WO2009092636A2 - Turbolader - Google Patents

Turbolader Download PDF

Info

Publication number
WO2009092636A2
WO2009092636A2 PCT/EP2009/050211 EP2009050211W WO2009092636A2 WO 2009092636 A2 WO2009092636 A2 WO 2009092636A2 EP 2009050211 W EP2009050211 W EP 2009050211W WO 2009092636 A2 WO2009092636 A2 WO 2009092636A2
Authority
WO
WIPO (PCT)
Prior art keywords
spring
turbine
turbocharger
housing
distributor
Prior art date
Application number
PCT/EP2009/050211
Other languages
English (en)
French (fr)
Other versions
WO2009092636A3 (de
Inventor
Dirk Blümmel
Claus Fleig
Matthias Stein
Andreas Wengert
Original Assignee
Bosch Mahle Turbo Systems Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Mahle Turbo Systems Gmbh & Co. Kg filed Critical Bosch Mahle Turbo Systems Gmbh & Co. Kg
Priority to US12/863,607 priority Critical patent/US9163557B2/en
Publication of WO2009092636A2 publication Critical patent/WO2009092636A2/de
Publication of WO2009092636A3 publication Critical patent/WO2009092636A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • F02B37/225Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits air passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a turbocharger having the features of the preamble of claim 1.
  • Such a turbo charger is known, for example, from EP 0 160 460 B1.
  • Such turbochargers for internal combustion engines of motor vehicles consist of a compressor and a turbine, which are mounted on a common shaft. Due to the large speed range of passenger car engines, a turbocharger control is required, which is achieved via a variable turbine geometry.
  • a nozzle vane insert with a plurality of concentrically arranged on a vane carrier, pivotable vanes, which are pivoted by means of a common adjustment mechanism to influence the Aufstau in a Sirömungskanal the turbine housing.
  • the vanes are rotatably mounted in the vane carrier via a respective shaft in pivot bearings. From EP 0 160 460 B1 it is known to bias the guide blade carrier by means of a spring element such that the guide device with the guide vanes is pressed against an inner wall of the turbine housing.
  • turbochargers are known from the prior art, which have a heat shield between a shaft of the turbine wheel receiving Lagergecherc and the turbine housing, which protects the bearing housing from the hot gas of the turbine part.
  • a turbocharger is known, for example, from EP 1 785 613 A2.
  • EP 1 503 042 A1 shows a turbocharger with distributor and heat shield between the bearing housing and the distributor.
  • the heat shield is bent in a complex manner and is not supported on the diffuser, so that hot gas can flow over the open gap between the diffuser and the bearing housing, behind the heat shield.
  • Au- in the construction shown there, the nozzle is fixedly connected to the turbine housing, resulting in disadvantages in terms of thermal expansion of the components of the distributor, which can cause jamming of the variable turbine geometry
  • the turbocharger according to the invention with the characterizing features of claim 1 of the application advantageously uses a nozzle, which is axially movable and fedcrbcholzt in combination with two disc springs, both supported on the nozzle and with respect to the axis of rotation of the turbine wheel above and below the Guide vane pivot bearings are arranged.
  • Disc springs in the context of the application are understood to mean springs which have a peripherally closed and flat profile and which have, for example, a C-shaped, V-shaped, U-shaped, O-shaped, S-shaped, Z-shaped or other Have cross-sectional profile.
  • the adjusting chamber of the turbocharger accommodating the adjustment mechanism is sealed against the flow channel of the turbine housing through which hot gas flows, thereby avoiding the adjusting mechanism from deforming in the radial direction at high temperatures, as well as the temperature-dependent wear of the adjustment mechanism can be significantly reduced.
  • At least one of the disc springs forms a heat shield.
  • the heat shield causes a uniform heating of the Lcitschaufei Vietnameses, since the guide vane carrier is not cooled on one side, so that it expands uniformly.
  • the distance between the vanes and the Leitschaufelträgcr remains almost constant, so that the gap between the vanes and the vane support and the cover plate of the nozzle can be reduced and thus the thermodynamic efficiency of the turbocharger is improved.
  • a first plate spring serves as a heat shield, said first disc spring, although applied to the nozzle with low spring action, the spring force required for the axial alignment of the nozzle, however, is applied substantially by the second plate spring.
  • This second plate spring is preferably made of a temperature-resistant spring material, which applies the necessary clamping force even at high temperatures, as they occur in the flow channel of the turbine housing to pressurize the nozzle with a sufficient axial force for securing the same.
  • both disc springs are designed as a heat shield.
  • the effect of the two heat shields is that the bearing disk, on the one hand, heats and deforms particularly uniformly.
  • the adjustment of the adjusting mechanism of the distributor is particularly well protected against heat.
  • first plate spring and the second disc spring are each supported with their ends remote from the pivot bearings of the guide vanes on a bearing housing of the turbocharger and with their ends facing from the pivot bearings of the guide vanes in the vicinity of the guide vane. Bearings supported on the vane carrier.
  • FIG. 1 shows a schematic detail of a cross-sectional view of a turbocharger with a spring-loaded distributor between the bearing housing and the turbine housing.
  • FIG. 1 shows, in a greatly simplified form, a section from a cross-sectional view of a turbocharger.
  • the turbocharger comprises a compressor part, not shown here, with a compressor wheel, which is connected via a shaft 3.1 with a turbine rim 3 received in a turbine housing 1.
  • the shaft 3.1 is rotatably mounted in a manner not shown in a bearing housing 2 of the turbocharger about an axis 3.2 and sealed by a seal 3.3 to the bearing housing.
  • the axis 3.2 of the turbine wheel 3 represents an axial direction. Perpendicular to the axis 3.2, a radial direction is defined.
  • hot exhaust gas from an internal combustion engine flows through a spiral channel 1.2 of the turbine housing in the direction 4.1 into a flow channel 9 provided with adjustable guide vanes 5.2 and from there in the direction 4.2 to the turbine wheel and finally in the direction 4.3 to an outlet of the turbine housing 1.
  • the distributor comprises a ring-shaped guide blade carrier 5.1, which is provided with a plurality of axially parallel to the axis of rotation 3.2 of the turbine wheel arranged bores, in each of which shafts of the vanes 5.2 engage to form a pivot bearing 5.4.
  • the pivot bearings 5.4 are distributed over the circumference of the guide blade carrier and preferably arranged with respect to the axis of rotation 3.2 of the turbine wheel at the same radial distance.
  • the waves of the guide vanes are provided, for example, each with a pivot arm 5.5, which cooperates with an adjusting mechanism 10. About the adjustment mechanism 10, the vanes can be pivoted 5.2 synchronously.
  • the nozzle 5 may further comprise a cover plate 5.3, which is held by spacers 5.6 at a distance from the guide blade carrier 5.1. Between the cover plate 5.3 and the guide blade carrier 5.1, the guide vanes are arranged 5.2, wherein the guide vanes are spaced by a small gap, not shown, of the guide blade carrier and the cover plate.
  • the vane support 5.1, the spacers 5.6 and the cover plate 5.3 may rest loosely against each other or partially fixedly connected or be firmly connected together in their entirety.
  • the distributor 5 is acted upon by two disk springs 6 and 7.
  • the disc springs 6 and 7 are each supported by their counterparts from the pivot bearings 5.4 finely oriented in the radial direction ends 6.2 and 7.2 on the Lagergephin ⁇ se 2 of the turbocharger from.
  • In the radial direction of the pivot bearings 5.4 of the vanes facing ends 6.1 and 7.1 of the Tcllerfedern are based in the vicinity of the pivot bearing 5.4 on the guide vane 5.1 from, whereby the nozzle 5 in the axial direction over spacers. is pressed with the cover plate 5.3 against a wall 1.1 of the turbine housing 1.
  • a first disc spring 7 is arranged in the radial direction between the rotational axis 3.2 of the turbine wheel 3 and the pivot bearings 5.4 of the guide vanes 5.
  • the first disc spring 7 assumes in the preferred embodiment shown here the function of a heat shield and is made of poor heat-permeable material.
  • the first plate spring 7 only needs to be pressed with a required to achieve the sealing effect, low clamping force to the distributor, since the axial securing is essentially taken over by the second plate spring.
  • the second plate spring 6 is arranged in the radial direction on the side facing away from the rotational axis of the turbine wheel 3.2 3.2 of the pivot bearing.
  • the second plate spring 6 is made in a preferred embodiment of a temperature-resistant spring material, which applies even at high temperatures, ⁇ as they occur in the flow channel 9 of the turbine housing 1, the necessary clamping force to the nozzle 5 with a sufficient axial securing thereof spring force to act on.
  • the second disc spring 6 may be formed as a heat shield and the axial securing of the first plate spring 7 are taken.
  • both disk springs 6 and 7 each form a heat shield, whereby the adjustment is particularly well protected against heat input, since then the flow channel 9 is separated on almost its entire radial extent through the heat shields of the adjustment.
  • both disc springs 6 and 7 take over the axial securing of the distributor 5 and are designed accordingly with respect to their spring forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft einen Turbolader mit einem Turbinengehäuse 1, einem Lagergehäuse 2, einem um eine Achse 3.2 drehbar gelagerten Turbinenrad 3 und mit einem Leitapparat 5 mit mehreren an einem Leitschaufelträger 5.1 in Schwenklagern 5.4 drehbar gelagerten Leitschaufeln 5.2 zur Beeinflussung der Strömung in einem Strömungskanal 9 des Turbinengehäuses 1 und mit einem Federelement, welches den in axialer Richtung beweglichen Leitapparat 5 gegen eine Wand 1.1 des Turbinengehäuses 1 beaufschlagt. Es wird vorgeschlagen, dass zwischen dem Leitapparat 5 und dem Lagergehäuse 2 zwei Tellerfedern 6, 7 angeordnet sind, welche sich mit ihrem einen Ende 6.1, 7.1 an dem Leitapparat (5) abstützen, wobei eine erste Tellerfeder 7 in radialer Richtung zwischen der Drehachse 3.2 des Turbinenrades 3 und den Schwenklagern 5.4 der Leitschaufeln 5 angeordnet ist und eine zweite Tellerfeder 6 in radialer Richtung auf der von der Drehachse 3.2 des Turbinenrades abgewandten Seite der Schwenklager 5.4 angeordnet ist und wobei die Tellerfedern 6, 7 einen mit einem Verstellmechanismus 10 des Leitapparats 5 versehenen Verstellraum 8 gegenüber dem Strömungskanal 9 abdichten.

Description

Beschreibung
Titel
Turbolader
Stand der Technik
Die Erfindung betrifft einen Turbolader mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Ein derartiger Turboader ist beispielsweise aus der EP 0 160 460 Bl bekannt. Derartige Turbolader für Brennkraftmaschinen von Kraftfahrzeugen bestehen aus einem Verdichter und einer Turbine, die auf einer gemeinsamen Welle angebracht sind. Wegen des großen Drehzahlbereichs von Pkw-Motoren, ist eine Regelung des Turboladers erforderlich, die über eine variable Turbinengeometrie erreicht wird. Hierzu dient ein im Folgenden als Leitapparat bezeichnetet Leitschaufeleinsatz mit mehreren konzentrisch an einem Leitschaufelträger angeordneten, schwenkbaren Leitschaufeln, die mittels eines gemeinsamen Verstellmechanismus verschwenkt werden, um das Aufstauverhalten in einem Sirömungskanal des Turbinengehäuses zu beeinflussen. Die Leitschaufeln sind über jeweils eine Welle in Schwenklagern drehbar in dem Leitschaufelträger angeordnet. Aus der EP 0 160 460 Bl ist es bekannt, den Leitschaufelträger mittels eines Federelementes derart vorzuspannen, dass der Leitapparat mit den Leitschaufeln gegen eine Innenwand des Turbinengehäuses gedrückt wird.
Weiterhin sind aus dem Stand der Technik Turbolader bekannt, die zwischen einem die Welle des Turbinenrades aufnehmenden Lagergehäusc und dem Turbinengehäuse einen Hitzschild aufweisen, welcher das Lagergehäuse vor dem heißen Gas des Turbinenteils schützt. Ein solcher Turbolader ist beispielsweise auf der EP 1 785 613 A2 bekannt.
Die EP 1 503 042 Al zeigt einen Turbolader mit Leitapparat und Hitzeschild zwischen dem Lagergehäuse und dem Leitapparat. Das Hitzeschild ist jedoch in aufwendiger Weise umgebogen und stützt sich nicht am dem Leitapparat ab, so dass heißes Gas über den offenen Spalt zwischen dem Leitapparat und dem Lagergehäuse, hinter den Hitzeschild strömen kann. Au- ßerdem ist bei der dort gezeigten Konstruktion der Leitapparat fest mit dem Turbinengehäuse verbunden, wodurch sich Nachteile ergeben in Bezug auf eine thermische Ausdehnung der Bauteile des Leitapparats, welche ein Verklemmen der variablen Turbinengeometrie bewirken können,
Offenbarung der Erfindung
Vorteile der Erfindung
Der erfindungsgemäße Turbolader mit den kennzeichnenden Merkmalen des Anspruchs 1 der Anmeldung verwendet vorteilhaft einen Leitapparat, der in axialer Richtung beweglich und fedcrbcaufschlagt ist in Kombination mit zwei Tellerfedern, die sich beide an dem Leitapparat abstützen und in Bezug auf die Drehachse des Turbinenrades oberhalb und unterhalb der Leitschaufelschwenklager angeordnet sind. Unter Tellerfedern werden im Kontext der An- meidung Federn verstanden, die ein umlaufend geschlossenes und flächiges Profil aufweisen uad die beispielsweise ein C-förmiges, V-förmiges, U-fÖrmiges., 0-förmiges, S-förmiges, Z- förmiges oder sonstiges Querschnittsprofil aufweisen. Durch die oben genannten Maßnahmen wird vorteilhaft erreicht, dass der den Verstellmechanismus aufnehmende Verstellraum des Turboladers gegenüber dem von heißem Gas durchströmten Strömungskanal des Turbϊ- nengehäuses abgedichtet wird, wodurch sowohl vermieden wird, dass sich die Verstellmechanik bei hohen Temperaturen in radialer Richtung deformiert, als auch der von der Temperatur abhängige Verschleiß der Verstellmechanik deutlich reduziert werden kann.
Vorteilhafte Ausbildungen und Weiterentwicklungen der Erfindung werden durch die in den abhängigen Ansprüchen angegebenen Maßnahmen ermöglicht.
Besonders vorteilhaft ist es, wenn wenigstens eine der Tellerfedern einen Hitzeschild bildet. Der Hitzeschild bewirkt eine gleichmäßige Erwärmung des Lcitschaufeiträgers, da der Leitschaufelträger nicht einseitig gekühlt wird, so dass dieser sich gleichmäßig ausdehnt. Da- durch bleibt der Abstand zwischen den Leitschaufeln und dem Leitschaufelträgcr nahezu konstant, so dass der Spalt zwischen den Leitschaufeln und dem Leitschaufelträger und der Deckscheibe des Leitapparats reduziert werden kann und damit der thermodynamischc Wirkungsgrad des Turboladers verbessert wird. Besonders bevorzugt dient eine erste Tellerfeder als Hitzeschild, wobei diese erste Tellerfeder zwar an dem Leitapparat mit geringer Federwirkung anliegt, die zur axialen Ausrichtung des Leitapparats erforderliche Federkraft jedoch im wesentlichen von der zweiten Tellerfeder aufgebracht wird.
Diese zweite Tellerfeder ist vorzugsweise aus einem temperaturbeständigen Federmaterial gefertigt, das auch bei hohen Temperaturen, wie sie im Strömungskanal des Turbinengehäuses auftreten, die notwendige Spannkraft aufbringt, um den Leitapparat mit einer zur axialen Sicherung desselben ausreichend großen Federkraft zu beaufschlagen.
In einem anderen Ausführungsbeispiels sind beide Tellerfedern als Hitzschild ausgebildet. Die beiden Hitzeschilde bewirken, dass sich einerseits die Lagerscheibe besonders gleichmäßig erwärmt und verformt. Der Verstellraum der Verstellmechanik des Leitapparats ist besonders gut gegen Hitze geschützt.
Ein besonders einfacher mechanischer Aufbau wird dadurch möglich, dass sich die erste Tellerfeder und die zweite Tellerfeder jeweils mit ihren von den Schwenklagern der Leitschaufeln abgewandten Enden an einem Lagergehäuse des Turboladers abstützen und mit ihren von den Schwenklagern der Leitschaufeln zugewandten Enden in der Nähe der Leitschaufel- lager an dem Leitschaufelträger abstützten.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigt
Figur 1 einen schematischen Ausschnitt einer Querschnittsansicht eine Turboladers mit einem federbeaufschlagten Leitapparat zwischen dem Lagergehäuse und dem Turbinengehäuse. Ausführungsformen der Erfindung
Figur 1 zeigt in stark vereinfachter Form einen Ausschnitt aus einer Querschnittsansicht eines Turboladers. Der Turbolader umfasst einen hier nicht dargestellten Verdichterteil mit einem Verdichterrad, das über eine Welle 3.1 mit einem in einem Turbinengehäuse 1 aufgenommenen Turbinenrand 3 verbunden ist. Die Welle 3.1 ist in nicht dargestellter Weise in einem Lagergehäuse 2 des Turboladers um eine Achse 3.2 drehbar gelagert und über eine Dichtung 3.3 zum Lagergehäuse abgedichtet. Die Achse 3.2 des Turbinenrades 3 stellt eine axiale Richtung dar. Senkrecht zur Achse 3.2 ist eine radiale Richtung definiert.
Im Betrieb strömt heißes Abgas einer Brennkraftmaschine durch einen Spiralkanal 1.2 des Turbinengehäuses in Richtung 4.1 in einen mit verstellbaren Leitschaufeln 5.2 versehenen Strömungskanal 9 und von dort in Richtung 4.2 zum Turbinenrad und schließlich in Richtung 4.3 zu einem Auslass des Turbinengehäuses 1.
Zwischen dem Lagergehäuse 2 und dem Turbinengehäuse 1 ist ein die Leitschaufeln 5.2 aufnehmender Leitapparat 5 angeordnet. Der Leitapparat umfasst einen ringscheibenförmigen Leitschaufelträger 5.1, welcher mit mehren achsparallel zur Drehachse 3.2 des Turbinenrades angeordneten Bohrungen versehen ist, in welche jeweils Wellen der Leitschaufeln 5.2 unter Ausbildung eines Schwenklagers 5.4 eingreifen. Die Schwenklager 5.4 sind über den Umfang des Leitschaufelträgers verteilt und in Bezug auf die Drehachse 3.2 des Turbinenrades vorzugsweise in gleichem radialen Abstand angeordnet. Die Wellen der Leitschaufeln sind beispielsweise mit jeweils einem Schwenkarm 5.5 versehen, der mit einem Verstellmechanismus 10 zusammenwirkt. Über den Verstellmechanismus 10 können die Leitschaufeln 5.2 synchron verschwenkt werden. Der Leitapparat 5 kann weiterhin eine Deckscheibe 5.3 aufweisen, welche über Abstandshalter 5.6 in einem Abstand zu dem Leitschaufelträger 5.1 gehalten ist. Zwischen der Deckscheibe 5.3 und dem Leitschaufelträger 5.1 sind die Leitschaufeln 5.2 angeordnet, wobei die Leitschaufeln durch einen nicht dargestellten kleinen Spalt von dem Leitschaufelträger und der Deckscheibe beabstandet sind. Der Leitschaufel- träger 5.1 , die Abstandshalter 5.6 und die Deckscheibe 5.3 können lose aneinander anliegen oder teilweise fest verbunden oder in ihrer Gesamtheit fest miteinander verbunden sein.
Erfmdungsgemäß wird der Leitapparat 5 durch zwei Tellerfedern 6 und 7 beaufschlagt. Die Tellerfedern 6 und 7 stützen sich jeweils mit ihren von den Schwenklagern 5.4 der Leitschau- fein in radialer Richtung abgewandten Enden 6.2 und 7.2 an dem Lagergehäυse 2 des Turboladers ab. Die in radialer Richtung den Schwenklagern 5.4 der Leitschaufeln zugewandten Enden 6.1 und 7.1 der Tcllerfedern stützen sich in der Nähe der Schwenklager 5.4 an dem Leitschaufel träger 5.1 ab, wodurch der Leitapparat 5 in axialer Richtung über Distanzkörper. mit der Deckscheibe 5.3 gegen eine Wand 1.1 des Turbinengehäuses 1 gedrückt wird.
Eine erste Tellerfeder 7 ist in radialer Richtung zwischen der Drehachse 3.2 des Turbinenrades 3 und den Schwenklagern 5.4 der Leitschaufeln 5 angeordnet. Die erste Tellerfeder 7 übernimmt in dem hier dargestellten bevorzugten Ausführungsbeispiel die Funktion eines Hitzeschildes und ist aus schlecht wärmedurchlässigen Material gefertigt. Dabei braucht sich die erste Tellerfeder 7 nur mit einer zur Erzielung der abdichtenden Wirkung erforderlichen, geringen Spannkraft an den Leitapparat anzudrücken, da die axiale Sicherung im wesentlichen von der zweiten Tellerfeder übernommen wird. Die zweite Tellerfeder 6 ist in radialer Richtung auf der von der Drehachse 3.2 des Turbinenrades abgewandten Seite der Schwenk- lager 5.4 angeordnet. Die zweite Tellerfeder 6 ist in einem bevorzugten Ausführungsbeispiels aus einem temperaturbeständigen Federmaterial gefertigt, das auch bei hohen Temperaturen, ■ wie sie im Strömungskanal 9 des Turbinengehäuses 1 auftreten, die notwendige Spannkraft aufbringt, um den Leitapparat 5 mit einer zur axialen Sicherung desselben ausreichend großen Federkraft zu beaufschlagen.
Wie in Fig. 1 zu erkennen ist, wird durch die Anlage der beiden Tellerfedern 6 und 7 an dem Leitschaufelträger erreicht, dass der mit dem Verstellmechanismus 10 des Leitapparats 5 versehene Verstellraum 8 gegenüber dem von heißem Gas durchströmten Strömungskanal 9 abgedichtet ist. Heißes Abgas kann daher nicht vom Strömungskanal 9 in den Verstellraum gelangen, wodurch der Verstellmechanismus besonders gut geschützt ist.
Anders als hier dargestellt, kann natürlich auch die zweite Tellerfeder 6 als Hitzschild ausgebildet sein und die axiale Sicherung von der ersten Tellerfeder 7 übernommen werden.
In einem weiteren Ausführungsbeispiel ist vorgesehen, dass beide Tellerfedern 6 und 7 je einen Hitzeschild ausbilden, wodurch der Verstellraum besonders gut gegen eine Wärmeintrag geschützt wird, da dann der Strömungskanal 9 auf nahezu seiner gesamten radialen Erstreckung durch die Hitzeschilde von dem Verstellraum getrennt wird. In diesem Fall kann es vorgesehen sein, dass beide Tellerfedern 6 und 7 die axiale Sicherung des Leitapparats 5 übernehmen und in Bezug auf ihre Federkräfte entsprechend ausgelegt sind.

Claims

Ansprüche
1 . Turbolader, insbesondere Abgasturbolader, mit einem Turbinengehäuse (1) und einem Lagergehäuse (2), einem um eine Achse (3.2) drehbar gelagerten Turbinenrad (3) und mit einem Leitapparat (5) mit mehreren an einem Leitschaufelträger (5.1) in Schwenklagern (5.4) drehbar gelagerten Leitschaufeln (5.2) zur Beeinflussung der Strömung in einem Strömungskanal (9) des Turbinengehäuses (1) und mit einem Federelement, welches den in axialer Richtung beweglichen Leitapparat (5) gegen eine Wand (Ll) des Turbinengehäuses (1) beaufschlagt, dadurch gekennzeichnet, dass zwischen dem Leitapparat (5) und dem Lagergehäuse (2) zwei Tellerfedern (6, 7) angeordnet sind, welche sich mit ihrem einen Ende (6.1, 7.1) an dem Leitapparat (5) abstützen, wobei eine erste Tellerfeder (7) in radialer Richtung zwischen der Drehachse (3.2) des Turbinenrades (3) und den Schwenklagern (5.4) der Leit- schaufeln (5) angeordnet ist und eine zweite T ellerfeder (6) in radialer Richtung auf der von der Drehachse (3.2) des Turbinenrades abgewandten Seite der Schwenklager (5.4) angeordnet ist und wobei die Tellerfedern (6, 7) einen mit einem Verstellmechanismus (10) des Leitapparats (5) versehenen Verstellraum (8) gegenüber dem Strömungskanal (9) abdichten.
2. Turbolader nach Anspruch 1 , dadurch gekennzeichnet, dass wenigstens eine der Tellerfedern (7) einen Hitzeschild bildet.
3. Turbolader nach Anspruch 1, dadurch gekennzeichnet, dass die erste Tellerfeder (7) und die zweite Tellerfeder (6) jeweils einen Hitzeschild bilden.
4. Turbolader nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass wenigstens eine der Tellerfedern (6, 7) aus einem temperaturbeständigen Federmaterial besteht, das auch bei hohen Temperaturen, wie sie im Strömungskanal (9) des Turbinengehäuses (1) auftreten, die notwendige Spannkraft aufbringt, um den Leitapparat (5) mit einer zur axialen Sicherung derselben ausreichend großen Federkraft zu beaufschlagen.
5. Turbolader nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die erste Tellerfeder (7) und die zweite Tellerfeder (6) jeweils mit ihren von den Schwenkla- gern (5.4) der Leitschaufeln abgewandten Enden (6.2, 7.2) an einem Lagergehäuse (2) des Turbo laders abstützen.
6. Turbolader nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die S erste Tellerfeder (7) und die zweite Tellerfeder (6) jeweils mit ihren den Schwenklagern (5.4) der Leitschaufeln zugewandten Enden (6.1,
7.1) an dem Leitschaufelträger (5.1) abstützten.
PCT/EP2009/050211 2008-01-21 2009-01-09 Turbolader WO2009092636A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/863,607 US9163557B2 (en) 2008-01-21 2009-01-09 Turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008005404A DE102008005404A1 (de) 2008-01-21 2008-01-21 Turbolader
DE102008005404.6 2008-01-21

Publications (2)

Publication Number Publication Date
WO2009092636A2 true WO2009092636A2 (de) 2009-07-30
WO2009092636A3 WO2009092636A3 (de) 2010-04-29

Family

ID=40785935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/050211 WO2009092636A2 (de) 2008-01-21 2009-01-09 Turbolader

Country Status (3)

Country Link
US (1) US9163557B2 (de)
DE (1) DE102008005404A1 (de)
WO (1) WO2009092636A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105348A1 (de) 2022-03-08 2023-09-14 Avl Schrick Gmbh Abgasturboladerfixierung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086310A1 (de) * 2011-11-14 2013-05-16 Continental Automotive Gmbh Abgasturbolader mit einer variablen Turbinengeometrie und einer Tellerfeder zur Abdichtung
JP2013104412A (ja) * 2011-11-16 2013-05-30 Toyota Motor Corp 可変ノズル機構
DE102012106789B4 (de) 2012-07-26 2022-10-27 Ihi Charging Systems International Gmbh Verstellbarer Leitapparat für eine Turbine, Turbine für einen Abgasturbolader und Abgasturbolader
DE102013217677A1 (de) * 2013-09-04 2015-03-05 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader mit Turbine
JP2016109087A (ja) * 2014-12-09 2016-06-20 株式会社東芝 水力機械
DE102015225828A1 (de) * 2015-01-07 2016-07-07 Borgwarner Inc. Haltevorrichtung für Schaufellagerringanordnung für Turbolader mit variabler Turbinengeometrie
US9932888B2 (en) * 2016-03-24 2018-04-03 Borgwarner Inc. Variable geometry turbocharger
US10844742B2 (en) 2016-04-18 2020-11-24 Borgwarner Inc. Heat shield
KR20190067850A (ko) * 2016-11-02 2019-06-17 보르그워너 인코퍼레이티드 멀티파트 터빈 하우징을 갖는 터빈
DE102017218050B4 (de) 2017-10-10 2021-11-04 Vitesco Technologies GmbH Turboladereinrichtung mit Federelement zum Verspannen des Leitapparates gegen das Turbinengehäuse und Federelement
EP3929407A1 (de) * 2020-06-23 2021-12-29 ABB Schweiz AG Modularer düsenring für eine turbinenstufe einer strömungsmaschine
DE102021106313A1 (de) 2021-03-16 2022-09-22 Ihi Charging Systems International Gmbh Abgasturbolader mit einem verstellbaren Leitapparat
US11732601B2 (en) 2021-12-06 2023-08-22 Borgwarner Inc. Variable turbine geometry assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804316A (en) * 1985-12-11 1989-02-14 Allied-Signal Inc. Suspension for the pivoting vane actuation mechanism of a variable nozzle turbocharger
US6145313A (en) * 1997-03-03 2000-11-14 Allied Signal Inc. Turbocharger incorporating an integral pump for exhaust gas recirculation
EP1536103A1 (de) * 2003-11-28 2005-06-01 BorgWarner Inc. Strömungsmaschine mit Leitgitter und Befestigungseinrichtung dafür
DE102004038748A1 (de) * 2004-08-10 2006-02-23 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
WO2007107289A1 (de) * 2006-03-17 2007-09-27 Borgwarner Inc. Turbolader mit kartuschenzentriereinrichtung
DE102006018055A1 (de) * 2006-04-19 2007-10-31 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH638867A5 (de) * 1979-03-16 1983-10-14 Bbc Brown Boveri & Cie Turbolader mit einer einrichtung zur regelung des schluckvermoegens der turbine.
US4499731A (en) * 1981-12-09 1985-02-19 Bbc Brown, Boveri & Company, Limited Controllable exhaust gas turbocharger
US4643640A (en) * 1984-04-20 1987-02-17 The Garrett Corporation Gas seal vanes of variable nozzle turbine
US4659295A (en) 1984-04-20 1987-04-21 The Garrett Corporation Gas seal vanes of variable nozzle turbine
US4654941A (en) * 1984-04-20 1987-04-07 The Garrett Corporation Method of assembling a variable nozzle turbocharger
US5087176A (en) * 1984-12-20 1992-02-11 Allied-Signal Inc. Method and apparatus to provide thermal isolation of process gas bearings
US5207565A (en) * 1992-02-18 1993-05-04 Alliedsignal Inc. Variable geometry turbocharger with high temperature insert in turbine throat
US6168375B1 (en) * 1998-10-01 2001-01-02 Alliedsignal Inc. Spring-loaded vaned diffuser
DE10209484B4 (de) * 2002-03-05 2004-06-24 Borgwarner Turbo Systems Gmbh Turbolader für Fahrzeuge mit verbesserter Aufhängung für den Betätigungsmechanismus der variablen Düsen
DE50205914D1 (de) * 2002-08-26 2006-04-27 Borgwarner Inc Verstellbares Leitgitter für eine Turbineneinheit
DE50207509D1 (de) * 2002-09-10 2006-08-24 Borgwarner Inc Leitgitter variabler Geometrie und Turbolader mit einem solchen Leitgitter
EP1540142B1 (de) * 2002-09-18 2016-11-09 Honeywell International Inc. Abgasturbolader mit variablen leitschaufel
EP1503042A1 (de) 2003-07-31 2005-02-02 BorgWarner Inc. Bremssystem in einem Turbolader
DE202005009491U1 (de) * 2005-06-16 2005-08-25 Borgwarner Inc., Auburn Hills Turbolader
JP4468286B2 (ja) 2005-10-21 2010-05-26 三菱重工業株式会社 排気ターボ式過給機
EP1816317B1 (de) * 2006-02-02 2013-06-12 IHI Corporation Turbolader mit variabler Geometrie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804316A (en) * 1985-12-11 1989-02-14 Allied-Signal Inc. Suspension for the pivoting vane actuation mechanism of a variable nozzle turbocharger
US6145313A (en) * 1997-03-03 2000-11-14 Allied Signal Inc. Turbocharger incorporating an integral pump for exhaust gas recirculation
EP1536103A1 (de) * 2003-11-28 2005-06-01 BorgWarner Inc. Strömungsmaschine mit Leitgitter und Befestigungseinrichtung dafür
DE102004038748A1 (de) * 2004-08-10 2006-02-23 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
WO2007107289A1 (de) * 2006-03-17 2007-09-27 Borgwarner Inc. Turbolader mit kartuschenzentriereinrichtung
DE102006018055A1 (de) * 2006-04-19 2007-10-31 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105348A1 (de) 2022-03-08 2023-09-14 Avl Schrick Gmbh Abgasturboladerfixierung

Also Published As

Publication number Publication date
US20110014034A1 (en) 2011-01-20
US9163557B2 (en) 2015-10-20
WO2009092636A3 (de) 2010-04-29
DE102008005404A1 (de) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2009092636A2 (de) Turbolader
DE102008000776B4 (de) Turbine mit varialber Turbinengeometrie, insbesondere für einen Abgasturbolader, sowie Abgasturbolader
EP1734231B1 (de) Turbolader mit variabler turbinengeometrie
DE19703033A1 (de) Abgasturbine eines Turboladers
DE102008005405B4 (de) Turbine, insbesondere für einen Abgasturbolader, sowie Abgasturbolader
EP2989298B1 (de) Abgasturbolader
WO2009000436A2 (de) Abgasturbolader für eine brennkraftmaschine
WO2020001805A1 (de) Abgasturbolader mit zentriertem leitschaufelring
DE102009009130A1 (de) Turbolader, vorzugsweise mit variabler Turbinengeometrie
WO2009133139A1 (de) Einspritzvorrichtung
DE102008060251B4 (de) Abgasturbolader mit variabler Turbinengeometrie
DE102012103412A1 (de) Turbine für einen Abgasturbolader
WO2014075772A1 (de) Regelvorrichtung für einen abgasführungsabschnitt einer turbine und abgasführungsabschnitt für eine turbine
DE102008033560A1 (de) Gasturbinentriebwerk mit verstellbaren Leitschaufeln
WO2014019976A1 (de) Segmentplattenventil und dampfturbinenanordnung
DE102008000508A1 (de) Abgasturbolader mit verstellbarer Turbinengeometrie
DE102013001978A1 (de) Ventileinheit für ein Wastegatesystem und Abgasturbolader
EP1927746B1 (de) Abgassteuereinrichtung für eine Verbrennungskraftmaschine
DE102008039508A1 (de) Ladeeinrichtung
WO2014044364A1 (de) Verstellbarer leitapparat für einen abgasturbolader und zugehöriger abgasturbolader
WO2008055930A1 (de) Turbolader mit variabler verstellgeometrie
DE102008000724B4 (de) Abgasturbolader mit verstellbarer Turbinengeometrie
EP1965035B1 (de) Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander
EP2208863B1 (de) Turbolader mit variabler Turbinengeometrie
DE102009041125A1 (de) Gasdynamische Druckwellenmaschine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12863607

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09703526

Country of ref document: EP

Kind code of ref document: A2