EP1965035B1 - Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander - Google Patents

Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander Download PDF

Info

Publication number
EP1965035B1
EP1965035B1 EP07004385.6A EP07004385A EP1965035B1 EP 1965035 B1 EP1965035 B1 EP 1965035B1 EP 07004385 A EP07004385 A EP 07004385A EP 1965035 B1 EP1965035 B1 EP 1965035B1
Authority
EP
European Patent Office
Prior art keywords
flow machine
machine according
guide vanes
contour ring
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07004385.6A
Other languages
English (en)
French (fr)
Other versions
EP1965035A1 (de
Inventor
Vinko Mikulec
Martin WÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07004385.6A priority Critical patent/EP1965035B1/de
Priority to CN200810082140.2A priority patent/CN101255804B/zh
Publication of EP1965035A1 publication Critical patent/EP1965035A1/de
Application granted granted Critical
Publication of EP1965035B1 publication Critical patent/EP1965035B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • F05D2260/52Kinematic linkage, i.e. transmission of position involving springs

Definitions

  • the EP 1 620 633 B1 discloses a radial expansion hot gas expander having an adjustable inlet guide vane in which the adjustable vanes are held in a defined position by a resilient member in which the resilient member biases the vanes in the direction of the respective axis of rotation. From the JP 02 22 36 06 It is also known to reduce secondary flows of a centrifugal compressor in the region of exit from the impeller, in which an actuator displaces the wall opposite the impeller in the direction of minimizing the gap.
  • Turbomachines such as gear machines, in particular hot gas expander of the type mentioned are characterized by a multi-shaft arrangement with different rotational speeds to a central drive wheel. This provides a compact unit for multi-stage compaction / expansion for a variety of media, preferably gaseous media.
  • Such gear machines expand the medium having an inlet temperature of up to 300 ° C or, in a preferred embodiment, an inlet temperature of over 300 ° C can have.
  • an inlet temperature of over 300 ° C can have.
  • At a media inlet temperature of more than 300 ° C one speaks of so-called hot gas expanders.
  • H facedgasexpander have at least one inlet housing, in which the spiral insert is arranged.
  • the spiral insert carries an adjustable milieusleitapparat having a collar, vanes and bolts, wherein the bolts serve as a rotation axis for adjusting the vanes.
  • the guide vanes are therefore rotatably struck on the bolt, wherein the guide vanes are simultaneously connected via a driver with the adjusting ring. If now the adjusting ring is rotated in a desired angular amount, the drivers cause a forced adjustment of the guide vanes about the bolt, so that the adjustment of the guide vanes influencing the direction and / or the speed of the medium flow to the blade or the impeller is effected.
  • the spiral insert thus has two functions. On the one hand, the spiral insert carries the adjusting mechanism (adjusting ring, etc.), with the spiral insert on the other also carries the contour ring.
  • the spiral insert with the associated inlet guide and the contour ring is pre-assembled outside of the inlet housing and used as a unit in this.
  • the unit to be used must therefore be performed during assembly with a relatively large radial clearance to the inlet housing or the impeller to clamps by different thermal expansions to avoid and to ensure axial freedom of movement.
  • the contouring gap between the contour ring surface and the corresponding blade edge of the impeller is sized so large that the efficiency of the hot gas expander is significantly reduced by extremely high gap losses. Efficiency losses can also occur if the gaps between the guide vanes or the bolt (as the axis of rotation of the respective vane) and the associated channel inner wall are too large.
  • the invention is therefore based on the object to improve a turbomachine of the type mentioned, in particular a hot gas expander, by simple means to the effect that the gap losses are reduced, so that the efficiency can be significantly increased.
  • the object is achieved in that the specimensleitapparat and the contour ring are clamped together by means of at least one elastic element against the housing, so that the clamping forces from the elastic element in the direction of a reduction of gaps between the blades and the contour ring act.
  • the flow contour or an associated spiral insert is movable to the inlet housing or to the housing, wherein the spiral insert is preferably seen in the axial direction movable.
  • the diffuser side is assigned in each case a plant, wherein the respective receiving bolt is assigned a respective stop element on the spiral insert side, each of which is fixed frictionally to the respective locating bolt, wherein the respective locating bolt an energy storage and an active element is assigned.
  • the active element is preferably arranged on the spiral insert side, the force accumulator being arranged between the active element and the contact base.
  • the energy storage is designed as a plate spring package or cup spring ring, which is arranged around the receiving bolt around.
  • the active element is provided with pot-like holes.
  • a corresponding to the receiving pin through hole is introduced, so that the active element is slidably mounted along a longitudinal axis of the receiving pin.
  • the stop element acts as a kind of movement limiter of the active element in the direction of the spiral insert.
  • the active element is in the tensioned state preferably on the spiral insert.
  • the inlet guide apparatus has a spacer which is accommodated in the spiral insert on the foot side and is oriented on the head side to a channel inner wall, wherein the clamping system presses the spacer with its head side against the channel inner wall, which at least partially has a sliding element.
  • the specimensleitapparat also has a collar and vanes. The vanes are connected via drivers with the adjusting ring, and rotatably associated with the spacer.
  • the spacer can thus also be referred to as a guide blade bolt and serves as a rotation axis of the guide vanes.
  • the vanes over the drivers are forcibly taken with them and turn around the respective blade axis or around the respective spacer.
  • each spacer is associated with a sliding element, so that the respective sliding elements are arranged at the location assigned to the spacer in the channel inner wall. Of course, but also a single, continuous sliding element may be provided.
  • the sliding element is used as a sliding plate in the channel inner wall sufficiently secure.
  • the sliding element can also be designed as a sliding coating.
  • the sliding element in its embodiment as a sliding plate is formed of a suitable material, which is preferably made of a temperature and corrosion-resistant base material, and is coated or treated accordingly.
  • the sliding elements or sliding plates made of steel or Inconel and be coated with a special layer (eg Tribaloy).
  • the coating is preferably chosen such that a sliding friction coefficient is reduced, and at the same time a high wear resistance is present.
  • the coating also prevents seizing and is corrosion resistant.
  • a treatment by Kolsterizing ® corrosion-resistant surface hardening
  • the slider may be applied in the embodiment as a sliding coating according to the coating directly on the associated region of the channel inner wall.
  • the spiral insert is pre-assembled with the inlet guide outside the inlet housing and inserted into this as a unit.
  • the spiral insert is pressed with suitable tools axially over the spacers (Leitschaufelbolzen) against the sliding plates in the inlet housing rear wall (channel inner wall), whereby then the contour ring is installed and adjusted (axial gap).
  • the clamping system is used at the intended location.
  • the diffuser is connected to the inlet housing, or screwed, the diffuser with its abutment flange abuts the plant foot. By connecting or screwing the diffuser with the inlet housing, the clamping system is biased.
  • the clamping system in particular the cup spring assembly is designed prior to assembly with respect to the required spring tension even under operating conditions.
  • the respective components spiral insert, inlet guide, contour ring
  • the clamping system presses the spacers with their head side against the corresponding sliding element or the preferred sliding plate.
  • sliding in the radial direction is advantageously achieved, since the spacers are supported on the sliding elements.
  • thermal expansion advantageous axial compression of the disc springs.
  • the H thoroughlygasexpander also has the impeller, which is spaced with its blade edges to the contour ring, so that a contouring gap is formed.
  • this contouring gap can be advantageously minimized, since the temperature expansion acts directly on the spacer, which is supported on the channel inner wall or the respective sliding element, and pushes the contour ring away from the impeller in a thermally induced expansion, so that the thermal Expansion of the blades and the contour ring quasi picks up.
  • gap losses are reduced, as a result of which the efficiency of the turbomachine or of the geared machine or of the exemplary one Hot gas expander is increased.
  • the gap dimensions can be performed minimally from the outset, whereby it is achieved by means of the clamping system that the thermal expansion is virtually compensated.
  • FIG. 1 shows a turbomachine or a gear machine, which is designed in the illustrated embodiment as a hot gas expander 1 with an inlet temperature of a preferably gaseous medium of up to 510 ° C.
  • the hot gas expander 1 has at least one inlet housing 2, in which a spiral insert 3 is arranged.
  • the spiral insert 3 is assigned an inlet guide 4 and a contour ring 6, so that a flow contour is formed.
  • the inlet housing 2 is further associated with a diffuser 7.
  • the inlet guide 4 has an adjusting ring 8, at least one spacer 9 and vanes 11.
  • the guide vanes 11 are connected via drivers with the adjusting ring 8, so that a rotation of the adjusting ring 8 causes a corresponding adjustment of the guide vanes 11 which are rotatably mounted on the spacers 9.
  • the spacers 9 thus serve as the axis of rotation of the guide vanes 11.
  • the spiral insert 3 is associated with an elastic element or a clamping system 12.
  • the clamping system 12 rests on the one hand on the spiral insert 3 and on the other hand on the diffuser 7 or on its abutment flange 13 to the inlet housing 2.
  • the clamping system 12 has a central receiving bolt 14, to which a plant foot 16 is associated with the diffuser side.
  • the plant foot 16 rests with its contact surface 17 against a corresponding abutment surface 18 of the diffuser 7 or its abutment flange 13.
  • the receiving bolt 14 is assigned a stop element 19, which is fixed in a form-fitting manner to the receiving bolt 14 via a screw connection.
  • the stop member 19 may also be connected to the locating bolts 14 in any other suitable manner of connection.
  • the stop element 19 could be welded to the locating bolt.
  • the active element 21 is preferably arranged on the spiral side, and provided with pot-like holes, of which in FIG. 2 due to the selected display range, only one is recognizable, so that the active element 21 seen in the selected section is U-shaped with a base web 23 (bottom hole) and two U-legs 24 is executed.
  • a through hole 26 corresponding to the receiving bolt 14 is inserted, so that the active element 21 is movable along a longitudinal axis (double arrow 27) of the receiving bolt 14.
  • the U-legs 24 are oriented with their free ends 28 in the direction of the spiral insert 3, so that the active element 21 rests against the spiral insert 3 in the clamped state of the clamping system 8.
  • the energy accumulator 22 is disposed between the active element 21 and the ganfuß 16, and preferably designed as a plate spring package or as a cup spring ring.
  • the spacer 9 is accommodated on the foot side in the spiral insert 3, and is oriented on the head side to a channel inner wall 29 (FIG. FIG. 1 ).
  • the clamping system 12 presses the spacer 9 with its head side 31 against the channel inner wall 29, on which at least on the contact surface of the spacer 9 sliding elements 32 are provided.
  • the sliding elements 32 are executed in the illustrated embodiment as sliding plates, which are formed from a suitable material and preferably coated or processed accordingly.
  • the sliding elements 32 are sufficiently secure in the channel inner wall 29 introduced.
  • the hot gas expander 1 is of course associated with an impeller 33, the blades are spaced with their edges 34 in the direction of the contour ring 6, so that a contouring gap 36 is formed.
  • the spiral insert 3 is preassembled with the inlet guide 4 outside the inlet housing 2 to form a unit us as a unit in the inlet housing 2.
  • the spiral insert 3 is pressed with suitable tools axially over the spacers 9 (Leitschaufelbolzen) against the sliding plates in the inlet housing rear wall (channel inner wall 11), so then the contoured ring 6 is installed and adjusted (axial gap). Subsequently, the clamping system 12 is used.
  • the inlet housing 2 is closed by the abutment flange 13 is screwed to the inlet housing 2.
  • the clamping system 12 is tensioned, whereby the gap between the guide vanes 11 and the channel inner wall 29 as well as the contouring gap 36 can be set to a minimum amount.
  • the spiral insert 3 is free of the inlet housing 2 in the radial and in the axial direction.
  • the individual components can expand due to the thermal effect.
  • the spacers 9 are pressed via the spiral insert 3 against the channel inner wall 29 and against the sliding elements 32, so that here a sliding in the radial direction is effected.
  • a sliding in the radial direction is effected.
  • only the blade height of the guide vanes must advantageously be taken into account.
  • the contoured ring 6 is pressed away from the blades of the impeller 33 by the pressing of the spacer 9 against the sliding elements 32.
  • the spiral insert 3 is also associated with an adjustment system 37 for radial adjustability and a suitable sealing system 38 that seals the contour ring 6 to the diffuser 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Strömungsmaschine, insbesondere Heißgasexpander, welche strömungsmaschine,
    • einen Laufschaufeln umfassenden Rotor aufweist,
    • einen Eintrittsleitapparat aufweist, mit einen Stellring, mit zumindest einen Abstandhalter und mit Leitschaufeln, wobei ein Verdrehen des Stellrings ein Verdrehen der Leitschaufeln bewirkt,
    • ein Gehäuse und einen Konturring aufweist, welcher Strömungskanäle im Bereich der Laufschaufeln einseitig begrenzt.
  • Aus der EP 1 249 577 A1 , der EP 1 643 172 A1 , der WO 01/09488 A1 , der US 5,203,673 A sind jeweils Mechanismen zur aktiven Spaltkontrolle einer Turbomaschine bekannt, bei denen ein Antrieb ein mindestens eine Dichtung tragendes Gehäuseteil derart verschiebt, dass sich radiale Spalte zu Laufschaufeln eines sich konisch aufweitenden Strömungskanal einer Turbomaschine verringern oder vergrößern lassen, so dass im Interesse einer Wirkungsgradverbesserung ein Spaltminimum erzielbar ist. Analog zu der aktiven Spaltkontrolle offenbart die DE 2 165 528 eine manuelle Einstellbarkeit des Spaltes, wobei statt eines Linearantriebes zum Verschieben des Gehäuseteiles eine verstellbare Schraubverbindung vorgesehen ist.
  • Die EP 1 620 633 B1 offenbart einen Heißgasexpander in radialer Bauweise mit einem verstellbaren Eintrittsleitapparat, bei dem die verstellbaren Leitschaufeln von einem elastischen Element in einer definierten Lage gehalten werden, in dem das elastische Element die Leitschaufeln in Richtung der jeweiligen Drehachse vorspannt. Aus der JP 02 22 36 06 ist es darüber hinaus bekannt, Sekundäretrömungen eines Zentrifugalverdichters im Bereich des Austritts aus dem Laufrad zu reduzieren, in dem ein Aktuator die dem Laufrad gegenüberliegende Wand in Richtung der Minimierung des Spaltes verlagert.
  • Strömungsmaschinen, beispielsweise Getriebemaschinen, insbesondere Heißgasexpander der eingangs genannten Art zeichnen sich durch eine Mehrwellenanordnung mit unterschiedlichen Rotationsgeschwindigkeiten um ein zentrales Antriebsrad aus. Hierdurch wird eine kompakte Einheit für eine mehrstufige Verdichtung/Expansion für eine Vielzahl von Medien, vorzugsweise von gasförmigen Medien zur Verfügung gestellt.
  • Derartige Getriebemaschinen expandieren das Medium, welches eine Eintrittstemperatur von bis zu 300°C oder in einer bevorzugten Ausführung eine Eintrittstemperatur über 300°C aufweisen kann. Bei einer Medieneintrittstemperatur von mehr als 300°C spricht man auch von so genannten Heißgasexpandern.
  • Diese Heißgasexpander weisen mindestens ein Einlaufgehäuse auf, in dem der Spiraleinsatz angeordnet ist. Der Spiraleinsatz trägt einen verstellbaren Eintrittsleitapparat, der einen Stellring, Leitschaufeln und Bolzen aufweist, wobei die Bolzen als Drehachse zum Einstellen der Leitschaufeln dienen.
  • Die Leitschaufeln sind also drehbar an dem Bolzen angeschlagen, wobei die Leitschaufeln gleichzeitig über einen Mitnehmer mit dem Stellring verbunden sind. Wird nun der Stellring in einem gewünschten Winkelbetrag verdreht, bewirken die Mitnehmer eine Zwangsverstellung der Leitschaufeln um den Bolzen, so dass durch die Verstellung der Leitschaufeln eine Beeinflussung der Richtung und/oder der Geschwindigkeit des Mediumstroms zu der Laufschaufel bzw. zum Laufrad bewirkt wird.
  • Der Spiraleinsatz hat somit zwei Funktionen. Zum einen trägt der Spiraleinsatz den Verstellmechanismus (Stellring usw.), wobei der Spiraleinsatz zum anderen auch den Konturring trägt.
  • Der Spiraleinsatz mit dem zugeordneten Eintrittsleitapparat und dem Konturring wird außerhalb des Einlaufgehäuses vormontiert und als Einheit in dieses eingesetzt.
  • Aufgrund der hohen thermischen Belastung, insbesondere bei Heißgasexpandern, wird jedoch beobachtet, dass sich die unterschiedlichen Bauteilkomponenten aufgrund der thermischen Einwirkung ausdehnen bzw. unterschiedlich ausdehnen. Durch die üblicherweise starre Verbindung des Spiraleinsatzes mit den zugeordneten Bauteilen an dem Einlaufgehäuse muss die einzusetzende Einheit daher bei der Montage mit relativ großem radialen Spiel zum Einlaufgehäuse bzw. zum Laufrad ausgeführt werden, um ein Klemmen durch unterschiedliche Temperaturdehnungen zu vermeiden und um eine axiale Bewegungsfreiheit sicherstellen zu können.
  • Hierdurch ist aber der Konturringspalt zwischen der Konturringfläche und den dazu korrespondierenden Laufschaufelkanten des Laufrades derart groß bemessen, dass der Wirkungsgrad des Heißgasexpanders durch extrem hohe Spaltverluste erheblich herabgesetzt ist. Wirkungsgradverluste können aber auch auftreten, wenn die Spalte zwischen den Leitschaufeln bzw. dem Bolzen (als Drehachse der jeweiligen Leitschaufel) und der zugeordneten Kanalinnenwand zu groß sind.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Strömungsmaschine der Eingangs genannten Art, insbesondere einen Heißgasexpander, mit einfachen Mitteln dahingehend zu verbessern, dass die Spaltverluste reduziert sind, so dass der Wirkungsgrad erheblich erhöht werden kann.
  • Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der Eintrittsleitapparat und der Konturring gemeinsam mittels mindestens eines elastischen Elements gegen das Gehäuse verspannt werden, so dass die Verspannkräfte aus dem elastischen Element in Richtung einer Verringerung von Spalten zwischen den Laufschaufeln und dem Konturring wirken.
  • Aufgrund des erfindungsgemäßen elastischen Elementes, das im Folgenden als Spannsystem bezeichnet wird, ist die Strömungskontur bzw. ein zugeordneter Spiraleinsatz beweglich zum Einlaufgehäuse bzw. zum Gehäuse, wobei der Spiraleinsatz bevorzugt in axialer Richtung gesehen beweglich ist.
  • Günstig im Sinne der Erfindung ist, wenn das Spannsystem zentrale Aufnahmenbolzen aufweist, denen diffusorseitig jeweils ein Anlagefuß zugeordnet ist, wobei dem jeweiligen Aufnahmebolzen spiraleinsatzseitig jeweils ein Stoppelement zugeordnet ist, das jeweils kraftformschlüssig an dem jeweiligen Aufnahmebolzen festgelegt ist, wobei dem jeweiligen Aufnahmebolzen ein Kraftspeicher und ein Wirkelement zugeordnet ist. Das Wirkelement ist vorzugsweise spiraleinsatzseitig angeordnet, wobei der Kraftspeicher zwischen dem Wirkelement und dem Anlagefuß angeordnet ist.
  • In bevorzugter Ausgestaltung ist der Kraftspeicher als Tellerfederpaket bzw. Tellerfederkranz ausgeführt, der um den Aufnahmebolzen herum angeordnet ist.
  • Zweckmäßiger Weise ist das Wirkelement mit topfartigen Bohrungen versehen. In dem Bohrungsgrund der topfartigen Bohrungen ist jeweils eine zum Aufnahmebolzen korrespondierende Durchgangsbohrung eingebracht, so dass das Wirkelement entlang einer Längsachse des Aufnahmebolzens verschiebbar gelagert ist. Das Stoppelement wirkt dabei quasi als Bewegungsbegrenzer des Wirkelements in Richtung zum Spiraleinsatz. Das Wirkelement liegt im verspannten Zustand bevorzugt an dem Spiraleinsatz an.
  • Der Eintrittsleitapparat weist einen Abstandhalter auf, der fußseitig in dem Spiraleinsatz aufgenommen ist und kopfseitig zu einer Kanalinnenwand orientiert ist, wobei das Spannsystem den Abstandhalter mit seiner Kopfseite gegen die Kanalinnenwand drückt, die zumindest bereichsweise ein Gleitelement aufweist. Der Eintrittsleitapparat weist zudem einen Stellring und Leitschaufeln auf. Die Leitschaufeln sind über Mitnehmer mit dem Stellring verbunden, und drehbar dem Abstandhalter zugeordnet. Der Abstandhalter kann somit auch als Leitschaufelbolzen bezeichnet werden und dient als Drehachse der Leitschaufeln. Bei einem Verstellen des Stellrings in einem gewünschten Winkelbetrag werden die Leitschaufeln über die Mitnehmer zwangsgeführt mitgenommen und drehen sich um die jeweilige Schaufelachse bzw. um den jeweiligen Abstandhalter. Zweckmäßiger Weise ist jedem Abstandhalter ein Gleitelement zugeordnet, so dass die jeweiligen Gleitelemente an dem zum Abstandhalter zugeordneten Ort in der Kanalinnenwand angeordnet sind. Natürlich kann aber auch ein einziges, durchgehendes Gleitelement vorgesehen sein.
  • In bevorzugter Ausführung ist das Gleitelement als Gleitplatte in der Kanalinnenwand hinreichend lagesicher eingesetzt. Das Gleitelement kann aber auch als Gleitbeschichtung ausgeführt sein. Das Gleitelement in seiner Ausgestaltung als Gleitplatte ist aus einem geeigneten Material gebildet, welches bevorzugt aus einem temperatur- und korrosionsfesten Grundmaterial gefertigt ist, und entsprechend beschichtet oder behandelt ist. Beispielsweise können die Gleitelemente bzw. Gleitplatten aus Stahl oder Inconel bestehen und mit einer Spezialschicht (z.B. Tribaloy) beschichtet sein. Die Beschichtung wird bevorzugt derart gewählt, dass ein Gleitreibungsbeiwert reduziert wird, und gleichzeitig eine hohe Verschleißfestigkeit vorhanden ist. Die Beschichtung verhindert zudem ein Fressen und ist korrosionsfest. Alternativ ist auch eine Behandlung durch Kolsterisieren® (korrosionsfestes Oberflächenhärten) möglich. Natürlich kann das Gleitelement in der Ausgestaltung als Gleitbeschichtung entsprechend mit der Beschichtung direkt auf dem zugeordneten Bereich der Kanalinnenwand aufgebracht sein.
  • Der Spiraleinsatz wird mit dem Eintrittsleitapparat außerhalb des Einlaufgehäuses vormontiert und in dieses als Einheit eingesetzt. Der Spiraleinsatz wird mit geeigneten Hilfsmitteln axial über die Abstandhalter (Leitschaufelbolzen) gegen die Gleitplatten in der Einlaufgehäuserückwand (Kanalinnenwand) gedrückt, wobei so dann der Konturring eingebaut und eingestellt wird (axialer Spalt). Anschließend wird das Spannsystem an der vorgesehenen Stelle eingesetzt. Anschließend wird der Diffusor mit dem Einlaufgehäuse verbunden, bzw. verschraubt, wobei der Diffusor mit seinem Anlageflansch an dem Anlagefuß anliegt. Durch das verbinden bzw. verschrauben des Diffusors mit dem Einlaufgehäuse wird das Spannsystem vorgespannt. Selbstverständlich wird das Spannsystem, insbesondere das Tellerfederpaket vor der Montage bezüglich der erforderlichen Federspannung auch unter Betriebbedingungen ausgelegt. Natürlich werden auch die jeweiligen Komponenten (Spiraleinsatz, Eintrittsleitapparat, Konturring) entsprechend ausgelegt.
  • Das Spannsystem drückt die Abstandhalter mit ihrer Kopfseite gegen das entsprechende Gleitelement, bzw. die bevorzugte Gleitplatte. Bei Differenzen in der Temperaturdehnung der einzelnen Komponenten wird vorteilhaft ein Gleiten in radialer Richtung erreicht, da sich die Abstandhalter an den Gleitelementen abstützen. Weiter wird durch die Wärmedehnungen vorteilhaft ein axiales Einfedern der Tellerfedern erreicht. Durch das Pressen bzw. Verspannen der Abstandhalter gegen die Kanalinnenwand entfallen zusätzlich Spaltmasse, die durch eine Verformung des Einlaufgehäuses entstehen können. Als axiale Wärmedehnung kann somit vorteilhaft lediglich die Schaufelhöhe der Leitschaufeln Berücksichtigung zur Spaltauslegung finden. Durch die geringen Spalte am Eintrittsleitgitter (Leitschaufeln) wird der Wirkungsgrad gesteigert.
  • Der Heißgasexpander weist zudem das Laufrad auf, welches mit seinen Laufschaufelkanten zu dem Konturring beabstandet ist, so dass ein Konturringspalt gebildet ist. Mittels des vorteilhaften Spannsystems kann dieser Konturringspalt vorteilhaft minimiert werden, da die Temperaturdehnung direkt auf den Abstandhalter wirkt, der sich an der Kanalinnenwand bzw. dem jeweiligen Gleitelement abstützt, und bei einer thermisch bedingten Ausdehnung den Konturring von dem Laufrad wegdrückt, so dass sich die thermische Ausdehnung der Laufschaufeln und des Konturrings quasi aufhebt.
  • Insgesamt wird somit vorteilhaft erreicht, dass Spaltverluste reduziert sind, wodurch der Wirkungsgrad der Strömungsmaschine bzw. der Getriebemaschine bzw. des beispielhaften Heißgasexpanders erhöht ist. Die Spaltmaße können von vornherein minimaler ausgeführt werden, wobei mittels des Spannsystems erreicht wird, dass die thermische Ausdehnung quasi kompensiert wird.
  • Vorteilhaft wird weiter mittels des Spannsystems erreicht, dass übermäßige Bauteilbeanspruchungen durch Wärmedehnungen verhindert werden, da der Spiraleinsatz in radialer und axialer Richtung frei vom Einlaufgehäuse ist.
  • Weiter vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen und der folgenden Figurenbeschreibung offenbart. Es zeigen:
  • Fig. 1
    einen Querschnitt durch einen beispielhaft dargestellten Heißgasexpander, und
    Fig. 2
    ein elastisches Element (Spannsystem) als Einzelheit.
  • In den unterschiedlichen Figuren sind gleiche stets mit denselben Bezugszeichen versehen, weswegen diese in der Regel auch nur einmal beschrieben werden.
  • Figur 1 zeigt eine Strömungsmaschine bzw. eine Getriebemaschine, die in dem dargestellten Ausführungsbeispiel als Heißgasexpander 1 mit einer Eintrittstemperatur eines vorzugsweise gasförmigen Mediums von bis zu 510°C ausgeführt ist. Der Heißgasexpander 1 weist mindestens ein Einlaufgehäuse 2 auf, in dem ein Spiraleinsatz 3 angeordnet ist. Dem Spiraleinsatz 3 ist ein Eintrittsleitapparat 4 und ein Konturring 6 zugeordnet, so dass eine Strömungskontur gebildet ist. Dem Einlaufgehäuse 2 ist weiterhin ein Diffusor 7 zugeordnet.
  • Der Eintrittsleitapparat 4 weist einen Stellring 8, zumindest einen Abstandhalter 9 und Leitschaufeln 11 auf.
  • Die Leitschaufeln 11 sind über Mitnehmer mit dem Stellring 8 verbunden, so dass ein Verdrehen des Stellrings 8 eine entsprechende Verstellung der Leitschaufeln 11 bewirkt, die drehbar an den Abstandhaltern 9 befestigt sind. Die Abstandhalter 9 dienen somit als Drehachse der Leitschaufeln 11.
  • Dem Spiraleinsatz 3 ist ein elastisches Element bzw. ein Spannsystem 12 zugeordnet. Das Spannsystem 12 liegt einerseits an dem Spiraleinsatz 3 und andererseits an dem Diffusor 7 bzw. an seinem Anlageflansch 13 zum Einlaufgehäuse 2 an.
  • In der in Figur 2 dargestellten Ausführung weist das Spannsystem 12 einen zentralen Aufnahmebolzen 14 auf, dem diffusorseitig ein Anlagefuß 16 zugeordnet ist. Der Anlagefuß 16 liegt mit seiner Anlagefläche 17 an einer dazu korrespondierenden Gegenanlagefläche 18 des Diffusors 7 bzw. seines Anlageflansches 13 an. Spiralseitig ist dem Aufnahmebolzen 14 ein Stoppelement 19 zugeordnet, welches über eine Schraubverbindung kraftformschlüssig an dem Aufnahmebolzen 14 festgelegt ist. Natürlich kann das Stoppelement 19 auch in einer anderen, geeigneten Verbindungsart mit den Aufnahmebolzen 14 verbunden sein. Beispielsweise könnte das Stoppelement 19 mit dem Aufnahmebolzen verschweißt sein.
  • Weiter sind dem Aufnahmebolzen 14 ein Wirkelement 21 und ein Kraftspeicher 22 zugeordnet.
    Das Wirkelement 21 ist bevorzugt spiralseitig angeordnet, und mit topfartigen Bohrungen versehen, von denen in Figur 2 aufgrund des gewählten Darstellungsbereiches lediglich eine erkennbar ist, so dass das Wirkelement 21 in dem gewählten Schnitt gesehen U-förmig mit einem Basissteg 23 (Bohrungsgrund) und zwei U-Schenkeln 24 ausgeführt ist. In dem Basissteg 23 (Bohrungsgrund) ist eine zum Aufnahmebolzen 14 korrespondierende Durchgangsöffnung 26 eingebracht, so dass das Wirkelement 21 entlang einer Längsachse (Doppelpfeil 27) des Aufnahmebolzens 14 beweglich ist. Die U-Schenkel 24 sind mit ihren freien Enden 28 in Richtung zum Spiraleinsatz 3 orientiert, so dass das Wirkelement 21 im verspannten Zustand des Spannsystems 8 an dem Spiraleinsatz 3 anliegt.
    Der Kraftspeicher 22 ist zwischen dem Wirkelement 21 und dem Anlagefuß 16 angeordnet, und bevorzugt als Tellerfederpaket bzw. als Tellerfederkranz ausgeführt.
  • Der Abstandhalter 9 ist fußseitig in dem Spiraleinsatz 3 aufgenommen, und orientiert sich kopfseitig zu einer Kanalinnenwand 29 (Figur 1). Das Spannsystem 12 drückt den Abstandhalter 9 mit seiner Kopfseite 31 gegen die Kanalinnenwand 29, an der zumindest an der Anlagefläche des Abstandhalters 9 Gleitelemente 32 vorgesehen sind.
  • Die Gleitelemente 32 sind in dem dargestellten Ausführungsbeispiel als Gleitplatten ausgeführt, die aus einem geeigneten Material gebildet und vorzugsweise beschichtet oder entsprechend bearbeitet sind. Die Gleitelemente 32 sind hinreichend lagesicher in der Kanalinnenwand 29 eingebracht.
  • Dem Heißgasexpander 1 ist natürlich ein Laufrad 33 zugeordnet, dessen Laufschaufeln mit ihren Kanten 34 in Richtung zum Konturring 6 beabstandet sind, so dass ein Konturringspalt 36 gebildet ist.
  • Der Spiraleinsatz 3 wird mit dem Eintrittsleitapparat 4 außerhalb des Einlaufgehäuses 2 zu einer Einheit vormontiert uns als Einheit in das Einlaufgehäuse 2 eingesetzt. Der Spiraleinsatz 3 wird mit geeigneten Hilfsmitteln axial über die Abstandhalter 9 (Leitschaufelbolzen) gegen die Gleitplatten in der Einlaufgehäuserückwand (Kanalinnenwand 11) gedrückt, wobei so dann der Konturring 6 eingebaut und eingestellt wird (axialer Spalt). Anschließend wird das Spannsystem 12 eingesetzt. Mittels des Diffusors 7 wird das Einlaufgehäuse 2 verschlossen, indem der Anlageflansch 13 mit dem Einlaufgehäuse 2 verschraubt wird. Hierdurch wird das Spannsystem 12 gespannt, wodurch auch die Spalte zwischen den Leitschaufeln 11 und der Kanalinnenwand 29 ebenso wie der Konturringspalt 36 auf einen minimalen Betrag eingestellt werden kann. Der Spiraleinsatz 3 ist in radialer und in axialer Richtung frei von dem Einlaufgehäuse 2.
  • Unter Betriebsbedingungen, insbesondere bei einer Eintrittstemperatur eines Mediums, vorzugsweise eines gasförmigen Mediums über 300°C, beispielsweise von 510°C können sich die einzelnen Komponenten aufgrund der thermischen Einwirkung Ausdehnen. Die thermische Ausdehnung bewirkt ein Einfedern des Spannsystems 12 bzw. des Kraftspeichers 22. Durch das Spannsystem 12 werden die Abstandhalter 9 über den Spiraleinsatz 3 gegen die Kanalinnenwand 29 bzw. gegen die Gleitelemente 32 gedrückt, so dass hier ein Gleiten in radialer Richtung bewirkt wird. Als axiale Wärmedehnung muss vorteilhaft lediglich die Schaufelhöhe der Leitschaufeln berücksichtigt werden. Durch das Anpressen der Abstandhalter 9 an die Kanalinnenwand 29 entfallen zusätzliche Spaltmaße, die durch eine (thermische) Verformung des Einlaufgehäuses 2 entstehen könnten. Gleichzeitig wird der Konturring 6 durch das Anpressen des Abstandhalters 9 an die Gleitelemente 32 von den Laufschaufeln des Laufrades 33 weggedrückt.
  • Insgesamt wird mittels des vorteilhaften Spannsystems 12 erreicht, dass übermäßige Bauteilbeanspruchungen durch Wärmedehnungen verhindert werden können, da der Spiraleinsatz 3, welcher gleichzeitig Träger des Eintrittsleitapparates 4 ist, zumindest in axialer Richtung frei vom Einlaufgehäuse 2 ist. Damit können Spalte zwischen den Leitschaufeln 11 und der Kanalinnenwand 29 aber auch der Konturringsspalt 36 minimal ausgeführt werden, da nur die Schaufelachse also der Abstandhalter 9 für die Wärmedehnung berücksichtigt werden muss. Durch die Wärmedehnungen kommt es zu einem radialen Gleiten über die Gleitelemente 32 und zu einem axialen Einfedern des Kraftspeichers 22 bzw. des Tellerfederpakets.
  • In dem in Figur 1 dargestellten Ausführungsbeispiel ist dem Spiraleinsatz 3 zudem ein Einstellsystem 37 zur radialen Einstellbarkeit und ein geeignetes Dichtsystem 38 zugeordnet, dass den Konturring 6 zum Diffusor 7 abdichtet.

Claims (8)

  1. Strömungsmaschine (1),
    insbesondere Heißgasexpander,
    welche Strömungsmaschine,
    - einen Laufschaufeln umfassenden Rotor (33) aufweist,
    - einen Eintritreleitapparat (4) aufweist, mit einen Stellring (8), mit zumindest einem Abstandhalter (9) und mit Leitschaufeln (11), wobei ein Verdrehen des Stellrings ein Verdrehen der Leitschaufeln bewirkt,
    - ein Gehäuse (2) aufweist;
    dadurch gekennzeichnet, dass die Strömungsmaschine einen Konturring (6) aufweist, welcher Strömungskanäle im Bereich der Laufschaufeln einseitig begrenzt,
    wobei der Eintrittsleitapparat (4) und der Konturring gemeinsam mittels mindestens eines elastischen Elementes (12) gegen das Gehäuse (2) verspannt werden, so dass die Verspannkräfte aus dem elastischen Element (12) in Richtung einer Verringerung von Spalten zwischen den Laufschaufeln und dem Konturring, wirken.
  2. Strömungsmaschine nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Abstandhalter (9) zwischen dem Konturring und dem Gehäuse (2) angeordnet ist.
  3. Strömungsmaschine nach Anspruch 2,
    dadurch gekennzeichnet, dass
    der Abstandhalter (9) die Drehachse von Leitschaufeln bildet.
  4. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das elastische Element (12) einerseits an einem Spiraleinsatz (3) und andererseits an einem Diffusor (7) anliegt.
  5. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das elastische Element (12) zentrale Aufnahmebolzen (14) aufweist, denen diffusorseitig jeweils ein Anlagefuß (16) zugeordnet ist,
    wobei dem jeweiligen Aufnahmebolzen (14) spiraleinsatzseitig jeweils ein stoppelement (19) zugeordnet ist, und wobei dem jeweiligen Aufnahmeholzen (14) ein wirkelement (21) und ein Kraftspeicher (22) zugeordnet ist.
  6. Strömungsmaschine nach Anspruch 5,
    dadurch gekennzeichnet, dass
    in dem Wirkelement (21) eine zum Aufnahmebolzen (14) korrespondierende Durchgangsbohrung (26) eingebracht ist.
  7. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Abstandhalter (9) mittels des elastischen Elementes (12) kopfseitig gegen eine Kanalinnenwand (29) gedrückt werden, der zumindest ein Gleitelement (32) zumindest bereichsweise zugeordnet ist.
  8. Strömungsmaschine nach Anspruch 7,
    dadurch gekennzeichnet, dass
    das Gleitelement (32) als Gleitplatte ausgeführt ist, die bevorzugt eine Gleitbeschichtung aufweist.
EP07004385.6A 2007-03-02 2007-03-02 Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander Active EP1965035B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07004385.6A EP1965035B1 (de) 2007-03-02 2007-03-02 Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander
CN200810082140.2A CN101255804B (zh) 2007-03-02 2008-03-03 流体机,尤其是热气膨胀机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07004385.6A EP1965035B1 (de) 2007-03-02 2007-03-02 Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander

Publications (2)

Publication Number Publication Date
EP1965035A1 EP1965035A1 (de) 2008-09-03
EP1965035B1 true EP1965035B1 (de) 2013-12-18

Family

ID=38283639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07004385.6A Active EP1965035B1 (de) 2007-03-02 2007-03-02 Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander

Country Status (2)

Country Link
EP (1) EP1965035B1 (de)
CN (1) CN101255804B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057878A1 (de) * 2008-11-18 2010-05-20 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
DE102017223791A1 (de) 2017-12-27 2019-06-27 Siemens Aktiengesellschaft Wellendichtungsanordnung einer Turbomaschine, Turbomaschine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2165528A1 (de) 1971-12-30 1973-07-12 Kloeckner Humboldt Deutz Ag Einrichtung zum herstellen eines geringen spaltes zwischen den umlaufenden schaufeln und der wandung einer stroemungsmaschine
JPS603405A (ja) * 1983-06-20 1985-01-09 Nissan Motor Co Ltd タ−ビンチツプクリアランス零化装置
JPH02223606A (ja) 1989-02-27 1990-09-06 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk 遠心圧縮機あるいはラジアルタービン等の翼端間隙制御装置
US5203673A (en) 1992-01-21 1993-04-20 Westinghouse Electric Corp. Tip clearance control apparatus for a turbo-machine blade
US6273671B1 (en) 1999-07-30 2001-08-14 Allison Advanced Development Company Blade clearance control for turbomachinery
DE50112597D1 (de) 2001-04-12 2007-07-19 Siemens Ag Gasturbine mit axial verschiebbaren Gehäuseteilen
DE10247355A1 (de) * 2002-10-10 2004-04-22 Rolls-Royce Deutschland Ltd & Co Kg Turbinendeckbandsegmentbefestigung
AU2003230059A1 (en) 2003-05-08 2004-11-26 Honeywell International Inc. Turbocharger with a variable nozzle device
EP1643172B1 (de) 2004-09-30 2008-06-18 General Electric Company Nachgiebige Dichtungsanordnung, Sytem und Verfahren

Also Published As

Publication number Publication date
CN101255804B (zh) 2016-03-30
CN101255804A (zh) 2008-09-03
EP1965035A1 (de) 2008-09-03

Similar Documents

Publication Publication Date Title
EP2209969B1 (de) Ladeeinrichtung
WO2009092678A1 (de) Turbine; insbesondere für einen abgasturbolader; sowie abgasturbolader
EP3000984B1 (de) Leitschaufelverstellvorrichtung einer gasturbine
EP2131042B1 (de) Regelbare Kühlmittelpumpe für den Kühlkreislauf einer Verbrennungskraftmaschine
EP2574731A2 (de) Segmentiertes Bauteil
WO2013189575A1 (de) Verstellvorrichtung für einen abgasturbolader
WO2009092636A2 (de) Turbolader
WO2009115437A2 (de) Leitgitteranordnung eines abgasturboladers, abgasturbolader und verfahren zur herstellung einer leitgitteranordnung
EP2617947B1 (de) Fluggasturbine mit justierbarem Fan
EP1707759B1 (de) Gehäuse einer Turbomaschine
EP2730751B1 (de) Leitschaufelverstellvorrichtung einer Gasturbine
EP1818509A1 (de) Leitapparat und Dämpfelement für einen Leitapparat
EP1965035B1 (de) Minimierung der axialen Spalte an verstellbaren Leitgittern und am Konturring für Heissgasexpander
EP2236759A1 (de) Laufschaufelsystem
WO2009092792A2 (de) Abgasturbolader
EP1965037B1 (de) Axiale und radiale Lagerung des Stellrings für Eintrittsleitapparate bei Heissgasexpandern
EP2984295A1 (de) Dichtringsegment für einen stator einer turbine
DE102008060251B4 (de) Abgasturbolader mit variabler Turbinengeometrie
EP1746256A1 (de) Reduzierung von Spaltverlust in Strömungsmaschinen
EP2526263A2 (de) Gehäusesystem für eine axialströmungsmaschine
EP1898050B1 (de) Dämpfungs- und Dichtungssystem für Turbinenschaufeln
EP1965038B1 (de) Antrieb des Stellrings für Eintrittsleitapparate bei Heissgasexpandern
WO2019034275A1 (de) Verstellbarer leitapparat für eine turbine, turbine für einen abgasturbolader und abgasturbolader
EP1965036A1 (de) Strömungsmaschine mit verstellbarer Strömungskontur
WO2013072294A2 (de) Abgasturbolader mit einer variablen turbinengeometrie und einer tellerfeder zur abdichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090302

17Q First examination report despatched

Effective date: 20090401

AKX Designation fees paid

Designated state(s): CH DE IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012591

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012591

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012591

Country of ref document: DE

Effective date: 20140919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012591

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AG, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230402

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 18