WO2009093365A1 - 被加熱材の加熱装置及び加熱方法 - Google Patents

被加熱材の加熱装置及び加熱方法 Download PDF

Info

Publication number
WO2009093365A1
WO2009093365A1 PCT/JP2008/069117 JP2008069117W WO2009093365A1 WO 2009093365 A1 WO2009093365 A1 WO 2009093365A1 JP 2008069117 W JP2008069117 W JP 2008069117W WO 2009093365 A1 WO2009093365 A1 WO 2009093365A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heated
contact
heat generating
elements
Prior art date
Application number
PCT/JP2008/069117
Other languages
English (en)
French (fr)
Inventor
Katsunori Ishiguro
Martin Pohl
Kiyohito Kondo
Original Assignee
Aisin Takaoka Co., Ltd.
Benteler Automobiletechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co., Ltd., Benteler Automobiletechnik Gmbh filed Critical Aisin Takaoka Co., Ltd.
Priority to EP08871425.8A priority Critical patent/EP2237639B1/en
Priority to US12/812,871 priority patent/US8455801B2/en
Publication of WO2009093365A1 publication Critical patent/WO2009093365A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2008-014434 (filed on Jan. 25, 2008), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a heating device and a heating method for a flat plate-like material to be heated, and more particularly to a heating device and a heating method for heating a plurality of heating elements by directly contacting the material to be heated.
  • a hot press forming method in which a steel plate heated to a high temperature is hot pressed is known. Moreover, the member which was further excellent in tensile strength etc. can be shape
  • the member is generally heated in a heating device such as a heating furnace, but for example, it takes about 3 to 5 minutes to raise the temperature to 900 ° C. in the heating furnace. It is considerably longer than the time required for the process. For this reason, a wasteful waiting time is generated in the pressing process, causing a reduction in production efficiency. Therefore, a method for heating the member more rapidly is needed.
  • a heating device such as a heating furnace
  • Patent Document 1 discloses a technique in which a heat diffusion plate is incorporated inside a block in order to make the heating surface temperature of the block as uniform as possible.
  • Patent Document 2 discloses a heating device that transfers heat from a heat source such as a block heater to a metal plate via a heat transfer body and heats it.
  • Patent Documents 1 and 2 described above are incorporated herein by reference.
  • the following is an analysis of the related art according to the present invention.
  • the material of the block is limited to a material having a high melting point, which is very expensive.
  • a large amount of blocks are required, resulting in very expensive equipment.
  • a heater In block heater heating, a heater is installed in a metal block, and the block is heated and pressed against the steel plate to heat the steel plate.
  • the block material In order for the block and the steel plate to reliably come into contact with each other, the block material is limited to a material that has little thermal deformation / distortion even when heated to a high temperature.
  • the heater built in the block and the block need to be in reliable contact with each other, and precise machining accuracy and assembly accuracy are required, and there is also little thermal deformation / distortion here. Material is required.
  • an object of the present invention is to provide a rapid heating apparatus and method that have a small and simple structure, consume less energy, and are easy to repair and replace.
  • a heating apparatus for a flat plate-like material to be heated is a heating contact in which a plurality of heat generating elements are arranged in a predetermined pattern in a plane at predetermined intervals on a heat-insulating base plate. A surface is formed, and the heating contact surface is directly brought into contact with the material to be heated and heated.
  • the shape of the heat generating element is preferably a rod shape having a rectangular cross section or a strip shape, or a rod shape having a circular or elliptical cross section.
  • the surface in contact with the material to be heated has a convex curved surface over the entire length of the heat generating element.
  • an insulating material having elasticity or having a variable position in the orthogonal direction with respect to the heating contact surface is disposed between the plurality of heat generating elements.
  • the base plate having heat insulating properties in which a plurality of heat generating elements are arranged to form a heating contact surface, is arranged on both sides of the heated material, and the heated material is sandwiched from both sides to directly contact the heated contact surface. It is preferable to heat it.
  • the plurality of heating elements arranged on both sides of the flat plate-like material to be heated are alternately arranged on both sides, and the vertical projection planes of the heating elements on both sides parallel to the base plate partially overlap. It is preferable that they are arranged.
  • the overlapping of the heating elements is performed by making the centers of curvature of the convex curved portions near the contact points of the heating elements It is preferable to overlap so that the intersection of the connecting line segment and the convex curved surface portion is a contact point between the heat generating elements.
  • the base plate is preferably composed of a plurality of units including a plurality of the heat generating elements.
  • the plurality of heat generating elements can control the heating capacity in units of each heat generating element or in units of each of the units, and can be set to an arbitrary heating pattern.
  • the base plate is preferably made of ceramic.
  • a heating method for a flat plate-like material to be heated is a heating contact in which a plurality of heat generating elements are arranged in a predetermined pattern in a plane at predetermined intervals on a heat-insulating base plate.
  • the base plate is disposed on both sides of the material to be heated, and the material to be heated is sandwiched from both sides so as to be in direct contact with the heating contact surface and heated.
  • the equipment since no blocks are used, the equipment is small, the structure is simple, and the cost can be reduced. Since the heating element is brought into direct contact with the material to be heated, rapid heating is possible. In addition, each unit can be replaced and repaired easily. Moreover, the heating control for every unit or every heating element is possible, and a heating freedom degree is high. Furthermore, since the temperature can be raised in a short time, the heat source can be turned off when not in use, and energy saving can also be achieved.
  • Example 1 is a basic structural diagram of a heating device according to an embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram of Example 1 which concerns on this invention, (a) represents sectional drawing before pinching a flat plate between upper and lower units, (b) represents sectional drawing after pinching a flat plate between upper and lower units.
  • A) It is a cross-sectional schematic diagram which shows the method to arrange
  • B) It is a cross-sectional schematic diagram which shows the range of the flat plate which contacts both upper and lower heaters.
  • (C) It is a cross-sectional schematic diagram which shows the case where the range of the flat plate which contacts both upper and lower heaters is zero. It is a cross-sectional schematic diagram of the heating apparatus according to the second embodiment of the present invention, (a) is a cross-sectional view before the flat plate is sandwiched between the upper and lower units, (b) is a cross-sectional view after the flat plate is sandwiched between the upper and lower units. It is a cross-sectional schematic diagram of the heating apparatus which concerns on Example 3 of this invention. It is the schematic which shows the structure and usage condition of the heating apparatus which concern on Example 4 of this invention. It is the schematic which shows the usage condition of the heating apparatus which concerns on Example 5 of this invention. It is the schematic which shows the usage condition of the heating apparatus which concerns on Example 6 of this invention. It is the schematic which shows the usage condition of the heating apparatus which concerns on Example 7 of this invention. It is a block heater heating apparatus of a prior art.
  • Two or more heat generating elements are arranged in a plane with a predetermined interval on a heat-insulating base plate. This is called a unit. Ceramic or the like can be used for the base plate.
  • the heat generating element has a bar shape or a band shape with a rectangular cross section, or a bar shape with a circular or elliptical cross section, and is arranged so that the heating surface that contacts the heated material uniformly contacts the heated material as a whole.
  • the contact surface of each heat generating element with the material to be heated may be a flat surface, but a closer contact can be obtained by applying pressure contact as a convex curved surface.
  • the height of the convex curved surface has a certain ratio with respect to the width of the heat generating element cross section.
  • One or a plurality of these units are arranged in a plane to obtain a heating contact surface having a required heating area.
  • the heating contact surface is directly brought into contact with the material to be heated and heated. Thereby, a to-be-heated material can be heated quickly efficiently.
  • the unit has a width of about 50 to 200 mm and a length of about 100 to 1500 mm. A necessary number of these units are combined and a necessary heating area is obtained according to the material to be heated. The size is not limited, but a maximum of about 4000 mm ⁇ 3000 mm is assumed.
  • any heating element can be used.
  • a known heating device such as an electric heater, a sheath heater, or a gas heater (radiant tube heater) can be used depending on the required heating temperature.
  • the heater generally has a rectangular or circular or elliptical shape with a side length or diameter of about 5 mm to 200 mm in the cross section, and a rod or band shape with a length of about 100 to 1500 mm.
  • the heat insulating material has elasticity or a position in the height direction so that the heat generating elements are uniformly in contact with the heated material when the heat generating elements are pressed into contact with the heated material. Or it has a structure which can change the position of a horizontal direction.
  • the heat insulating material glass wool, asbestos or the like is used.
  • Heating is possible only on one side, but a plurality of units can be arranged on both sides, and a plate-shaped material to be heated can be sandwiched from both sides and heated by pressing.
  • the direction in which the material to be heated is sandwiched is generally from the up and down direction, but it can be from the left and right direction regardless of the direction, and may be from the up and down direction or from the left and right direction.
  • the contact surface with the material to be heated may be a flat surface, but the contact with the plate-shaped material to be heated can be further ensured by pressing from both sides as a convex curved surface (convex curved surface portion).
  • the heating elements on both sides are alternately arranged, that is, there is no heating element on the opposite side in a range where one heating element is present, and the heating elements on the opposite side are arranged in a range where there is no heating element on one side.
  • the partial overlap means that the projection surfaces partially overlap when the heating elements on both sides are vertically projected on a plane parallel to the base plate.
  • the material to be heated is in contact with one of the heat generating elements on both sides as much as possible, and the range where the heat generating elements on both sides are in contact with each other is as small as possible.
  • the arrangement is as follows. That is, when the heating elements on both sides are brought into contact with each other in the absence of a material to be heated, the vicinity of both ends of the convex curved portion of the heating elements (both ends when the rod-like heating element is viewed in a cross section perpendicular to the long axis) Contact each other.
  • the line segments connecting the centers of curvature (each of the heat generating elements on both sides) of the convex curved surface portion including the vicinity of the contact portion are arranged so that the intersection of the convex curved surface portion of the heat generating element coincides with the contact point.
  • the heating device includes a heating control system so that the heating capacity can be controlled in units of each heat generating element or each unit. Thereby, it can heat to arbitrary heating patterns and arbitrary temperature according to the dimension and shape of a to-be-heated material. Unnecessary portions of the heating element are not heated, and since the heating rate is fast, the entire heating can be stopped during standby, which contributes to energy saving.
  • FIG. 1 is a basic structural diagram of a heating apparatus according to an embodiment of the present invention.
  • a flat plate (heated material) 1 made of high-strength steel is sandwiched from above and below by two base plates (upper base plate 3 and lower base plate 4) provided with heaters (heating elements) 2, and the heater 2 is indicated on the flat plate 1 by arrows.
  • pressure is applied from above to cause direct contact (pressure contact) and heating.
  • the upper base plate 3 and the heater 2 disposed on the upper base plate 3 are shown in an exploded view.
  • the heater 2 in this embodiment is a rod-shaped sheath heater.
  • the shape of the cross section perpendicular to the length direction is substantially rectangular, and the contact surface with the flat plate 1 has a convex curved surface.
  • the number of the heaters 2 is not particularly limited, in this embodiment, four heaters 2 are arranged on each base plate in a plane (so as to be in uniform contact with the flat plate 1).
  • a unit in which two or more heaters 2 are arranged on one base plate is called a unit, an upper unit of a material to be heated is called an upper unit 6, and a lower unit is called a lower unit 7.
  • FIG. 2 is a schematic cross-sectional view in a plane perpendicular to the length direction of the heater 2 when the flat plate 1 is sandwiched between the upper and lower units 6 and 7.
  • FIG. 2A shows a cross-sectional view before sandwiching
  • FIG. 2B shows a cross-sectional view after sandwiching.
  • an elastic heat insulating material 5 is disposed between the heaters 2 of each unit so as to protrude from the top surface (convex curved surface portion 2 a) of the heater 2.
  • glass wool or asbestos is used as the material of the heat insulating material 5.
  • the contact surface of the heater 2 with the flat plate 1 is a curved surface portion 2a and is gently curved.
  • each unit has both ends of the array, one being the heater 2 and the other being the heat insulating material 5. If it carries out like this, when a plurality of units are combined, as a whole, heater 2 and heat insulating material 5 can be arranged alternately without a gap.
  • FIG. 2B is a cross-sectional view when the flat plate 1 is sandwiched by pressing the upper unit 6 from above. Due to the curved contact surface (convex curved surface portion 2a) of the heater 2 with the flat plate 1, when the flat plate 1 is sandwiched, the flat plate 1 is curved along the convex curved surface portion 2a and can be in close contact with the heater 2 without a gap. . At the same time, the heat insulating material 5 is elastically deformed along the plate surface of the flat plate 1 and comes into close contact with each other, whereby heat dissipation is suppressed and the entire flat plate 1 can be heated uniformly.
  • the convex curved surface portion 2a of the heater 2 preferably has a height h of the convex curved surface portion in the range of 1 to 20% with respect to the cross-sectional width W of the heater 2, as shown in FIG. It is preferably about 10%.
  • the heaters 2 are arranged so that the positions thereof are alternated between the upper and lower base plates. That is, the lower base plate 4 has the heat insulating material 5 instead of the heater 2 in the range where the heater 2 is located on the upper base plate 3, and the lower base plate 4 has the heater 2 in the range where the upper base plate 3 has the heat insulating material 5 instead of the heater 2. Deploy. As a result, the number of heaters 2 can be minimized. However, as shown in the enlarged view of FIG. 2B (in the ellipse in the figure, but the flat plate 1 is not shown), the upper and lower heaters are partially overlapped (range indicated by X in the figure). It is preferable to do. By doing so, the entire flat plate 1 always comes into contact with either the upper or lower heater, and the entire flat plate 1 can be heated uniformly.
  • FIG. 3B is a schematic cross-sectional view in the case where the flat plate 1 is sandwiched between the heaters 2 partially overlapping the upper and lower sides.
  • X is the overlapping range of heaters
  • y is the range in which the flat plate 1 is in contact with both the upper and lower heaters 2 as shown in the circles in the figure.
  • FIG. 3C is a contact diagram in which y becomes zero as shown in a circle in the drawing, and it is preferable to make contact in this way.
  • FIG. 3A is a schematic cross-sectional view when the upper and lower heaters 2 are brought into contact with each other without the flat plate 1 (material to be heated).
  • a part of the convex curved surface portion 2a including the vicinity of the contact point (the heat generating element end portion) is a curved surface having a certain curvature as shown by a dotted line in the figure.
  • the intersection between the imaginary line segment connecting C and C ′ and the convex curved surface portion 2a of both heaters 2 is made to coincide with the contact point.
  • FIG. 4 is a schematic cross-sectional view of a heating apparatus according to Embodiment 2 of the present invention.
  • a difference from the first embodiment is that a heat insulating block 8 having no elasticity is elastically connected to the upper and lower base plates 3 and 4 by using a spring member 9 instead of the elastic heat insulating material 5 disposed between the heaters 2.
  • the position can be changed in the height direction (vertical direction).
  • 4A shows a cross-sectional view of the upper and lower units 6 and 7 before sandwiching the flat plate 1 to be heated.
  • the heat insulating block 8 is a spring member at a height protruding from the contact surface of the heater 2.
  • FIG. 9 is held.
  • FIG. 4B shows a cross-sectional view after the flat plate 1 is sandwiched between the upper and lower units 6, 7.
  • the flat plate 1 is pressed by the upper and lower heaters 2, and the heat insulating block 8 is pressed and brought into contact with the flat plate 1. Is in a state.
  • the other structure is the same as that of Example 1, for example, the upper and lower heaters 2 are arranged slightly overlapping.
  • a hole is provided in the base plates 3 and 4 and the spring member is connected at the bottom of the hole, and when sandwiched, the spring member 9 is retracted and accommodated in the hole. (Not shown).
  • FIG. 5 is a cross-sectional view of a heating apparatus (heating the flat plate 1) according to Example 3 of the present invention when a radiant tube heater having a circular cross section is used as the heat generating element 2.
  • the radiant tube heater 2 is a rod-shaped heating element having a circular cross section of the heat generating portion.
  • a radiant tube heater having a diameter of about 200 mm has been put into practical use.
  • These are alternately arranged on the upper and lower base plates 3 and 4 as in the first and second embodiments.
  • the flat plate 1 is sandwiched between upper and lower radiant tube heaters 2 and heated.
  • the radiant tube heater 2 is arranged so that a certain length (indicated by X in FIG.
  • a heat insulating material 5 is disposed between the radiant tube heaters 2 on each base plate so that the whole is uniformly heated.
  • Example 4 The heating device according to the present invention can obtain a wide heating area by arranging a plurality of base plates (units) including two or more heating elements. Furthermore, the heating capacity can be controlled using the heating control system 15 for each heater or for each unit according to the size and shape of the material to be heated.
  • FIG. 6 is a schematic diagram illustrating the structure and usage of the heating device according to the fourth embodiment of the present invention.
  • the lower unit 7 in which the three heaters 2 are arranged on one base plate is arranged in four rows vertically and 15 rows horizontally to constitute one heating device.
  • the heater 10 to be heated is indicated by a thick black line, and the heater 11 not to be heated is indicated by a white line. Further, the shape of the door beam steel plate (material to be heated) 12 is indicated by a white dotted line. In this way, only the necessary range can be heated according to the size and shape of the door beam steel plate (material to be heated) 12.
  • FIG. 6 shows only the arrangement of the lower units 7, but the upper units 6 corresponding thereto can be combined and used as shown in the first to third embodiments. The same applies to the following embodiments.
  • FIG. 7 shows different heating target materials (bumpers) using a heating device in which three heaters 2 are arranged on one base plate in the same manner as in Example 4 and arranged in four rows and fifteen rows.
  • the arrangement of the heater 2 to be heated in the case of heating the steel plate 13 to be formed is shown.
  • the heater 10 to be heated is indicated by a thick black line
  • the heater 11 not to be heated is indicated by a white line.
  • the shape of the bumper steel plate (material to be heated) 13 is indicated by a white dotted line.
  • FIG. 8 is a heating range diagram in the case where different materials to be heated (steel plates for forming B pillars) 14 are heated using the same heating apparatus as in Examples 4 and 5.
  • the heater 10 to be heated is indicated by a thick black line
  • the heater 11 to be not heated is indicated by a white line
  • the shape of the steel plate for B pillar (material to be heated) 14 is indicated by a white dotted line.
  • FIG. 9 shows a heating range when the heating amount is further changed for each heater 2 (or unit) in Example 6 (the heating control system 15 is not shown).
  • the right vertical four rows, (in the part of the heater, those shown by hatching) next to 5 rows of units heated at a relatively low temperature below the A 1 transformation point of the steel sheet (cold section L), (in some of the heaters were those indicated by black line) other portions exhibited is heated at a high temperature enough hardenable above the a 1 transformation point of the steel sheet (high-temperature portion H) example.
  • it can be heated to an arbitrary heating pattern and an arbitrary temperature according to the position and shape of the portion that needs to be heated.

Abstract

 小型かつ簡単な構造でエネルギー消費が少なく、修理や交換が容易な迅速加熱装置及び方法を提供する。平板状の被加熱材(1)の加熱装置は、断熱性を有するベースプレート(3、4)上に複数の発熱要素(2)を所定の間隔をおいて平面的に所定のパターンをもって配列して加熱接触面(2a)を構成し、加熱接触面(2a)を被加熱材(1)に直接接触させて加熱することを特徴とする。

Description

被加熱材の加熱装置及び加熱方法
[関連出願の記載]
 本発明は、日本国特許出願:特願2008-014434号(2008年1月25日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、平板状の被加熱材の加熱装置及び加熱方法に関し、特に複数の発熱要素を直接被加熱材に接触させて加熱する加熱装置及び加熱方法に関する。
 車両部品等の成形法として、高温に加熱した鋼板を熱間プレスする熱間プレス成形法が知られている。また、プレスと同時に低温のプレス金型で冷却して焼入れを行うことでさらに引張強度等に優れた部材を成形することができる。
 部材の加熱は、加熱炉等の加熱装置中に入れて加熱することが一般的であるが、例えば加熱炉内で900℃まで昇温させるには約3~5分程度の時間がかかり、プレス工程に要する時間よりかなり長い。そのため、プレス工程に無駄な待ち時間が生じ、生産効率低下の原因となっている。そのため、部材をより急速に加熱する方法が必要とされている。
 鋼板部材を急速加熱する1つの方法としてブロックヒーター加熱法がある。これは、図10に示すように、加熱する鋼板部材の大きさに応じた金属のブロック22の中に電気ヒーター20を組み込み、ブロック全体を均一に加熱して、上方から鋼板部材21に圧力をかけて接触させて加熱する方法である。特に特許文献1では、ブロックの加熱面温度をできるだけ均一にするため、ブロック内部に熱拡散プレートを内蔵させる技術を開示している。また、特許文献2では、ブロックヒーター等の熱源からの熱を伝熱体を介して金属板に伝えて加熱する加熱装置が開示されている。
特開平11-145166号公報 特開2006-110549号公報
 以上の特許文献1及び2の開示事項は、本書に引用をもって繰り込み記載されているものとする。以下に本発明による関連技術の分析を与える。
 ブロックヒーター加熱装置の場合、900℃以上に加熱する場合には、ブロックの材質が融点の高い材料に限定され、非常に高価になる。大きな部材を加熱する場合には、大量のブロックが必要になり、非常に高価な設備となる。
 ブロックヒーター加熱では金属製のブロックの中にヒーターを組み込み、ブロックを加熱して鋼板に押し付けて鋼板を加熱する。ブロックと鋼板が確実に接触するためには、ブロック材質は高温に加熱されても熱変形・歪みが少ない材質に限られる。同じく、ブロックを確実に加熱するためには中に組み込んだヒーターとブロックが確実に接触している必要が有り、精密な加工精度、組立て精度が要求されるとともに、ここでも熱変形・歪みが少ない材質が要求される。
 また、高温で長時間使用されることからも、ブロックに適用される材質は限られ、非常に高価な材質となる。さらに、このような材料は難加工性材料であることが多いため、加工費、設備製作費も高くなる。自動車の構造部品のような大物部品を加熱する場合は大型設備が必要になるが、以上のような理由で設備費が非常に高くなる。また、ブロック全体の昇温には時間がかかるため、ブロックを常に均一に高温に保っておく必要があり、ヒーターは常時ONに近い状態となって電力も多く必要とする。
 本発明の課題は、上記問題点に鑑み、小型かつ簡単な構造でエネルギー消費が少なく、修理や交換が容易な迅速加熱装置及び方法を提供することである。
 本発明の第1の視点において、平板状の被加熱材の加熱装置は、断熱性を有するベースプレート上に複数の発熱要素を所定の間隔をおいて平面的に所定のパターンをもって配列して加熱接触面を構成し、該加熱接触面を該被加熱材に直接接触させて加熱することを特徴とする。
 前記発熱要素の形状は断面が矩形の棒状ないし帯状もしくは断面が円形又は楕円形の棒状であることが好ましい。
 前記発熱要素の断面が矩形の場合、前記被加熱材と接触する面は該発熱要素全長にわたり凸曲面を有することが好ましい。
 前記複数の発熱要素の間に、弾性を有するか又は加熱接触面に対し直交方向位置を可変とした断熱材を配置することが好ましい。
 複数の前記発熱要素を配列して加熱接触面を構成した断熱性を有する前記ベースプレートを、前記被加熱材の両側にそれぞれ配置し、両側から前記被加熱材を挟み込んで前記加熱接触面に直接接触させて加熱することが好ましい。
 前記平板状の被加熱材の両側に配置する前記複数の発熱要素が、両側で互いに交互に配置され、かつ前記両側の発熱要素の前記ベースプレートに平行な面への垂直投影面が部分的に重複するように配置されていることが好ましい。
 前記発熱要素の重複は、前記被加熱材がない状態で両側の前記ベースプレートに配置された該発熱要素を互いに接触させた場合に、該発熱要素の接触点近傍の凸曲面部の曲率中心同士を結ぶ線分と該凸曲面部との交点が該発熱要素同士の接触点となるように重複させることが好ましい。
 前記ベースプレートは、複数の前記発熱要素を含む複数のユニットからなることが好ましい。
 前記複数の発熱要素は、各発熱要素単位又は各前記ユニット単位で加熱能力を制御可能であり、任意の加熱パターンに設定可能であることが好ましい。
 前記ベースプレートはセラミックからなることが好ましい。
 本発明の第2の視点において、平板状の被加熱材の加熱方法は、断熱性を有するベースプレート上に複数の発熱要素を所定の間隔をおいて平面的に所定のパターンをもって配列して加熱接触面を構成し、該ベースプレートを、前記被加熱材の両側にそれぞれ配置し、両側から前記被加熱材を挟み込んで該加熱接触面に直接接触させて加熱することを特徴とする。
 本発明によれば、ブロックを使わないため、設備が小型かつ構造が簡単でコストも低くできる。そして発熱要素を直接被加熱材に接触させるため、迅速な加熱が可能である。また、ユニットごとに交換が可能であり、修理も容易である。また、ユニットごと又は発熱要素ごとの加熱制御が可能であり、加熱自由度が高い。さらに短時間で昇温できるので不使用時は加熱源を切っておくことができ、省エネルギーも達成できる。
本発明の一実施例に係る加熱装置の基本的な構造図である。 本発明に係る実施例1の断面模式図であり、(a)は平板を上下ユニットで挟み込む前、(b)は平板を上下ユニットで挟み込んだ後の断面図を表す。 (a)本発明の実施例1に係る上下のヒーターを重複配置する方法を示す断面模式図である。(b)上下のヒーターの両方に接触する平板の範囲を示す断面模式図である。(c)上下のヒーターの両方に接触する平板の範囲がゼロである場合を示す断面模式図である。 本発明の実施例2に係る加熱装置の断面模式図であり、(a)は平板を上下ユニットで挟み込む前、(b)は平板を上下ユニットで挟み込んだ後の断面図を表す。 本発明の実施例3に係る加熱装置の断面模式図である。 本発明の実施例4に係る加熱装置の構造及び使用態様を示す概略図である。 本発明の実施例5に係る加熱装置の使用態様を示す概略図である。 本発明の実施例6に係る加熱装置の使用態様を示す概略図である。 本発明の実施例7に係る加熱装置の使用態様を示す概略図である。 従来技術のブロックヒーター加熱装置である。
符号の説明
1 平板(被加熱材)
2 ヒーター(発熱要素)
2a 凸曲面部
3 上部ベースプレート
4 下部ベースプレート
5 断熱材
6 上部ユニット
7 下部ユニット
8 断熱ブロック
9 ばね部材
10 加熱するヒーター
11 加熱しないヒーター
12 ドアビーム用鋼板(被加熱材)
13 バンパー用鋼板(被加熱材)
14 Bピラー用鋼板(被加熱材)
15 加熱制御系
20 電気ヒーター
21 鋼板部材
22 ブロック
 断熱性を有するベースプレート上に、2以上の発熱要素を所定の間隔をおいて平面的に配置する。これをユニットと称する。ベースプレートにはセラミック等を用いることができる。発熱要素は断面が矩形の棒状ないし帯状もしくは断面が円形又は楕円形の棒状であり、被加熱材に接触する加熱面が全体として被加熱材に均一に接触するように配置する。発熱要素の断面が矩形の場合、各発熱要素の被加熱材との接触面は平面としてもよいが、凸状の曲面として加圧接触させるとより密接した接触が得られる。この凸曲面の高さは、発熱要素断面の幅に対して一定の割合を持つことが好ましい。このユニットを1つ又は複数平面的に配置して所要の加熱面積を持つ加熱接触面を得る。
 この加熱接触面を被加熱材に直接接触させて加熱する。これにより、被加熱材を効率的に迅速加熱することができる。なお、ユニットは幅50~200mm程度、長さが100~1500mm程度である。このユニットを必要な個数組み合わせ、被加熱材に応じて必要な加熱面積を得る。その大きさは限定されないが、最大4000mm×3000mm程度が想定される。
 発熱要素は基本的に何でも使用できる。必要とする加熱温度に応じ、電気ヒーター、シースヒーター、ガスヒーター(ラジアントチューブヒーター)等の公知の加熱装置を用いることができる。ヒーターはその断面において一辺の長さ又は直径が5mm~200mm程度の矩形もしくは円形又は楕円形で、長さが100~1500mm程度の棒状ないし帯状のものが一般的である。
 発熱要素の間には、断熱材を備える。これは発熱要素のない部分からの熱放散を抑制し、全体を均一に加熱するためと、後述のごとく両側で交互に発熱要素を配置した場合は、発熱要素の反対側から被加熱材を押えて接触を良くするためである。また、加熱が終了して発熱要素を押さえつけていた圧力を解放したとき、被加熱材と発熱要素とを分離しやすくする効果も有する。両側で交互に発熱要素を配置した場合、断熱材は、発熱要素を被加熱材に加圧接触したときに均一に被加熱材に接触するように、弾性を持つか又はその高さ方向の位置若しくは水平方向の位置等を変えられるような構造を有する。断熱材としては、グラスウール、アスベスト等が用いられる。
 加熱は片面のみでも可能であるが、さらに複数のユニットを両側に配置し、平板状の被加熱材を両側から挟み込んで圧接して加熱することができる。被加熱材を挟み込む方向は、上下方向からが一般的であるが、それにこだわらず左右方向からでも可能であり、さらに上下方向又は左右方向から傾斜した方向であってもかまわない。被加熱材との接触面は平面でもよいが、凸状曲面(凸曲面部)として両側から圧接することで平板状の被加熱材との接触をより確実にすることができる。この際、両側の発熱要素は交互に配置する、即ち片側の発熱要素がある範囲には反対側の発熱要素はなく、片側の発熱要素がない範囲に反対側の発熱要素を配置する。ただし一部(端部)を重複して配置することが好ましい。一部重複とは、両側の発熱要素をそれぞれベースプレートに平行な平面に垂直に投影した場合、投影面が一部重なることをいう。
 発熱要素を重複配置するにあたっては、できるだけ被加熱材を両側の発熱要素のいずれかと必ず接触させ、かつできるだけ両側の発熱要素と同時に接触する範囲を少なくすることが好ましい。このためには以下の考え方で配置する。即ち、被加熱材がない状態で両側の発熱要素を互いに接触させた場合、発熱要素の凸曲面部の両端部(棒状発熱要素を長軸に垂直な断面で見た場合の両端部)付近が互いに接触する。この接触部近傍を含む凸曲面部の曲率中心(両側の発熱要素のそれぞれ)同士を結ぶ線分と発熱要素の凸曲面部の交点が接触点と一致するように重複配置する。
 このように両側の発熱要素を一部重複して配置することにより、被加熱材の全域でどちらかの発熱要素に必ず接触させ、かつできるだけ両側の発熱要素と同時に接触する範囲を少なくすることにより、被加熱材全体を均一に加熱する効果を有する。
 また、加熱装置は、各発熱要素又は各ユニット単位で加熱能力を制御できるように加熱制御系を備える。これにより、被加熱材の寸法、形状に応じて任意の加熱パターンかつ任意の温度に加熱することができる。不要な部分の発熱要素は加熱せず、また加熱速度が速いので待機時には全体の加熱を停止することもでき、省エネルギーにも貢献できる。
(実施例1)
 図1は、本発明の一実施例に係る加熱装置の基本的な構造図である。例えば高張力鋼からなる平板(被加熱材)1を、ヒーター(発熱要素)2を配置した2つのベースプレート(上部ベースプレート3及び下部ベースプレート4)で上下から挟み込み、平板1にヒーター2を矢印で示すように上方向から加圧して直接接触(圧接)させて加熱する。なお、上部ベースプレート3とそれに配置するヒーター2とは分解図で示している。
 本実施例におけるヒーター2は棒状のシースヒーターである。その長さ方向に垂直な断面での形状はほぼ矩形であり、そのうち平板1との接触面は凸曲面を有する。ヒーター2の本数は特に限定されないが、本実施例では、各ベースプレートに4本ずつのヒーター2を平面的に(平板1に均一に接触するように)配置した。1つのベースプレートに2以上のヒーター2を配置したものをユニットと呼び、被加熱材の上側のユニットを上部ユニット6、下側のユニットを下部ユニット7という。
 図2は、上下ユニット6、7で平板1を挟み込むときの、ヒーター2の長さ方向に垂直な面での断面模式図である。図2(a)は挟み込む前、図2(b)は挟み込んだ後の断面図を表す。図2(a)に示すように、各ユニットのヒーター2の間には、弾性のある断熱材5が、ヒーター2の頂面(凸曲面部2a)より突出するように配置されている。断熱材5の材料は例えばグラスウールやアスベストが用いられる。これはヒーター2が接触していない平板1の板面を保温して全体を均一に加熱するため及びヒーター2の反対側から平板1を押えて接触を良くするためである。ヒーター2の平板1との接触面は凸曲面部2aとなってゆるやかに湾曲している。
 図2に示すように、各ユニットで配列の両端部を、一方はヒーター2、他方は断熱材5とすることが好ましい。こうすると複数のユニットを組み合わせた場合に全体として、ヒーター2と断熱材5とを交互に隙間なく配列することができる。
 図2(b)は上部ユニット6を上から加圧して平板1を挟み込んだ時の断面図である。ヒーター2の平板1との湾曲した接触面(凸曲面部2a)により、平板1を挟み込んだ時に平板1は凸曲面部2aに沿って湾曲し、ヒーター2と密接に隙間なく接触させることができる。同時に断熱材5が平板1の板面に沿って弾性変形し、密接に接触することにより、熱の放散が抑制されて平板1の全体を均一に加熱することができる。
 ヒーター2の凸曲面部2aは、図2(a)に示すように、ヒーター2の断面幅Wに対して、凸曲面部の高さhが1~20%の範囲であることが好ましく、特に10%程度であることが好ましい。
 図2に示すように、ヒーター2は上下ベースプレートでその位置が交互になるように配置されている。即ち、上部ベースプレート3にヒーター2がある範囲には下部ベースプレート4にはヒーター2ではなく断熱材5を、上部ベースプレート3にヒーター2ではなく断熱材5がある範囲に、下部ベースプレート4のヒーター2を配置する。これによりヒーター2の本数を最小限に抑えることができる。ただし、図2(b)の拡大図(図中の楕円内、ただし平板1は図示せず)部分に示すように、上下のヒーターを一部(図中Xで示す範囲)を重複させて配置することが好ましい。こうすることにより、平板1全体が上下のヒーターどちらかに必ず接触し、平板1全体を均一に加熱することができる。
 なお、重複配置する場合は、平板1が上下いずれかのヒーター2と必ず接触するとともに、上下のヒーター2の両方に接触する範囲をできるだけ少なくすることが好ましい。図3(b)は上下を一部重複させたヒーター2で平板1を挟んだ場合の断面模式図である。Xはヒーターの重複範囲、yは図中円内に示すように平板1が上下のヒーター2の両方に接触している範囲である。図3(c)は、図中円内に示すようにyがゼロとなるような接触図であり、このように接触させることが好ましい。
 そのためには以下のようにする。図3(a)は、平板1(被加熱材)がない状態で上下側のヒーター2を接触させた場合の断面模式図である。接触点近傍(発熱要素端部)を含む凸曲面部2aの一部分は、図中の点線で示すようにある曲率を有する曲面であるが、この曲面の曲率中心を下部ヒーター2でC、上部のヒーター2でC’とする。このC及びC’を結ぶ仮想線分と両ヒーター2の凸曲面部2aとの交点が接触点と一致するようにする。
 なお、ヒーター2の平板1との接触面(凸曲面部2a)が湾曲していることで、被加熱材である平板1にも若干湾曲面が形成されるが、これは加熱後のプレス工程で所要の形状に加工する際に解消されるので問題とはならない。
(実施例2)
 図4は、本発明の実施例2に係る加熱装置の断面模式図である。実施例1と異なる部分は、ヒーター2の間に配置される弾性のある断熱材5のかわりに、弾性のない断熱ブロック8をばね部材9を用いて上下ベースプレート3、4に弾力的に接続し、高さ方向(上下方向)にその位置を変えられる構造としたことである。図4(a)は上下ユニット6、7で被加熱材である平板1を挟み込む前の断面図を表したものであり、断熱ブロック8はヒーター2の接触面より突出する高さ位置にばね部材9で保持されている。
 図4(b)は上下ユニット6、7で平板1を挟み込んだ後の断面図を表したものであり、平板1が上下のヒーター2で圧接され、断熱ブロック8は押さえ込まれて平板1と接触した状態にある。他の構造は実施例1と同様であり、例えば上下のヒーター2は若干重複して配置されている。なお、ばね部材9を高温から保護するため、ベースプレート3、4に孔を設け、孔の底部でばね部材を接続し、挟み込まれたときにばね部材9が孔内に縮んで収納される構造としても良い(図示せず)。
(実施例3)
 図5は、発熱要素2として断面が円形であるラジアントチューブヒーターを用いた場合の、本発明の実施例3に係る加熱装置(平板1を加熱している)の断面図である。ラジアントチューブヒーター2は発熱部の断面が円形の棒状発熱体である。ラジアントチューブヒーターは直径が200mm程度のものが実用化されている。これを実施例1、2と同様に上下ベースプレート3、4に交互に並べて配置している。平板1は上下のラジアントチューブヒーター2に挟み込まれて加熱される。ラジアントチューブヒーター2は、上下である程度の長さ(図5中のXで示す)を重複させて配列し、平板1が全体として必ず上下のラジアントチューブヒーター2のいずれかと接触するようにしている。各ベースプレート上のラジアントチューブヒーター2の間には断熱材5が配置され、全体が均一に加熱されるようにしている。
(実施例4)
 本発明に係る加熱装置は、2以上の発熱要素を含むベースプレート(ユニット)を複数配列して広い加熱面積を得ることができる。さらに、被加熱材の寸法、形状に応じて各ヒーター、又は各ユニット単位で加熱制御系15を用いて加熱能力を制御可能である。図6は、本発明の実施例4に係る加熱装置の構造及び使用態様を示す概略図である。実施例4では、3本のヒーター2を1つのベースプレート上に配置した下部ユニット7を、縦に4列、横に15列並べて1つの加熱装置を構成している。
 図6では、車両用部材であるドアビームを形成するための鋼板(被加熱材)12を加熱する場合の、加熱するヒーター10を黒い太線で示し、加熱しないヒーター11を白抜き線で示した。またドアビーム用鋼板(被加熱材)12の形状を白抜き点線で示した。このように、ドアビーム用鋼板(被加熱材)12の寸法及び形状に応じて、必要な範囲のみを加熱することができる。
 図6では下部ユニット7の配列のみを示しているが、これに対応する上部ユニット6を上記実施例1~3に示すように組み合わせて配列して用いることができる。以下の実施例においても同様である。
(実施例5)
 図7は、実施例4と同様に3本のヒーター2を1つのベースプレート上に配置したユニットを、縦に4列、横に15列並べた加熱装置を用いて、異なる被加熱材(バンパーを形成するための鋼板)13を加熱する場合の加熱するヒーター2の配置を示した。ここでも同様に加熱するヒーター10を黒い太線で示し、加熱しないヒーター11を白抜き線で示した。またバンパー用鋼板(被加熱材)13の形状を白抜き点線で示した。
(実施例6)
 図8は、実施例4及び5と同様の加熱装置を用いて、異なる被加熱材(Bピラーを形成するための鋼板)14を加熱する場合の加熱範囲図である。ここでも同様に加熱するヒーター10を黒い太線で示し、加熱しないヒーター11を白抜き線で示した。またBピラー用鋼板(被加熱材)14の形状を白抜き点線で示した。
(実施例7)
 本発明に係る加熱装置は、部材の中でも高温に加熱する必要がある部分と、それほど高温でなくとも良い部分がある場合にも適用可能である。図9は、実施例6において、さらに加熱量をヒーター2(又はユニット)ごとに変えた場合の加熱範囲を示した(加熱制御系15は図示せず)。図9では、右側の縦4列、横5列のユニット(の一部のヒーターで、斜線で示したもの)を鋼板のA変態点以下の比較的低温で加熱し(低温部L)、それ以外の部分(の一部のヒーターで、黒線で示したもの)を鋼板のA変態点以上の焼入れ可能な程度の高温で加熱する(高温部H)例を示した。このように加熱が必要な部分の位置、形状に応じて任意の加熱パターンかつ任意の温度に加熱することができる。
 以上、本発明を上記実施形態に即して説明したが、本発明は上記実施形態の構成にのみ制限されるものでなく、本発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。

Claims (11)

  1.  平板状の被加熱材の加熱装置であって、
     断熱性を有するベースプレート上に複数の発熱要素を所定の間隔をおいて平面的に所定のパターンをもって配列して加熱接触面を構成し、該加熱接触面を該被加熱材に直接接触させて加熱することを特徴とする、加熱装置。
  2.  前記発熱要素の形状は断面が矩形の棒状ないし帯状もしくは断面が円形又は楕円形の棒状であることを特徴とする、請求項1に記載の加熱装置。
  3.  前記発熱要素の断面が矩形の場合、前記被加熱材と接触する面は該発熱要素全長にわたり凸曲面を有することを特徴とする、請求項2に記載の加熱装置。
  4.  前記複数の発熱要素の間に、弾性を有するか又は加熱接触面に対し直交方向位置を可変とした断熱材を配置したことを特徴とする、請求項1~3のいずれか一に記載の加熱装置。
  5.  複数の前記発熱要素を配列して加熱接触面を構成した断熱性を有する前記ベースプレートを、前記被加熱材の両側にそれぞれ配置し、両側から前記被加熱材を挟み込んで前記加熱接触面に直接接触させて加熱することを特徴とする、請求項1~4のいずれか一に記載の加熱装置。
  6.  前記平板状の被加熱材の両側に配置する前記複数の発熱要素が、両側で互いに交互に配置され、かつ前記両側の発熱要素の前記ベースプレートに平行な面への垂直投影面が部分的に重複するように配置されていることを特徴とする、請求項5に記載の加熱装置。
  7.  前記発熱要素の重複は、前記被加熱材がない状態で両側の前記ベースプレートに配置された該発熱要素を互いに接触させた場合に、該発熱要素の接触点近傍の凸曲面部の曲率中心同士を結ぶ線分と該凸曲面部との交点が該発熱要素同士の接触点となるように重複させることを特徴とする、請求項6に記載の加熱装置。
  8.  前記ベースプレートは、複数の前記発熱要素を含む複数のユニットからなることを特徴とする、請求項1~7のいずれか一に記載の加熱装置。
  9.  前記複数の発熱要素は、各発熱要素単位又は各前記ユニット単位で加熱能力を制御可能であり、任意の加熱パターンに設定可能であることを特徴とする、請求項8に記載の加熱装置。
  10.  前記ベースプレートはセラミックからなることを特徴とする、請求項1~9のいずれか一に記載の加熱装置。
  11.  平板状の被加熱材の加熱方法であって、
     断熱性を有するベースプレート上に複数の発熱要素を所定の間隔をおいて平面的に所定のパターンをもって配列して加熱接触面を構成し、
     該ベースプレートを、前記被加熱材の両側にそれぞれ配置し、両側から前記被加熱材を挟み込んで該加熱接触面に直接接触させて加熱することを特徴とする、加熱方法。
PCT/JP2008/069117 2008-01-25 2008-10-22 被加熱材の加熱装置及び加熱方法 WO2009093365A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08871425.8A EP2237639B1 (en) 2008-01-25 2008-10-22 Device and method for heating material
US12/812,871 US8455801B2 (en) 2008-01-25 2008-10-22 Heating equipment for a plate to be heated and heating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008014434A JP4812785B2 (ja) 2008-01-25 2008-01-25 被加熱材の加熱装置及び加熱方法
JP2008-014434 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093365A1 true WO2009093365A1 (ja) 2009-07-30

Family

ID=40900881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069117 WO2009093365A1 (ja) 2008-01-25 2008-10-22 被加熱材の加熱装置及び加熱方法

Country Status (4)

Country Link
US (1) US8455801B2 (ja)
EP (1) EP2237639B1 (ja)
JP (1) JP4812785B2 (ja)
WO (1) WO2009093365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395116A3 (en) * 2010-06-11 2013-12-25 Toyoda Iron Works Co., Ltd. Steel sheet heating device, method for producing press-formed part, and press-formed part

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2609328T3 (es) * 2010-10-05 2017-04-19 Schwartz Gmbh Procedimiento y horno para tratar piezas de trabajo
JP5788625B2 (ja) * 2012-04-03 2015-10-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 少なくとも部分的に閉じたプロファイルまたは管状部品を金属薄板から製作する装置および方法
US9303880B1 (en) 2012-04-10 2016-04-05 L.B. White Company, Inc. Radiant tube heater
US20150352621A1 (en) 2013-01-11 2015-12-10 Futaba Industrial Co., Ltd. Heating device for hot stamping
US9029740B2 (en) * 2013-01-15 2015-05-12 Nordson Corporation Air impingement heater
DE102014101539B9 (de) 2014-02-07 2016-08-11 Benteler Automobiltechnik Gmbh Warmformlinie und Verfahren zur Herstellung von warmumgeformten Blechprodukten
DE102014110415B4 (de) * 2014-07-23 2016-10-20 Voestalpine Stahl Gmbh Verfahren zum Aufheizen von Stahlblechen und Vorrichtung zur Durchführung des Verfahrens
DE102015101668A1 (de) * 2015-02-05 2016-08-11 Benteler Automobiltechnik Gmbh Zweifach fallendes Heiz- und Formwerkzeug sowie Verfahren zur Herstellung warmumgeformter und pressgehärteter Kraftfahrzeugbauteile
EP3276012A1 (de) * 2016-07-29 2018-01-31 Benteler Automobiltechnik GmbH Temperierstation mit mantelheizleiter
EP3530760A1 (de) * 2018-02-23 2019-08-28 Benteler Automobiltechnik GmbH Verfahren zum herstellen eines warmumgeformten und gehärteten stahlblechbauteils
KR20210150035A (ko) 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 유체를 포함하는 가압장치 및 이를 이용한 전극 및 전극 및 전극조립체 제조방법
DE102021131567B3 (de) * 2021-12-01 2023-01-19 GEDIA Gebrüder Dingerkus GmbH Abschirmvorrichtung für Platinen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165395A (ja) * 1983-03-09 1984-09-18 いすゞ自動車株式会社 発熱体
JPS61259482A (ja) * 1985-05-14 1986-11-17 株式会社 八光電機製作所 熱板または金型等の表面温度の制御方法
JPH01146528U (ja) * 1988-03-30 1989-10-09
JPH11145166A (ja) 1997-11-13 1999-05-28 Kyushu Nissho:Kk ブロックヒータ
JP2003053437A (ja) * 2001-08-10 2003-02-26 Niigata Prefecture マグネシウム合金の連続プレス加工装置
JP2006110549A (ja) 2004-10-12 2006-04-27 Aisin Takaoka Ltd 熱間プレス用金属板の加熱装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213537U (ja) * 1975-07-17 1977-01-31
JPH0663926B2 (ja) 1987-06-25 1994-08-22 株式会社豊田自動織機製作所 バッテリ車の自己診断装置
US6578399B1 (en) * 1999-09-09 2003-06-17 Northrop Grumman Corporation Single-die modularized, reconfigurable honeycomb core forming tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165395A (ja) * 1983-03-09 1984-09-18 いすゞ自動車株式会社 発熱体
JPS61259482A (ja) * 1985-05-14 1986-11-17 株式会社 八光電機製作所 熱板または金型等の表面温度の制御方法
JPH01146528U (ja) * 1988-03-30 1989-10-09
JPH11145166A (ja) 1997-11-13 1999-05-28 Kyushu Nissho:Kk ブロックヒータ
JP2003053437A (ja) * 2001-08-10 2003-02-26 Niigata Prefecture マグネシウム合金の連続プレス加工装置
JP2006110549A (ja) 2004-10-12 2006-04-27 Aisin Takaoka Ltd 熱間プレス用金属板の加熱装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395116A3 (en) * 2010-06-11 2013-12-25 Toyoda Iron Works Co., Ltd. Steel sheet heating device, method for producing press-formed part, and press-formed part

Also Published As

Publication number Publication date
EP2237639B1 (en) 2019-08-21
US20110042369A1 (en) 2011-02-24
JP2009176584A (ja) 2009-08-06
JP4812785B2 (ja) 2011-11-09
EP2237639A4 (en) 2013-01-09
EP2237639A1 (en) 2010-10-06
US8455801B2 (en) 2013-06-04

Similar Documents

Publication Publication Date Title
JP4812785B2 (ja) 被加熱材の加熱装置及び加熱方法
JPH079036Y2 (ja) 縦型熱処理炉
US8957343B2 (en) Electrode support structure and electric heating device having same
KR100745231B1 (ko) 열교환기용 방열핀
CN103406415A (zh) 高强钢细长结构件电流辅助快速热成形装置及方法
CN104969020A (zh) 红外线炉和用于红外线加热的方法
US3272968A (en) Flexible electric surface heating assembly
JP2011189402A (ja) 金属板の抵抗加熱方法
KR20160029873A (ko) 판재 성형을 위한 가열 형상적응 가능한 개방형 가열시스템
CN102655728A (zh) 一种散热控制装置、电子设备及散热控制方法
KR101394325B1 (ko) 히터 및 그 제조방법
KR102390969B1 (ko) 핫스탬핑용 하이브리드 가열 장치
JP5790473B2 (ja) 通電加熱方法および通電加熱装置
KR102272200B1 (ko) 핫스탬핑용 전도 가열 장치 및 전도 가열 방법
CN106885474A (zh) 调温站以及用于运行调温站的方法
CN211792083U (zh) 一种层压机用电加热板
CN218918798U (zh) Igbt模块焊接工装
JP4072934B2 (ja) 金型予熱ヒーター
KR102115289B1 (ko) 금속 판재의 가열 장치
JP2001041350A (ja) 樹脂管加熱装置
JP6006007B2 (ja) 光学素子の製造装置、及び、光学素子の製造方法
KR101079342B1 (ko) 진공로 가열장치의 구조
KR20220088292A (ko) 열간 성형 공정용 전도 가열 장치
KR101579932B1 (ko) 다점 전극을 이용한 통전가열 장치
KR101604856B1 (ko) 다상 금속―금속 복합재료 제조장치 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12812871

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008871425

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE