WO2009090764A1 - 二値化用パターン作成方法、および、印刷装置 - Google Patents

二値化用パターン作成方法、および、印刷装置 Download PDF

Info

Publication number
WO2009090764A1
WO2009090764A1 PCT/JP2008/060180 JP2008060180W WO2009090764A1 WO 2009090764 A1 WO2009090764 A1 WO 2009090764A1 JP 2008060180 W JP2008060180 W JP 2008060180W WO 2009090764 A1 WO2009090764 A1 WO 2009090764A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
binarization
basic pattern
pixels
pixel
Prior art date
Application number
PCT/JP2008/060180
Other languages
English (en)
French (fr)
Inventor
Nobuaki Usui
Original Assignee
Pfu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfu Limited filed Critical Pfu Limited
Priority to DE112008003591T priority Critical patent/DE112008003591T5/de
Priority to JP2009528937A priority patent/JP4851593B2/ja
Priority to US12/491,601 priority patent/US8493626B2/en
Publication of WO2009090764A1 publication Critical patent/WO2009090764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4055Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a clustered dots or a size modulated halftone pattern
    • H04N1/4058Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a clustered dots or a size modulated halftone pattern with details for producing a halftone screen at an oblique angle

Definitions

  • the present invention relates to a binarization pattern creation method and a printing apparatus, and more particularly to a binarization process for converting a multi-valued image (Continuous Tone Image) such as a natural image, a graphic image, or a color character into a binary image.
  • the present invention relates to a method for creating a binarization pattern (dither pattern table) and a printing apparatus.
  • the multi-value image When outputting a multi-value image such as a natural image, graphic image, or color character obtained from an input device such as a scanner from an output device such as a printer, the multi-value image is used as a color material.
  • ON / OFF in order to express by ON / OFF (ink, toner, etc .; hereinafter, sometimes referred to as dots), it is necessary to perform binarization processing.
  • the dither method is known as one of the binarization methods.
  • the gradation density of a pixel is determined by comparing the value of a specific pixel (target pixel) in a multi-valued image with a preset threshold value, and a binarization pattern prepared in advance is used. This is a method for determining ON / OFF of the dot for the pixel in accordance with the gradation density of the pixel.
  • dither halftone dot
  • the gradation of the pixel is expressed by placing (lighting) a color material in order from a pixel near the center with a specific point as the center.
  • Centralized dither is known. This concentrated dither has a small dot gain (ink bleeding) and the color material is stably fixed on the print medium. Therefore, if the amount of color material to be placed on each pixel is very small, it is better than the diffuse dither method.
  • This centralized dither method is preferably used, and a technique for creating a binarization pattern for the centralized dither has been developed.
  • FIG. 1 is a diagram showing a basic pattern of halftone dots created based on Patent Document 1 which is a prior art (a condition where the number of pixels (number of pixels) is 72 and the halftone angle is 45 degrees).
  • Patent Document 1 a high-definition concentrated dither pattern used when printing a monochrome or color image can be automatically generated by a computer.
  • Patent Document 1 in the binarization pattern based on this basic pattern, the ink fixing area cannot be completely controlled, and when the adjacent ink fixing areas approach, the ink fixing areas stick to each other due to surface tension.
  • there are various problems such as that even if the value of the electronic data is changed, it is impossible to control the rapid ink fixing area and shape expansion due to physical characteristics.
  • the number of 50% is a value that designers often use in design. Therefore, if color reproduction cannot be controlled at 50%, the impression that the overall printing has not been successful is given. There was a problem that the profitability of printing was reduced due to the “reprint request”.
  • the present invention has been made in view of the above, and by improving the basic pattern according to this conventional technique, the ink fixing area is controlled by preventing gradation crushing due to ink bleeding, thereby achieving higher definition.
  • the object is to create a binarization pattern that can withstand printing.
  • it is an object of the present invention to provide a binarization pattern creating method and a printing apparatus capable of creating / outputting halftone dots that improve reproducibility with 50% ink.
  • the binarization pattern generation method is a binarization pattern generation method used for binarization of a multi-value image, wherein the binarization is performed.
  • a basic pattern shape creating step for creating a basic pattern shape of the pattern for calculation, a lighting order determining step for determining a lighting order of pixels constituting the basic pattern, and the binarization based on the basic pattern
  • a rectangular pattern creating step for creating a rectangular pattern that functions as a pattern, wherein the basic pattern shape creating step constitutes an angle designation step for designating an angle of the binarization pattern and the basic pattern
  • a pixel number specifying step for specifying the number of pixels, and the angle specified in the angle specifying step and the pixel number specifying step.
  • the basic pattern is created by selecting an object having an angle close to the angle, and adjoining the two selected squares, and the lighting order determining step includes the basic pattern.
  • the lighting order is determined so that the pixels are lit in order starting from the pixel that is close to the specific point of the first square among the pixels that constitute the first square of the screen, and the square next to the basic pattern is Among the constituent pixels, determining the lighting order so that the pixels are lit in order from the pixel farthest from the specific point of the next square in succession to the lighting order of the first square.
  • the shape of the basic pattern of the binarization pattern is created by calculation, the lighting order of the pixels constituting the basic pattern is determined, and the rectangular functioning as the binarization pattern is based on the basic pattern.
  • the creation of the basic pattern shape is performed by specifying the angle of the binarization pattern, specifying the number of pixels constituting the basic pattern, and based on the specified angle and the specified number of pixels.
  • a quadrilateral made up of four points, point A (c, 1), point B (a + c, b + 1), point C (0, d + 1), and point D (a, b + d + 1), specified by Of the squares, the one whose angle is close to the angle of the specified binarization pattern is selected, and the basic pattern is created by adjoining the two selected squares, and the lighting order is determined.
  • the lighting order is determined so that the pixels are lit in order from the pixel closest to the specific point of the first square, and the pixels constituting the next square of the basic pattern Among them, the lighting order is determined so that the pixels are lit in order from the pixel farthest from the specific point of the next square, following the lighting order of the first square.
  • a halftone dot that can withstand printing and improve reproducibility, particularly with 50% ink, can be created.
  • the binarization pattern creation method according to claim 2 is the binarization pattern creation method according to claim 1, wherein the lighting order determination step includes the lighting order of the next square.
  • I 2 n ⁇ I 1 +1 (where I 2 is the number of the lighting order of the next square, n is the number of pixels specified in the pixel number specifying step, I 1 is characterized by the number of the lighting order of the first square.
  • a printing apparatus comprising: a binarization processing unit that binarizes a multi-valued image based on a binarization pattern; and binarization performed by the binarization processing unit.
  • the pixels that form the first square of the basic pattern The pixels are lit in order from the pixel closest to the specific point of the first square, and the next of the pixels constituting the square next to the basic pattern in succession to the lighting of the first square.
  • a continuous halftone dot is generated by illuminating the pixel in order from a pixel far from the specific point of the square.
  • the pixels are lit in order from the pixel closest to the specific point of the first square.
  • the basic pattern continues to light up in the square.
  • the ink fixing area is accurately controlled.
  • the present invention it is possible to separate the ink fixing regions as much as possible, and it is possible to prevent “color skip” due to a sudden expansion of the ink fixing region due to the surface tension of the ink.
  • the ink fixing area is 50%, the above phenomenon of sticking to the adjacent ink fixing area is maximized, but in this case, “color skip” can be reduced, and the printing quality varies depending on the printing conditions. Can be reduced.
  • the ink fixing area exceeds 90%, there is a high possibility that the paper white will be crushed due to the ink oozing out.
  • the phenomenon can be designed to hardly occur. That is, according to the above, gradation collapse due to ink bleeding is prevented, and as a result, printing rich in gradation becomes possible.
  • FIG. 1 is a diagram showing a basic pattern of halftone dots created based on Patent Document 1 which is a prior art.
  • FIG. 2 is a principle configuration diagram showing the basic configuration of the present invention.
  • FIG. 3 is a diagram showing a figure configured by adjoining two quadrangles shown in FIG.
  • FIG. 4 is a diagram showing, as an example, the following quadrangle constituting the basic pattern of the present invention.
  • FIG. 5 is a diagram illustrating an example of a basic pattern in which the lighting order is determined by the processing of the lighting order determination unit 102e of the present invention.
  • FIG. 6 is a diagram showing, as an example, a halftone dot when two basic patterns are developed.
  • FIG. 1 is a diagram showing a basic pattern of halftone dots created based on Patent Document 1 which is a prior art.
  • FIG. 2 is a principle configuration diagram showing the basic configuration of the present invention.
  • FIG. 3 is a diagram showing a figure configured by adjoining two quadrangles shown in FIG.
  • FIG. 7 is a block diagram showing an example of the configuration of the binarization pattern creating apparatus 100 to which the present invention is applied.
  • FIG. 8 is a flowchart showing an example of basic processing of the binarization pattern creation device 100 in the present embodiment.
  • FIG. 9 is a flowchart showing an example of a basic pattern shape creation process of the binarization pattern creation device 100 according to the present embodiment.
  • FIG. 10 is a flowchart illustrating an example of the lighting order determination process of the binarization pattern creation device 100 according to the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a rectangular pattern.
  • FIG. 12 is a flowchart illustrating an example of a rectangular pattern creation process of the binarization pattern creation apparatus 100 according to the present embodiment.
  • FIG. 13 is a diagram illustrating an example of processing of the printing apparatus 114 according to the present embodiment.
  • Binarization pattern creation apparatus 102 Control part 102a Basic pattern shape creation part 102b Angle designation part 102c Pixel number designation part 102d Calculation part 102e Lighting order determination part 102f Rectangular pattern creation part 104 Communication control interface part 106 Storage part 106a Basic Pattern file 106b Multi-valued pixel file 106c Binarization pattern file 108 Input / output control interface unit 114 Printing device 114a Binarization processing unit 114b Image forming unit 200 External system 300 Network
  • FIG. 2 is a principle configuration diagram showing a basic configuration of the present invention. That is, the binarization pattern creating apparatus 100 according to the present invention determines the basic pattern shape creation unit 102a that creates the shape of the basic pattern of the binarization pattern by calculation, and the lighting order of the pixels constituting the basic pattern. A lighting order determination unit 102e and a rectangular pattern creation unit 102f that creates a rectangular pattern that functions as a binarization pattern based on the basic pattern are configured.
  • FIG. 2 is a principle configuration diagram showing a basic configuration of the present invention. That is, the binarization pattern creating apparatus 100 according to the present invention determines the basic pattern shape creation unit 102a that creates the shape of the basic pattern of the binarization pattern by calculation, and the lighting order of the pixels constituting the basic pattern. A lighting order determination unit 102e and a rectangular pattern creation unit 102f that creates a rectangular pattern that functions as a binarization pattern based on the basic pattern are configured.
  • the basic pattern shape creation unit 102a includes an angle designation unit 102b that designates the angle of the binarization pattern, and a pixel number designation unit 102c that designates the number of pixels constituting the basic pattern. And a calculation unit 102d that generates a basic pattern shape by calculation based on the angle specified by the angle specification unit 102b and the number of pixels specified by the pixel number specification unit 102c.
  • the angle specifying unit 102b of the present invention controls to specify the angle (for example, 45 degrees) of the binarization pattern.
  • the pixel number designating unit 102c of the present invention controls to designate the number of pixels (for example, 144 pixels) constituting the basic pattern.
  • the computing unit 102d of the present invention creates a basic pattern shape by computation based on the angle designated by the angle designation unit 102b and the number of pixels designated by the pixel number designation unit 102c.
  • d is an integer
  • a quadrangle ABDC consisting of four points A (c, 1), B (a + c, b + 1), C (0, d + 1), and D (a, b + d + 1) is created.
  • the created squares the one having an angle close to the angle of the binarization pattern designated by the angle designation unit 102b is selected. For example, when the number of pixels 144 and the angle of 45 degrees are specified, a square as shown in FIG. 1 is created as an example (however, the lighting order number is not yet determined at this point).
  • FIG. 3 is a diagram showing a figure configured by adjoining two quadrangles shown in FIG.
  • simply adjoining two rectangular ABDCs created on the basis of Patent Document 1 bring adjacent ink fixing areas close together, and the ink fixing areas are combined by surface tension. Since this cannot be prevented, in the present invention, the lighting order is further determined as follows.
  • the lighting order refers to the order in which colorants (ink, toner, etc.) are fixed in accordance with the gradation of each pixel constituting the basic pattern in order to create a binarization pattern. is there.
  • the lighting order determination unit 102e of the present invention selects the pixels in order from the pixel that is close to a specific point (for example, the center of gravity or center of the rectangle) of the pixels of the first rectangle of the basic pattern.
  • the lighting order is determined so as to light up.
  • the square in FIG. 1 corresponds to the first square of the basic pattern of the present invention, and by this processing, the lighting order of the first square as shown by the numbers in FIG. 1 is determined as an example.
  • the lighting order determining unit 102e of the present invention sequentially selects the pixels in the order from the pixel farthest from the specific point of the next quadrangle in the order of lighting of the first square among the pixels constituting the next square of the basic pattern.
  • the lighting order is determined so that lights up.
  • FIG. 4 is a diagram showing, as an example, the following quadrangle constituting the basic pattern of the present invention. As shown in FIG. 4, the lighting order of the pixels of the next square of the basic pattern is continuous with the lighting order of the first square shown in FIG. 1 (in this example, the lighting order of the last of the first square is the same). In order from the pixel far from the specific point, the lighting order is determined so that the pixel lights up.
  • the lighting order determination unit 102e sets the lighting order of each square pixel of the basic pattern so that the length (peripheral length) of the boundary contour line between the lighting pixel and the non-lighting pixel is minimized, and / or The lighting order may be determined so as to be symmetric with respect to the specific point.
  • I 2 is the number of the lighting order of the next square
  • n is the number of pixels specified in the pixel number specifying step
  • I 1 is the number of the lighting order of the first square. That is, as shown in FIG. 4 as an example, the number obtained by subtracting 1 from the lighting order number I1 of the first square in FIG. You may assign to the next square pixel.
  • FIG. 5 is a diagram illustrating an example of a basic pattern in which the lighting order is determined by the processing of the lighting order determination unit 102e of the present invention.
  • the basic pattern of the present invention is as shown in FIG. 5 as an example, with the first rectangle (see FIG. 1) starting from the pixel closest to the specific point and the next rectangle (see FIG. 4) A lighting order number is determined in order from a pixel far from the specific point.
  • the rectangular pattern creation unit 102f of the present invention creates a rectangular pattern that functions as a binarization pattern based on the basic pattern. Specifically, the basic pattern for which the lighting order is determined is developed two-dimensionally to create a halftone dot as shown in FIG. 6 to create a rectangular pattern.
  • FIG. 6 is a diagram showing, as an example, a halftone dot when two basic patterns are developed.
  • ink fixing areas there are two ink fixing areas, and when ink is fixed to 50% of the total number of pixels, a perfect checkered pattern is realized. That is, it is ensured that the area where the ink is fixed and the area only of the paper have the same shape. This makes it possible to control the shape of the ink fixing area that is actually placed on the paper by printing using the created look-up table (halftone dots) without being affected by the surface tension of the ink. Become.
  • the ink fixing regions can be separated as much as possible, and “color skip” due to a sudden expansion of the ink fixing region due to the surface tension of the ink can be prevented.
  • (2) The above phenomenon of sticking to the adjacent ink fixing area is maximized especially when the ink fixing area is 50%. In this case, however, “color skip” can be reduced, and printing can be performed according to printing conditions. Variations in quality can be reduced.
  • the phenomenon can be designed to hardly occur. That is, according to the above, (4) gradation collapse due to ink bleeding is prevented, and as a result, printing rich in gradation becomes possible. This is the end of the summary of the present invention.
  • FIG. 7 is a block diagram showing an example of the configuration of the binarization pattern creating apparatus 100 to which the present invention is applied, and conceptually shows only the portion related to the present invention in the configuration.
  • the binarization pattern creating apparatus 100 schematically includes an input / output connected to a control unit 102 such as a CPU that centrally controls the entire binarization pattern creating apparatus 100, a printing apparatus 114, and the like.
  • a control interface unit 108 and a storage unit 106 for storing various databases and tables are provided, and these units are communicably connected via an arbitrary communication path.
  • Various databases and tables (basic pattern file 106a to binarization pattern file 106c) stored in the storage unit 106 are storage means such as a fixed disk device, and various programs, tables, files, Stores database etc.
  • the basic pattern file 106a is basic pattern storage means for storing basic patterns.
  • the basic pattern means a (pixel) aggregate for forming one halftone dot.
  • the multi-value pixel file 106b is multi-value pixel storage means for storing multi-value image information such as natural images, graphic images, and color characters including multi-value pixels.
  • the binarization pattern file 106c is binarization pattern storage means for storing a rectangular pattern that functions as a binarization pattern.
  • the binarization pattern controls a threshold value in binarization, and is configured by repeatedly arranging basic patterns having specific shapes in the main scanning direction and the sub-scanning direction.
  • the binarization pattern may be configured by arranging the next square of the basic pattern adjacent to the four sides of the first square of the basic pattern.
  • the input / output control interface unit 108 controls the printing device 114 and the like.
  • the input / output control interface unit 108 may be connected to an output device such as a monitor (including a home television) and a speaker, and an input device such as a keyboard and a mouse.
  • the printing apparatus 114 includes a binarization processing unit 114a and an image forming unit 114b in terms of functional concept.
  • the binarization processing unit 114a is binarization processing means for binarizing a multilevel image based on a binarization pattern.
  • the image forming unit 114b is an image forming unit that forms an image on a medium such as paper based on the binarization result performed by the binarization processing unit 114a. In the binarization process, binarization is performed by comparing the pixel value of the multi-valued image with a preset threshold value of the binarization pattern by a comparator.
  • control unit 102 has a control program such as an OS (Operating System), a program that defines various processing procedures, and an internal memory for storing necessary data. Information processing for executing various processes is performed.
  • the control unit 102 includes a basic pattern shape creation unit 102a, a lighting order determination unit 102e, and a rectangular pattern creation unit 102f in terms of functional concept.
  • the basic pattern shape creation unit 102a is a basic pattern shape creation unit that creates the shape of the basic pattern of the binarization pattern by calculation and stores the created basic pattern in the basic pattern file 106a.
  • the basic pattern shape creation unit 102a includes an angle designation unit 102b, a pixel number designation unit 102c, and a calculation unit 102d.
  • the angle designation unit 102b is angle designation means for controlling the user to designate the angle (net angle) of the binarization pattern. That is, the user designates this angle (for example, 30 degrees, 45 degrees, etc.) in advance as necessary.
  • the pixel number specifying unit 102c is a pixel number specifying unit that controls the user to specify the number of pixels (n: natural number) constituting the basic pattern. That is, the user designates the number of pixels (n) in advance as necessary. Thereby, the number of gradations and the resolution expressed by one halftone dot are specified.
  • the calculation unit 102d is a calculation unit that generates a basic pattern shape by calculation based on the angle specified by the angle specification unit 102b and the number of pixels specified by the pixel number specification unit 102c.
  • d is an integer
  • a quadrilateral consisting of four points of point A (c, 1), point B (a + c, b + 1), point C (0, d + 1), point D (a, b + d + 1) is created
  • the created quadrilaterals the one having an angle close to the angle of the binarization pattern designated by the angle designation unit 102b is selected, and the two basic squares are adjacent to each other by making the selected quadrilateral adjacent. create.
  • the line segments AB, AC, CD, and BD constituting the quadrangle ABDC can be expressed as follows, for example.
  • Line segment CD: ay bx + a (d + 1)
  • Line segment BD: cy ⁇ d (x ⁇ a) + (b + d + 1) c
  • the calculation unit 102d creates the pixels included in the quadrangle ABDC
  • the pixels located on the line segments AB, AC, CD, and BD are, for example, the following (1) to (5). You may handle it according to the law.
  • y is a coordinate point
  • the computing unit 102d creates a quadrangle ABDC according to the above-mentioned laws (1) to (5).
  • the parameters a, b, c, and d are obtained by combinations of various values, so that the calculation unit 102d performs binarization in which the angle is designated by the angle designation unit 102b among the plurality of created squares.
  • a basic pattern is created by selecting a quadrangle having an angle (preferably the closest angle) close to the angle (mesh angle) of the pattern for use and adjoining the two selected quadrangles.
  • the lighting order determination unit 102e is a lighting order determination unit that determines the lighting order of the pixels constituting the basic pattern and stores the lighting order number information in association with the basic pattern stored in the basic pattern file 106a. . Specifically, the lighting order determination unit 102e determines, in order from the pixel that is close to a specific point (for example, the center of gravity or center of the square) of the first square among the pixels that constitute the first square of the basic pattern. The lighting order is determined so as to be lit, and among the pixels constituting the next square of the basic pattern, the pixels are lit in order from the pixel farthest from the specific point of the next square, following the lighting order of the first square. Determine the lighting order.
  • a specific point for example, the center of gravity or center of the square
  • the lighting order determination unit 102e is configured so that the length (peripheral length) of the boundary contour line between the lighting pixel and the non-lighting pixel is minimized and / or symmetric with respect to the specific point.
  • the lighting order may be determined.
  • the lighting order determination unit 102e determines the lighting order in order from the pixel having the largest predetermined weighting factor among the pixels constituting the first square of the basic pattern, and continues to the lighting order of the first square. Thus, the lighting order may be determined in order from the pixel having the smallest predetermined weight coefficient among the pixels constituting the next square of the basic pattern.
  • the rectangular pattern creation unit 102f creates a rectangular pattern that functions as a binarization pattern based on the basic pattern stored in the basic pattern file 106a, and converts the created rectangular pattern into a binarization pattern. It is a rectangular pattern creating means stored in the file 106c.
  • the basic pattern is repeatedly arranged in the main scanning direction and the sub-scanning direction by the rectangular pattern creating unit 102f, thereby maintaining the continuity of halftone dots.
  • the rectangular pattern creation unit 102f may configure the rectangular pattern so that the next square of the basic pattern is arranged adjacent to the four sides of the first square of the basic pattern. A detailed method of creating the rectangular pattern will be described later.
  • the rectangular pattern creation unit 102f refers to the rectangular pattern stored in the binarization pattern file 106c, and performs binarization processing of the multi-value image stored in the multi-value pixel file 106b.
  • the binarization processing result may be transmitted to the printing apparatus 114 by controlling the input / output control interface unit 108.
  • the present invention is not limited to this, and the binarization process may be performed by the binarization processing unit 114a of the printing apparatus 114, and a rectangular function that functions as a binarization pattern stored in the binarization pattern file 106c.
  • the shape pattern and the multi-value image stored in the multi-value pixel file 106 b may be transmitted to the printing apparatus 114.
  • the binarization pattern creation device 100 may include a communication control interface unit 104 connected to a communication device (not shown) such as a router connected to a communication line or the like. That is, in FIG. 7, the communication control interface unit 104 performs communication control between the binarization pattern creation device 100 and the network 300 (or a communication device such as a router). That is, the communication control interface unit 104 has a function of communicating data with other terminals via a communication line, and the binarization pattern creating apparatus 100 is configured by a communication device such as a router and a wired or It is communicably connected to the network 300 via a wireless communication line.
  • a communication device not shown
  • the communication control interface unit 104 performs communication control between the binarization pattern creation device 100 and the network 300 (or a communication device such as a router). That is, the communication control interface unit 104 has a function of communicating data with other terminals via a communication line, and the binarization pattern creating apparatus 100 is configured by a communication device such as a router and a
  • a network 300 has a function of interconnecting the binarization pattern creating apparatus 100 and the external system 200, and is, for example, the Internet. That is, the binarization pattern creation apparatus 100 is connected to the external system 200 that provides an external database and the like related to a basic pattern, a multi-value image, a rectangular pattern, and the like via a network 300 so as to be communicable. May be configured.
  • an external system 200 is mutually connected to the binarization pattern creation apparatus 100 via a network 300, and provides an external database for basic patterns, multi-value images, rectangular patterns, etc. It has a function to provide an external program.
  • the external system 200 may be configured as a WEB server, an ASP server, or the like, and its hardware configuration is configured by an information processing apparatus such as a commercially available workstation or a personal computer and its attached devices. May be.
  • Each function of the external system 200 is realized by a CPU, a disk device, a memory device, an input device, an output device, a communication control device, and the like in the hardware configuration of the external system 200 and a program for controlling them. This is the end of the description of the configuration of the binarization pattern creation apparatus 100.
  • FIG. 8 is a flowchart showing an example of basic processing of the binarization pattern creation device 100 in the present embodiment.
  • the binarization pattern creating apparatus 100 performs input / output so that the user can designate the angle (net angle) of the binarization pattern via the input device by the processing of the angle designation unit 102b.
  • the control interface unit 108 is controlled (step SA-1).
  • the binarization pattern creation device 100 causes the user to designate the number of pixels (n: natural number) constituting the basic pattern via the input device by the processing of the pixel number designation unit 102c. 108 is controlled (step SA-2).
  • the binarization pattern creating apparatus 100 performs processing based on the angle (halftone angle) specified by the angle specifying unit 102b and the number of pixels specified by the pixel number specifying unit 102c by the processing of the calculation unit 102d.
  • a basic pattern is created by calculation (step SA-3).
  • d is an integer
  • a quadrilateral consisting of four points of point A (c, 1), point B (a + c, b + 1), point C (0, d + 1), point D (a, b + d + 1) is created
  • the created quadrilaterals the one having an angle close to the angle of the binarization pattern designated by the angle designation unit 102b is selected, and the two basic squares are adjacent to each other by making the selected quadrilateral adjacent. create.
  • the binarization pattern creating apparatus 100 determines the lighting order of the pixels constituting the basic pattern by the processing of the lighting order determination unit 102e, and the basic pattern stored in the basic pattern file 106a is the lighting order number information.
  • the lighting order determination unit 102e determines, in order from the pixel that is close to a specific point (for example, the center of gravity or center of the square) of the first square among the pixels that constitute the first square of the basic pattern.
  • the lighting order is determined so as to be lit, and among the pixels constituting the next square of the basic pattern, the pixels are lit in order from the pixel farthest from the specific point of the next square, following the lighting order of the first square. Determine the lighting order.
  • the binarization pattern creation apparatus 100 creates a rectangular pattern that functions as a binarization pattern based on the basic pattern stored in the basic pattern file 106a by the processing of the rectangular pattern creation unit 102f.
  • the created rectangular pattern is stored in the binarization pattern file 106c (step SA-5). This completes the basic process of the binarization pattern creation apparatus 100.
  • FIG. 9 is a flowchart showing an example of a basic pattern shape creation process of the binarization pattern creation device 100 according to the present embodiment.
  • the basic pattern shape creation unit 102a performs A (c, 1), B (a + c, b + 1), C (0, d + 1) based on the parameters a, b, c, d obtained by the processing of the calculation unit 102d. ), D (a, b + d + 1) is designated as a quadrangle ABDC formed by four points (step SB-4).
  • the basic pattern shape creation unit 102a counts the number (N) of pixels included in the quadrangle ABDC by the processing of the calculation unit 102d (step SB-5).
  • the basic pattern shape creation unit 102a determines whether or not the number (N) of pixels included in the quadrangle ABDC matches the number of pixels n / 2 acquired in Step SB-1 by the processing of the calculation unit 102d. Judgment is made (step SB-6), and if they do not match (step SB-6, No), another combination of a, b, c, d is selected (step SB-7), and step SB-2 is entered. Return.
  • the basic pattern shape is The creation unit 102a calculates the angle of the quadrangle ABDC, that is, the angle of the halftone dot by the processing of the calculation unit 102d (step SB-8). Specifically, the calculation unit 102d calculates the angles formed between the line segment AB (line segment BD) and the line segment CD (line segment AC) that form the quadrangle ABDC, respectively, and the x axis. Is calculated as the angle of halftone dots.
  • the basic pattern shape creation unit 102a determines whether or not another combination of parameters a, b, c, and d exists by the processing of the calculation unit 102d (step SB-9). If it exists (step SB-9, Yes), the process returns to step SB-2. On the other hand, if there is no other parameter combination (step SB-9, No), for all the obtained parameters, the angle of each quadrangle ABDC formed by each parameter is the halftone dot specified in step SB-1. The dot angle (halftone angle) is compared, and parameters a, b, c, and d constituting the halftone dot angle closest to the designated angle are selected (step SB-10).
  • the basic pattern shape creation unit 102a performs a comparison and examination for each parameter by the processing of the calculation unit 102d, and determines the parameters a, b, c, and d that constitute the angle of the halftone dot closest to the specified angle. select.
  • the basic pattern shape creation unit 102a creates a basic pattern by making two quadrangle ABDCs constituted by the selected parameters a, b, c, d adjacent to each other by the processing of the calculation unit 102d (step SB- 11).
  • the basic pattern shape creation unit 102a outputs and stores the created basic pattern to the basic pattern file 106a by the processing of the calculation unit 102d (step SB-12). This completes the process of creating the basic pattern shape.
  • FIG. 10 is a flowchart illustrating an example of the lighting order determination process of the binarization pattern creation device 100 according to the present embodiment.
  • the order (lighting order) for fixing the color material is set for each pixel constituting the basic pattern according to the gradation of the pixel.
  • the lighting order determination unit 102e is a means for determining the lighting order of the pixels constituting the basic pattern as shown in FIG. 5 described above, and a specific point in the pixel and the basic pattern (for example, the center of gravity or center of the basic pattern). The lighting order of each pixel is determined based on the distance between and.
  • the lighting order determination unit 102e turns on the pixels so that the pixels are lit in order from the pixel that forms the first rectangle of the basic pattern, starting from a pixel that is closer to a specific point (for example, the center of gravity or center of the rectangle).
  • the order of lighting is determined so that the pixels are lit in order starting from the pixel farthest from the specific point of the next square among the pixels that form the next square of the basic pattern, following the lighting order of the first square. decide.
  • the lighting order determination unit 102e may determine the lighting order so that the length (peripheral length) of the boundary contour between the lighting pixel and the non-lighting pixel is minimized. Thereby, the dot gain (dot bleeding) can be further reduced.
  • the lighting order determination unit 102e represents a distance from a specific point in the basic pattern to each pixel constituting the basic pattern by a weighting factor W using the following equation (1), and the basic pattern For the first square, the lighting order may be determined in order from the pixel with the largest weight W, and for the second square of the basic pattern, the lighting order may be determined in order from the pixel with the smallest weight W.
  • W p ⁇ q ⁇ cos ⁇ r ⁇ cos ⁇ (1)
  • ⁇ and ⁇ indicate the coordinates of the pixel forming the basic pattern shape by (x, y), and the coordinates of the point (specific point) serving as the center or the center of gravity of the basic pattern shape by (PXDOT, PYDOT).
  • p, q, and r are values (coefficients) set appropriately, and are real numbers that are not negative numbers.
  • q and r are coefficients for defining the shape of the halftone dot to be formed.
  • q becomes large, the halftone dot formed has an elliptical shape that is long in the x direction, and is formed when r becomes large.
  • the halftone dot has an elliptical shape that is long in the y direction.
  • p is a number that is set as appropriate so that the calculation result of Expression (1) does not become negative, and is for facilitating handling (for example, sorting) of the calculated weight (W).
  • the lighting order determination unit 102e is configured to determine the lighting order based on the weight (W) set by calculation for each pixel according to the distance between the pixel and the specific point in the basic pattern. May be.
  • W weight
  • the details of the lighting order determination process when the distance between each pixel and the specific point is obtained based on the weight (W) will be described with reference to FIG.
  • the lighting order determination unit 102e first determines the dot angle (halftone angle), halftone dot, and halftone dot for the basic pattern shape created by the basic pattern shape creation unit 102a and stored in the basic pattern file 106a.
  • the point-to-dot distance, weighting coefficients (p, q, r), and the center or center of gravity of each square of the basic pattern shape are determined as specific points (PXDOT, PYDOT) (step SC-1).
  • the specific points (PXDOT, PYDOT) of the rectangle may be designated in advance by the user (operator) or may be calculated by the lighting order determination unit 102e.
  • each weighting coefficient (p, q, r) may be controlled to be set by the user.
  • the lighting order determination unit 102e may calculate the distance between specific points when the basic patterns are arranged next to each other.
  • the lighting order determination unit 102e acquires the basic pattern created by the basic pattern shape creation unit 102a and stored in the basic pattern file 106a (step SC-2), and for each pixel of the first quadrangle ABDC of the basic pattern. The distances from the specific point in the sub-scanning direction (x-axis direction) and the main scanning direction (y-axis direction) are respectively obtained.
  • the lighting order determining unit 102e stores the positions of the respective pixels before the rotation, and uses the affine transformation to calculate the first rectangle of the basic pattern around the specific point (center point) by ⁇ ( ⁇ Is rotated by a predetermined dot angle (halftone angle): 45 degrees, for example, to return to a substantially rectangular shape (step SC-3).
  • the lighting order determination unit 102e calculates the weight (W) for each pixel of the first square of the basic pattern rotated by ⁇ (step SC-4).
  • the lighting order determination unit 102e sets the lighting order of the first quadrangle constituting the basic pattern based on the weight (W) (step SC-5).
  • the lighting order determination unit 102e divides the first rectangle rotated by ⁇ into two vertically, with a horizontal line including the center point (specific point) as a boundary, and first, the upper half of the first rectangle constituting the basic pattern
  • the weight (W) is sequentially searched from the upper left pixel to the horizontal right side for each of the pixels ((number of pixels of the basic pattern n ⁇ 4 + 1) pixels). Then, the search for the weight (W) for each pixel in the horizontal direction is repeated while moving one line in the vertical downward direction until reaching the lower right pixel of the first square. Thereafter, the lighting order determination unit 102e sets the lighting order “1” to the pixel having the largest weight (W) among all the pixels constituting the upper half of the first rectangle.
  • the lighting order determining unit 102e applies the horizontal left side from the lower right pixel to each pixel in the lower half of the first square constituting the basic pattern (the number of pixels of the basic pattern n ⁇ 4 + 1).
  • the search for the weight (W) in the direction is sequentially performed.
  • the search for the weight (W) for each pixel in the horizontal direction is repeated while moving one line in the vertical upward direction until reaching the upper left pixel of the first square.
  • the lighting order determination unit 102e sets the lighting order “2” to the pixel having the largest weight (W) among all the pixels constituting the lower half of the first square.
  • the lighting order determination unit 102e alternately has a large weight (W) for each pixel in the upper half and the lower half of the first square forming the basic pattern, excluding the pixels whose lighting order has already been determined. Set the lighting order from the one in order. When the lighting order is set, if two or more pixels have the same weight (W) value, the lighting order determination unit 102e sets the lighting order first from the pixel accessed earlier.
  • W weight
  • the lighting order determination unit 102e associates the lighting order set for the first square rotated by - ⁇ with the first square of the basic pattern (basic pattern before rotating by - ⁇ ) (step SC- 6)
  • the lighting order is set for the first square of the basic pattern (step SC-7).
  • step SC-8 determines whether or not the lighting order has been set for all the pixels in the first rectangle constituting the basic pattern (step SC-8), and the pixels for which the lighting order has not been set are determined. If there is (step SC-8, No), the process returns to step SC-4.
  • the lighting order is determined for each pixel of the next square adjacent to the first square that constitutes the basic pattern (step SC). -9).
  • the order with the smallest weight (W) is continued from the last number of the first square.
  • I 2 is the number of the lighting order of the next square
  • n is the number of pixels of the basic pattern
  • I 1 is the number of the lighting order of the first square.
  • the rectangular pattern creation unit 102f creates a rectangular pattern that functions as a binarization pattern based on the basic pattern.
  • the basic pattern described above is used as the basic pattern in the main scanning direction and the sub-scanning direction of the image. Create and cut out a rectangular pattern of a specific size as a binarization pattern from a continuous pattern that is repeatedly arranged so that the next square is placed adjacent to the four sides of the first square forming the pattern It has become.
  • FIG. 11 is a diagram illustrating an example of a rectangular pattern, and the rectangular pattern creation unit 102f cuts out and creates a rectangular pattern having a specific size as shown in FIG. 11 as a binarization pattern. .
  • the rectangular pattern creation unit 102f has the same shape when a binarization pattern (hereinafter also referred to as a rectangular pattern) formed in a rectangular shape is repeatedly arranged in the main scanning direction and the sub-scanning direction of an image.
  • a rectangular pattern having a specific size is formed so that the dot dots are continuously arranged at the same angle and at equal intervals.
  • FIG. 12 is a flowchart showing an example of a rectangular pattern creation process of the binarization pattern creation apparatus 100 in the present embodiment.
  • the rectangular pattern creation unit 102f arranges the basic pattern assigned the lighting order by the lighting order determination unit 102e with the next square adjacent to the four sides of the first square constituting the basic pattern. As described above, they are repeatedly arranged in the main scanning direction and the sub-scanning direction (step SD-1).
  • the rectangular pattern creation unit 102f determines an arbitrary starting point (step SD-3), and cuts out a rectangular portion of size (X) in the sub-scanning direction and size (Y) in the main scanning direction from this starting point.
  • a rectangular pattern is created, and the created rectangular pattern is stored in the binarization pattern file 106c (step SD-4). This completes the rectangular pattern creation process.
  • the printing device 114 forms an image on a medium (paper or the like) based on the binarization pattern formed as described above, and is realized by a printer such as an ink jet printer or a laser printer.
  • a printer such as an ink jet printer or a laser printer.
  • an inkjet mechanism, a laser diode unit, a photosensitive drum, and the like function as an image forming unit 114b that forms an image on a medium.
  • the printing apparatus 114 may function as a binarization processing unit 114a in which a processor or the like provided in the printing apparatus 114 performs binarization based on the binarization pattern.
  • a computer for example, the binarization pattern creating apparatus 100
  • the binarization processing unit 114a may function as the binarization processing unit 114a, and does not depart from the spirit of the present invention.
  • Various modifications can be made.
  • the binarization processing unit 114a binarizes the multi-valued image based on the binarization pattern created as described above, so that the color material on the medium is obtained. ON / OFF is determined. Then, the image forming unit 114b forms an image by placing a color material on the medium based on the result of the binarization process.
  • FIG. 13 is a diagram illustrating an example of processing of the printing apparatus 114 in the present embodiment.
  • the binarization pattern creating apparatus 100 stores the binarization pattern created as described in the above-described embodiment and stored in the binarization pattern file 106c in the multi-value pixel file 106b.
  • the input / output control interface unit 108 is controlled and transmitted to the printing apparatus 114 together with the stored multi-value image information.
  • the printing apparatus 114 When the binarization pattern and the multilevel image information are received (step SE-1), the printing apparatus 114 performs multilevel processing based on the received binarization pattern by the processing of the binarization processing unit 114a.
  • the image is binarized (step SE-2). Specifically, the binarization processing unit 114a performs binarization by comparing the pixel value of the multi-valued image with a threshold set in the binarization pattern by a comparator. For example, the binarization processing unit 114a compares the number of gradations of the dots of the binarization pattern with the pixel value, and determines how many dots are lit up for the corresponding halftone dot.
  • the printing apparatus 114 forms an image on the medium by generating continuous halftone dots based on the binarization result performed by the binarization processing unit 114a by the processing of the image forming unit 114b. (Step SE-3). This is the end of the description of the printing apparatus 114 in the present embodiment.
  • the binarization pattern creating apparatus 100 performs processing in a stand-alone form has been described as an example.
  • the binarization pattern creating apparatus 100 is configured in a separate casing. Processing may be performed in response to a request from a client terminal, and the processing result may be returned to the client terminal.
  • the basic pattern is rotated by ⁇ , and the lighting order is set for the rotated basic pattern.
  • the present invention is not limited to this, and the basic pattern is rotated. Alternatively, the lighting order may be set directly.
  • the lighting order determination unit 102e divides the basic pattern into two in the vertical direction with a horizontal line including the center point (specific point) as a boundary, and the upper half pixel and the lower half pixel.
  • the lighting order is set in order from the largest weight (W), but is not limited to this.
  • the basic pattern is changed to the right and left with a vertical line including a specific point as a boundary.
  • the lighting order may be set in order from the pixel having the larger weight (W) alternately to the right half pixel and the left half pixel.
  • all or part of the processes described as being automatically performed can be performed manually, or the processes described as being performed manually can be performed. All or a part can be automatically performed by a known method.
  • processing procedures, control procedures, specific names, information including registration data and parameters of each processing, and database configuration shown in the above documents and drawings may be arbitrarily changed unless otherwise specified. it can.
  • each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • the processing functions provided in each device of the binarization pattern creation device 100 are all or any part of the CPU (Central Processing Unit) and the CPU. It can be realized by a program interpreted and executed by, or can be realized as hardware by wired logic. The program is recorded on a recording medium to be described later, and is mechanically read by the binarization pattern creating apparatus 100 as necessary. That is, the storage unit 106 such as ROM or HD stores a computer program for performing various processes by giving instructions to the CPU in cooperation with an OS (Operating System). This computer program is executed by being loaded into the RAM, and constitutes a control unit in cooperation with the CPU.
  • OS Operating System
  • the computer program may be stored in an application program server connected to the binarization pattern creating apparatus 100 via an arbitrary network 300, and the computer program may be downloaded in whole or in part as necessary. It is also possible to do.
  • the program according to the present invention can be stored in a computer-readable recording medium.
  • the “recording medium” refers to any “portable physical medium” such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, an EEPROM, a CD-ROM, an MO, and a DVD, or a LAN, WAN, or Internet. It includes a “communication medium” that holds the program in a short period of time, such as a communication line or a carrier wave when the program is transmitted via a network represented by
  • program is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code.
  • program is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Including those that achieve the function.
  • OS Operating System
  • a well-known configuration and procedure can be used for a specific configuration for reading a recording medium, a reading procedure, an installation procedure after reading, and the like in each device described in the embodiment.
  • Various databases and the like (basic pattern file 106a to binarization pattern file 106c) stored in the storage unit 106 include memory devices such as RAM and ROM, fixed disk devices such as hard disks, storage means such as flexible disks and optical disks. It stores various processes, various programs, tables, databases, and the like.
  • the binarization pattern creating apparatus 100 includes software (including programs, data, and the like) that connects an information processing apparatus such as a known personal computer or workstation and causes the information processing apparatus to implement the method of the present invention. It may be realized by mounting.
  • the specific form of distribution / integration of the devices is not limited to that shown in the figure, and all or a part of them may be functional or physical in arbitrary units according to various additions or according to functional loads. Can be distributed and integrated.
  • high-definition printing can be withstood by controlling the ink fixing area so as to prevent gradation crushing due to ink bleeding, particularly reproduction with 50% ink. It is possible to provide a binarization pattern creating method and a printing apparatus capable of creating / outputting a halftone dot for improving performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color, Gradation (AREA)

Abstract

 本発明は、指定されたピクセル数n=2(ad+bc)の条件を満たす任意のパラメータによって指定される点A(c,1)点B(a+c,b+1)点C(0,d+1)点D(a,b+d+1)の4点からなる四角形を作成し、作成した四角形のうち指定された角度に近い角度を有するものを選択し、選択した四角形を2つ隣接させて基本パターンを作成し、基本パターンの最初の四角形を構成するピクセルのうち特定点に近いピクセルから順に、基本パターンの次の四角形を構成するピクセルのうち最初の四角形の点灯順序に連続して、特定点に遠いピクセルから順に、ピクセルが点灯するよう点灯順序を決定し、二値化用パターンとして機能する矩形状パターンを作成する。

Description

二値化用パターン作成方法、および、印刷装置
 本発明は、二値化用パターン作成方法、および、印刷装置に関し、特に、自然画像、グラフィック画像、色文字等の多値画像(Continuous Tone Image)を二値画像に変換する二値化処理に用いられる二値化用パターン(ディザパターンテーブル)の作成方法および印刷装置に関する。
 スキャナ等の入力機器から取り込むあるいは作成する等して得られた、自然画像やグラフィック画像,色文字などの多値画像をプリンタ等の出力装置から出力する際には、この多値画像を色材(インクやトナー等;以下、ドットという場合もある)のON/OFFで表現するために、二値化処理を行なう必要がある。
 この二値化手法のひとつとしてディザ法が知られている。ディザ法は、多値画像における特定のピクセル(対象ピクセル)の値と予め設定された閾値との大小を比較することによって画素の階調濃度を決定し、予め用意した二値化用パターンを用いて、この画素の階調濃度に応じてピクセルについてのドットのON/OFFを決定する手法である。ここで、ディザ(網点)とは、印刷で多階調画素を、「(インキを着ける/着けないを示す)二値画像」に変換するために使用するルックアップテーブルのことである。
 ディザ法においては、画素の階調濃度が大きくなるに従って、特定の点を中心として、この中心に近いピクセルから順番に色材を乗せていく(点灯させる)ことにより、画素の階調を表現する集中型ディザが知られている。この集中型ディザは、ドットゲイン(インキの滲み)が小さく印刷媒体上に色材が安定して定着するので、各ピクセルに乗せる色材の量が微少な場合には、拡散型ディザ法よりもこの集中型ディザ法を用い方が好ましく、集中型ディザ用の二値化用パターンを作成する手法が開発されている。
 例えば、本願の発明者等による特許文献1は、所望の角度とピクセル数とをそなえた集中型の二値化パターンを作成するために、基本パターンの形状を、指定されたピクセル数n=ad+bcの条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形として作成し、作成された四角形のうち、その角度が指定された角度に最も近いものを基本パターンとして選択し、基本パターンを構成するピクセルの点灯順序を決定し、基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成する二値化用パターン作成技術である。
特許第4000255号公報
 しかしながら、二値化画像に変換するために使用するルックアップテーブルは、適当に作成すると、二値化することができなかったり、原画像にはない模様(モアレ)が印刷画像上に現れてしまうという問題を生じる。
 ここで、特許文献1の技術においては、一般的な印刷における集中型ディザ(網点)を計算に基づいて生成し印刷画質を高精細に出力することができ、印刷した結果生じるモアレに対しても、計算により網点生成が可能なため対応が早いという利点があるものの依然として、以下のような問題点があった。
 例えば、インキを10%定着させる色票と、90%定着させる色票とを重ねると、ベタ印刷(インキ100%)に限りなく近い色票にはならないという問題がある。印刷に要するデザインは人間が行うため、このような性質は必然的に印刷工程に求められており、この問題を解決しなければ「思ったような色が再現されていない」という理由で、刷り直しの原因になる。
 特に、インキ50%の場合は重大であり、インキが載っている面積とインキが載っていない紙だけの面積が同じであることが重要となる。しかし、実際に使用するときには、印刷には「インキの滲み(ドットゲイン)」が存在するので、インキ定着面積を数字通りに正確に実現しようとすると、各階調ごとに数値を変換するための一次元ルックアップテーブルを用意し、印刷結果が電子データで指定されたインキ定着面積になるように補正する必要がある。
 しかしながら、これを可能とするには、インキ定着領域が入力する電子データの値に従って変化することが前提であり、インキが定着しなかったり、インキ定着領域が変わらなかったりすると、何を行っても階調つぶれを防止することはできないという問題があった。ここで、図1は、従来技術である特許文献1に基づいて作成された網点の基本パターンを示す図である(画素数(ピクセル数)は72、網角度45度の条件)。
 図1に示すように、従来技術(特許文献1)によれば、モノクロやカラー画像を印刷する際に用いる高精細集中型ディザパターンをコンピュータで自動生成することができる。しかしながら、特許文献1の技術によっても、この基本パターンによる二値化用パターンでは、インキ定着面積を完全には制御できず、隣り合うインキ定着領域が近づくと、表面張力によりインキ定着領域がくっついてしまい、もはや電子データの値を変えても、物理特性による急激なインキ定着面積や形状の拡大を制御することができない等の種々の問題点があった。特に、50%という数字は、デザイナーがデザインでよく使用する数値であるため、50%で色再現が制御できなければ、印刷全体がうまくいっていないという印象を与え、印刷工程での「デザイナーからの刷り直し要請」に繋がり、印刷の採算性を低下させてしまうという問題があった。
 本発明は、上記に鑑みてなされたもので、この従来技術による基本パターンを改良することにより、インキの滲みによる階調潰れを防止してインキ定着面積の制御を行うことによって、より高精細な印刷に耐えうる二値化用パターンを作成することを目的とするものである。また特に、インキ50%での再現性を向上させる網点を作成/出力することができる、二値化用パターン作成方法、および、印刷装置を提供することを目的とする。
 このような目的を達成するため、請求項1に記載の二値化用パターン作成方法は、多値画像の二値化に用いられる二値化用パターンの作成方法であって、上記二値化用パターンの基本パターンの形状を演算により作成する基本パターン形状作成ステップと、上記基本パターンを構成するピクセルの点灯順序を決定する点灯順序決定ステップと、上記基本パターンに基づいて、上記二値化用パターンとして機能する矩形状パターンを作成する矩形状パターン作成ステップと、を含み、上記基本パターン形状作成ステップは、上記二値化用パターンの角度を指定する角度指定ステップと、上記基本パターンを構成するピクセル数を指定するピクセル数指定ステップと、上記角度指定ステップにおいて指定した上記角度と上記ピクセル数指定ステップにおいて指定した上記ピクセル数とに基づいて、上記基本パターン形状を演算により作成する演算ステップと、を含み、上記演算ステップは、上記ピクセル数指定ステップにおいて指定された上記ピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を作成し、上記作成された四角形のうち、その角度が上記角度指定ステップにおいて指定された上記二値化用パターンの上記角度に近い角度を有するものを選択し、選択した当該四角形を2つ隣接させることにより、上記基本パターンを作成し、上記点灯順序決定ステップは、上記基本パターンの最初の上記四角形を構成するピクセルのうち、当該最初の上記四角形の特定点に近いピクセルから順に、当該ピクセルが点灯するよう上記点灯順序を決定し、上記基本パターンの次の上記四角形を構成するピクセルのうち、上記最初の上記四角形の上記点灯順序に連続して、上記次の上記四角形の上記特定点に遠いピクセルから順に、当該ピクセルが点灯するよう上記点灯順序を決定すること、を特徴とする。
 この発明によれば、二値化用パターンの基本パターンの形状を演算により作成し、基本パターンを構成するピクセルの点灯順序を決定し、基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成する方法において、基本パターン形状の作成は、二値化用パターンの角度を指定し、基本パターンを構成するピクセル数を指定し、指定した角度と指定したピクセル数とに基づいて、基本パターン形状を演算により作成し、演算は、指定されたピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を作成し、作成された四角形のうち、その角度が指定された二値化用パターンの角度に近い角度を有するものを選択し、選択した当該四角形を2つ隣接させることにより、基本パターンを作成し、点灯順序の決定は、基本パターンの最初の四角形を構成するピクセルのうち、当該最初の四角形の特定点に近いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定し、基本パターンの次の四角形を構成するピクセルのうち、最初の四角形の点灯順序に連続して、次の四角形の特定点に遠いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定するので、インキ定着面積を正確に制御して高精細な印刷に耐えうる、特にインキ50%での再現性を向上させる網点を作成することができる。
 また、請求項2に記載の二値化用パターン作成方法は、請求項1に記載の二値化用パターン作成方法において、上記点灯順序決定ステップは、上記次の上記四角形の上記点灯順序を、I=n-I+1の式により決定すること(ここで、Iは、上記次の上記四角形の上記点灯順序の番号、nは、上記ピクセル数指定ステップにおいて指定された上記ピクセル数、Iは、上記最初の上記四角形の上記点灯順序の番号)、を特徴とする。
 この発明によれば、点灯順序の決定は、次の四角形の点灯順序を、I=n-I+1の式により決定する(ここで、Iは、次の四角形の点灯順序の番号、nは、指定されたピクセル数、Iは、最初の四角形の点灯順序の番号)ので、計算式に基づいてより対応が早い網点生成を行うことができる。
 また、請求項3に記載の印刷装置は、二値化用パターンに基づいて、多値画像の二値化を行う二値化処理手段と、上記二値化処理手段によって行われた二値化結果に基づいて、媒体上に画像を形成する画像形成手段と、を備えてなる印刷装置であって、基本パターンは、当該基本パターンのピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を2つ隣接させて構成されており、上記二値化用パターンが、上記基本パターンに基づいて作成され、上記多値画像の階調に応じて、上記基本パターンの最初の上記四角形を構成するピクセルのうち、当該最初の上記四角形の特定点に近いピクセルから順に、当該ピクセルを点灯させ、上記最初の上記四角形の点灯に連続して、上記基本パターンの次の上記四角形を構成するピクセルのうち、上記次の上記四角形の上記特定点に遠いピクセルから順に、当該ピクセルを点灯させることによって、連続的な網点ドットを生成することを特徴とする。
 この発明によれば、二値化用パターンに基づいて、多値画像の二値化を行い、二値化結果に基づいて、媒体上に画像を形成する印刷装置であって、基本パターンは、当該基本パターンのピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を2つ隣接させて構成されており、二値化用パターンが、基本パターンに基づいて作成され、多値画像の階調に応じて、基本パターンの最初の四角形を構成するピクセルのうち、当該最初の四角形の特定点に近いピクセルから順に、当該ピクセルを点灯させ、最初の四角形の点灯に連続して、基本パターンの次の四角形を構成するピクセルのうち、次の四角形の特定点に遠いピクセルから順に、当該ピクセルを点灯させることによって、連続的な網点ドットを生成するので、インキ定着面積を正確に制御して高精細な印刷に耐えうる、特にインキ50%での再現性を向上させる網点を作成することができる。
 また、請求項4に記載の印刷装置は、請求項3に記載の印刷装置において、上記次の上記四角形を構成するピクセルを、I=n-I+1の式に基づく順番で点灯させること(ここで、Iは、上記次の上記四角形の上記点灯順序の番号、nは、上記基本パターンの上記ピクセル数、Iは、上記最初の上記四角形の上記点灯順序の番号)、を特徴とする。
 この発明によれば、次の四角形を構成するピクセルを、I=n-I+1の式に基づく順番で点灯させる(ここで、Iは、次の四角形の点灯順序の番号、nは、基本パターンのピクセル数、Iは、最初の四角形の点灯順序の番号)ので、計算式に基づいてより対応が早い網点生成/出力を行うことができる。
 この発明によれば、インキ定着領域同士を可能な限り離すことが可能となり、インキの持つ表面張力によるインキ定着領域の急激な拡大による「色とび」を防ぐことができる。また、特にインキ定着領域が50%である場合に、隣のインキ定着領域とくっつくようになる上記現象が最大化するが、この場合の「色とび」を低減でき、印刷条件による印刷品質の変動を低減することができる。また、インキ定着面積が、90%を超えると、インキが染み出すことにより、紙白がつぶれる可能性が高くなるが、本発明によれば、その現象を最も起こりにくく設計できる。すなわち、以上によれば、インキの滲みによる階調潰れを防止し、その結果階調に富む印刷が可能となる。
図1は、従来技術である特許文献1に基づいて作成された網点の基本パターンを示す図である。 図2は、本発明の基本構成を示す原理構成図である。 図3は、図1に示した四角形を2つ隣接させて構成した図形を示す図である。 図4は、本発明の基本パターンを構成する次の四角形を一例として示す図である。 図5は、本発明の点灯順序決定部102eの処理により点灯順序が決定された基本パターンの一例を示す図である。 図6は、2つの基本パターンを展開させた場合の網点を一例として示す図である。 図7は、本発明が適用される二値化用パターン作成装置100の構成の一例を示すブロック図である。 図8は、本実施の形態における本二値化用パターン作成装置100の基本処理の一例を示すフローチャートである。 図9は、本実施の形態における本二値化用パターン作成装置100の基本パターン形状の作成処理の一例を示すフローチャートである。 図10は、本実施の形態における本二値化用パターン作成装置100の点灯順序決定処理の一例を示すフローチャートである。 図11は、矩形状パターンの一例を示す図である。 図12は、本実施の形態における二値化用パターン作成装置100の矩形状パターン作成処理の一例を示すフローチャートである。 図13は、本実施の形態における印刷装置114の処理の一例を示す図である。
符号の説明
100 二値化用パターン作成装置
102 制御部
102a 基本パターン形状作成部
102b 角度指定部
102c ピクセル数指定部
102d 演算部
102e 点灯順序決定部
102f 矩形状パターン作成部
104 通信制御インターフェース部
106 記憶部
106a 基本パターンファイル
106b 多値画素ファイル
106c 二値化用パターンファイル
108 入出力制御インターフェース部
114 印刷装置
114a 二値化処理部
114b 画像形成部
200 外部システム
300 ネットワーク
 以下に、本発明にかかる二値化用パターン作成方法および印刷装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
[本発明の概要]
 以下、本発明の概要について説明し、その後、本発明の構成および処理等について詳細に説明する。
 本発明は、概略的に、以下の基本的特徴を有する。ここで、図2は、本発明の基本構成を示す原理構成図である。すなわち、本発明の二値化用パターン作成装置100は、二値化用パターンの基本パターンの形状を演算により作成する基本パターン形状作成部102aと、基本パターンを構成するピクセルの点灯順序を決定する点灯順序決定部102eと、基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成する矩形状パターン作成部102fと、を備えて構成される。ここで、基本パターン形状作成部102aは、図2に示すように、二値化用パターンの角度を指定する角度指定部102bと、基本パターンを構成するピクセル数を指定するピクセル数指定部102cと、角度指定部102bにより指定された角度とピクセル数指定部102cにより指定されたピクセル数とに基づいて、基本パターン形状を演算により作成する演算部102dを備える。
 上記構成において、まず、本発明の角度指定部102bは、二値化用パターンの角度(例えば、45度)を指定するよう制御する。
 そして、本発明のピクセル数指定部102cは、基本パターンを構成するピクセル数(例えば、144ピクセル)を指定するよう制御する。
 そして、本発明の演算部102dは、角度指定部102bにより指定された角度とピクセル数指定部102cにより指定されたピクセル数とに基づいて、基本パターン形状を演算により作成する。
 具体的には、演算部102dは、ピクセル数指定部102cにより指定されたピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形ABDCを作成し、作成された四角形のうち、その角度が角度指定部102bにより指定された二値化用パターンの角度に近い角度を有するものを選択する。例えば、ピクセル数144及び角度45度が指定されていた場合、一例として図1に示すような四角形が作成される(但し、この時点では未だ点灯順序の番号は決定されていない)。
 そして、演算部102dは、選択した当該四角形を2つ隣接させることにより、基本パターンを作成する。ここで、図3は、図1に示した四角形を2つ隣接させて構成した図形を示す図である。図3に示すように、特許文献1に基づいて作成された四角形ABDCを単純に2つ隣接させただけでは、隣り合うインキ定着領域が近づいてしまい、表面張力によりインキ定着領域が結合することを防止できないので、本発明では、更に以下のように点灯順序の決定を行う。ここで、点灯順序とは、二値化用パターン作成のために、基本パターンを構成する各ピクセル毎に、画素の階調に応じて色剤(インクやトナー等)を定着させる順序のことである。
 すなわち、本発明の点灯順序決定部102eは、基本パターンの最初の四角形を構成するピクセルのうち、当該最初の四角形の特定点(例えば、四角形の重心や中心)に近いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定する。図1の四角形は、本発明の基本パターンの最初の四角形に対応しており、当該処理により、最初の四角形は、一例として図1の番号で示すような点灯順序が決定される。
 そして、本発明の点灯順序決定部102eは、基本パターンの次の四角形を構成するピクセルのうち、最初の四角形の点灯順序に連続して、次の四角形の特定点に遠いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定する。ここで、図4は、本発明の基本パターンを構成する次の四角形を一例として示す図である。図4に示すように、基本パターンの次の四角形のピクセルの点灯順序は、図1に示した最初の四角形の点灯順序に連続して(この例では、最初の四角形の最後の点灯順である72番に連続して)、特定点に遠いピクセルから順に、当該ピクセルが点灯するよう点灯順序が決定される。
 ここで、点灯順序決定部102eは、基本パターンの各四角形のピクセルの点灯順序を、点灯ピクセルと非点灯ピクセルとの境界輪郭線の長さ(周囲長)が最小になるように、および/または、特定点に対して対称となるように、点灯順序を決定してもよい。
 また、ここで、点灯順序決定部102eは、基本パターンの次の四角形の点灯順序を、I=n-I+1の式により決定してもよい。ここで、Iは、次の四角形の点灯順序の番号、nは、ピクセル数指定ステップにおいて指定されたピクセル数、Iは、最初の四角形の点灯順序の番号である。すなわち、一例として図4に示すように、ピクセル数指定部102cにより指定されたピクセル数nから、図1の最初の四角形の点灯順序の番号Iを減じて1を加えた番号を、対応する次の四角形のピクセルに割り当ててもよい。ここで、図5は、本発明の点灯順序決定部102eの処理により点灯順序が決定された基本パターンの一例を示す図である。
 以上の点灯順序決定処理により、本発明の基本パターンは、一例として図5に示すように、最初の四角形(図1参照)は特定点に近いピクセルから順に、次の四角形(図4参照)は特定点に遠いピクセルから順に、点灯順序の番号が決定される。
 そして、本発明の矩形状パターン作成部102fは、基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成する。具体的には、点灯順序が決定された基本パターンを二次元に展開して、図6に示すような網点を作成し、矩形状パターンを作成する。図6は、2つの基本パターンを展開させた場合の網点を一例として示す図である。
 図6に示すように、インキ定着領域が2つ存在し、総画素数の50%にインキを定着させると、完全な市松模様が実現される。すなわち、インキが定着している領域と紙だけの領域が同じ形状になることが保証される。これにより、インキの表面張力の影響を受けずに、実際に印刷で紙の上に置かれるインキ定着領域の形状を、作成したルックアップテーブル(網点)等を用いて制御することが可能となる。
 すなわち、以上により、(1)インキ定着領域同士を可能な限り離すことが可能となり、インキの持つ表面張力によるインキ定着領域の急激な拡大による「色とび」を防ぐことができる。また、(2)特にインキ定着領域が50%である場合に、隣のインキ定着領域とくっつくようになる上記現象が最大化するが、この場合の「色とび」を低減でき、印刷条件による印刷品質の変動を低減することができる。また、(3)インキ定着面積が、90%を超えると、インキが染み出すことにより、紙白がつぶれる可能性が高くなるが、本発明によれば、その現象を最も起こりにくく設計できる。すなわち、以上によれば、(4)インキの滲みによる階調潰れを防止し、その結果階調に富む印刷が可能となる。以上で本発明の概要の説明を終える。
[二値化用パターン作成装置100の構成]
 まず、本二値化用パターン作成装置100の構成について説明する。図7は、本発明が適用される二値化用パターン作成装置100の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
 図7において二値化用パターン作成装置100は、概略的に、二値化用パターン作成装置100の全体を統括的に制御するCPU等の制御部102、印刷装置114等に接続される入出力制御インターフェース部108、および、各種のデータベースやテーブルなどを格納する記憶部106等を備えて構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
 記憶部106に格納される各種のデータベースやテーブル(基本パターンファイル106a~二値化用パターンファイル106c)は、固定ディスク装置等のストレージ手段であり、各種処理に用いる各種のプログラムやテーブルやファイルやデータベース等を格納する。
 これら記憶部106の各構成要素のうち、基本パターンファイル106aは、基本パターンを記憶する基本パターン記憶手段である。ここで、基本パターンとは、1つの網点ドットを形成するための(ピクセル)集合体をいう。
 また、多値画素ファイル106bは、多値画素を含む、自然画像やグラフィック画像や色文字等の多値画像情報を記憶する多値画素記憶手段である。
 また、二値化用パターンファイル106cは、二値化用パターンとして機能する矩形状パターンを記憶する二値化用パターン記憶手段である。ここで、二値化用パターンは、二値化における閾値を制御するものであって、特定の形状を有する基本パターンを主走査方向および副走査方向に繰り返し配置することにより構成されるものである。好適には、二値化用パターンは、基本パターンの最初の四角形の四方に隣接して基本パターンの次の四角形を配置していくことにより構成してもよい。
 また、図7において、入出力制御インターフェース部108は、印刷装置114等の制御を行う。なお、入出力制御インターフェース部108には、モニタ(家庭用テレビを含む)やスピーカ等の出力装置、キーボードやマウス等の入力装置等が接続されてもよい。ここで、印刷装置114は、機能概念的に、二値化処理部114a、および、画像形成部114bを備えて構成されている。二値化処理部114aは、二値化用パターンに基づいて、多値画像の二値化を行う二値化処理手段である。また、画像形成部114bは、二値化処理部114aによって行われた二値化結果に基づいて、紙等の媒体上に画像を形成する画像形成手段である。なお、この二値化処理においては、比較器により多値画像の画素値を二値化用パターンの予め設定された閾値と比較して二値化が行われる。
 また、図7において、制御部102は、OS(Operating System)等の制御プログラム、各種の処理手順等を規定したプログラム、および所要データを格納するための内部メモリを有し、これらのプログラム等により、種々の処理を実行するための情報処理を行う。制御部102は、機能概念的に、基本パターン形状作成部102a、点灯順序決定部102e、矩形状パターン作成部102fを備えて構成されている。
 このうち、基本パターン形状作成部102aは、二値化用パターンの基本パターンの形状を演算により作成し、作成した基本パターンを基本パターンファイル106aに格納する基本パターン形状作成手段である。ここで、基本パターン形状作成部102aは、図7に示すように、角度指定部102b、ピクセル数指定部102c、演算部102dを備えて構成されている。角度指定部102bは、利用者に二値化用パターンの角度(網角度)を指定させるよう制御する角度指定手段である。すなわち、利用者は、予めこの角度(例えば、30度,45度等)を必要に応じて指定するようになっている。ピクセル数指定部102cは、利用者に基本パターンを構成するピクセル数(n:自然数)を指定させるよう制御するピクセル数指定手段である。すなわち、利用者は、予めこのピクセル数(n)を必要に応じて指定するようになっている。これにより、1つの網点ドットによって表現される階調数や解像度が特定される。演算部102dは、角度指定部102bにより指定された角度と、ピクセル数指定部102cにおいて指定されたピクセル数と、に基づいて、基本パターン形状を演算により作成する演算手段である。
 具体的には、演算部102dは、ピクセル数指定部102cにより指定されたピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を作成し、作成された四角形のうち、その角度が角度指定部102bにより指定された二値化用パターンの角度に近い角度を有するものを選択し、選択した当該四角形を2つ隣接させることにより、基本パターンを作成する。
 なお、この時、四角形ABDCを構成する線分AB,AC,CD,BDは、一例として、それぞれ以下のように表すことができる。
線分AB:ay=b(x-c)+a
線分AC:cy=-d(x-c)+c
線分CD:ay=bx+a(d+1)
線分BD:cy=-d(x-a)+(b+d+1)c
 このように、演算部102dは、四角形ABDCに含まれるピクセルを作成する際、線分AB,AC,CD,BD上に位置するピクセルについては、一例として、以下の(1)~(5)の法則に従って取り扱ってもよい。
 座標系x,yの整数の格子点を座標点とした時、
(1)点Aは含める。
(2)線分ABおよびAC上の点は全て含める。
(3)点Bのy座標値が点Cのy座標値よりも小さい場合には、線分CD上にある点を含める。
(4)点Bのy座標値が点Cのy座標値よりも大きい場合には、線分BD上にある点を含める。
(5)点B,C,Dは含めない。
 そして、演算部102dは、上記の(1)~(5)の法則に従って四角形ABDCを作成する。通常、上記パラメータa,b,c,dは、種々の値の組合せで得られるので、演算部102dは、作成した複数の四角形のうち、その角度が角度指定部102bにより指定された二値化用パターンの角度(網角度)に近い角度(好適には、最も近い角度)を有する四角形を選択し、選択した当該四角形を2つ隣接させることにより、基本パターンを作成する。
 また、点灯順序決定部102eは、基本パターンを構成するピクセルの点灯順序を決定し、点灯順序の番号情報を基本パターンファイル106aに記憶された基本パターンに対応付けて格納する点灯順序決定手段である。具体的には、点灯順序決定部102eは、基本パターンの最初の四角形を構成するピクセルのうち、当該最初の四角形の特定点(例えば、四角形の重心や中心)に近いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定し、基本パターンの次の四角形を構成するピクセルのうち、最初の四角形の点灯順序に連続して、次の四角形の特定点に遠いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定する。ここで、点灯順序決定部102eは、点灯ピクセルと非点灯ピクセルとの境界輪郭線の長さ(周囲長)が最小になるように、および/または、特定点に対して対称となるように、点灯順序を決定してもよい。また、ここで、点灯順序決定部102eは、基本パターンの次の四角形の点灯順序を、I=n-I+1の式により決定してもよい(ここで、Iは、次の四角形の点灯順序の番号、nは、ピクセル数指定部102cの処理により指定されたピクセル数、Iは、最初の四角形の点灯順序の番号である)。また、点灯順序決定部102eは、基本パターンの最初の四角形を構成するピクセルのうち、所定の重み係数が最も大きいピクセルから順番に、点灯順序を決定し、当該最初の四角形の点灯順序に連続して、基本パターンの次の四角形を構成するピクセルのうち、所定の重み係数が最も小さいピクセルから順番に、点灯順序を決定してもよい。
 また、矩形状パターン作成部102fは、基本パターンファイル106aに格納された基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成し、作成した矩形状パターンを二値化用パターンファイル106cに格納する矩形状パターン作成手段である。矩形状パターン作成部102fにより、基本パターンが主走査方向および副走査方向に繰り返し配置されることによって、網点ドットの連続性が保持される。好適には、矩形状パターン作成部102fは、基本パターンの最初の四角形の四方に隣接して、基本パターンの次の四角形が配置されるよう矩形状パターンを構成してもよい。なお、矩形状パターンの詳細な作成方法については、後述する。また、ここで、矩形状パターン作成部102fは、二値化用パターンファイル106cに記憶された矩形状パターンを参照して、多値画素ファイル106bに記憶された多値画像の二値化処理を行い、二値化処理結果を入出力制御インターフェース部108を制御して、印刷装置114に送信してもよい。なお、これに限られず、二値化処理は、印刷装置114の二値化処理部114aが行う構成としてもよく、二値化用パターンファイル106cに格納された二値化用パターンとして機能する矩形状パターンと、多値画素ファイル106bに格納された多値画像を印刷装置114に送信してもよい。
 以上が本二値化用パターン作成装置100の基本的構成である。ここで、二値化用パターン作成装置100は、通信回線等に接続されるルータ等の通信装置(図示せず)に接続される通信制御インターフェース部104を備えてもよい。すなわち、図7において、通信制御インターフェース部104は、二値化用パターン作成装置100とネットワーク300(またはルータ等の通信装置)との間における通信制御を行う。すなわち、通信制御インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有し、この二値化用パターン作成装置100は、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して、ネットワーク300に通信可能に接続されている。ここで、図7において、ネットワーク300は、二値化用パターン作成装置100と外部システム200とを相互に接続する機能を有し、例えば、インターネット等である。すなわち、二値化用パターン作成装置100は、ネットワーク300を介して、基本パターンや多値画像や矩形状パターン等に関する外部データベース等や外部プログラム等を提供する外部システム200に、通信可能に接続して構成されてもよい。
 図7において、外部システム200は、ネットワーク300を介して、二値化用パターン作成装置100と相互に接続され、利用者に対して基本パターンや多値画像や矩形状パターン等に関する外部データベース等や外部プログラム等を提供する機能を有する。ここで、外部システム200は、WEBサーバやASPサーバ等として構成していてもよく、そのハードウェア構成は、一般に市販されるワークステーション、パーソナルコンピュータ等の情報処理装置およびその付属装置により構成していてもよい。また、外部システム200の各機能は、外部システム200のハードウェア構成中のCPU、ディスク装置、メモリ装置、入力装置、出力装置、通信制御装置等およびそれらを制御するプログラム等により実現される。以上で、本二値化用パターン作成装置100の構成の説明を終える。
[二値化用パターン作成装置100の処理]
 次に、このように構成された本実施の形態における本二値化用パターン作成装置100の処理の一例について、以下に図8~図12を参照して詳細に説明する。
[基本処理]
 まず、二値化用パターン作成装置100の基本処理について図8を参照して説明する。図8は、本実施の形態における本二値化用パターン作成装置100の基本処理の一例を示すフローチャートである。
 図8に示すように、二値化用パターン作成装置100は、角度指定部102bの処理により、利用者に入力装置を介して二値化用パターンの角度(網角度)を指定させるよう入出力制御インターフェース部108を制御する(ステップSA-1)。
 そして、二値化用パターン作成装置100は、ピクセル数指定部102cの処理により、利用者に入力装置を介して基本パターンを構成するピクセル数(n:自然数)を指定させるよう入出力制御インターフェース部108を制御する(ステップSA-2)。
 そして、二値化用パターン作成装置100は、演算部102dの処理により、角度指定部102bにより指定された角度(網角度)と、ピクセル数指定部102cにおいて指定されたピクセル数と、に基づいて、基本パターンを演算により作成する(ステップSA-3)。具体的には、演算部102dは、ピクセル数指定部102cにより指定されたピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を作成し、作成された四角形のうち、その角度が角度指定部102bにより指定された二値化用パターンの角度に近い角度を有するものを選択し、選択した当該四角形を2つ隣接させることにより、基本パターンを作成する。
 そして、二値化用パターン作成装置100は、点灯順序決定部102eの処理により、基本パターンを構成するピクセルの点灯順序を決定し、点灯順序の番号情報を基本パターンファイル106aに記憶された基本パターンに対応付けて格納する(ステップSA-4)。具体的には、点灯順序決定部102eは、基本パターンの最初の四角形を構成するピクセルのうち、当該最初の四角形の特定点(例えば、四角形の重心や中心)に近いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定し、基本パターンの次の四角形を構成するピクセルのうち、最初の四角形の点灯順序に連続して、次の四角形の特定点に遠いピクセルから順に、当該ピクセルが点灯するよう点灯順序を決定する。ここで、点灯順序決定部102eは、基本パターンを構成する次の四角形のピクセルの点灯順序を、I=n-I+1の式により決定してもよい(ここで、Iは、次の四角形の点灯順序の番号、nは、ピクセル数指定部102cの処理により指定されたピクセル数、Iは、最初の四角形の点灯順序の番号である)。
 そして、二値化用パターン作成装置100は、矩形状パターン作成部102fの処理により、基本パターンファイル106aに格納された基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成し、作成した矩形状パターンを二値化用パターンファイル106cに格納する(ステップSA-5)。これにて、二値化用パターン作成装置100の基本処理が終了する。
[基本パターン形状の作成処理]
 次に、基本パターン形状作成部102aの処理による基本パターン形状の作成処理(上述のステップSA-3に対応する処理)の詳細について図9を参照して説明する。図9は、本実施の形態における本二値化用パターン作成装置100の基本パターン形状の作成処理の一例を示すフローチャートである。
 図9に示すように、まず、基本パターン形状作成部102aは、演算部102dの処理により、角度指定部102bおよびピクセル数指定部102cによって指定された網点ドットの角度およびピクセル数(n)をそれぞれ取得し(ステップSB-1)、ピクセル数n/2よりも小さい(もしくは所定範囲内の)2つの整数a,bを任意に選択する(ステップSB-2)。そして、基本パターン形状作成部102aは、演算部102dの処理により、これらの整数a,bについて、n=2(ad+bc)が成立する全ての(もしくは予め定められた範囲内のにおける全ての)整数c,dを算出する(ステップSB-3)。
 そして、基本パターン形状作成部102aは、演算部102dの処理により、求めたパラメータa,b,c,dに基づいて、A(c,1),B(a+c,b+1),C(0,d+1),D(a,b+d+1)の4点により形成される四角形ABDCを指定する(ステップSB-4)。
 そして、基本パターン形状作成部102aは、演算部102dの処理により、四角形ABDCに含まれるピクセルの数(N)を計数する(ステップSB-5)。
 そして、基本パターン形状作成部102aは、演算部102dの処理により、四角形ABDCに含まれるピクセルの数(N)が、ステップSB-1において取得したピクセル数n/2と一致しているか否かを判断し(ステップSB-6)、一致していなければ(ステップSB-6、No)、他のa,b,c,dによる組み合わせを選択すべく(ステップSB-7)、ステップSB-2に戻る。
 一方、四角形ABDCに含まれるピクセルの数(N)が、ステップSB-1において取得したピクセル数n/2と一致している場合には(ステップSB-6、Yes)、次に、基本パターン形状作成部102aは、演算部102dの処理により、四角形ABDCの角度、すなわち網点ドットの角度を計算する(ステップSB-8)。具体的には、演算部102dは、四角形ABDCを構成する線分AB(線分BD)と線分CD(線分AC)とがそれぞれx軸との間で形成する角度を計算し、さらにこれらの角度の平均値を網点ドットの角度として算出する。
 そして、基本パターン形状作成部102aは、演算部102dの処理により、他のパラメータa,b,c,dの組み合わせが存在するか否かを判断して(ステップSB-9)、他のパラメータが存在する場合には(ステップSB-9、Yes)、ステップSB-2に戻る。一方、他のパラメータの組み合わせが無い場合には(ステップSB-9、No)、求めた全てのパラメータについて、各パラメータで形成される各四角形ABDCの角度をステップSB-1において指定された網点ドットの角度(網角度)とを比較して、指定された角度に最も近い網点ドットの角度を構成するパラメータa,b,c,dを選択する(ステップSB-10)。すなわち、基本パターン形状作成部102aは、演算部102dの処理により、各パラメータ毎に比較検討を行ない、指定された角度に最も近い網点ドットの角度を構成するパラメータa,b,c,dを選択する。
 そして、基本パターン形状作成部102aは、演算部102dの処理により、選択したパラメータa,b,c,dにより構成される四角形ABDCを2つ隣接させることにより、基本パターンを作成する(ステップSB-11)。
 そして、基本パターン形状作成部102aは、演算部102dの処理により、作成した基本パターンを、基本パターンファイル106aに出力し保存する(ステップSB-12)。これにて、基本パターン形状の作成処理が終了する。
[点灯順序決定処理]
 点灯順序決定部102eの処理による点灯順序決定処理(上述のステップSA-4に対応する処理)の詳細について図10を参照して説明する。図10は、本実施の形態における本二値化用パターン作成装置100の点灯順序決定処理の一例を示すフローチャートである。
 二値化用パターンにおいては、基本パターンを構成する各ピクセル毎に、画素の階調に応じて色材(インクやトナー等)を定着させる順序(点灯順序)がそれぞれ設定される。点灯順序決定部102eは、上述した図5に示すような、基本パターンを構成するピクセルの点灯順序を決定する手段であり、ピクセルと基本パターン中の特定点(例えば、基本パターンの重心や中心)との距離に基づいて、各ピクセルの点灯順序を決定する。
 すなわち、点灯順序決定部102eは、基本パターンの最初の四角形を構成するピクセルのうち、当該最初の四角形の特定点(例えば、四角形の重心や中心)に近いピクセルから順に、ピクセルが点灯するよう点灯順序を決定し、最初の四角形の点灯順序に連続して、基本パターンの次の四角形を構成するピクセルのうち、当該次の四角形の特定点に遠いピクセルから順に、ピクセルが点灯するよう点灯順序を決定する。
 ここで、点灯順序決定部102eは、点灯順序を設定するに際して、点灯順序を、点灯ピクセルと非点灯ピクセルとの境界輪郭の長さ(周囲長)が最小になるように決定してもよい。これにより、ドットゲイン(ドットの滲み)をより軽減することができる。具体的には、点灯順序決定部102eは、基本パターンにおける特定点から、この基本パターンを構成する各ピクセルまでの距離を、以下の式(1)を用いて重み係数Wによって表わし、基本パターンの最初の四角形については、この重みWが最も大きいピクセルから順番に点灯順序を決定し、基本パターンの次の四角形については、重みWが最も小さいピクセルから順番に点灯順序を決定してもよい。
 W=p-q×cosα-r×cosβ ・・・(1)
 ここで、αおよびβは、基本パターン形状を形成するピクセルの座標を(x,y)で示すとともに、基本パターン形状の中心もしくは重心となる点(特定点)の座標を(PXDOT,PYDOT)で示す場合に、α=x-PXDOT,β=y-PYDOTとして表される値である。
 また、ここで、p,q,rはそれぞれ適宜設定される値(係数)であって、負の数でない実数である。qおよびrは、形成される網点の形状を規定するための係数であって、qが大きくなると形成される網点はx方向に長い楕円形状を有するようになり、rが大きくなると形成される網点はy方向に長い楕円形状を有するようになる。そして、q=rの場合には網点の形状は円形を有する。pは、式(1)の演算結果が負にならないように適宜設定される数であって、算出した重み(W)の取り扱い(例えば、ソーティング等)を容易にするためのものである。ここで、式(1)を扁平率(E)を用いて記述すると以下の式(2)になる。
 W=p-E×cosα-(p-E)×cosβ ・・・(2)
 Eは形成される網点の形状を規定するための係数(扁平率)であって、0.0<E≦pの条件を満たす浮動小数である。なお、p=2.0,E=1.0の時、網点ドットは円形状となり、扁平率(E)の値が0.0もしくは2.0に近づくほど、網点ドットは細長い形状となる。
 このように、点灯順序決定部102eは、点灯順序を、基本パターン中におけるピクセルと特定点との距離に応じて、ピクセル毎に演算によって設定された重み(W)に基づいて決定するように構成してもよい。以下、各ピクセルと特定点との距離を、重み(W)に基づいて求める場合の点灯順序決定処理の詳細について、図10を参照して説明する。
 すなわち、図10に示すように、点灯順序決定部102eは、まず、基本パターン形状作成部102aによって作成され基本パターンファイル106aに格納された基本パターン形状について、網点の角度(網角度)、網点ドット間距離、重み付けの各係数(p,q,r)、基本パターン形状の各四角形の中心もしくは重心となる点を特定点(PXDOT,PYDOT)として決定する(ステップSC-1)。なお、四角形の特定点(PXDOT、PYDOT)は、予め利用者(オペレータ)が指定してもよく、点灯順序決定部102eにより算出してもよい。また、重み付けの各係数(p,q,r)は、利用者に設定させるよう制御してもよい。
 ここで、特定点を決定するに際して、特定点が四角形のピクセルの中心に位置する場合には、この特定点の座標を自然数で示すものとし、特定点が隣合うピクセル間境界線上に位置する場合には、自然数±0.5として示してもよい。また、ここで、点灯順序決定部102eは、基本パターンを隣り合って並べた時の特定点間の距離を算出により求めてもよい。
 次に、点灯順序決定部102eは、基本パターン形状作成部102aによって作成され基本パターンファイル106aに格納された基本パターンを取得し(ステップSC-2)、基本パターンの最初の四角形ABDCの各ピクセルについて、特定点からの副走査方向(x軸方向)および主走査方向(y軸方向)の距離をそれぞれ求める。
 そして、点灯順序決定部102eは、それらの回転前の各ピクセルの位置を記憶しつつ、この基本パターンの最初の四角形をアフィン変換を用いて、その特定点(中心点)まわりに-θ(θは予め設定した網点ドットの角度(網角度):例えば45度)回転させて、ほぼ矩形形状に戻す(ステップSC-3)。
 そして、点灯順序決定部102eは、-θ回転させた基本パターンの最初の四角形の各ピクセルについて、それぞれ重み(W)を算出する(ステップSC-4)。
 そして、点灯順序決定部102eは、この重み(W)に基づいて、基本パターンを構成する最初の四角形の点灯順序を設定する(ステップSC-5)。
 すなわち、点灯順序決定部102eは、-θ回転させた最初の四角形を、中心点(特定点)を含む水平線を境に上下に2分割し、先ず、基本パターンを構成する最初の四角形の上半分の各ピクセル((基本パターンのピクセル数n÷4+1)個分のピクセル)に対して、左上のピクセルから水平右側方向に重み(W)の検索を順次行なう。そして、この水平方向の各ピクセルについての重み(W)の検索を、最初の四角形の右下のピクセルに到達するまで垂直下方向に1行づつ移動しながら繰り返し行なう。その後、点灯順序決定部102eは、最初の四角形の上半分を構成する全てのピクセルにおいて、最も重み(W)の大きいピクセルに点灯順番「1」を設定する。
 そして、点灯順序決定部102eは、基本パターンを構成する最初の四角形の下半分の各ピクセル((基本パターンのピクセル数n÷4+1)個分のピクセル)に対して、右下のピクセルから水平左側方向に重み(W)の検索を順次行なう。そして、この水平方向の各ピクセルについての重み(W)の検索を、最初の四角形の左上のピクセルに到達するまで垂直上方向に1行づつ移動しながら繰り返し行なう。その後、点灯順序決定部102eは、最初の四角形の下半分を構成する全てのピクセルにおいて、最も重み(W)の大きいピクセルに点灯順番「2」を設定する。
 そして、以下、点灯順序決定部102eは、既に点灯順序を決定したピクセルを除外しながら、基本パターンを構成する最初の四角形の上半分および下半分の各ピクセルについて交互に、重み(W)の大きいものから順番に点灯順番を設定する。なお、点灯順序の設定に際して、2つ以上のピクセルにおいて重み(W)の値が同じであった場合には、点灯順序決定部102eは、より早くアクセスしたピクセルから先に点灯順序を設定する。
 次に、点灯順序決定部102eは、基本パターンの最初の四角形(-θ回転させる前の基本パターン)に、-θ回転させた最初の四角形に設定した点灯順序を対応させることにより(ステップSC-6)、基本パターンの最初の四角形に点灯順序を設定する(ステップSC-7)。
 そして、点灯順序決定部102eは、基本パターンを構成する最初の四角形における全てのピクセルに点灯順序を設定したか否かを判断して(ステップSC-8)、点灯順序を設定していないピクセルがある場合には(ステップSC-8、No)、ステップSC-4に戻る。
 一方、全てのピクセルに点灯順序を設定した場合には(ステップSC-8、Yes)、基本パターンを構成する、最初の四角形に隣接する次の四角形の各ピクセルについて点灯順序を決定する(ステップSC-9)。ここで、基本パターンを構成する次の四角形の点灯順序については、上述のステップSC-1~8の処理と同様に、最初の四角形の最後の番号に連続させて、重み(W)の小さいものから順番に点灯順序を設定してもよいが、好適には、基本パターンの次の四角形の点灯順序を、I=n-I+1の式により決定してもよい。ここで、Iは、次の四角形の点灯順序の番号、nは、基本パターンのピクセル数、Iは、最初の四角形の点灯順序の番号である。これにより、点灯順序決定処理を迅速に行うことができる。以上で、点灯順序決定処理を終了する。
[矩形状パターン作成処理]
 矩形状パターン作成部102fの処理による矩形状パターン作成処理(上述のステップSA-5に対応する処理)の詳細について図11および図12を参照して説明する。
 矩形状パターン作成部102fは、基本パターンに基づいて、二値化用パターンとして機能する矩形状パターンを作成するものであり、画像の主走査方向および副走査方向に、前述した基本パターンを、基本パターンを構成する最初の四角形の四方に隣接して次の四角形が配置されるよう、繰り返し配列して形成した連続パターンから、特定サイズの矩形状パターンを二値化用パターンとして切り出して作成するようになっている。
 矩形状パターンとして形成する理由は、一般に、多値画像の二値化に際しては、CPUが二値化用パターンをRAMに展開する際には、正方形あるいは長方形の矩形状に整形した二値化用パターンをRAM上に展開するからである。ここで、図11は、矩形状パターンの一例を示す図であり、矩形状パターン作成部102fは、この図11に示すような特定サイズの矩形状パターンを二値化用パターンとして切り出して作成する。
 すなわち、矩形状パターン作成部102fは、矩形状に形成した二値化用パターン(以下、矩形状パターンともいう。)を画像の主走査方向および副走査方向に繰り返し配置した時に、同一形状の網点ドットが同一角度で且つ等間隔に連続して配置されるように、特定サイズの矩形状パターンを形成する。
 矩形状パターン作成部102fによる矩形状パターンの作成手法を、以下に、図12を参照して説明する。ここで、図12は、本実施の形態における二値化用パターン作成装置100の矩形状パターン作成処理の一例を示すフローチャートである。
 図12に示すように、矩形状パターン作成部102fは、点灯順序決定部102eによって点灯順序が付与された基本パターンを、基本パターンを構成する最初の四角形の四方に隣接して次の四角形が配置されるよう、主走査方向および副走査方向に繰り返し配設する(ステップSD-1)。
 そして、矩形状パターン作成部102fは、矩形状パターンを画像の主走査方向および副走査方向に繰り返し配置した時に、同一形状の網点ドットが同一角度で且つ等間隔に連続して配置されるように、矩形状パターンの副走査方向のサイズsize(X)および主走査方向のサイズsize(Y)を算出する(ステップSD-2)。なお、具体的計算方法は、特許文献1を参照してもよい。
 そして、矩形状パターン作成部102fは、任意の始点を決定して(ステップSD-3)、この始点から副走査方向にsize(X)且つ主走査方向にsize(Y)の矩形状部分を切り出すことにより矩形状パターンを作成し、作成した矩形状パターンを二値化用パターンファイル106cに格納する(ステップSD-4)。以上で、矩形状パターン作成処理が終了する。
 以上で、本実施の形態における本二値化用パターン作成装置100の処理の説明を終える。
[印刷装置]
 印刷装置114は、上述の如く形成された二値化用パターンに基づいて媒体(用紙等)上に画像を形成するものであって、例えばインクジェットプリンタやレーザプリンタ等のプリンタ等によって実現される。そして、印刷装置114においては、例えば、インクジェット機構やレーザダイオードユニットおよび感光体ドラム等が媒体上に画像を形成する画像形成部114bとして機能するようになっている。
 ここで、印刷装置114は、印刷装置114内に備えられたプロセッサ等が、二値化用パターンに基づいて二値化を行なう二値化処理部114aとして機能してもよく、また、印刷システムにおいて、印刷装置114(プリンタ)が接続されるコンピュータ(例えば、二値化用パターン作成装置100等)がこの二値化処理部114aとして機能してもよく、本発明の趣旨を逸脱しない範囲で種々変形させることができる。
 これらの印刷装置114もしくは印刷システムにおいては、二値化処理部114aにおいて、上述の如く作成された二値化用パターンに基づいて多値画像の二値化を行なうことにより、媒体上における色材のON/OFFを決定する。そして、画像形成部114bが、この二値化処理の結果に基づいて、媒体上に色材を乗せることにより画像が形成される。以下、二値化処理部114aを印刷装置114に備えた実施の形態について図13を参照して説明する。ここで、図13は、本実施の形態における印刷装置114の処理の一例を示す図である。
 図13に示すように、二値化用パターン作成装置100は、上述の実施の形態の如く作成され二値化用パターンファイル106cに格納された二値化用パターンを、多値画素ファイル106bに記憶された多値画像情報とともに、入出力制御インターフェース部108を制御して印刷装置114に送信する。
 そして、二値化用パターンと多値画像情報を受信すると(ステップSE-1)、印刷装置114は、二値化処理部114aの処理により、受信した二値化用パターンに基づいて、多値画像の二値化を行う(ステップSE-2)。具体的には、二値化処理部114aは、比較器により多値画像の画素値を、二値化用パターンに設定された閾値と比較して二値化を行う。例えば、二値化処理部114aは、二値化用パターンのドットの階調数と、画素値を比較して、対応する網点ドットについて何番目まで点灯させるか決定する。
 そして、印刷装置114は、画像形成部114bの処理により、二値化処理部114aによって行われた二値化結果に基づいて、連続的な網点ドットを生成することによって媒体上に画像を形成する(ステップSE-3)。以上で、本実施の形態における本印刷装置114の説明を終える。
[他の実施の形態]
 さて、これまで本発明の実施の形態について説明したが、本発明は、上述した実施の形態以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施の形態にて実施されてよく、各種処理において適宜、特許文献1等の従来技術を参照して実施してもよいものである。
 また、上述の実施の形態では、二値化用パターン作成装置100がスタンドアローンの形態で処理を行う場合を一例に説明したが、二値化用パターン作成装置100とは別筐体で構成されるクライアント端末からの要求に応じて処理を行い、その処理結果を当該クライアント端末に返却するように構成してもよい。
 また、例えば、上述した実施形態においては、基本パターンを-θ回転させ、この回転させた基本パターンに対して点灯順序を設定しているが、それに限定されるものではなく、基本パターンを回転させることなく直接点灯順序を設定してもよい。
 また、上述した実施形態においては、点灯順序決定部102eは、基本パターンを、中心点(特定点)を含む水平線を境に上下に2分割して、これらの上半分のピクセルと下半分のピクセルとに対して、交互に重み(W)の大きいものから順番に点灯順序を設定しているが、これに限定されるものではなく、例えば、基本パターンを特定点を含む鉛直線を境に左右に2分割して、これらの右半分のピクセルと左半分のピクセルとに対して、交互に重み(W)の大きいものから順番に点灯順序を設定してもよい。
 また、実施の形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。
 このほか、上記文献中や図面中で示した処理手順、制御手順、具体的名称、各処理の登録データやパラメータを含む情報、データベース構成については、特記する場合を除いて任意に変更することができる。
 また、二値化用パターン作成装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。
 例えば、二値化用パターン作成装置100の各装置が備える処理機能、特に制御部102にて行われる各処理機能については、その全部または任意の一部を、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて実現することができ、あるいは、ワイヤードロジックによるハードウェアとして実現することも可能である。尚、プログラムは、後述する記録媒体に記録されており、必要に応じて二値化用パターン作成装置100に機械的に読み取られる。すなわち、ROMまたはHDなどの記憶部106などは、OS(Operating System)として協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して制御部を構成する。
 また、このコンピュータプログラムは、二値化用パターン作成装置100に対して任意のネットワーク300を介して接続されたアプリケーションプログラムサーバに記憶されていてもよく、必要に応じてその全部または一部をダウンロードすることも可能である。
 また、本発明に係るプログラムを、コンピュータ読み取り可能な記録媒体に格納することもできる。ここで、この「記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD等の任意の「可搬用の物理媒体」、あるいは、LAN、WAN、インターネットに代表されるネットワークを介してプログラムを送信する場合の通信回線や搬送波のように、短期にプログラムを保持する「通信媒体」を含むものとする。
 また、「プログラム」とは、任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものをも含む。なお、実施の形態に示した各装置において記録媒体を読み取るための具体的な構成、読み取り手順、あるいは、読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
 記憶部106に格納される各種のデータベース等(基本パターンファイル106a~二値化用パターンファイル106c)は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、光ディスク等のストレージ手段であり、各種処理や各種のプログラムやテーブルやデータベース等を格納する。
 また、二値化用パターン作成装置100は、既知のパーソナルコンピュータ、ワークステーション等の情報処理装置を接続し、該情報処理装置に本発明の方法を実現させるソフトウェア(プログラム、データ等を含む。)を実装することにより実現してもよい。
 更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じて、または、機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
 以上詳述に説明したように、本発明によれば、インキの滲みによる階調潰れを防止するようインキ定着面積の制御を行うことによって高精細な印刷に耐えうる、特にインキ50%での再現性を向上させる網点を作成/出力することができる、二値化用パターン作成方法、および、印刷装置を提供することができる。

Claims (4)

  1.  多値画像の二値化に用いられる二値化用パターンの作成方法であって、
     上記二値化用パターンの基本パターンの形状を演算により作成する基本パターン形状作成ステップと、
     上記基本パターンを構成するピクセルの点灯順序を決定する点灯順序決定ステップと、
     上記基本パターンに基づいて、上記二値化用パターンとして機能する矩形状パターンを作成する矩形状パターン作成ステップと、
     を含み、
     上記基本パターン形状作成ステップは、
     上記二値化用パターンの角度を指定する角度指定ステップと、
     上記基本パターンを構成するピクセル数を指定するピクセル数指定ステップと、
     上記角度指定ステップにおいて指定した上記角度と上記ピクセル数指定ステップにおいて指定した上記ピクセル数とに基づいて、上記基本パターン形状を演算により作成する演算ステップと、
     を含み、
     上記演算ステップは、
     上記ピクセル数指定ステップにおいて指定された上記ピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を作成し、上記作成された四角形のうち、その角度が上記角度指定ステップにおいて指定された上記二値化用パターンの上記角度に近い角度を有するものを選択し、選択した当該四角形を2つ隣接させることにより、上記基本パターンを作成し、
     上記点灯順序決定ステップは、
     上記基本パターンの最初の上記四角形を構成するピクセルのうち、当該最初の上記四角形の特定点に近いピクセルから順に、当該ピクセルが点灯するよう上記点灯順序を決定し、
     上記基本パターンの次の上記四角形を構成するピクセルのうち、上記最初の上記四角形の上記点灯順序に連続して、上記次の上記四角形の上記特定点に遠いピクセルから順に、当該ピクセルが点灯するよう上記点灯順序を決定すること、
     を特徴とする二値化用パターン作成方法。
  2.  請求項1に記載の二値化用パターン作成方法において、
     上記点灯順序決定ステップは、
     上記次の上記四角形の上記点灯順序を、I=n-I+1の式により決定すること(ここで、Iは、上記次の上記四角形の上記点灯順序の番号、nは、上記ピクセル数指定ステップにおいて指定された上記ピクセル数、Iは、上記最初の上記四角形の上記点灯順序の番号)、
     を特徴とする二値化用パターン作成方法。
  3.  二値化用パターンに基づいて、多値画像の二値化を行う二値化処理手段と、
     上記二値化処理手段によって行われた二値化結果に基づいて、媒体上に画像を形成する画像形成手段と、を備えてなる印刷装置であって、
     基本パターンは、
     当該基本パターンのピクセル数n=2(ad+bc)の条件を満たす任意のパラメータa,b,c,d(ただし、a,b,c,dは整数)によって指定される、点A(c,1),点B(a+c,b+1),点C(0,d+1),点D(a,b+d+1)の4点からなる四角形を2つ隣接させて構成されており、
     上記二値化用パターンが、
     上記基本パターンに基づいて作成され、上記多値画像の階調に応じて、
     上記基本パターンの最初の上記四角形を構成するピクセルのうち、当該最初の上記四角形の特定点に近いピクセルから順に、当該ピクセルを点灯させ、
     上記最初の上記四角形の点灯に連続して、上記基本パターンの次の上記四角形を構成するピクセルのうち、上記次の上記四角形の上記特定点に遠いピクセルから順に、当該ピクセルを点灯させることによって、
     連続的な網点ドットを生成することを特徴とする印刷装置。
  4.  請求項3に記載の印刷装置において、
     上記次の上記四角形を構成するピクセルを、I=n-I+1の式に基づく順番で点灯させること(ここで、Iは、上記次の上記四角形の上記点灯順序の番号、nは、上記基本パターンの上記ピクセル数、Iは、上記最初の上記四角形の上記点灯順序の番号)、
     を特徴とする印刷装置。
PCT/JP2008/060180 2008-01-18 2008-06-03 二値化用パターン作成方法、および、印刷装置 WO2009090764A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112008003591T DE112008003591T5 (de) 2008-01-18 2008-06-03 Digitalisierungseinsatzmuster-Erzeugungsverfahren und Druckvorrichtung
JP2009528937A JP4851593B2 (ja) 2008-01-18 2008-06-03 二値化用パターン作成方法、および、印刷装置
US12/491,601 US8493626B2 (en) 2008-01-18 2009-06-25 Binarization-use-pattern generating method and printing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009605 2008-01-18
JP2008-009605 2008-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/491,601 Continuation US8493626B2 (en) 2008-01-18 2009-06-25 Binarization-use-pattern generating method and printing apparatus

Publications (1)

Publication Number Publication Date
WO2009090764A1 true WO2009090764A1 (ja) 2009-07-23

Family

ID=40885172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060180 WO2009090764A1 (ja) 2008-01-18 2008-06-03 二値化用パターン作成方法、および、印刷装置

Country Status (4)

Country Link
US (1) US8493626B2 (ja)
JP (1) JP4851593B2 (ja)
DE (1) DE112008003591T5 (ja)
WO (1) WO2009090764A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832350B2 (ja) * 2012-03-28 2015-12-16 株式会社Screenホールディングス 閾値マトリクス生成方法、画像データ生成方法、画像データ生成装置、画像記録装置および閾値マトリクス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107473A (ja) * 1995-10-11 1997-04-22 Oki Data:Kk ディザパターン生成方法及び生成装置
JP2003163806A (ja) * 2000-12-08 2003-06-06 Fujitsu Ltd 二値化用パターン作成方法,二値化用パターンおよび二値化用パターン作成プログラム
JP2005167492A (ja) * 2003-12-01 2005-06-23 Fujitsu Ltd 印刷方法,印刷システム,印刷装置,2値化ディザマトリクスパターン,印刷プログラムおよび同プログラムを記録したコンピュータ読取可能な記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978201B2 (ja) 1990-04-13 1999-11-15 新日本製鐵株式会社 変圧器兼用電動機または発電機
US7050638B2 (en) * 2000-12-08 2006-05-23 Fujitsu Limited Binary-coding pattern creating method and apparatus, binary-coding pattern, and computer-readable recording medium in which binary-coding pattern creating program is recorded

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107473A (ja) * 1995-10-11 1997-04-22 Oki Data:Kk ディザパターン生成方法及び生成装置
JP2003163806A (ja) * 2000-12-08 2003-06-06 Fujitsu Ltd 二値化用パターン作成方法,二値化用パターンおよび二値化用パターン作成プログラム
JP2005167492A (ja) * 2003-12-01 2005-06-23 Fujitsu Ltd 印刷方法,印刷システム,印刷装置,2値化ディザマトリクスパターン,印刷プログラムおよび同プログラムを記録したコンピュータ読取可能な記録媒体

Also Published As

Publication number Publication date
US20090262399A1 (en) 2009-10-22
DE112008003591T5 (de) 2010-11-25
JP4851593B2 (ja) 2012-01-11
JPWO2009090764A1 (ja) 2011-05-26
US8493626B2 (en) 2013-07-23

Similar Documents

Publication Publication Date Title
JP4241632B2 (ja) 色版作成用閾値マトリクスの作成方法、カラー画像の再現方法、カラー画像分版作成装置及び閾値マトリクス
JP2007166303A (ja) 画像処理装置、画像処理方法、プログラム、及び記憶媒体
JP3429300B2 (ja) 中間調画像生成に用いるためのスクリーン装置
US9066037B2 (en) Threshold matrix generation device and method for generating threshold matrix for generating threshold matrix of predetermined size used for halftone processing of multitone image data using dithering method
US8441688B2 (en) Image processing apparatus and method thereof
KR20050056866A (ko) 화상 처리 방법, 화상 처리 장치 및 프로그램
JP7005314B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US8482803B2 (en) System and method for halftoning using a parametrically controlled hexagonal halftone dot shape threshold function
JP2009253472A (ja) 画像処理装置およびその方法
JP2006115500A (ja) 高速低メモリ紙色抑制アルゴリズム
US6285800B1 (en) Apparatus and method for processing image
JP4851593B2 (ja) 二値化用パターン作成方法、および、印刷装置
KR101287452B1 (ko) 전자사진방식 화상형성장치 및 그의 하프토닝 보정 방법
JP4047097B2 (ja) 画像形成装置、画像形成方法およびその方法をコンピュータに実行させる画像形成プログラム
JP2019146037A (ja) 画像処理装置とその制御方法、及びプログラム
JP2010109494A (ja) 画像処理装置および画像処理方法
US8432576B2 (en) Threshold matrix generating device and threshold matrix generating method
JP2003198862A (ja) ハーフトーン・スクリーンの作成方法
JP4000255B2 (ja) 二値化用パターン作成方法,印刷装置および二値化用パターン作成プログラム
JP2010041698A (ja) 地紋画像生成プログラム及び地紋画像生成装置
JP2019149786A (ja) 画像処理装置、画像形成装置、及びプログラム
JP2006033643A (ja) 画像処理装置、画像形成装置、画像処理方法及びコンピュータプログラム
JP2006261764A (ja) 画像処理方法および画像処理装置並びに画像形成装置
JP2020136698A (ja) 画像形成装置、濃度制御方法およびプログラム、並びに、生成方法
JP2009081835A (ja) 地紋画像生成プログラム及び地紋画像生成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009528937

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764993

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008003591

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08764993

Country of ref document: EP

Kind code of ref document: A1