental wave path can be performed at high speed by switching with an electric field.
  • the selection of the fundamental optical path can be switched within the repetition period of the pulsed light.
  • the wavelength conversion laser 300 preferably uses a mode-locked laser 31 that pulse-oscillates the fundamental wave, and controls the number of fundamental wave optical paths from which the converted wave light is emitted by the control device 35, thereby controlling the pulse width and interval of the emitted light.
  • the pulse width of the emitted light can be increased from 40 psec to 100 psec by switching the number of fundamental wave light paths for emitting the converted wave light from 1 to 3.
  • the pulse width can be increased several times.
  • the fundamental wave path D1 and the fundamental wave path D5 are selected (in the case of FIG. 9)
  • this embodiment mode it is possible to emit with a pulse width and a pulse interval that are difficult to achieve with other lasers.
  • FIG. 10 shows a schematic diagram of a laser processing apparatus 39 according to a modification of the third embodiment.
  • the laser processing apparatus 39 includes the wavelength conversion laser 300 and a lens 38 that condenses the converted wave light from the wavelength conversion laser 300.
  • the control device 36 selects only the fundamental wave path D1 and outputs the converted wave light d1, and the wavelength conversion laser 300 outputs the converted wave lights d1, d3, and d5 from the fundamental wave paths D1 to D3. Switching is possible.
  • the lens 38 condenses the converted wave light from the wavelength conversion laser 300.
  • the surface of the processing object T is disposed near the condensing position of the lens 38.
  • the laser processing device 39 can switch between a state in which only the converted wave light d1 is output and a state in which the converted wave lights d1 to d3 are output. A case where the beam is irradiated at one spot and a case where the beam is irradiated at three spots arranged in a line can be selected.
  • the laser processing apparatus 39 can change the irradiation range (spot shape) of the beam to the workpiece T by selecting the fundamental wave path of the wavelength conversion laser 300.
  • the beam irradiation range can be set in accordance with the type of processing, and the processing time can be shortened and the processing accuracy can be improved.
  • the laser processing apparatus 39 according to the present embodiment can change the beam irradiation range without using a mechanical mechanism, and thus has high reliability.
  • the fundamental wave optical paths D1 to D3 for preferentially emitting the converted wave light can be continuously changed in time, so that the spot shape change during beam emission or intermediate A spot shape can be created. For this reason, complicated processing can be performed quickly.
  • the above-described embodiment is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
  • the embodiments of the present invention may be used in combination.
  • a plurality of fundamental wave light sources may be used, or a converted wave such as a difference frequency or a sum frequency may be output in addition to the second harmonic.
  • the polarization inversion period in the wavelength conversion element may have several kinds of periods.
  • the fundamental wave is reflected between a pair of fundamental wave reflection surfaces, passes through the wavelength conversion element a plurality of times at different angles, and at least one reflection surface serves as an output surface that transmits the wavelength-converted light,
  • the control apparatus has a control device that performs control so that the converted wave light of a specific fundamental wave path is preferentially emitted.
  • a plurality of phase matching conditions are provided by having fundamental wave paths having different angles in one wavelength conversion element.
  • the conversion efficiency in the particular fundamental wave optical path is increased.
  • the fundamental wave optical path other than the specific fundamental wave optical path is out of the phase matching condition, the conversion efficiency is lowered.
  • the converted wave light of the specific fundamental wave optical path is emitted with priority.
  • a wavelength conversion laser includes a fundamental wave light source that emits a fundamental wave, a wavelength conversion element that converts a fundamental wave from the fundamental wave light source into converted wave light, and the wavelength conversion element at different angles.
  • a pair of fundamental wave reflecting surfaces that reflect the fundamental wave so as to define a plurality of fundamental wave optical paths that pass through the plurality of fundamental wave optical paths that are directed in different directions between the pair of fundamental wave reflecting surfaces
  • a control device that controls the wavelength conversion efficiency so that the wavelength conversion efficiency in a specific fundamental wave path is the highest, and at least one of the pair of fundamental wave reflection surfaces is the converted wave light. Is an output surface that passes through.
  • the wavelength conversion efficiency can be controlled by the control device so that the wavelength conversion efficiency in the specific optical path among the fundamental wave paths is the highest, the direction (angle) corresponding to the fundamental wave path The converted wave light can be emitted with priority.
  • the present invention it is possible to provide a wavelength conversion laser capable of controlling the angle, intensity distribution, and pulse time width of the outgoing converted wave light.
  • the pair of fundamental wave reflecting surfaces according to the present invention may reflect the fundamental light and at least one of the pair of fundamental wave reflecting surfaces may be a surface that causes an angle change in the optical path of the fundamental light.
  • the fundamental wave reflection surface may be a convex or concave shape instead of a flat surface, and the end face of the wavelength conversion element may be the fundamental wave reflection surface.
  • the shape of the reflecting surface may be a spherical surface, an aspherical surface, or a cylindrical surface.
  • control device includes a temperature control unit that controls the temperature of the wavelength conversion element, and the temperature control unit selects the specific fundamental wave path by controlling the temperature of the wavelength conversion element. It can be.
  • the wavelength conversion efficiency in each fundamental wave optical path can be controlled by changing the phase matching condition of the wavelength conversion element by controlling the temperature of the wavelength conversion element.
  • control device includes an oscillation wavelength control unit that controls an oscillation wavelength of the fundamental wave by the fundamental wave light source, and the oscillation wavelength control unit controls the specific fundamental wave by controlling the oscillation wavelength of the fundamental wave. It can also be set as the structure which selects a wave optical path.
  • the wavelength conversion efficiency in a plurality of fundamental wave paths can be controlled by changing the oscillation wavelength of the fundamental wave from the fundamental wave light source.
  • control device includes a voltage control unit that applies a voltage to the wavelength conversion element in order to generate an electric field in the wavelength conversion element, and the voltage control unit generates an electric field in the wavelength conversion element.
  • the specific fundamental wave path may be selected.
  • the wavelength conversion efficiency in a plurality of fundamental wave paths can be controlled.
  • the wavelength conversion laser further includes a light receiving element capable of detecting a light amount of the converted wave light emitted from at least one of the fundamental wave optical paths, and the control device is configured to perform the control based on the light amount detected by the light receiving element. It is preferable to control the wavelength conversion efficiency so that the wavelength conversion efficiency in the specific fundamental wave path is maximized.
  • control device simultaneously emits the converted wave light generated in at least two or more of the fundamental wave paths as a multi-beam and controls the intensity distribution of the multi-beam.
  • the intensity distribution of the multi-beam can be controlled by controlling the wavelength conversion efficiency in each optical path.
  • the fundamental wave light source pulse-oscillates the fundamental wave
  • the control device increases or decreases the number of optical paths for emitting the converted wave light among the fundamental wave optical paths. It is preferable to control at least one of the pulse width and interval of the converted wave light emitted from.
  • the pulse width and interval of the converted wave light emitted from the output surface can be controlled by increasing or decreasing the number of fundamental wave light paths for emitting the converted wave light using the difference in optical path length.
  • the control unit controls the wavelength conversion efficiency so that the wavelength conversion efficiency in the optical path through which the fundamental wave passes is higher than the optical path through which the fundamental wave first passes among the fundamental wave optical paths. Is preferred.
  • the reason is as follows.
  • the fundamental wave path where the fundamental wave first passes the power of the fundamental wave is large. Therefore, if the wavelength conversion efficiency in this fundamental wave path is increased, the power of the converted wave light also increases, and the wavelength conversion associated with the absorption of this converted wave light. The amount of heat generated by the element is large.
  • the fundamental wave power after passing through the first fundamental wave path becomes small as much as the wavelength conversion is performed as in the above configuration, the wavelength conversion efficiency in the subsequent fundamental wave path is reduced. Even if it is increased, the power of the converted wave light generated thereby is small, and the heat generation amount of the wavelength conversion element is also small. Therefore, destruction of the wavelength conversion element can be suppressed.
  • control device sequentially switches a fundamental wave optical path for emitting the converted wave light so that the converted wave light emitted from the output surface scans a predetermined range.
  • An image display device includes the wavelength conversion laser and a modulation element that modulates the converted wave light emitted from the wavelength conversion laser in order to display a predetermined image.
  • the converted wave light emitted in a specific direction from the wavelength conversion laser can be used to guide the converted wave light to an appropriate position of the modulation element according to the displayed image, so that the contrast of the image is improved.
  • power consumption can be reduced.
  • a laser processing apparatus includes the wavelength conversion laser and a condensing optical system that condenses the converted wave light emitted from the wavelength conversion laser, and converts the converted wave light among the fundamental wave paths.
  • the spot shape of the converted wave light is changed by increasing / decreasing the number of optical paths that emit light.
  • the machining time can be shortened and the machining accuracy can be improved by changing the spot shape of the converted wave light according to the type of machining.
  • the present invention can be used for a wavelength conversion laser that performs wavelength conversion of a fundamental wave from a fundamental wave light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

 波長変換素子を異なる角度で通過する複数の基本波光路を規定するように基本波を反射する1対の基本波反射面と、1対の基本波反射面の間で別々の方向を向く基本波光路のうち、特定の光路における波長変換効率が最も高くなるように波長変換効率を制御する制御装置とを備える。

Description

波長変換レーザ、画像表示装置、及びレーザ加工装置
 本発明は、基本波の波長変換を行ってレーザ出力をする波長変換レーザに関するものである。
 従来から、波長変換素子の非線形光学現象を用いて、基本波レーザの波長を第2高調波(Second Harmonic Generation : SHG)、和周波、差周波等の変換波の波長に変換して出力する波長変換レーザがある。
 波長変換レーザは、例えば、図11に示すように、基本波レーザ光源101と、レーザ光源101から出射された基本波レーザ光を集光するレンズ102と、集光された基本波レーザ光を第2高調波に変換する波長変換素子103と、基本波レーザ光と高調波レーザ光とを分離するダイクロイックミラー104からなる。
 波長変換素子103は、非線形光学結晶からなり、基本波の波長変換を行う。具体的に、波長変換素子103は、基本波と変換波との位相が整合するように適切に調整された結晶の方位や分極反転構造等を有している。特に、分極反転構造を有する波長変換素子は、擬似位相整合により低パワーでも高効率の波長変換を行うことができ、設計により様々な波長変換を行うことができる。分極反転構造とは、波長変換素子103の自発分極を周期的に反転させた領域が設けられた構造である。
 基本波から第2高調波に変換する変換効率ηは、波長変換素子の相互作用長をL、基本波のパワーをP、波長変換素子でのビーム断面積をA、位相整合条件からのずれをΔkとすると、以下のように表すことができる。
 η ∝ LP / A × sinc2(Δk L/2)
 前記の式において、位相整合条件からのずれが生じると、変換効率が低下し、第2高調波(変換波)の発生が低下する。このため、位相整合条件からのずれが生じないように、非線形光学結晶の温度を許容範囲内の所定温度とする制御が行われている。
 例えば、特許文献1のように、変換波の光強度を検出する検出手段と、非線形結晶の温度調節手段とを用いて、変換波の光強度が目標値に収束するように温度調節手段の駆動を制御することが提案されている。
 特許文献1に係る構成によれば、高い変換効率を得ることや波長変換レーザの出力を制御することができる。
 しかし、特許文献1は、波長変換効率の制御により波長変換レーザから出射される変換波光の強度分布を制御することは提案されていない。
特開平4-318528号公報
 本発明は、波長変換効率を制御することにより、出射される変換波光の強度分布を制御することができる波長変換レーザ、及びこれを用いた画像表示装置及びレーザ加工装置を提供することを目的としている。
 本発明の一局面に係る波長変換レーザは、基本波を出射する基本波光源と、前記基本波光源からの基本波を変換波光に変換するための波長変換素子と、前記波長変換素子を異なる角度で通過する複数の基本波光路を規定するように前記基本波を反射する1対の基本波反射面と、前記1対の基本波反射面の間で別々の方向を向く前記複数の基本波光路のうち、特定の基本波光路における波長変換効率が最も高くなるように波長変換効率を制御する制御装置とを備え、前記1対の基本波反射面のうち少なくとも一方の反射面は、前記変換波光を透過する出力面である。
 本発明の他の局面に係る画像表示装置は、前記波長変換レーザと、所定の画像を表示するために前記波長変換レーザから出射された変換波光の変調を行う変調素子とを備えている。
 本発明の他の局面に係るレーザ加工装置は、前記波長変換レーザと、前記波長変換レーザから出射された変換波光を集光する集光光学系とを備え、前記各基本波光路のうち変換波光を出射させる光路の数を増減することにより、前記変換波光のスポット形状が変化する。
 本発明によれば、波長変換効率を制御することにより、出射される変換波光の強度分布を制御することができる。
図1は、本発明の実施の形態1に係る波長変換レーザの概略構成図である。 図2は、図1の波長変換レーザにおいて変換波光を優先して出射する基本波光路を変更した状態を示す概略構成図である。 図3は、本発明の実施の形態1の変形例に係る波長変換レーザの概略構成図である。 図4は、実施の形態1の変形例に係る波長変換レーザ及びこの波長変換レーザを備えた画像表示装置の概略構成図である。 図5は、本発明の実施の形態2に係る波長変換レーザの概略構成図である。 図6は、図5の波長変換レーザにおいて変換波光を優先して出射する基本波光路を変更した状態を示す概略構成図である。 図7は、本発明の実施の形態3に係る波長変換レーザの概略構成図である。 図8は、図7の波長変換素子及び電極を拡大して示す概略斜視図である。 図9は、図7の波長変換レーザにおいて変換波光を優先して出射する基本波光路を変更した状態を示す概略構成図である。 図10は、本発明の実施の形態3に係る波長変換レーザを備えたレーザ加工装置の概略構成図である。 図11は、従来の波長変換レーザの概略構成図である。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
 以下本発明の実施の形態について図面を参照しながら説明する。
(実施の形態1)
 図1及び図2は、本発明の実施の形態1に係る波長変換レーザ100の概略構成図である。図1と図2とは、変換波光を優先して出射させる基本波光路を異ならせている点で相違している。
 波長変換レーザ100は、基本波を出射するレーザ光源としてのdistributed feedback(以下、DFBと略す)レーザ1と、DFBレーザ1から出射した基本波をコリメートするコリメータ2と、コリメートされた基本波を入射させる波長変換素子10と、波長変換素子10を挟むように配置された一対のダイクロイックミラー(基本波反射面、出力面)3、4と、基本波を吸収するためのビームディフューザ5と、波長変換効率を制御するための制御装置6とを備えている。
 DFBレーザ1は、LDの活性層領域に設けられたグレーティングを有し、縦シングルモード出力が容易に得られるようになっている。DFBレーザ1は、発振波長を決定するグレーティングを電界もしくは温度によってチューニングすることにより、発振波長の変調を行うことができるようになっている。具体的に、DFBレーザ1の発振波長は、1064~1066nmの範囲内から選択することができ、DFBレーザ1は、各波長で縦シングルモードの出力を行うようになっている。
 波長変換素子10は、分極周期反転構造を有するMgO:LiTaO3結晶からなり、直方体の形状をもつ。具体的に、波長変換素子10は、図1の左右方向に並ぶ分極周期反転構造を有し、反転周期の擬似位相整合により基本波からの変換波光として第2高調波を発生させる。波長変換素子10は、波長変換素子10内で均一な分極反転周期を有し、定温保持機構により一定温度に保たれている。また、波長変換素子10の基本波が入射又は出射する端面(図1の左右の端面)には、基本波及び第2高調波を透過するコートが施されている。
 ダイクロイックミラー3、4は、波長変換素子10を異なる角度で通過する複数の基本波光路を規定するように、波長変換素子10の両側に設けられている。以下、ダイクロイックミラー3、4について具体的に説明する。
 ダイクロイックミラー3は、基本波を反射し、かつ、第2高調波を透過するコートをもつ。また、ダイクロイックミラー3は、DFBレーザ1を出射する基本波の光軸に対して垂直な姿勢から、波長変換素子10の長さ方向(図1の左右方向)に傾けて配置してある。したがって、ダイクロイックミラー3で反射する基本波は、波長変換素子10の長さ方向に傾斜した光軸に沿って前記波長変換素子10に再度入射することになる。
 ダイクロイックミラー4も、基本波を反射し、かつ、第2高調波を透過するコートをもつ。また、ダイクロイックミラー4は、前記ダイクロイックミラー3と図1において左右対称となる角度で傾斜して配置されている。したがって、ダイクロイックミラー4で反射する基本波は、波長変換素子10の長さ方向に傾斜した光軸に沿って波長変換素子10に再度入射することになる。
 このようにダイクロイックミラー3、4が互いに傾斜して配置されていることにより、これらダイクロイックミラー3、4の間には、徐々に図1の上に向かう基本波光路A1~A5が規定される。この基本波光路A1~A5は、ダイクロイックミラー3、4の間でそれぞれ別々の方向を向く。各基本波光路A1~A5は、A1からA5の順に波長変換素子10の分極反転周期に対する傾斜角が大きくなり、これに伴い、基本波が通過する分極反転の周期も長くなる。ダイクロイックミラー3及び4は、波長変換光の出力面を構成する。
 制御装置6は、DFBレーザ1から発振される基本波の波長を制御するための発振波長制御部7を備えている。発振波長制御部7は、前記基本波光路A1~A5のうち、特定の光路における波長変換効率が最大となるように基本波の波長を制御する。具体的に、発振波長制御部7は、DFBレーザ1のグレーティング部に所望の電界を生じさせることにより、発振波長を調整するようになっている。
 DFBレーザ1から出射された基本波は、コリメータ2によりコリメートされ波長変換素子10に入射する。図1に示す例では、DFBレーザ1の発振波長が発振波長制御部7により1064nmに設定されることにより、分極反転周期に対して垂直に入射する基本波光路A1において位相整合が行われ、この基本波光路A1において最も高い変換効率で変換波光(第2高調波)a1が発生する。このとき、基本波光路A2~A5では、ダイクロイックミラー3、4の反射により波長変換素子10の分極反転構造に対して傾斜していることに伴い、位相整合条件からのずれが生じ、変換効率が低くなり、変換波光(第2高調波)a2~a5は、わずかしか発生しない。このため、変換波光の出力面となるダイクロイックミラー3及び4からは、基本波光路A1で発生した変換波光a1が優先して出射される。なお、波長変換されなかった残りの基本波は、ビームディフューザ5に達し、吸収される。
 図2に示す例では、DFBレーザ1の発振波長が発振波長制御部7により1066nmに設定されることにより、分極反転周期に対し最も傾斜している基本波光路A5において位相整合が行われ、この基本波光路A5において最も高い変換効率で第2高調波が発生する。このとき、基本波光路A1~A4では、分極反転周期が位相整合条件を満たすための周期よりも短いため、位相整合条件からのずれが生じて変換効率が低くなり、第2高調波は、わずかしか発生しない。そのため、変換波光の出力面となるダイクロイックミラー3及び4からは、基本波光路A5で発生した変換波光a5が優先して出力される。
 同様にDFBレーザ1の発振波長を発振波長制御部7により変調することにより、位相整合を行う基本波光路を基本波光路A2、A3、A4の中から選択して、各光路A2~A4において生じた変換波光a2~a4を優先して出射させることができる。
 前記波長変換レーザ100を用いて走査光を出射させることもできる。具体的に、波長変換レーザ100の制御装置6によって、DFBレーザ1の発振波長を1064~1066nmの範囲内で一定周期で変調することにより、選択する基本波光路をA1→A2→A3→A4→A5→A4→A3→A2→A1→A2・・・と順次に変化させることができる。このとき出射される変換波光の出射角度は、選択する基本波光路に応じて異なるため、変換波光は、順次異なる角度で出射され、波長変換光の走査が繰り返し行われる。この走査速度は、発振波長の変調速度で制御することができる。上述した構成は、制御装置6により基本波光路の選択を順次に行うことにより、出射される波長変換光の走査を行う好ましい形態である。このようにすれば、可動ミラー等を用いず波長変換レーザのみでビーム走査を行うことができるため、部品点数の削減や損失の低減が可能となる。また、前記構成のように、基本波の発振波長の変調により変換波光の走査を行わせる場合、各走査位置における変換波光の波長が異なることになるため、ひとつの光源を用いて分光計測などを行うことができる。
 本発明の基本波レーザ光源には、DFBレーザの他、半導体レーザ、ファイバーレーザ、固体レーザなど各種レーザ光源を用いることができる。本実施の形態1では、基本波のビーム整形に用いられるコリメータ2を用いているが、波長変換素子への基本波のビーム整形や拡がり角の制御を行うために各種光学部品を用いることができる。また波長変換素子としては、各種非線形材料を用いることができる。例えば、LBOやKTP、分極反転周期構造をもつLiNbO3やLiTaO3を用いることができる。
 本実施の形態では、ダイクロイックミラー3、4として2枚の平面ミラーを用い、これら平面ミラーの双方を傾斜して配置しているが、1枚のみを傾斜して配置してもよい。平面ミラーを傾斜させる角度は、基本波の光路にある程度の角度変化をもたせるために、少なくとも1度以上であることが好ましい。
 また、本実施の形態では、一対のダイクロイックミラー3、4の双方を変換波光の出力面としているが、各ダイクロイックミラー3、4の少なくとも一方が波長変換光を出力する面となっていればよい。
 なお、本実施の形態は、発振波長制御部7により基本波の発振波長の変調を行い、優先する基本波光路A1~A5を選択する好ましい形態である。このように基本波の発振波長を変調させることで、波長変換光の角度及び強度分布だけでなく、出射する変換波光の波長の変調も行うこともできる。発振波長の変調を行う場合、変調の周波数を100Hz以上に設定して、変調を高速で行うことが好ましい。変調を高速に行うことにより、画像表示や照明として波長変換光を用いる場合のみかけのスペクトル幅を太くし、干渉性を低減させることができる。
 また、DFBレーザ1の発振波長を高速に変化させることにより、出射する変換波光の角度変化を高速化することができる。発振波長の高速変調には、本実施の形態の様にDFBレーザ1を用い、グレーティング部の電界変調を用いることが好ましい。このようにすれば、非常に高速な発振波長の制御を行うことができる。
 以下、図3を参照して実施の形態1の変形例について説明する。
 図3は、実施の形態1の変形例に係る波長変換レーザ100aの概略図を示す。前記波長変換レーザ100と同様の構成については、同じ番号を付して説明を省略する。
 波長変換レーザ100aは、波長変換レーザ100の構成に加えて、基本波光路A1、A3、A5から出射される変換波光a1、a2、a3の一部を受光する受光素子8a、8b、8cと、サンプラー65とを有する。
 受光素子8a~8cは、受光した変換波光の光量を検出するとともに、検出値の差分に基づいてどの受光素子8a~8cへの入射光量が最も多いかを検出する。
 サンプラー65は、波長変換素子10から出射される変換波光の一部を反射して、受光素子8a~8cに導くための光学部品である。具体的に、サンプラー65は、低反射コートがされたガラス板である。
 波長変換レーザ100aでは、制御装置6の発振波長制御部7によりDFBレーザ1の波長を変えることによって、変換波光を優先して出射させる基本波光路A1~A5を選択することができる。受光素子8a~8cのうち入射光量が最も多い受光素子の検出結果に基づいて、基本波光路A1、A3、A5のうち変換波光が優先して出射された基本波光路が検出される。制御装置6は、受光素子8a~8cの検出結果に基づいて検出された基本波光路と、発振波長制御部7により選択された基本波光路が一致するようにフィードバック制御を行う。したがって、選択された基本波光路から常に優先して変換波光が出力されることになる。
 波長変換レーザ100aは、基本波光路A1、A3、A5からの変換波光a1、a3、a5を受光する複数の受光素子8a~8cを有し、基本波光路A1、A3、A5のうち選択された基本波光路へのフィードバック制御を行うことができる好ましい形態である。
 前記波長変換レーザ100aでは、位相整合条件が異なる複数の基本波光路A1~A5を有し、位相整合条件の違いを利用して、光路の選択を行う。位相整合条件は、周囲環境や経時時間により影響を受け、初期条件から変化する場合がある。波長変換レーザ100aでは、複数の基本波光路からの出力を検出する複数の受光素子8a~8cの検出結果に基づいてフィードバック制御を行うことにより、位相整合条件の変化にかかわらず、意図した基本波光路からの出力を優先させることができる。また、前記実施形態では、基本波光路A1、A3、A5からの変換波光a1、a3、a5を受光する3つの受光素子8a~8cを備えた構成について説明したが、全ての基本波光路A1~A5に対応する5つの受光素子を備え、全ての基本波光路A1~A5についてフィードバック制御をすることができるようにしてもよい。
 なお、複数の受光素子とは、一つの受光素子を分割して使用する形態も含む趣旨であり、例えば、Si-PDなどを用いることができる。
 以下、図4を参照して実施の形態1の変形例について説明する。
 図4は、実施の形態1の変形例に係る波長変換レーザ100b及びこの波長変換レーザ100bを備えた画像表示装置18の概略図を示す。上述した構成と同様の構成については、同じ番号を付してその説明を省略する。
 波長変換レーザ100bは、DFBレーザ1と、レンズ2と、制御装置6と、波長変換素子14とを備えている。
 DFBレーザ1は、前記発振波長制御部7により発信波長を変化可能な状態で、基本波(1064nm近傍)を出力する。
 波長変換素子14は、図4に示すように台形(図4の左側の辺が上底及び下底に対して直角な台形)の側面形状を有し、この側面形状が図4の紙面と直交する方向に延びる柱状の外形とされている。この波長変換素子14には、図4の左右方向に並ぶ分極反転構造が形成されている。
 より具体的に、波長変換素子14は、DFBレーザ1から出射された基本波に対し垂直な端面(図4の左側の端面)12と、傾斜する端面(図4の右側の端面)11とを有する。端面12は、基本波の入射部分にのみ基本波に対する反射防止(Anti Reflection:AR)コートを有し、その他の部分に基本波及び変換波光の反射(High Reflection:HR)コートを有する。端面11は、基本波に対するHRコートと、変換波光に対するARコートとを有し、波長変換光の出力面である。また、端面11は、端面12に対して傾斜している。
 また、波長変換素子14は、分極反転周期構造を有するMgO:LiNbO3からなり、分極反転周期は、入射する基本波の向き(図4の左右方向)に形成されている。波長変換素子14により、基本波は、緑色の変換波光(532nm近傍)に変換される。端面11が端面12に対して傾斜しているため、端面12で反射する基本波の光路は、分極反転周期に対して傾くことになる。したがって、端面12での反射回数が多くなることに伴い、基本波光路が分極反転周期と交差する角度が大きくなる。
 具体的に、基本波光路B1~B5は、B1からB5の順で分極反転周期との交差角度が大きくなる。これに伴い、基本波光路B1~B5における位相整合条件は、端面12での反射回数に応じてそれぞれ異なることになる。このため、発振波長制御部7を含む制御装置6によって基本波の波長を変調することにより、各基本波光路B1~B5のうちの何れかの光路から優先して変換波光を出力させることができる。
 次に、図4に示す画像表示装置18について説明する。
 画像表示装置18は、前記波長変換レーザ100bと、波長変換レーザ100bからの変換波光を偏向するレンズ15と、レンズ15からの変換波光を入射させる導光板16と、導光板16から出射された変換波光により画像を表示するための液晶パネル17とを備えている。
 波長変換レーザ100bを出射した波長変換光は、レンズ15を経て、導光板16に導かれる。導光板16は、側面から入射したビームの均一化を行うとともに、ビームを立ち上げて主面から出射することにより、液晶パネル17を背面から照明する。液晶パネル17は、画像信号に従い変換波光を変調することにより画像を表示する。液晶パネル17は、偏光板、液晶、TFTなどからなる一般的な透過型液晶パネルである。導光板16は、サブ導光板16a、16b、16cを有する。サブ導光板16a、16b、16cは、それぞれ入射した変換波光を均一化するとともに、液晶パネル17側(主面側)へ立ち上げるようになっている。
 波長変換レーザ100bにおいて基本波光路B1から出射される変換波光b1は、レンズ15により偏向されてサブ導光板16aに入射する。同様に、基本波光路B3及び基本波光路B5から出射される変換波光b3、b5は、それぞれサブ導光板16b及びサブ導光板16cに入射する。そのため、波長変換レーザ100bにおいて、基本波光路B1、B3、B5のうちの何れの光路を選択するかに応じて、サブ導光板16a~16cの何れの部分を光らせるのかを制御することができる。
 このように、画像表示装置18では、サブ導光板16a~16cのうち光らせるサブ導光板を選択することにより、画面内の輝度分布を制御することができる。例えば、真っ暗な画像を表示する場合、サブ導光板16a~16cの全てを光らせずに、黒を表現する。また、波長変換レーザ100bにおいて選択することができる基本波光路の数が多い場合、これに併せてサブ導光板の数を増やす事もできる。
 画像表示装置18は、基本波光路B1、B3、B5の中から選択された光路において生じた変換波光を波長変換レーザ100bから優先して出射し、この変換波光の変調を行う変調素子を有する好ましい形態である。このように、波長変換レーザ100bでは、変換波光を出射させる基本波光路を選択することができるので、画像表示装置に表示される画像の輝度分布を制御することができる。
 具体的に、画像表示装置18は、サブ導光板16a~16cを有しているので、液晶パネル17の光らせる部位を、サブ導光板16a~16cの位置に対応して選択することができる。画像表示装置の輝度分布を制御するためには、表示させる画像のうち黒い部分に対応する位置に配置されたサブ導光板を光らせず、明るい部分に対応する位置に配置されたサブ導光板のみを強く光らせることで、画像のコントラストを上げることができる。また、導光板16の不要な領域を光らせないことにより、消費電力の低減を図ることができる。
 なお、カラー画像を表示する場合は、前記波長変換レーザ100bに加えて赤及び青のレーザ光源を併用する。赤及び青の半導体レーザ光源をサブ導光板16a~16c毎に設置することで、画像表示装置の輝度分布をサブ導光板毎に設定することができる。
(実施の形態2)
 図5及び図6は、本発明の実施の形態2に係る波長変換レーザ200の概略構成図である。図5と図6とは、変換波光を優先して出射させる基本波光路を異ならせている点で相違している。
 波長変換レーザ200は、基本波を出射するレーザ光源としてのファイバレーザ21と、ファイバレーザ21からの基本波を集光する集光レンズ22と、集光された基本波が入射する波長変換素子20と、波長変換素子20を挟むように配置された一対の凹面ミラー23、24と、波長変換素子20の温度を制御するための制御装置25とを備えている。
 ファイバレーザ21は、シングルモード、かつ、10W以上の出力で直線偏光の基本波光を出射する。波長変換素子20の変換効率は、基本波のパワーに比例するため、前記ファイバレーザ21を利用することにより高い変換効率を得ることができ、高効率の波長変換レーザ200を得ることが可能となる。つまり、ファイバレーザ21は、波長変換レーザ200を高効率にすることができる好適な基本波レーザ光源である。
 波長変換素子20は、分極周期反転構造を有するMgO:LiNbO3結晶からなり、長さ25mm、幅5mm、厚み1mmの直方体の形状をもつ。具体的に、波長変換素子20は、図5の左右方向(波長変換素子20の長さ方向)に並ぶ分極周期反転構造を有し、反転周期の擬似位相整合により変換波光である第2高調波を発生させる。図5及び6に示す縞模様は、周期構造の概略であり、反転周期は、約7μmであり、波長変換素子20内で略均一とされている。また、波長変換素子20の基本波が入射及び出射する端面(図5の左右の端面)には、基本波及び第2高調波(変換波光)を透過するコートが施されている。
 波長変換素子20の温度は、制御装置25の温度制御部26により制御されている。具体的には、例えば、波長変換素子20の底面にペルチェ素子を取り付け、このペルチェ素子に対して温度制御部26によって電圧を印加することにより波長変換素子20の温度を制御することができる。このとき、波長変換素子20の温度を検出するための温度センサ等を設け、この温度センサによる検出温度に基づいて温度制御部26によりフィードバック制御を行うことが好ましい。また、温度制御は、波長変換素子20の全体について行ってもよいし、波長変換素子20の一部について行ってもよい。
 凹面ミラー23は、基本波を反射し、かつ、第2高調波を透過するコートを有し、変換波光である第2高調波を出射するための出力面となっている。凹面ミラー24は、基本波及び第2高調波を反射するコートを有する。凹面ミラー23の曲率半径は、22mmであり、凹面ミラー24の曲率半径は、20mmであり、凹面ミラー間の距離は、空気換算長で約21mmである。基本波は、2つの凹面ミラー23、24間で反射することにより、波長変換素子20を異なる角度で複数回往復する。また、2つの凹面ミラー23、24は、波長変換素子20内の基本波光路で基本波を集光する役割を果たしている。これにより、変換効率が向上する。
 ファイバレーザ21から出射した基本波は、集光レンズ22により波長変換素子20内にビームウェストを持つように集光される。集光レンズ22からの基本波は、凹面ミラー24により覆われていない波長変換素子20の端面から波長変換素子20内に入射する。波長変換素子20から出射した基本波は、凹面ミラー23で反射することにより、波長変換素子20に対して異なる入射角度で再入射する。そして、波長変換素子20から出射した基本波は、凹面ミラー24で反射することにより、波長変換素子20に対して異なる入射角度で再入射する。
 このように、基本波は、凹面ミラー23と24との間を往復し、波長変換素子を異なる角度で複数回通過する。つまり、各凹面ミラー23、24の間には、それぞれ別々の方向を向く複数の基本波光路(図5ではE1~E7のみを例示するが実際にはより多くの光路が規定されている)が規定されている。本実施形態では、これら基本波光路E1~E7のうち、図5の左から右に向かう基本波光路E1、3、5、7において生じた変換波光e1、e3、e5、e7が凹面ミラー23を透過して出射するようになっている。以下、具体的に説明する。
 基本波は、各凹面ミラー23、24の間の往復の過程において、波長変換素子20内の複数の箇所で集光する。具体的に、図5に示す構成では、凹面ミラー24で反射して図5の左から右へ波長変換素子20を通過するときに(基本波光路E1、E3、E5、E7を通過するときに)基本波光が集光し、変換効率が高くなっている。波長変換素子20内を基本波が通過するときに発生した波長変換光は、凹面ミラー23から出力される。一方、図5の右から左へ波長変換素子20を通過するとき(基本波光路E2、E4、E6を通過するとき)には、ビームウェストを過ぎた基本波光が発散しないように凹面ミラー23により集光された状態で、基本波光は、再び凹面ミラー24側へ戻される。
 図5では、波長変換素子20の分極反転周期構造に対し直交して通過する基本波光路において位相整合するように温度制御部26により波長変換素子20の温度を制御し、その温度が保たれている。本実施形態においては、図5の下に位置する基本波光路E1と、上に位置する基本波光路E3とが波長変換素子20の分極反転周期構造に対し概ね直交しているため、これら基本波光路E1、E3においては、位相整合条件からのずれが少なく、変換効率が高くなり、発生する波長変換光が多い。特に、本実施形態における基本波光路E1は、波長変換素子20の分極反転周期構造に略直交しているため、この基本波光路E1における波長変換効率が最も大きい。これに対し、波長変換素子20を傾斜して通過する基本波光路E2、E4、E6では、位相整合条件からのずれが大きいため変換効率が低くなり、発生する波長変換光が少ない。したがって、図5の下に位置する基本波光路E1及び、上に位置する基本波光路E3において生じる変換波光が優先して出射される。
 図6は、温度制御部26により波長変換素子20の温度を図5に示す例よりも1度低い温度に制御し、この温度が保たれた状態を示している。図6に示す状態においては、波長変換素子20の分極反転周期構造を斜めに横切る基本波光路E5、E7において位相整合条件からのずれ量が小さく、変換効率は、高くなる。これに対し、分極反転周期構造に概ね直交する基本波光路E1、E3においては、位相整合条件からのずれが大きく、変換効率が低くなる。つまり、図6に示す例では、波長変換素子20の分極反転構造を傾斜して通過する基本波光路E5、E7(図6の中段に位置する光路)において生じる変換波光を優先して出射させている。より具体的に、本実施形態では、基本波光路E7における波長変換効率が最も高く設定されている。
 本実施の形態2は、温度制御部26により波長変換素子20の温度を変化させることにより、異なる角度で波長変換素子20を通過する基本波光路E1~E7のそれぞれにおける位相整合条件からのずれ量を制御し、特定の基本波光路において生じた変換波光を優先して出射させる。実施の形態2では、特定の基本波光路において生じた変換波光を優先して出射させる制御を行うことにより、波長変換レーザ200から出射される変換波光の強度分布を制御することができる。
 実施の形態2は、温度制御部26により波長変換素子20を温度制御することにより、特定の基本波光路から変換波光を優先して発生させる好ましい形態である。したがって、実施の形態2によれば、波長変換レーザ200から出射される波長を一定としたまま、出射される変換波光の角度や強度分布及び出射されるビーム数を制御することができる。また、波長変換素子20の一部について温度制御を行うことにより、波長変換素子20内に温度分布をもたせて、角度や強度分布およびビーム数を制御することもできる。
 波長変換レーザ200では、出力面となる凹面ミラー23から変換波光が複数のビームとなって出射される。具体的に、本実施形態では、凹面ミラー23と凹面ミラー24とは、同軸となるように正対して配置されているため、波長変換素子20に入射した基本波は、凹面ミラー23と凹面ミラー24との間で波長変換素子20の幅方向(図5及び図6の上下方向)に広げられて、凹面ミラー23に到達する。つまり、基本波は、波長変換素子20の幅方向に存在する複数の基本波光路(E1~E7)に沿って進行して、幅方向に並ぶ複数本のビームとして凹面ミラー23に到達する。このとき、凹面ミラー23、24間を往復する基本波光路E1~E7は、波長変換素子20の幅方向に互いに異なる角度とされている。したがって、凹面ミラー23から出射される変換波光は、各基本波光路(E1、E3、E5、E7)で発生した変換波光(e1、e3、e5、e7)の合計であるため、波長変換素子の幅方向にマルチ化された横マルチビームとなって出射される。ここで、本実施の形態2のように基本波光路(E1、E3、E5、E7)の中の複数の基本波光路において生じた変換波光を出射しながら、何れかの基本波光路において生じた変換波光を優先して出射することは、各基本波光路E1、E3、E5、E7において発生する変換波光間のパワーバランスを制御することを意味する。つまり、波長変換レーザ200では、波長変換素子20の温度制御により、出射される横マルチビームの強度分布を制御することができる。
 本実施の形態は、横マルチビームで出射される変換波光の強度分布を制御する好ましい形態である。本実施の形態に係る波長変換レーザ200は、複数の基本波光路を持つため、変換波光を複数のビームとして出力することができる。そして、これら複数のビームを線状の横マルチビームとすることにより、一つの光束として扱うことができる。ここで、横マルチビームの強度分布を制御することができることは、波長変換レーザ200を各種の応用製品に適用する利点となる。特に、映像や照明の分野では、強度の均一化が必要となるため、有効である。横マルチビームを出射する従来のレーザでは、マルチビームに含まれる各ビームの強度を制御することは煩雑であったが、本実施の形態に係る波長変換レーザ200では、変換効率を制御することによりマルチビームに含まれる各ビームの強度の制御を容易に行うことができる。また、変換波光を優先して出射するための基本波光路の切り換えを時間的に変化させることにより、横マルチビームの強度分布を時間的に変化させることができるので、干渉ノイズを低減することができる。
 図6に示す例では、基本波が初めに波長変換素子に入射する基本波光路E1よりも、その後に波長変換素子を通過する基本波光路E2~E7において発生する変換波光が多くなるように、温度制御部26により波長変換素子20の温度が制御されている。このようにすれば、波長変換素子20の発熱による破壊を抑制することができる。その理由は、以下の通りである。
 基本波及び変換波のパワーが大きい場合、波長変換素子20の発熱及びこの発熱による波長変換素子20の破壊が生じるおそれがあり、波長変換素子20の光耐性が課題となる。そこで、本実施の形態について検討すると、波長変換レーザ200では、凹面ミラー23、24間で基本波を往復させるようにしているので、基本波は、凹面ミラー23、24における反射時のロスや、変換波光の発生時の消費により、前記往復の回数を重ねるに従い減衰する。このため、波長変換素子20に初めに入射する基本波光路E1において、前記した波長変換素子20の発熱と破壊のリスクが最も高くなる。一方、図6に示すように、基本波が初めに波長変換素子20に入射する基本波光路E1よりも、その後に波長変換素子20を通過する基本波光路E2~E7において発生する変換波光が多くなるように制御することにより、波長変換素子20の発熱及びこの発熱による破壊というリスクを回避することができ好ましい。したがって、図6に示すような制御をすることで、信頼性の高い安定した出力を行う波長変換レーザを得ることができる。
(実施の形態3)
 図7~図9は本発明の実施の形態3に係る波長変換レーザ300の概略構成図である。図7と図9とは、変換波光を優先して出射させる基本波光路を異ならせている点で相違している。
 波長変換レーザ300は、基本波をパルス発振するレーザ光源としてのモードロックレーザ31と、モードロックレーザ31からの基本波を集光する集光レンズ32と、集光された基本波が入射する波長変換素子30と、波長変換素子30を挟むように配置されたダイクロイックミラー33及び凹面ミラー34と、波長変換素子30に取り付けられた電極37と、波長変換素子30に印加する電圧を制御するための制御装置35とを備えている。
 モードロックレーザ31は、40psecのパルス幅でレーザ発振を行う。
 波長変換素子30は、分極周期反転構造を有するMgO:LiNbO3結晶からなり、20mmの長さを有する。また、波長変換素子30は、図7の左右方向(波長変換素子の長さ方向)に並ぶ分極周期反転構造を有し、反転周期の擬似位相整合により変換波光である第2高調波を発生させる。前記分極周期反転構造の反転周期は、波長変換素子30内で均一とされている。また、波長変換素子30の基本波が入射及び出射する端面(図7の左右の端面)には、基本波と第2高調波を透過するコートが施されている。そして、波長変換素子30の温度は、図外の定温保持部により一定に保たれている。
 ダイクロイックミラー33は、基本波を反射し、かつ、第2高調波を透過するコートを有し、変換波光である第2高調波を出射するための出力面となっている。ダイクロイックミラー33は、モードロックレーザ31から出射される基本波の光軸に対して垂直な姿勢から、波長変換素子30の長さ方向(図7の左右方向)に傾けて配置してある。したがって、ダイクロイックミラー33で反射する基本波は、波長変換素子30の長さ方向に傾斜した光軸に沿って波長変換素子30に再度入射することになる。
 凹面ミラー34は、基本波及び第2高調波を反射するコートを有する。凹面ミラー34は、基本波を集光する役割を果たしている。したがって、この凹面ミラー34と前記ダイクロイックミラー33との間には、それぞれ別々の方向を向く複数の基本波光路D1~D5が規定される。そして、これらの基本波光路D1~D5のうちの光路D3、D5に沿って伝播する基本波のビーム径を凹面ミラー34が絞っている。基本波光路D3及び基本波光路D5は、光路D1とは異なる角度で波長変換素子30を通過する。
 電極37は、波長変換素子30の表裏の面(図8の上面と底面)にそれぞれ設けられた櫛歯状(梯子型)の電極である。電極37は、MgO: LiNbO3結晶のz軸方向における+z軸面と-z軸面にそれぞれ設けられている。より具体的に、電極37は、基本波光路D3及び基本波光路D5が規定された2の領域をそれぞれ挟むように合計4箇所に設けられている。各電極37における波長変換素子30の幅方向(図7の上下方向)に延びる複数の部分は、それぞれ波長変換素子30の分極反転の周期に対応して形成されている。
 制御装置35は、前記各電極37間に印加される電圧を制御するための電圧制御部36を備えている。電圧制御部36は、基本波光路D3を挟むように配置された一対の電極37間、又は基本波光路D5を挟むように配置された一対の電極37間にそれぞれ電圧を印加することにより、基本波光路D3又は基本波光路D5が規定された波長変換素子30の一部の領域に電界を生じさせる。そして、電圧制御部36による電圧の印加と印加の停止とを切り換えることにより、基本波光路D3又は基本波光路D5が規定された波長変換素子30の領域に生じた電界のスイッチングを行うことができる。このように、波長変換素子30に対して電界を生じさせることにより、基本波光路D3及び基本波光路D5が規定された領域について波長変換素子30の屈折率が変化する。
 モードロックレーザ31から出射された基本波のパルス光は、集光レンズ32により集光され、波長変換素子30に入射する。図7では、分極反転周期に対し垂直に入射する基本波光路D1で位相整合を行い、この基本波光路D1において高い変換効率で第2高調波が発生する。一方、基本波光路D3及び基本波光路D5では、基本波は、波長変換素子30に傾斜して入射して、分極反転周期構造に対し傾きをもって波長変換素子30を通過する。このため、基本波光路D3及びD5においては、位相整合条件からのずれが生じ、変換効率が低くなり、第2高調波は、ほとんど発生しない。このため、基本波光路D1で発生した変換波光d1のみがダイクロイックミラー33から出力される。なお、変換波光d1のパルス幅は約40psecである。
 図9では、各電極37に対し電圧制御部36により電圧を印加することにより、基本波光路D3と基本波光路D5が規定された波長変換素子30の領域に電界を生じさせている。これにより、波長変換素子30の基本波光路における第2高調波と基本波との屈折率差が小さくなり、光路が分極反転周期構造に対して傾いていても、位相整合条件からのずれ量が小さくなる。したがって、基本波光路の基本波光路D3及び基本波光路D5においても変換効率が高くなる。その結果、図9に示す例では、基本波光路D1だけでなく、基本波光路D3及び基本波光路D5においても第2高調波が発生し、ダイクロイックミラー33から出力される。
 ここで、基本波光路D1、基本波光路D3及び基本波光路D5の合計出力のパルス時間幅は、約100psecである。そして、基本波光路D1における出力光に対して基本波光路D3における出力光は、時間的に遅延しており、基本波光路D3の出力光に対して基本波光路D5の出力光は、時間的に遅延しているため、合計出力光のパルス幅は、モードロックレーザ31からの基本波に対して、2倍以上に拡大される。なお、光路数をさらに増やすことにより、合計出力光のパルス幅を5倍以上に増やすことも可能である。また、基本波光路D5に対応する領域にのみ電界を生じさせ、基本波光路D1と基本波光路D5において変換波光を発生させることにより、40psecの変換波光のパルスを45psec間隔で出力するここともできる。
 本実施の形態3に係る波長変換レーザ300は、電圧制御部36により波長変換素子30に電界を生じさせることにより位相整合条件からのずれ量を制御し、変換波光が発生する基本波光路の基本波光路D1、D3、D5を選択する好ましい形態である。本実施の形態では、異なる角度で波長変換素子30を通過する基本波光路D1、D3、D5と、波長変換素子30に生じる電界により、位相整合条件からのずれ量を制御することができる。電界によるスイッチングにより、基本波光路の選択の切り替えを高速に行うことができる。例えば本実施の形態では、パルス光の繰り返し周期内に基本波光路の選択を切り替えることができる。
 波長変換レーザ300は、基本波をパルス発振するモードロックレーザ31を用い、制御装置35により変換波光を出射する基本波光路の数を制御することにより、出射光のパルス幅や間隔を制御する好ましい形態である。図7と図9とでは、変換波光を出射する基本波光路の数を1から3に切り換えることにより、出射光のパルス幅を40psecから100psecに大きくすることができる。基本波光路の数によりパルス幅を制御することにより、パルス幅を数倍にすることが可能となる。また、基本波光路D1と基本波光路D5とを選択した場合(図9の場合)のように、非常に短いパルス間隔のパルス光を作成することができる。本実施の形態を用いることにより、他のレーザでは、実現することが困難なパルス幅およびパルス間隔での出射を行うことができる。
 次に、図10に示すレーザ加工装置39について説明する。
 図10は、実施の形態3の変形例に係るレーザ加工装置39の概略図を示す。
 レーザ加工装置39は、前記波長変換レーザ300と、波長変換レーザ300からの変換波光を集光するレンズ38とを備えている。
 波長変換レーザ300は、前記制御装置36により、基本波光路D1のみを選択して変換波光d1を出力する場合と、基本波光路D1~D3から変換波光d1、d3、d5を出力する場合とのスイッチングが可能である。
 レンズ38は、波長変換レーザ300からの変換波光を集光する。
 前記レーザ加工装置39を用いて加工を行なう場合には、加工対象物Tの表面をレンズ38の集光位置付近に配置する。ここで、レーザ加工装置39は、上述のように、変換波光d1のみを出力する状態と、変換波光d1~d3を出力する状態とを切り換えることができるので、加工対象物Tに対しては1つのスポットにおいてビームを照射する場合と、ライン状に並ぶ3つのスポットにおいてビームを照射する場合とを選択することができる。
 本実施の形態に係るレーザ加工装置39は、波長変換レーザ300の基本波光路を選択することにより、加工対象物Tに対するビームの照射範囲(スポット形状)を変化させることができる。ビームの照射範囲を変化させることにより、加工の種類に併せたビームの照射範囲を設定することができ、加工時間の短縮や加工精度の向上を図ることができる。また、本実施の形態に係るレーザ加工装置39は、機械的な機構を用いることなく、ビームの照射範囲を変化させることができるため、信頼性が高い。さらに、前記レーザ加工装置39では、変換波光を優先して出射させる基本波光路D1~D3を、時間的に連続的に変化させることができるため、ビーム出射中のスポット形状変化や、中間的なスポット形状を作成することができる。このため、複雑な加工を迅速に行うことができる。
 なお、上述した実施の形態は、上記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。当然、本発明の各実施の形態を組み合わせて用いることもできる。なお、複数の基本波光源を用いたり、第2高調波の他、差周波、和周波などの変換波を出力する構成としてもよい。また、波長変換素子内の分極反転周期を数種類の周期を有するようにしてもよい。
 本発明は、基本波が1対の基本波反射面の間で反射して、波長変換素子を異なる角度で複数回通過し、少なくとも一方の反射面は、波長変換光を透過する出力面となり、波長変換素子を通過する複数の基本波光路で波長変換光が発生し得るとき、特定の基本波光路の変換波光を優先して出射させる制御を行う制御装置を有することを特徴としている。
 本構成では、ひとつの波長変換素子内で、角度が異なる基本波光路をもつことにより複数の位相整合条件をもつこととなる。特定の基本波光路の位相整合条件にあわせた基本波波長又は温度などを制御装置により設定することにより、特定の基本波光路における変換効率が高くなる。一方、特定の基本波光路以外の基本波光路においては、位相整合条件から外れるため、変換効率が低くなり、その結果として、特定の基本波光路の変換波光が優先して出射される。特定の基本波光路からの波長変換光を優先して出射することにより、出射される波長変換光の角度、強度分布又はビーム数などを制御することができる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る波長変換レーザは、基本波を出射する基本波光源と、前記基本波光源からの基本波を変換波光に変換するための波長変換素子と、前記波長変換素子を異なる角度で通過する複数の基本波光路を規定するように前記基本波を反射する1対の基本波反射面と、前記1対の基本波反射面の間で別々の方向を向く前記複数の基本波光路のうち、特定の基本波光路における波長変換効率が最も高くなるように波長変換効率を制御する制御装置とを備え、前記1対の基本波反射面のうち少なくとも一方の反射面は、前記変換波光を透過する出力面である。
 本発明によれば、波長変換素子を異なる角度で通過する複数の基本波光路が規定されているので、1対の基本波反射面の間で別々の方向を向く複数の基本波光路に対応して複数の位相整合条件が存在することになる。そして、本発明では、制御装置によって各基本波光路のうちの特定の光路における波長変換効率が最も高くなるように波長変換効率を制御することができるので、当該基本波光路に対応する方向(角度)に変換波光を優先して出射させることができる。
 したがって、本発明によれば、出射する変換波光の角度、強度分布、及びパルス時間幅の制御を行うことができる波長変換レーザを提供することができる。
 なお、本発明に係る1対の基本波反射面は、基本波光を反射するとともに、1対の基本波反射面の少なくとも一方が基本波光の光路に角度変化をもたらす面となっていればよい。例えば、基本波反射面は、平面ではなく凸面や凹面形状となっていてもよく、波長変換素子の端面を基本波反射面としてもよい。反射面の形状は、球面や非球面、およびシリンドリカル面としてもよい。
 具体的に、前記制御装置は、前記波長変換素子の温度を制御する温度制御部を備え、前記温度制御部は、前記波長変換素子を温度制御することにより前記特定の基本波光路を選択する構成とすることができる。
 このようにすれば、波長変換素子の温度を制御して波長変換素子の位相整合条件を変化させることにより、各基本波光路における波長変換効率を制御することができる。
 また、前記制御装置は、前記基本波光源による前記基本波の発振波長を制御する発振波長制御部を備え、前記発振波長制御部は、前記基本波の発振波長を制御することにより前記特定の基本波光路を選択する構成とすることもできる。
 このようにすれば、基本波光源による基本波の発振波長を変化させることにより、複数の基本波光路における波長変換効率を制御することができる。
 さらに、前記制御装置は、前記波長変換素子に電界を生じさせるために前記波長変換素子に電圧を印加する電圧制御部を備え、前記電圧制御部は、前記波長変換素子に電界を生じさせることにより前記特定の基本波光路を選択する構成とすることもできる。
 このようにすれば、波長変換素子に電圧を印加して波長変換素子の屈折率を変化させることにより、複数の基本波光路における波長変換効率を制御することができる。
 前記波長変換レーザにおいて、前記各基本波光路の少なくとも1つから出射された変換波光の光量を検出可能な受光素子をさらに備え、前記制御装置は、前記受光素子により検出された光量に基づいて前記特定の基本波光路における波長変換効率が最も大きくなるように波長変換効率を制御することが好ましい。
 この構成によれば、フィードバック制御を行うことにより、特定の基本波光路における波長変換効率を確実に最も高いものにすることが可能となる。
 前記波長変換レーザにおいて、前記制御装置は、前記各基本波光路のうち少なくとも2以上の光路において生じた変換波光を同時にマルチビームとして出射させるとともに、前記マルチビームの強度分布を制御することが好ましい。
 この構成によれば、少なくとも2以上の光路からマルチビームとして変換波光を出射するようにしているので、前記各光路における波長変換効率を制御することにより、マルチビームの強度分布を制御することができる。
 前記波長変換レーザにおいて、前記基本波光源は、前記基本波をパルス発振し、前記制御装置は、前記各基本波光路のうち前記変換波光を出射させる光路の数を増減することにより、前記出力面から出射する変換波光のパルス幅、間隔の少なくとも一方を制御することが好ましい。
 このように基本波をパルス発振させた場合、基本波光源から各基本波光路までの光路長に差が存在することに伴い、一の基本波光路において変換波光が発生していない時点においても他の基本波光路において変換波光が発生している状況が生じることとなる。そこで、前記構成では、前記光路長の差を利用して、変換波光を出射させる基本波光路の数を増減することにより、出力面から出射する変換波光のパルス幅や間隔を制御することができる。
 前記波長変換レーザにおいて、前記制御部は、前記各基本波光路のうち前記基本波が初めに通過する光路よりもその後に通過する光路における波長変換効率が大きくなるように波長変換効率を制御することが好ましい。
 この構成によれば、発熱に伴う波長変換素子の破壊を抑制することができる。その理由は以下の通りである。基本波が初めに通過する基本波光路では基本波のパワーが大きいため、この基本波光路における波長変換効率を大きくするとそこで生じる変換波光のパワーも大きなものとなり、この変換波光の吸収に伴う波長変換素子の発熱量は大きなものとなる。これに対し、前記構成のように、初めての基本波光路を通過した後の基本波のパワーは、波長変換が行われた分だけ小さなものとなるため、その後の基本波光路における波長変換効率を大きくしても、これにより生じる変換波光のパワーは小さく、波長変換素子の発熱量も小さくなる。したがって、波長変換素子の破壊を抑制することができる。
 前記波長変換レーザにおいて、前記制御装置は、前記出力面から出射された変換波光が所定の範囲を走査するように、前記変換波光を出射する基本波光路を順次切り換えることが好ましい。
 この構成によれば、所定の範囲を走査する走査光として変換波光を出力することができる。
 本発明の他の局面に係る画像表示装置は、前記波長変換レーザと、所定の画像を表示するために前記波長変換レーザから出射された変換波光の変調を行う変調素子とを備えている。
 本発明によれば、波長変換レーザから特定の方向に出射された変換波光を利用して、表示される画像に応じて変調素子の適所に変換波光を導くことができるため、画像のコントラストの向上及び消費電力の低減を図ることができる。
 本発明の他の局面に係るレーザ加工装置は、前記波長変換レーザと、前記波長変換レーザから出射された変換波光を集光する集光光学系とを備え、前記各基本波光路のうち変換波光を出射させる光路の数を増減することにより、前記変換波光のスポット形状が変化する。
 本発明によれば、加工の種別に応じて変換波光のスポット形状を変化させることにより、加工時間の短縮や加工精度の向上を図ることができる。
 本発明は、基本波光源からの基本波の波長変換を行う波長変換レーザに利用することができる。

Claims (11)

  1.  基本波を出射する基本波光源と、
     前記基本波光源からの基本波を変換波光に変換するための波長変換素子と、
     前記波長変換素子を異なる角度で通過する複数の基本波光路を規定するように前記基本波を反射する1対の基本波反射面と、
     前記1対の基本波反射面の間で別々の方向を向く前記複数の基本波光路のうち、特定の基本波光路における波長変換効率が最も高くなるように波長変換効率を制御する制御装置とを備え、
     前記1対の基本波反射面のうち少なくとも一方の反射面は、前記変換波光を透過する出力面であることを特徴とする波長変換レーザ。
  2.  前記制御装置は、前記波長変換素子の温度を制御する温度制御部を備え、
     前記温度制御部は、前記波長変換素子を温度制御することにより前記特定の基本波光路を選択することを特徴とする請求項1に記載の波長変換レーザ。
  3.  前記制御装置は、前記基本波光源による前記基本波の発振波長を制御する発振波長制御部を備え、
     前記発振波長制御部は、前記基本波の発振波長を制御することにより前記特定の基本波光路を選択することを特徴とする請求項1に記載の波長変換レーザ。
  4.  前記制御装置は、前記波長変換素子に電界を生じさせるために前記波長変換素子に電圧を印加する電圧制御部を備え、
     前記電圧制御部は、前記波長変換素子に電界を生じさせることにより前記特定の基本波光路を選択することを特徴とする請求項1に記載の波長変換レーザ。
  5.  前記各基本波光路の少なくとも1つから出射された変換波光の光量を検出可能な受光素子をさらに備え、
     前記制御装置は、前記受光素子により検出された光量に基づいて前記特定の基本波光路における波長変換効率が最も大きくなるように波長変換効率を制御することを特徴とする請求項1~4の何れか1項に記載の波長変換レーザ。
  6.  前記制御装置は、前記各基本波光路のうち少なくとも2以上の光路において生じた変換波光を同時にマルチビームとして出射させるとともに、前記マルチビームの強度分布を制御することを特徴とする請求項1~5の何れか1項に記載の波長変換レーザ。
  7.  前記基本波光源は、前記基本波をパルス発振し、
     前記制御装置は、前記各基本波光路のうち前記変換波光を出射させる光路の数を増減することにより、前記出力面から出射する変換波光のパルス幅、間隔の少なくとも一方を制御することを特徴とする請求項1~6の何れか1項に記載の波長変換レーザ。
  8.  前記制御部は、前記各基本波光路のうち前記基本波が初めに通過する光路よりもその後に通過する光路における波長変換効率が大きくなるように波長変換効率を制御することを特徴とする請求項1~7の何れか1項に記載の波長変換レーザ。
  9.  前記制御装置は、前記出力面から出射された変換波光が所定の範囲を走査するように、前記変換波光を出射する基本波光路を順次切り換えることを特徴とする請求項1~8の何れか1項に記載の波長変換レーザ。
  10.  請求項1~9の何れか1項に記載の波長変換レーザと、
     所定の画像を表示するために前記波長変換レーザから出射された変換波光の変調を行う変調素子とを備えていることを特徴とする画像表示装置。
  11.  請求項1~9の何れか1項に記載の波長変換レーザと、
     前記波長変換レーザから出射された変換波光を集光する集光光学系とを備え、
     前記各基本波光路のうち変換波光を出射させる光路の数を増減することにより、前記変換波光のスポット形状が変化することを特徴とするレーザ加工装置。
PCT/JP2009/000176 2008-01-21 2009-01-20 波長変換レーザ、画像表示装置、及びレーザ加工装置 WO2009093439A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980000182XA CN101689007B (zh) 2008-01-21 2009-01-20 波长转换激光器、图像显示装置以及激光加工装置
JP2009550462A JP5450101B2 (ja) 2008-01-21 2009-01-20 波長変換レーザ、画像表示装置、及びレーザ加工装置
US12/532,213 US8014429B2 (en) 2008-01-21 2009-01-20 Wavelength conversion laser, image display device and laser processing device
EP09704279.0A EP2246735B1 (en) 2008-01-21 2009-01-20 Wavelength conversion laser, image display device and laser processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008010876 2008-01-21
JP2008-010876 2008-01-21

Publications (2)

Publication Number Publication Date
WO2009093439A1 true WO2009093439A1 (ja) 2009-07-30
WO2009093439A9 WO2009093439A9 (ja) 2009-12-03

Family

ID=40900951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000176 WO2009093439A1 (ja) 2008-01-21 2009-01-20 波長変換レーザ、画像表示装置、及びレーザ加工装置

Country Status (5)

Country Link
US (1) US8014429B2 (ja)
EP (1) EP2246735B1 (ja)
JP (1) JP5450101B2 (ja)
CN (1) CN101689007B (ja)
WO (1) WO2009093439A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059341A (ja) * 2009-09-09 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> 光偏向器
JP2013161024A (ja) * 2012-02-08 2013-08-19 Advantest Corp 波長変換装置、光源装置、および波長変換方法
JPWO2019012806A1 (ja) * 2017-07-12 2020-05-07 ソニー株式会社 画像表示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991834B2 (ja) * 2009-12-17 2012-08-01 シャープ株式会社 車両用前照灯
JP5232815B2 (ja) * 2010-02-10 2013-07-10 シャープ株式会社 車両用前照灯
CN104482477A (zh) * 2010-05-17 2015-04-01 夏普株式会社 发光体及发光装置
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
CN103684579A (zh) * 2013-12-04 2014-03-26 国网安徽省电力公司信息通信分公司 带有波段转换功能的光路保护仪及控制方法
JP6698453B2 (ja) * 2016-07-13 2020-05-27 株式会社ディスコ 波長変換装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318528A (ja) 1991-04-17 1992-11-10 Fuji Photo Film Co Ltd 光波長変換装置
JPH05314334A (ja) * 1992-05-08 1993-11-26 Railway Technical Res Inst 非接触式自動改札装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377291A (en) * 1989-01-13 1994-12-27 Kabushiki Kaisha Toshiba Wavelength converting optical device
JPH03148888A (ja) * 1989-11-06 1991-06-25 Toshiba Corp 高調波発生装置
US5047668A (en) * 1990-06-26 1991-09-10 Cornell Research Foundation, Inc. Optical walkoff compensation in critically phase-matched three-wave frequency conversion systems
JPH05341334A (ja) * 1992-04-10 1993-12-24 Mitsubishi Electric Corp 波長変換装置
JP3052651B2 (ja) * 1992-06-17 2000-06-19 松下電器産業株式会社 短波長光源
US5321718A (en) * 1993-01-28 1994-06-14 Sdl, Inc. Frequency converted laser diode and lens system therefor
JP2892938B2 (ja) * 1994-06-20 1999-05-17 インターナショナル・ビジネス・マシーンズ・コーポレイション 波長変換装置
JP2000357833A (ja) * 1999-06-16 2000-12-26 Shimadzu Corp 波長変換レーザ装置
DE10063977A1 (de) * 2000-12-14 2002-07-25 Eckhard Zanger Optischer resonanter Frequenzwandler
US6671297B2 (en) * 2001-04-26 2003-12-30 Matsushita Electric Industrial Co., Ltd. Wavelength conversion device
JP2003121895A (ja) * 2001-10-10 2003-04-23 Sumitomo Heavy Ind Ltd 高調波発生装置、レーザアニール装置及び高調波発生方法
WO2005062116A1 (ja) * 2003-12-22 2005-07-07 Matsushita Electric Industrial Co., Ltd. 二次元画像表示装置
JPWO2005083854A1 (ja) * 2004-02-27 2007-11-29 松下電器産業株式会社 コヒーレント光源およびその制御方法、並びにそれらを用いたディスプレイ装置およびレーザディスプレイ
JP2006145584A (ja) * 2004-11-16 2006-06-08 Hitachi Via Mechanics Ltd 波長が紫外域の複数のレーザの形成方法および形成装置並びにレーザ加工装置
US7289549B2 (en) * 2004-12-09 2007-10-30 Electro Scientific Industries, Inc. Lasers for synchronized pulse shape tailoring
JP4883503B2 (ja) * 2005-06-21 2012-02-22 独立行政法人情報通信研究機構 多重光路の固体スラブレーザロッドまたは非線形光学結晶を用いたレーザ装置
JP4910643B2 (ja) * 2005-11-11 2012-04-04 パナソニック株式会社 表示装置
US7612934B2 (en) * 2007-12-13 2009-11-03 Photodigm Inc. Nonresonant multiple pass nonlinear structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318528A (ja) 1991-04-17 1992-11-10 Fuji Photo Film Co Ltd 光波長変換装置
JPH05314334A (ja) * 1992-05-08 1993-11-26 Railway Technical Res Inst 非接触式自動改札装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246735A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059341A (ja) * 2009-09-09 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> 光偏向器
JP2013161024A (ja) * 2012-02-08 2013-08-19 Advantest Corp 波長変換装置、光源装置、および波長変換方法
JPWO2019012806A1 (ja) * 2017-07-12 2020-05-07 ソニー株式会社 画像表示装置
JP7302472B2 (ja) 2017-07-12 2023-07-04 ソニーグループ株式会社 画像表示装置
US11693305B2 (en) 2017-07-12 2023-07-04 Sony Corporation Image display apparatus
US12130547B2 (en) 2017-07-12 2024-10-29 Sony Group Corporation Image display apparatus

Also Published As

Publication number Publication date
CN101689007B (zh) 2012-11-28
JP5450101B2 (ja) 2014-03-26
EP2246735B1 (en) 2017-11-08
EP2246735A4 (en) 2012-05-16
US20100103966A1 (en) 2010-04-29
EP2246735A1 (en) 2010-11-03
JPWO2009093439A1 (ja) 2011-05-26
US8014429B2 (en) 2011-09-06
CN101689007A (zh) 2010-03-31
WO2009093439A9 (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5450101B2 (ja) 波長変換レーザ、画像表示装置、及びレーザ加工装置
JP5904502B2 (ja) スペックルおよび画像フリッカを低減する走査型レーザプロジェクタの動作方法
US8270440B2 (en) Laser light source and optical device
JP4636315B2 (ja) 1次元照明装置及び画像生成装置
US7970028B2 (en) System and methods for speckle reduction
JP5096379B2 (ja) 固体レーザー装置、表示装置及び波長変換素子
JP4729269B2 (ja) レーザ走査型顕微鏡
JP5113668B2 (ja) レーザ装置
JP2013533502A (ja) 拡散性表面を用いてスペックルを低減するためのシステム及び方法
US8199396B2 (en) Laser light source, and image display apparatus and processing apparatus using the same
WO2006137326A1 (ja) 2次元画像表示装置、照明光源及び露光照明装置
KR20100091202A (ko) 다중-성분 파장 변환 장치 및 그와 병합된 레이저
JP2008109083A (ja) レーザ光源装置、照明装置、モニタ装置およびプロジェクタ
KR101849435B1 (ko) 레이저 조명 장치
KR101206031B1 (ko) 변조 가능한 외부 공진기형 면발광 레이저 및 이를 채용한디스플레이 장치
US20100245719A1 (en) Wavelength conversion device and image display apparatus using the same
US8259385B2 (en) Methods for controlling wavelength-converted light sources to reduce speckle
JP5262231B2 (ja) 光源装置及び画像表示装置
JP2009259854A (ja) 固体レーザー装置およびこれを用いた画像表示装置
JP2008191441A (ja) 波長変換素子、光源装置、画像表示装置、モニタ装置
WO2009081913A1 (ja) 光源装置
JP2008175868A (ja) 光源装置、照明装置、モニタ装置、画像表示装置及びプロジェクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000182.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009550462

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009704279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12532213

Country of ref document: US

Ref document number: 2009704279

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE