WO2009088017A1 - 流量制御装置 - Google Patents

流量制御装置 Download PDF

Info

Publication number
WO2009088017A1
WO2009088017A1 PCT/JP2009/050080 JP2009050080W WO2009088017A1 WO 2009088017 A1 WO2009088017 A1 WO 2009088017A1 JP 2009050080 W JP2009050080 W JP 2009050080W WO 2009088017 A1 WO2009088017 A1 WO 2009088017A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
fuel gas
control device
calculation unit
sensor
Prior art date
Application number
PCT/JP2009/050080
Other languages
English (en)
French (fr)
Inventor
Junichi Isetani
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to US12/810,362 priority Critical patent/US8640731B2/en
Priority to EP09700187.9A priority patent/EP2241810B1/en
Priority to CN200980102101.7A priority patent/CN101910727B/zh
Publication of WO2009088017A1 publication Critical patent/WO2009088017A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Definitions

  • the fuel gas When fuel gas is burned using a burner, the fuel gas is mixed with air prior to supply to the burner and supplied to the burner as a mixed gas of these fuel gas and air.
  • the fuel gas complete combustion
  • Such A / F control measures the supply amount (mass flow rate) of fuel gas and air in the mixed gas, respectively, and adjusts the supply amount of gas and / or the supply amount of air based on these measurement results.
  • the air-fuel ratio A / F is maintained at a constant ideal air-fuel ratio (see, for example, Patent Document 1).
  • a thermal mass flow meter is used to measure the supply amount of gas and air.
  • the object of the present invention is to control the flow rate of the fuel gas based on the calorific value of the fuel gas regardless of the difference or change in the composition of the fuel gas, for example, to stably supply the fuel gas with a constant calorific value.
  • An object of the present invention is to provide a flow control device capable of
  • This flow control device is arranged in the fuel gas supply path, and is arranged in the supply path, the flow rate adjusting valve capable of adjusting the flow rate of the fuel gas, and the fuel.
  • a thermal mass flow sensor for measuring the mass flow rate of the gas, and a heat flow rate of the fuel gas defined by the product of the volume flow rate of the fuel gas and the calorific value per unit volume of the fuel gas are obtained from the thermal mass flow sensor.
  • the fuel gas is a hydrocarbon-based combustible gas containing methane, ethane, propane, butane, etc., such as city gas and natural gas.
  • the flow control device of the present invention includes another calculation unit that calculates a calculated calorific value per unit volume of the fuel gas, and a ratio of the calculated calorific value to the reference calorific value per unit volume of the fuel gas in the reference state. And a computing unit that computes.
  • another calculation unit calculates the calculated heat generation amount based on the output of the thermal sensor when the flow of the fuel gas is stopped, or another calculation unit for calculating the calculated heat generation amount.
  • the thermal sensor is included.
  • another calculation unit obtains the output from the thermal sensor at each stage when the driving condition of the thermal sensor is changed in two stages, and calculates the calculated calorific value based on these outputs. May be.
  • the flow control device of the present invention obtains a calorific flow defined by the product of the volume flow of fuel gas and the calorific value per unit volume of the fuel gas based on the output of the thermal mass flow sensor, and the obtained calorific flow is obtained. Since the opening degree of the flow rate adjustment valve is controlled so as to match the control target value, the supply amount of the fuel gas has a constant heat flow rate corresponding to the control target value.
  • the flow control device of the present invention Since the calorific value flow of the fuel gas is controlled by paying attention to the calorific value of the gas, the fuel gas can be stably and effectively supplied with a constant calorific value.
  • the heat flow rate of the fuel gas can be easily obtained from the output of the thermal mass flow sensor, and the load of the flow control device of the present invention can be determined when performing the combustion control of the fuel gas. Is alleviated.
  • the flow control device of the present invention can easily detect the change in the calorific value of the fuel gas, and can also detect the change in the composition of the fuel gas. It is.
  • the valve 2 includes a valve casing 2a.
  • the valve casing 2a is attached to the outer peripheral surface of the pipe member 11 in the vicinity of the outlet 11o of the pipe member 11.
  • the valve casing 2 a has a valve passage 2 b defined therein, and this valve passage 2 b forms a part of the internal flow path of the pipe member 11.
  • a valve body 2c is disposed in the valve casing 2a, and the valve body 2c is operated by the solenoid mechanism 12 to adjust the opening of the valve passage 2b, that is, the valve 2.
  • the solenoid mechanism 12 is attached to the outside of the valve casing 2a.
  • the flow control device 21 of the present invention has been developed by paying attention to the fact that the output (mass flow rate) of the thermal mass flow sensor 3 is proportional to the heat flow rate of the fuel gas.
  • the sensor 3 used for detecting the mass flow rate Fm of the fuel gas includes, for example, a heater for heating the fuel gas (fluid) near the detection surface and two temperatures for detecting the temperature distribution of the heated fuel gas.
  • the temperature difference detected by these temperature sensors is detected and output as a mass flow rate Fm.
  • the temperature difference is caused by the temperature distribution of the fluid in the vicinity of the sensor being changed by the flow of the fluid.
  • the temperature distribution varies depending on the thermal diffusivity ⁇ of the fuel gas and the flow rate (volume flow rate Fv) of the fuel gas.
  • the thermal energy amount of the fuel gas can be expressed as a calorific value Qv per unit volume of the fuel gas, and the calorific value Qv varies depending on the composition (type) of the fuel gas.
  • the hydrocarbon fuel gas used as a general fuel gas and the calorific value Qv of these fuel gas are shown in Table 1 below.
  • the unit volume refers to the volume when the fuel gas is in a reference state (for example, 0 ° C.).
  • the temperature distribution of the fuel gas (fluid) in the vicinity of the sensor 3 is the fuel gas. It can also be said that it varies depending on the volume flow rate Fv of (fluid) and the calorific value Qv.
  • the heat quantity flow rate Fc is defined as the product of the calorific value Qv of the fuel gas and the flow velocity (volume flow rate) Fv
  • the present inventor has determined that the heat quantity flow rate Fc and the output of the mass sensor 3 (mass flow rate Fm) And have an integral relationship as shown in FIG.
  • a control target value Fo is given to the control arithmetic unit 5 in advance, and this control target value Fo is used for directly managing the amount of heat to be given to the combustion equipment, specifically the burner. It is a calorific value flow corresponding to the calorific value.
  • the control arithmetic unit 5 obtains a deviation between the control target value Fo and the heat quantity flow Fc supplied from the calculation unit 6, and controls the opening degree of the valve 2 via the drive circuit 4 so that this deviation becomes zero. .
  • the flow rate control device 21 controls the flow rate (heat generation amount Qv) of the fuel gas so as to coincide with the control target value Fo, and the desired heat amount flow rate Fc using the fuel gas as a burner. Can be supplied stably.
  • the conventional general flow rate control device controls the mass flow rate of the fuel gas based on the output (mass flow rate Fm) of the sensor 3.
  • the flow control device 21 of the present invention pays attention to the calorific value Qv of the fuel gas, obtains the calorific flow Fc based on the output of the sensor 3, and directly controls the calorific flow (calorific value) of the fuel gas itself. Therefore, even if the mass flow rate and / or composition of the fuel gas is changed, the flow rate control device 21 of the present invention controls the opening degree of the valve 2 to thereby control the heat flow rate Fc of the fuel gas supplied to the burner 26. (Heat generation amount) can be made constant.
  • the flow rate control device 21 of the present invention determines whether the factor that has changed the output of the sensor 3 is a change in the mass flow rate of the fuel gas or a change in the composition of the fuel gas. Therefore, the flow rate control device 21 can stably execute the above-described flow rate control of the fuel gas.
  • a / F and O 2 / F also change, so in order to completely burn the fuel gas, that is, the mixed gas, the composition of the fuel gas in the mixed gas and It is necessary to adjust the flow rate of air and / or oxygen in the mixed gas according to the flow rate.
  • the flow control device 21 described above is arranged in the supply path 1, and the flow control devices 22 and 23 similar to the flow control device 21 are also arranged in the supply paths 9 and 10, respectively. These flow control devices 22 and 23 are used to control the flow rates of air and oxygen, respectively. Therefore, the supply system of FIG. 6 produces a mixed gas composed of fuel gas, air and oxygen, and supplies the produced mixed gas to the burner 26.
  • the calculation unit 7 calculates the calorific value Qv per unit volume of the fuel gas based on the output of the sensor 3 when the flow of the fuel gas is stopped. Therefore, before the calculation unit 7 calculates the heat generation amount Qv, the valve 2 is closed and the flow of the fuel gas is stopped. In this state, the calculation unit 7 receives the output from the sensor 3 and obtains the mass of the fuel gas, that is, the density ⁇ based on the output. Specifically, as is clear from the above-described equation (3), since the density ⁇ and the calorific value Qv of the fuel gas are in a proportional relationship, based on this proportional relationship, the calculation unit 7 is based on the density ⁇ and generates the calorific value Qv. Can be calculated.
  • the calculation unit 8 calculates the ratio between the heat generation amount Qv calculated by the calculation unit 7 and the known heat generation amount Qs, that is, Qv / Qs.
  • the calorific value Qs indicates the calorific value per unit volume when the fuel gas is in a reference state (for example, 0 ° C.).
  • the ratio Qv / Qs obtained by the flow control device 21 is supplied to the flow control devices 22 and 23, and these flow control devices 22 and 23 control the flow rates of air and oxygen in consideration of the ratio Qv / Qs. .
  • the ratio of air and oxygen contained in the mixed gas supplied to the burner 26 is optimized, and the mixed gas, ie, fuel Gas can be completely burned.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the flow rate control devices 22 and 23 use air and oxygen contained in the mixed gas based on the calorific flow rate Fc calculated by the flow rate control device 21 instead of the ratio Qv / Qs. It is also possible to control the ratio.
  • the flow rate control device 21 is formed in the pipe member 11 and is a thermal sensor disposed in the reservoir chamber separately from the reservoir chamber in which the fuel gas is stored without causing the fuel gas to flow.
  • 3a (see FIG. 1) can be further included.
  • the calculation unit 7 described above can calculate the calorific value Qv per unit volume of the fuel gas based on the output of the sensor 3a while the fuel gas is flowing.
  • the flow control device switches the heater temperature control parameter (difference between the fuel gas temperature and the heater temperature), which is the driving condition of the sensor 3, in two steps instead of the calculation unit 7.
  • a possible parameter control unit 30 and a calculation unit 32 that calculates a calorific value Qv based on the output from the sensor 3 under these driving conditions can be included.
  • the heater when using a thermal mass flow sensor of a type that obtains the mass flow rate Fm from the heater driving power when the heater temperature is kept constant, the heater The calorific value Qv may be calculated based on the output from the sensor 3 at each stage when the temperature is changed in two stages.
  • the calculation unit 32 calculates the thermal conductivity ⁇ of the fuel gas based on the difference in the output of the sensor 3, and calculates the calorific value Qv according to the proportional relationship between the thermal conductivity ⁇ and the density ⁇ of the fuel gas. (Refer to equation (3) above).
  • the flow rate control device of the present invention can also output the heat quantity flow rate Fc obtained by the calculation unit 6 and the output of the sensor 3 (mass flow rate Fm) in parallel.
  • the flow control device of the present invention may be capable of selecting either the flow control of the fuel gas based on the heat flow rate Fc or the flow control of the fuel gas based on the mass flow rate.
  • the flow control device of the present invention may appropriately include means for performing a known temperature correction function with respect to the temperature of the fuel gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 本発明の流量制御装置は、流量調整弁(2)を備えた燃料ガスの供給経路(11)と、この供給経路(11)に配置された熱式質量流量センサ(3)と、燃料ガスの体積流量(Fv)と燃料ガスの単位体積当たりの発熱量(Qv)との積で定義される燃料ガスの熱量流量(Fc)を熱式センサ(3)からの出力に基づいて算出する算出部(6)と、熱量流量(Fc)を制御するための制御目標値(Fo)と算出部(6)にて算出された熱量流量(Fc)との間の偏差に基づき、流量調整弁(2)の開度を制御する流量制御部(5)とを有する。

Description

流量制御装置
 本発明は、燃料ガスが有する発熱量に着目して、燃料ガスの供給量を制御する流量制御装置に関する。
 燃料ガスがバーナを使用して燃焼される場合、燃料ガスはバーナへの供給に先立ち、空気と混合され、これら燃料ガス及び空気の混合ガスとしてバーナに供給される。この混合ガス、即ち、燃料ガスの燃焼状態を最適化(完全燃焼化)するには、混合気に対する空燃比(A/F)の制御が必要不可欠である。
 このようなA/F制御は、混合ガス中の燃料ガス及び空気の供給量(質量流量)をそれぞれ計測し、これらの計測結果に基づき、ガスの供給量及び/又は空気の供給量を調整することにより、空燃比A/Fを一定の理想空燃比に維持する(例えば特許文献1を参照)。例えば、ガス及び空気の供給量の計測には熱式質量流量計が使用される。
 一方、混合ガスの生成にあたり、その組成が異なる複数種の燃料ガスが使用されたり、また、使用される燃料ガスが同一種であっても、その組成が変化したりすることがある。このような状況下にて、上述のA/F制御を実施するためには、使用される燃料ガスの燃焼熱量又は単位時間当たりの発生熱量が求められ、燃焼熱量又は発生熱量はA/F制御に反映される(例えば特許文献2を参照)。
 更に、混合ガスの生成には空気に加えて酸素もまた使用されることがあり、この場合には、A/F制御及びO/F制御(ここでは酸燃比制御と称す)のために燃料ガス、空気及び酸素の各質量流量がそれぞれ計測される(例えば特許文献3を参照)。
特開2002-267159号公報 特開2003-35612号公報 特開2007-87029号公報
 ところで、上述のバーナがガラス管の封止工程等に使用される場合、混合ガス、即ち、燃料ガスの燃焼量に対して高精度な制御が要求される。即ち、前述したように熱式質量流量計により計測された燃料ガスの質量流量に基づいて燃料ガスの供給量が制御される一方、混合ガス中の燃料ガス、空気及び/又は酸素が理想の混合比をそれぞれ有するように、燃料ガスの供給量に対して空気及び/又は酸素の供給量が制御される。
 しかしながら、このような制御が実施されても、燃料ガスの組成が変化した場合、燃料ガスを含む混合ガスの燃焼熱量や単位時間当たりの発生熱量は所望の管理値に維持されず、一方、混合ガス中の燃料ガスの密度もまた変化することから、燃料ガスに対する空気及び/又は酸素の混合比も理想の値から外れ、この結果、燃料ガスの不完全燃焼を招く。
 本発明の目的は、燃料ガスの組成の違いや変化に拘わりなく、燃料ガスの流量を燃料ガスの発熱量に基づいて制御し、例えば、燃料ガスを一定の発熱量で安定して供給することができる流量制御装置を提供することにある。
 上述した目的は、本発明の流量制御装置によって達成され、この流量制御装置は、燃料ガスの供給経路に配置され、燃料ガスの流量を調整可能な流量調整弁と、供給経路に配置され、燃料ガスの質量流量を計測する熱式質量流量センサと、燃料ガスの体積流量と燃料ガスの単位体積当たりの発熱量との積で定義される燃料ガスの熱量流量を前記熱式質量流量センサからの出力に基づいて算出する算出部と、熱量流量を制御するための制御目標値と算出部にて算出された熱量流量との間の偏差に基づき、流量調整弁の開度を制御する流量制御部とを備える。
 具体的には、燃料ガスは、例えば都市ガスや天然ガスのようなメタン、エタン、プロパン、ブタン等を含む炭化水素系の燃焼可能なガスである。
 算出部は、熱式質量流量センサの出力と燃料ガスの熱量流量との関係を予め求めることで作成されたマップを含んでいる。この場合、算出部は、マップから熱式質量流量センサの出力に応じた燃料ガスの熱量流量を求めることができる。
 好ましくは、本発明の流量制御装置は、燃料ガスの単位体積当たりの算出発熱量を算出する別の算出部と、基準状態にある燃料ガスの単位体積当たりの基準発熱量に対する算出発熱量の比を演算する演算部とを更に備えることができる。
 具体的には、別の算出部は、燃料ガスの流れが停止した状態にあるときに熱式センサの出力に基づいて算出発熱量を算出するか、又は、算出発熱量を算出するための別の熱式センサを含んでいる。
 更に、別の算出部は、熱式センサの駆動条件が2段階に変化されたとき、各段階での熱式センサからの出力をそれぞれ求め、これら出力に基づき算出発熱量を算出するものであってもよい。
 本発明の流量制御装置は、燃料ガスの体積流量と燃料ガスの単位体積当たりの発熱量との積により定義される熱量流量を熱式質量流量センサの出力に基づいて求め、求めた熱量流量を制御目標値に一致させるべく流量調整弁の開度を制御するので、燃料ガスの供給量は制御目標値に対応した一定の熱量流量を有する。
 この結果、燃料ガスの組成(種類)が所望の組成(種類)と異なっていたり、又は、燃料ガスの組成自体が変化していたりする場合であっても、本発明の流量制御装置は、燃料ガスの発熱量に着目して該燃料ガスの熱量流量を制御するので、燃料ガスを一定の発熱量で安定に効果的に供給することができる。
 上述のマップが予め準備されていれば、熱式質量流量センサの出力から燃料ガスの熱量流量を簡単に求めることができ、燃料ガスの燃焼制御を実施するにあたり、本発明の流量制御装置の負荷は軽減される。
 更に、上述した発熱量の比が算出されれば、本発明の流量制御装置は、燃料ガスにおける発熱量の変化を容易に捉えることができ、ひいては燃料ガスの組成の変化を検出することも可能である。
本発明の一実施例の流量制御装置を概略的に示すブロック図である。 図1の流量制御装置の構造を示す図である。 炭化水素系の燃料ガスに関して、燃料ガスの密度と熱拡散率αの逆数[1/α]との関係を示したグラフである。 炭化水素系の燃料ガスに関し、燃料ガスの密度と燃料ガスの単位体積当たりの発熱量との関係を示したグラフである。 燃料ガスの熱量流量と熱式センサの出力との関係を示したグラフである。 本発明の流量制御装置を含む燃料供給装置の概略を示したブロック図である。 燃料ガスの発熱量を算出する算出部の変形例を示した図である。
符号の説明
 1 供給経路
 2 流量調整弁(バルブ)
 3 熱式センサ
 4 駆動回路
 5 制御演算器
 6 算出部
 7 算出部
 8 演算部
11 管部材(供給経路)
 図1に示されるように、一実施例の流量制御装置21は燃料ガスの供給経路1に配置されている。流量制御装置21は基本的に、供給経路1内の燃料ガスの流量を調整する流量調整弁(以下、単にバルブと称す)2と、燃料ガスの質量流量を検出する熱式質量流量熱式センサ(以下、センサと称する)3と、バルブ2の開度を調整すべくバルブ2を駆動する駆動回路4と、駆動回路4を制御する制御演算器5とを含む。
 より詳しくは、制御演算器5は、後述するようにセンサ3からの出力(質量流量)から求めた熱量流量と、制御演算器5に設定された制御目標値(熱量流量)との間の偏差がなくなるように、駆動回路4を介してバルブ2の開度をフィードバック制御し、燃料ガスの熱量流量を調整する。
 図2は、流量制御装置の具体的な構造を示す。
 流量制御装置は管部材11を有し、この管部材11は供給経路1の一部を形成し、入口11i及び出口11oを有する。センサ3は、管部材11の軸線方向でみて、その中央に取付けられ、管部材11内の燃料ガスに晒される検出面を有する。
 バルブ2はバルブケーシング2aを含み、このバルブケーシング2aは管部材11の出口11oの近傍にて、管部材11の外周面に取付けられている。バルブケーシング2aはその内部に規定されたバルブ通路2bを有し、このバルブ通路2bは管部材11の内部流路の一部を形成する。また、バルブケーシング2a内には弁体2cが配置されており、弁体2cはソレノイド機構12により作動され、バルブ通路2b、即ち、バルブ2の開度を調整する。ソレノイド機構12はバルブケーシング2aの外側に取付けられている。
 流量制御装置は制御ユニット13を更に含む。この制御ユニット13もまた管部材11の外側に配置され、前述した制御演算器5や駆動回路4等を有する。
 管部材11、バルブ2及び制御ユニット13は共通のハウジング(図示しない)に収容されており、流量制御装置は1つのモジュールとして形成されている。
 なお、上述した流量制御装置の基本的な構造の詳細は前述の特許文献3等から公知である。
 本発明の流量制御装置21は、熱式質量流量センサ3の出力(質量流量)が燃料ガスの熱量流量に比例することに着目して開発されている。
 詳しくは、燃料ガスの質量流量Fmの検出に使用されるセンサ3は、例えばその検出面近傍の燃料ガス(流体)を加熱するヒータと、加熱された燃料ガスの温度分布を検出する2つの温度センサとを含み、これらの温度センサにより検出される温度差を質量流量Fmとして検出して出力する。温度差はセンサ近傍の流体の温度分布が、流体の流れによって変化することにより生じる。またこの温度分布は、燃料ガスの熱拡散率αと、燃料ガスの流速(体積流量Fv)とによって変化する。
 なお、燃料ガスの熱拡散率αは下式(1)によって求められる。
 α=λ/(ρ×Cp)   …(1)
 ここで、λは燃料ガスの熱伝導率、ρは燃料ガスの密度、そして、Cpは燃料ガスの比熱を表す。
 一方、燃料ガスの熱エネルギ量は、燃料ガスの単位体積当たりの発熱量Qvとして表すことができ、この発熱量Qvは燃料ガスの組成(種類)によって異なる。例えば、一般的な燃料ガスとして使用される炭化水素系の燃料ガス及びこれら燃料ガスの発熱量Qvは以下の表1に示されている。ここで、単位体積は、燃料ガスが基準状態(例えば0℃)にあるときの体積を指す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように燃料ガスの発熱量Qvは燃料ガスの種類、即ち、その組成によって異なる。このような発熱量Qvの相違は主として、燃料ガスの組成によって決定される密度ρの違いに起因する。従って、センサ3の検出対象である燃料ガスの組成が変化したときには、燃料ガスの密度ρもまた変化される。それ故、このような密度ρの変化は、センサ3によって検出されるべき質量流量Fmを変化させる。
 一方、図3は、炭化水素系の燃料ガスの密度ρと前述した熱拡散率αの逆数(=1/α)との間の関係を示している。図3から明らかなように、燃料ガスの密度ρは熱拡散率αの逆数に比例している。即ち、密度ρと熱拡散率αの逆数との関係は下式(2)により表される。
 1/α=K1×ρ       …(2)
 なお、K1は比例定数である。
 (2)式の比例関係は、炭化水素系の燃料ガスの組成の相違に拘わらず、当て嵌まる。
 また、図4は、炭化水素系の燃料ガスの密度ρと発熱量Qvとの間の関係を示している。図4から明らかなように、発熱量Qvは燃料ガスの密度ρに比例している。即ち、発熱量Qvと密度ρとの関係は下式(3)により表される。
 Qv=K2×ρ           …(3)
 なお、K2は比例定数である。
 (3)式の比例関係もまた燃料ガスの組成の相違に拘わらず、当て嵌まる。
 (2),(3)式から明らかなように、熱拡散率αの逆数と発熱量Qvとは相関関係にあることから、センサ3の近傍における燃料ガス(流体)の温度分布は、燃料ガス(流体)の体積流量Fvと、発熱量Qvとによって変化するとも言うことができる。
 このことは、炭化水素系の燃料ガスの組成に拘わらず、センサ3の出力(質量流量Fm)が燃料ガスの発熱量Qvに比例し、また同時に燃料ガスの流速(体積流量)Fvにも比例することを示す。
 ここで、熱量流量Fcを燃料ガスの発熱量Qvと流速(体積流量)Fvとの積として定義したとき、本発明者は、熱量流量Fcと熱式質量流量センサ3の出力(質量流量Fm)とが図5に示されるような一体の関係にあることを見出した。
 それ故、図1に示されるように本発明の流量制御装置21は、センサ3の出力として燃料ガスの質量流量Fmを求めるだけでなく、センサ3の出力(質量流量Fm)に基づいて燃料ガスの熱量流量Fcを算出する算出部6を更に備えている。具体的には、算出部6は、図5に示されるようなマップを格納したメモリを有し、センサ3からの出力(質量流量Fm)に基づき、この出力に対応する熱量流量Fcを読み出し、読み出した熱量流量Fcを前述した制御演算器5に供給する。なお、図5のマップは、センサ3の出力(質量流量Fm)に対する熱量流量Fcを予め求めることで、作成されている。
 制御演算器5には制御目標値Foが予め与えられており、この制御目標値Foは燃焼機器、具体的にはバーナに与えるべき熱量を直接的に管理するために使用され、本発明では前記熱量に対応した熱量流量である。制御演算器5は、制御目標値Foと算出部6から供給された熱量流量Fcと間の偏差を求め、この偏差がゼロとなるように駆動回路4を介してバルブ2の開度を制御する。
 それ故、仮に燃料ガスの組成が変化しても、流量制御装置21は制御目標値Foに一致すべく燃料ガスの流量(発熱量Qv)を制御し、燃料ガスをバーナに所望の熱量流量Fcで安定して供給することができる。
 より詳しくは、従来の一般的な流量制御装置は、センサ3の出力(質量流量Fm)に基づいて燃料ガスの質量流量を制御する。しかしながら、本発明の流量制御装置21は、燃料ガスが有する発熱量Qvに着目し、センサ3の出力に基づいて熱量流量Fcを求め、燃料ガスの熱量流量(発熱量)自体を直接制御する。それ故、燃料ガスの質量流量及び/又はその組成が変化されても、本発明の流量制御装置21はバルブ2の開度を制御することにより、バーナ26に供給される燃料ガスの熱量流量Fc(発熱量)を一定にすることができる。
 この結果、本発明の流量制御装置21にとっては、センサ3の出力に変化を及ぼした要因が燃料ガスの質量流量の変化であるのか、又は、燃料ガスの組成の変化であるのかを判断する必要がなく、流量制御装置21は上述した燃料ガスの流量制御を安定に実行可能である。
 ところで、上述した燃料ガスを安定に完全燃焼させるには、燃料ガスに空気又は酸素を適切な割合で混合した混合ガスを作ることが必要となる。炭化水素系の燃料ガスが完全燃焼されるとき、混合ガスの理想空燃比(A/F)又は理想酸燃比(O2/F)は、次の表2に示される通りである。
Figure JPOXMLDOC01-appb-T000002
 燃料ガスの種類又はその組成が異なる場合、A/F及びO2/Fもまた変化することから、燃料ガス、即ち、混合ガスを完全燃焼させるためには、混合ガス中の燃料ガスの組成及び流量に応じて、混合ガス中の空気及び/又は酸素の流量を調整する必要がある。
 例えば、図6は、バーナ26に混合ガスを供給する供給システムの概略的に示す。この供給システムは、前述した燃料ガスの供給経路1に加えて、空気の供給経路9及び酸素の供給経路10を含む。供給経路1は供給経路9に混合器24を介して接続され、この混合器24は混合ガスの供給経路15を介してバーナ26に接続されている。一方、供給経路10は混合器25を介して供給経路15に接続されている。
 供給経路1には前述した流量制御装置21が配置され、また、供給経路9,10にも流量制御装置21と同様な流量制御装置22,23がそれぞれ配置されている。これら流量制御装置22,23は空気及び酸素の流量をそれぞれ制御するために使用される。それ故、図6の供給システムは、燃料ガス、空気及び酸素からなる混合ガスを作り出し、作り出した混合ガスをバーナ26に供給する。
 本発明の流量制御装置21が上述の供給システムに使用される場合、図1に示されるように流量制御装置21は流量制御装置22,23と異なり、算出部7及び演算部8を更に含んでいる。なお、これらの流量制御装置21,22,23は、同じ構成のものであっても良い。
 算出部7は、燃料ガスの流れが停止した状態にあるときに、センサ3の出力に基づき燃料ガスの単位体積当たりの発熱量Qvを算出する。それ故、算出部7が発熱量Qvを算出するに先立ち、バルブ2は閉じられ、燃料ガスの流れを停止させる。この状態で、算出部7はセンサ3から出力の供給を受け、この出力に基づいて、燃料ガスの質量、即ち、その密度ρを求める。詳しくは、前記した式(3)から明らかなように、燃料ガスの密度ρ及び発熱量Qvは比例関係にあることから、この比例関係に基づき、算出部7は密度ρに基づき、発熱量Qvを算出することができる。
 一方、演算部8は、算出部7にて算出された発熱量Qvと既知の発熱量Qsとの比、即ち、Qv/Qsを演算する。発熱量Qsは、燃料ガスが基準状態(例えば0℃)にあるときの単位体積当たりの発熱量を示す。
 具体的には、燃料ガスの種類毎の発熱量Qsが予め求められており、これら発熱量Qsは、演算部8のメモリ(図示しない)にテーブルとして格納されている。それ故、演算部8は、テーブルから制御対象の燃料ガスに対応した発熱量Qsを選択し、この選択した発熱量Qsに基づいて比Qv/Qsを求めることができる。
 このような比Qv/Qsは、算出された発熱量Qvが発熱量Qsからどの程度変化しているかを示す指標となる。なお、発熱量Qvが変化する要因は主として、燃料ガスの組成の変化である。
 燃料ガスの組成が変化したき、燃料ガスを完全燃焼させるための理想空燃比A/Fや、理想酸燃比O2/Fもまた変化する。それ故、流量制御装置21が求めた比Qv/Qsは流量制御装置22,23に供給され、これら流量制御装置22,23は比Qv/Qsを考慮して、空気及び酸素の流量を制御する。この結果、理想空燃比A/F又は理想酸素燃比O2/Fの観点からみて、バーナ26に供給される混合ガスに含まれる空気及び酸素の割合がそれぞれ最適化され、混合ガス、即ち、燃料ガスの完全燃焼が可能となる。
 本発明は、上述の一実施例に制約されず、種々の変形が可能である。
 例えば、図6に示されているように流量制御装置22,23は、比Qv/Qsの代わりに、流量制御装置21にて算出された熱量流量Fcに基づき、混合ガスに含まれる空気及び酸素の割合を制御することもできる。
 一実施例の流量制御装置21の場合には、燃料ガスの発熱量Qvが算出されるとき、バルブ2の閉作動、即ち、供給経路1内の燃料ガスの流れを停止することが要求される。
 しかしながら、流量制御装置21は、管部材11内に形成され、燃料ガスに流れを生じさせることなく燃料ガスを溜める溜まり室と、上述のセンサ3とは別に、溜まり室に配置された熱式センサ3a(図1参照)を更に含むことができる。この場合、燃料ガスが流れている状態で、前述した算出部7はセンサ3aの出力に基づき、燃料ガスの単位体積当たりの発熱量Qvを算出することができる。
 また、図7に示されるように流量制御装置は、算出部7に代えて、センサ3の駆動条件であるヒータの温度制御パラメータ(燃料ガスの温度とヒータ温度との差)を2段階に切り換え可能なパラメータ制御部30と、これらの駆動条件下におけるセンサ3からの出力に基づき、発熱量Qvを算出する算出部32とを含むことができる。
 また、例えば特表2004-514138号公報に開示されるように、ヒータの温度を一定に保ったときのヒータ駆動電力から質量流量Fmを求めるタイプの熱式質量流量センサを用いる場合には、ヒータ温度を2段階に変えたときの、各段階におけるセンサ3からの出力に基づき、発熱量Qvを算出するようにしても良い。
 具体的には、算出部32は、センサ3の出力の差に基づいて燃料ガスの熱伝導率λを求め、この熱伝導率λと燃料ガスの密度ρとの比例関係に従い発熱量Qvを算出する(前記の(3)式参照)。
 更に、本発明の流量制御装置は、算出部6にて求められた熱量流量Fcと、センサ3の出力(質量流量Fm)とを並列的に出力することも可能である。また、本発明の流量制御装置は、熱量流量Fcに基づいた燃料ガスの流量制御と、質量流量に基づいた燃料ガスの流量制御との何れかを選択可能であってもよい。
 更にまた、本発明の流量制御装置は、燃料ガスの温度に関し、周知の温度補正機能を発揮する手段等を適宜含んでいてもよい。
 

Claims (7)

  1.  燃料ガスの供給経路に配置され、前記燃料ガスの流量を調整可能な流量調整弁と、
     前記供給経路に配置され、燃料ガスの質量流量を計測する熱式質量流量センサと、
     前記燃料ガスの体積流量と前記燃料ガスの単位体積当たりの発熱量との積で定義される前記燃料ガスの熱量流量を前記熱式質量流量センサの出力に基づいて算出する算出部と、
     熱量流量を制御するための制御目標値と前記算出部にて算出された熱量流量との間の偏差に基づき、前記流量調整弁の開度を制御する流量制御部と
    を具備した流量制御装置。
  2.  前記燃料ガスは炭化水素系の燃焼可能なガスである、請求項1に記載の流量制御装置。
  3.  前記算出部は、前記熱式質量流量センサの出力と前記燃料ガスの熱量流量との関係を予め求めることで作成されたマップを含む、請求項1に記載の流量制御装置。
  4.  前記燃料ガスの単位体積当たりの算出発熱量を算出する別の算出部と、
     基準状態にある燃料ガスの単位体積当たりの基準発熱量に対する前記算出発熱量の比を演算する演算部とを更に備える、請求項1に記載の流量制御装置。
  5.  前記別の算出部は、前記燃料ガスの流れが停止した状態にあるときに前記熱式質量流量センサの出力に基づいて前記算出発熱量を算出する、請求項4に記載の流量制御装置。
  6.  前記別の算出部は、前記算出発熱量を算出するための熱量センサを含む、請求項4に記載の流量制御装置。
  7.  前記別の算出部は、前記熱式質量流量センサの駆動条件が2段階に変化されたとき、各段階での前記熱式質量流量センサからの出力をそれぞれ求め、これら出力に基づき前記算出発熱量を算出する、請求項4に記載の流量制御装置。
     
PCT/JP2009/050080 2008-01-08 2009-01-07 流量制御装置 WO2009088017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/810,362 US8640731B2 (en) 2008-01-08 2009-01-07 Flow rate control device
EP09700187.9A EP2241810B1 (en) 2008-01-08 2009-01-07 Flow rate control device
CN200980102101.7A CN101910727B (zh) 2008-01-08 2009-01-07 流量控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008001166A JP5107063B2 (ja) 2008-01-08 2008-01-08 流量制御装置
JP2008-001166 2008-01-08

Publications (1)

Publication Number Publication Date
WO2009088017A1 true WO2009088017A1 (ja) 2009-07-16

Family

ID=40853130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050080 WO2009088017A1 (ja) 2008-01-08 2009-01-07 流量制御装置

Country Status (5)

Country Link
US (1) US8640731B2 (ja)
EP (1) EP2241810B1 (ja)
JP (1) JP5107063B2 (ja)
CN (1) CN101910727B (ja)
WO (1) WO2009088017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054030A1 (ja) * 2017-09-15 2019-03-21 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162128A (ja) * 2008-01-08 2009-07-23 Yamatake Corp 燃料供給装置
JP5707975B2 (ja) * 2011-01-28 2015-04-30 Jfeスチール株式会社 加熱炉の操炉方法
WO2013037669A1 (de) * 2011-09-16 2013-03-21 BSH Bosch und Siemens Hausgeräte GmbH Gasventileinheit
EP2808608A1 (en) 2012-01-23 2014-12-03 JX Nippon Oil & Energy Corporation Fuel supply system, fuel cell system, and method for running each
JP5984458B2 (ja) * 2012-03-30 2016-09-06 大阪瓦斯株式会社 ガスメーター
CN103542401A (zh) * 2012-07-16 2014-01-29 鄂尔多斯市中誉能源股份有限公司 一种带有计量调温给煤装置的锅炉
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
RU2693538C2 (ru) * 2015-03-17 2019-07-03 Интергэс Хитинг Эссетс Б.В. Устройство и способ для смешения горючего газа и воздуха для горения, оснащенные установкой для горячей воды, снабженной вместе с тем соответствующим тепловым датчиком массового расхода, и способ для измерения массового расхода потока газа
US10365666B2 (en) * 2015-09-11 2019-07-30 Hitachi Metals, Ltd. Mass flow controller
DE102017204030A1 (de) * 2016-09-02 2018-03-08 Robert Bosch Gmbh Verfahren zum Erfassen eines Alterungszustands eines Heizsystems sowie eine Steuereinheit und ein Heizsystem
CN108224467B (zh) * 2018-03-05 2023-12-29 林建新 一种助燃空气与燃气的质量流量线性比例控制装置
EP3571443B2 (en) 2018-10-05 2024-03-20 Sensirion AG Device for regulating a mixing ratio of a gas mixture
DE102019101190A1 (de) * 2019-01-17 2020-07-23 Ebm-Papst Landshut Gmbh Verfahren zur Regelung eines Gasgemisches unter Nutzung eines Gassensors, eines Brenngassensors und eines Gasgemischsensors
DE102021103456A1 (de) * 2021-02-15 2022-08-18 Ebm-Papst Landshut Gmbh Gastherme sowie Verfahren zur Einstellung eines Brennstoff-Oxidator-Gemisches in Abhängigkeit einer Zusammensetzung des Brennstoffes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147752A (ja) * 2000-11-15 2002-05-22 Tokyo Gas Co Ltd ガス成分監視によるガス設備の燃焼制御方法
JP2002267159A (ja) 2001-03-12 2002-09-18 Yamatake Corp 空燃比制御方法及び装置
JP2003035612A (ja) 2001-05-17 2003-02-07 Tokyo Gas Co Ltd 燃焼熱流量計測装置、燃焼熱流量計測方法、ガスメータ、ガス使用量検針装置
JP2004514138A (ja) 2000-11-15 2004-05-13 ラティス インテレクチュアル プロパティー リミテッド 炭化水素ガスの混合物の有効組成の決定
JP2007087029A (ja) 2005-09-21 2007-04-05 Yamatake Corp 流量制御装置および流体混合器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072384A (en) * 1933-12-01 1937-03-02 Cutler Hammer Inc Method of and apparatus for proportioning combustible fluids
US4961348A (en) * 1988-12-16 1990-10-09 Ulrich Bonne Flowmeter fluid composition correction
ATE114367T1 (de) * 1989-10-30 1994-12-15 Honeywell Inc Verbrennungsregelung mit mikromessbrücke.
JP2939135B2 (ja) 1994-09-28 1999-08-25 リンナイ株式会社 ガス燃焼装置
JPH09196367A (ja) 1996-01-12 1997-07-29 Harman Co Ltd 未燃成分検出センサの検査方法と検査装置
US5944048A (en) * 1996-10-04 1999-08-31 Emerson Electric Co. Method and apparatus for detecting and controlling mass flow
JP4225698B2 (ja) 2001-03-08 2009-02-18 大阪瓦斯株式会社 燃焼応用機器
WO2007036983A1 (ja) 2005-09-27 2007-04-05 Yamatake Corporation 熱伝導率測定方法および装置、並びにガス成分比率測定装置
JP2009162128A (ja) * 2008-01-08 2009-07-23 Yamatake Corp 燃料供給装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147752A (ja) * 2000-11-15 2002-05-22 Tokyo Gas Co Ltd ガス成分監視によるガス設備の燃焼制御方法
JP2004514138A (ja) 2000-11-15 2004-05-13 ラティス インテレクチュアル プロパティー リミテッド 炭化水素ガスの混合物の有効組成の決定
JP2002267159A (ja) 2001-03-12 2002-09-18 Yamatake Corp 空燃比制御方法及び装置
JP2003035612A (ja) 2001-05-17 2003-02-07 Tokyo Gas Co Ltd 燃焼熱流量計測装置、燃焼熱流量計測方法、ガスメータ、ガス使用量検針装置
JP2007087029A (ja) 2005-09-21 2007-04-05 Yamatake Corp 流量制御装置および流体混合器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054030A1 (ja) * 2017-09-15 2019-03-21 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
JP2019052962A (ja) * 2017-09-15 2019-04-04 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット

Also Published As

Publication number Publication date
JP2009162436A (ja) 2009-07-23
JP5107063B2 (ja) 2012-12-26
CN101910727B (zh) 2014-07-16
US8640731B2 (en) 2014-02-04
EP2241810A4 (en) 2013-06-19
US20100269922A1 (en) 2010-10-28
EP2241810B1 (en) 2018-03-21
CN101910727A (zh) 2010-12-08
EP2241810A1 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2009088017A1 (ja) 流量制御装置
WO2009088016A1 (ja) 燃料供給装置
RU2684918C1 (ru) Газовый датчик
US12025309B2 (en) Method for operating a premix gas burner, a premix gas burner and a boiler
JP7168775B2 (ja) ガス混合物の混合比を調節するための装置
JP2014527611A (ja) 酸素センサーを備えた水加熱システム
UA121327C2 (uk) Пристрій і спосіб для змішування горючого газу і повітря для горіння, оснащені установкою для гарячої води, що забезпечена разом з тим відповідним тепловим датчиком масової витрати, і спосіб для вимірювання масової витрати потоку газу
JP2002267159A (ja) 空燃比制御方法及び装置
JP5231024B2 (ja) 燃料供給装置
US20210055018A1 (en) Method for detecting unusual condition of gas appliance, and water-heating device
US10634346B2 (en) Heater device and method for operating a heater device
US20220282866A1 (en) Power Output Determination by Way of a Fuel Parameter
US20240125473A1 (en) Method for operating a gas heater
JPS61159142A (ja) 天然ガスの発熱量調整方法
JPH06100510B2 (ja) 熱量計
JP2939135B2 (ja) ガス燃焼装置
TWI531766B (zh) Heating control method of gas burner
JP2023087759A (ja) ガス燃焼装置
Mehboob Determination of Laminar Burning Velocities of Nitro-methane using Heat Flux Method
JP2022181347A (ja) 組成推定装置及び流体混合システム
WO2024003959A1 (en) Device for delivering a gaseous mixture, corresponding delivery apparatus and corresponding method of use
CN118687166A (zh) 燃烧设备的控制
JP2023093147A (ja) ボイラ装置
JP2009047325A (ja) バーナ制御システム
JP2001193486A (ja) ガスタービン・エンジンの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102101.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12810362

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009700187

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE